

A proof system for invariants in layered OO designs

Citation for published version (APA):
Middelkoop, R., Huizing, C., Kuiper, R., & Luit, E. J. (2008). A proof system for invariants in layered OO designs.
(Computer science reports; Vol. 0801). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/67c2d04a-2e1d-4a48-9563-27ec029a61bb

A Proof System for Invariants in Layered OO Designs

Ronald Middelkoop Cornelis Huizing Ruurd Kuiper Erik J. Luit
Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{r.middelkoop, c.huizing, r.kuiper, e.j.luit}@tue.nl

Abstract

Although invariants have a long history, their meaning in OO designs is still under discussion.
OO designs often include functionality that is used by different otherwise unrelated objects (shared
functionality). We identify a problem with current interpretations of invariants in such designs. OO
designs are often layered, where a layer uses functionality of a lower layer (in particular, shared
functionality) but has little or no involvement with higher layers. As a result, higher layers can rely
on lower layer invariants and lower layers do not rely on higher layer invariants. This is not reflected
by current interpretations of invariants. We propose to make layers explicit in specifications and
introduce a new interpretation of invariants that exploits these layers. Furthermore, we present a
sound, modular verification technique that ensures the new interpretation is satisfied.

1 Introduction

Object-oriented (OO) designs often include methods that provide shared functionality (i.e., that are
used by several otherwise unrelated objects). Examples include a canvas in graphics applications, and
static method sqrt of class Math from the Java API. Current specification and verification techniques
either disallow calls to such methods, or do not guarantee that invariants of objects that are relevant to
the proper functioning of the method hold when the method is executed. In this paper, we introduce an
approach that resolves these issues.

A (functional) specification captures the desired relation between the prestate and the poststate of a
method execution. Sometimes, an informal specification is sufficient: either the ease of specification
outweighs any ambiguity in that specification, or there is an implicit understanding of where an imple-
mentation is allowed to deviate from the specification. A formal specification, however, can serve as
a contract between the specifier and the implementor (which might be two roles of the same person)
[19]. Ideally, the correctness of the implementation with respect to the specification can be formally and
automatically verified. Together with pre- and postconditions, class invariants (or invariants for short)
have a central role in most formal OO specification techniques. Conceptually, an invariant is a property
that always holds (for instance, see [28]): an invariant of a class C captures a consistency property of
objects of C. The use of invariants can significantly reduce the specification overhead [19]. Invariants
can also be used for abstraction [12]. They allow the specifier to keep parts of desired input/output
relations implicit, thus hiding information [24] and increasing the modularity of the design [21].1

A formal specification requires an unambiguous interpretation of the specification constructs in that
specification. Although invariants have a long history, the interpretation2 of invariants in OO designs is
still under discussion. A key issue is that commonly (i.e., in many OO designs), an invariant of an object
is temporarily violated while the state it depends on is being updated. This is unproblematic as the

1 Our approach accounts for information hiding. To simplify the technical treatment, it is omitted from the language.
Techniques to add it are described in, e.g., [11, 16, 23]

2We use interpretation instead of the term semantics which is used in, e.g., [22] as the latter sometimes leads to
confusion.

1

invariant is irrelevant to the desired relations between the prestates and the poststates of the method
executions invoked during the update: we say these method executions do not rely on the invariant.
Particularly relevant to this paper is that re-establishing an invariant sometimes requires the invocation
of shared functionality. For instance, re-establishing an invariant might require the calculation of a
square root, which (in Java) can be done by an invocation of method sqrt (which, like most methods
from the Java API, will not rely on any user-defined invariants). We show a more involved example in
section 3. The interpretation of invariants has to account for such unproblematic scenarios.

The central observation underlying our solution is the following. To achieve loose coupling [24], an OO
design is often layered, where a layer uses functionality of lower layers, but, in principle, not of higher
layers. In particular, lower layer methods do not rely on invariants of higher layer objects. Commonly,
an object that provides shared functionality is in a lower layer of the design (for instance, a library like
the Java API) than the objects that use it. For example, a class that implements the Singleton Pattern
[10] provides a global point of access to its instance which provides shared functionality. This class will
often be in a lower layer of the design than the classes that use it.

The contributions of this paper are the following:

1. We analyze a state-of-the-art interpretation for invariants that exploits whole/part relations in OO
designs and show that it is not suitable for scenarios that involve shared functionality (section 3).

2. We show how the specifier can make layers in the design explicit with a minimum of specification
overhead (section 4).

3. We refine the state-of-the-art interpretation for invariants to exploit layers in OO designs (section
4).

4. We discuss the two existing techniques for reasoning about whole/part relations. One (dynamic
reasoning) uses an underlying proof system, the other (static reasoning) is less flexible but allows
simple syntactic checks like those of a type system. We extend both techniques to capture addi-
tional relations in the whole/part hierarchy, and refine them to reason about layer relations as well
(sections 5 and 6).

5. We use these reasoning techniques to present a modular verification technique that ensures the
refined interpretation of invariants is satisfied. First, we present a semantic decomposition of the
verification technique into separate concerns (section 7). Then, for each of these concerns, we
introduce proof obligations and syntactic restrictions (section 8). This two-stage approach gives
insight into the role of the individual proof obligations and syntactic restrictions, and allows one
to change the verification technique used for one of the concerns without affecting the others.

6. Unlike previous work, we consider a programming language that contains constructors, type casts,
static fields and static methods (which were an inspiration for the approach).

2 Programming and Specification Language

We consider the specification of invariants in the context of single-threaded Java-like programming
languages. The relevant part of the programming language grammar is shown in figure 1. A statement
in the language is either a data-dependent control-flow statement ControlFlowS (e.g. a loop), a sequential
composition, an assignment, a local variable declaration, or an assert statement. The assert statement is
discussed in section 5.2. There are two kinds of assignments: any expression E can be assigned to a local
variable (note that method parameters are treated as local variables), and simple expressions can be
assigned to a reference r. A simple expression SimpleE is either a reference r, the constant null, a boolean
expression BoolE, or a numeric expression NumE. A reference r is either the keyword variable this, a local
variable, or a field access r.f . An extension with static fields is presented in section 9.1. An expression
E is either a simple expression, a type cast, a method call, a superclass constructor call or an object
creation statement. The language contains two types of methods: instance methods and constructors.
An extension with static methods is presented in section 9.2. To make the grammar more manageable,

2

C ∈ classnames, T ∈ types, m ∈ methodnames, v ∈ local variablenames, f ∈ fieldnames
ownmod ∈ {rep, peer, root}
Stat ::= ControlFlowS | Stat; Stat | v = E | r = SimpleE | T v | assert BoolE
E ::= SimpleE | (T)r | r.m(~s) | C(~s) | new ownmod C(~s)
SimpleE ::= r | null | BoolE | NumE
r ::= this | v | r.f

Figure 1: Statement Grammar (where ~s denotes a vector of simple expressions).

the language does not have a return statement. Instead, every method has an implicit keyword variable
result that holds the return value. Furthermore, every method returns a value. Superclass constructors
and methods with return type void return null, which is assigned to a dummy variable. A superclass
constructor call v = C(~s) may only occur as the first statement of a constructor. Details of object
creation can be found in sections 3.2 and 5.1 (in particular, the ownership modifier ownmod is discussed
in section 3.2). For simplicity, there is no object de-allocation and a subclass is not allowed to define a
field with the same name as a superclass field (known as field shadowing [25]). To improve readability,
our examples use shorthand notations that are self-explanatory.

The semantics of a program is a set of possible program executions. A program execution is a sequence of
execution states. For a sequence Σ, Σ[i] is the i’th element of Σ. Furthermore, Σ[i..j] is the consecutive
subsequence of Σ with first element Σ[i] and last element Σ[j]. Finally, Σ[i..] is the postfix of Σ with
Σ[i] as the first element. An execution state contains a stack and an object store. A stack is a partial
mapping from stack variables to values. A stack variable is either this or a local variable. A value is
either an object, null, a boolean, or a number. An object store is a partial mapping from locations to
values. A location is an instance field of an object (written X.f). The declared type of the location is
the declared type of the field. An execution state σ also contains all the relevant context information:
this uniquely identifies σ in the program execution. It includes a program counter, and whether or not
σ is a visible state. An execution state is visible if it is either a prestate or a poststate. In program
execution Σ, Σ[i] is a prestate either if i = 0, or if the program counter of Σ[i − 1] is at a method call
statement. Σ[i] is a poststate if the program counter of Σ[i] is at the end of a method.

Matching pre- and poststates mark the first and last states of a method execution: a prestate Σ[i] and
a poststate Σ[j] match if i < j and every prestate Σ[k], i < k < j, is matched by a poststate Σ[l], l < j.
As in Java, every poststate is matched by exactly one prestate, and if a program execution terminates
normally, every prestate is matched by exactly one poststate. A consecutive subsequence Σ′ of program
execution Σ is a method execution if there is a prestate Σ[i] such that either (1) Σ′ = Σ[i..j] and Σ[j]
is the poststate that matches Σ[i], or (2) Σ′ = Σ[i..] and Σ[i] is unmatched in Σ. As is to be expected,
every program execution is a method execution. Further details of the semantics are outside the scope
of this paper: intuitively, statements behave as their Java counterparts.

A number of definitions is based on the above. Control is with object X in execution state σ if σ(this) = X.
Control is in class C in σ if the program counter of σ is in a method of C. Control flows to X in Σ[i]
if control is with X in Σ[i], and either Σ[i] is a prestate, or Σ[i − 1] is a poststate. Notice that control
also flows to X when a method executed on X invokes another method on X. X is constructing in σ if
the program counter of σ is in a constructor and control is with X in σ. X is non-constructing in σ if
X is allocated and not constructing in σ, so either X’s construction is completed or control is with an
object (indirectly) called by a constructor of X. Two execution states σ and σ′ differ on location X.f if
σ(X.f) 6= σ′(X.f). Execution states σ and σ′ differ on object X if there is a field f such that σ and σ′

differ on X.f . Let Σ be a sequence of execution states. type(X) denotes the dynamic type of X. D ⊂ C
denotes that D is a proper subclass of C. super(C) denotes the direct superclass of C.

Few of the details of the specification language are relevant to this paper. For now, only the specification
of class invariants is important. Other constructs (in particular, pre- and postconditions) are left implicit.
A class invariant invC is associated with every class C, by means of the specification construct inv BoolE

(if the construct is omitted, invC is true).

Object invariant invC(X) holds in execution state σ if type(X) ⊆ C and invC holds in σ[this 7→ X] (the

3

Figure 2: Conceptual Design of a Travel Agent Administration System

state that is like σ, except that its stack maps this to X). X is consistent for set of classes S in σ if
invC(X) holds in σ for every class C ∈ S. [E,C] denotes the set of classes {D | E ⊆ D ⊆ C}. [E,C〉
denotes the set of classes {D | E ⊆ D ⊂ C}. X is consistent in σ if X is consistent for [type(X), Object]
(or equivalently, if invC(X) holds in σ for every class C, type(X) ⊆ C).

3 Problem Analysis

This section discusses two existing interpretations of invariants and their limitations. In section 3.1, the
classical interpretation of invariants and its limitations are discussed. Section 3.2 discusses an existing,
state-of-the-art interpretation that addresses some of these limitations. Finally, section 3.3 argues that
this interpretation can be improved and sketches how this can be accomplished: the idea behind the
paper.

3.1 Classical Invariant Interpretation

The classical interpretation of invariants [22] is based on visible states.
Classical Invariant Interpretation (CII): Program execution Σ satisfies the Classical Invariant
Interpretation if, for every visible state σ in Σ, for every non-constructing object X, X is consistent.

Object construction deserves special treatment as an object X is (in general) not consistent in the pre-
and poststates of its constructors. This treatment is postponed until section 4. The CII is a suitable
interpretation for local invariants, i.e., invariants that only refer to the state of a single object [22].
However, the consistency of one object often depends on the state of other objects, for instance when
the object is a composition of other objects. Many executions of designs that include non-local invariants
do not satisfy the CII. As an example, consider the design in figure 2, which represents a simplified travel
agent administration system. A ClientInfo object contains the personal information of a specific client
of the travel agent, like the client’s name and date of birth. A TripInfo object contains the information
that pertains to a specific trip that is offered by the travel agent, like the carrier and the arrival and
departure times for that trip. TripInfo’s method book(ClientInfo c) contacts the carrier’s booking system
and attempts to reserve a seat for client c. It returns true if the reservation is made, and false otherwise.
A Trip object contains the information that pertains to a specific trip selected by a specific client. In this
simple example, a Trip object additionally only stores whether or not the trip has already been booked.
A RoundTrip consists of two Trips, one outbound and one inbound. Figure 3 shows an implementation of
classes Trip and RoundTrip. An invariant has been specified for RoundTrip. This non-local invariant relates
the state of RoundTrip’s parts. It ensures that a client is not faced with a RoundTrip of which only one leg
is booked.
Program executions in which a RoundTrip is successfully booked do not satisfy the CII. Consider an
execution of method book on a RoundTrip R. This execution invokes R.outbound.book(). In the poststate

4

class Trip {
root TripInfo ti; root ClientInfo client; boolean booked = false;

Trip(root TripInfo t, root ClientInfo c) {
this.ti = t; this.client = c; this.booked = false;

}
boolean book() {
this.booked = this.ti.book(this.client); return this.booked;

}
void cancel() {
this.ti.cancel(this.client); this.booked = false;

}
}
class RoundTrip {
rep Trip outbound; rep Trip inbound;

inv this.outbound.booked == this.inbound.booked;

RoundTrip(root TripInfo out, root TripInfo in, root ClientInfo c) {
this.outbound = new rep Trip(out,c);

this.inbound = new rep Trip(in,c);

}
bool book() {
bool b = this.outbound.book();

if (b) { b = this.inbound.book();

if (!b) { this.outbound.cancel(); }}
return b;

}
}

Figure 3: Trip and RoundTrip – Hierarchically structured code annotated with ownership information (rep and
root, see section 3.2) and an invariant.

of the execution of this method, the invariant of R does not hold. This means it also does not hold in
the prestate of R.inbound.book(). Note that booking the inbound Trip re-establishes the invariant of R: in
the poststate of R.book(), R is consistent.
The above represents a common scenario: an invariant of an object X is temporarily violated while the
parts of X are updated, but this is unproblematic because the design accounts for the inconsistency. The
problem is that the CII is too restrictive to allow such scenarios. It has to be refined based on observations
of common scenarios. In this case, the design allows for the inconsistency due to a subordinate relation
between the RoundTrip object and its parts. A subordinate is defined as follows:
subordinate: Object Y is a subordinate of object X if (1) the consistency of X is not relied on when
control flows to Y , and (2) Y is consistent when control flows to X.

We make the following observation:
observation 3.1: Commonly, if object Y is a part of object X, then Y is a subordinate of X.

3.2 Ownership and the Relevant Invariant Interpretation

Observation 3.1 is reflected in the ownership technique [22]. This technique relies on the notion of
ownership (see for instance [21] and [6]) to make subordinate relations explicit3. The idea is that an
object owns its subordinate parts. Objects that are not a subordinate part of another object are owned
by the special purpose owner root (this slightly deviates from the definition of ownership in [22]).
ownership: The set of owners consists of the set of objects and the special purpose owner root. In
any given state, every allocated object is directly owned by exactly one owner. This relation is acyclic.
The owned relation is the transitive closure of the directly owned relation. Finally, owner(σ) = O if
control is with an object that is directly owned by owner O in execution state σ.

In our language (see section 2), the direct owner of an object is determined by the ownership modifier
ownmod of an object creation statement v = new ownmod C(. . .). Consider a program execution Σ.

3Actually, ownership is typically used to enforce encapsulation (see section 7). However, the notion of encapsulation is
relevant to the verification, but not to the interpretation of invariants.

5

root

R1: RoundTrip : 2

L1 : Trip : 2 L2 : Trip : 2

C1: ClientInfo : 1

T1 : TripInfo : 1

T2 : TripInfo : 1

C2: ClientInfo : 1

L3 : Trip : 2

Figure 4: Possible Travel Agent object configuration. Objects refer to their direct owner with a dashed arrow
(see section 3.2). Solid arrows refer to objects that provide shared functionality. Objects have a name, a class
and a layer (see section 4)

Assume that the program counter in Σ[i] is at a statement v = new ownmod C(. . .). Then there is an
object X that is constructing in Σ[i + 1]. Assume that control is with object Y with direct owner O
in Σ[i]. The direct owner of X is Y when ownmod is rep, O when ownmod is peer, and root when
ownmod is root. Note that the default modifier is peer and can be omitted. Ownership transfer [17] is
not considered in this paper: the owner of an object X is determined when X is allocated and cannot
be changed afterwards.

In figure 3, ownership is expressed by the ownership modifiers in attribute and parameter declarations
and in object creation statements. In particular, the keyword rep makes explicit that a RoundTrip directly
owns its inbound and outbound Trips (see section 6.1). The TripInfo ti and ClientInfo client of a Trip are owned
by root, as indicated by the keyword root. Figure 4 shows a possible configuration for the travel agent
example. In this configuration, there is a client C1 that has selected a RoundTrip R1, and a client C2
that has selected a Trip L3. R1’s outbound Trip L1 and inbound Trip L2 are part of, and owned by, R1.
The other objects are not part of an object: they are directly owned by root. L3 and L1 share the
same TripInfo: C1 and C2 travel together on C1’s outbound Trip. The ownership technique replaces the
CII with the weaker Relevant Invariant Interpretation (RII) [22]. Roughly, the RII states the following.
If control is with an object Y with direct owner O in a visible state σ, then all objects owned by O are
consistent in σ.
Relevant Invariant Interpretation (RII): Program execution Σ satisfies the Relevant Invariant
Interpretation if, for every visible state σ in Σ, for every non-constructing object X, if owner(σ) owns
X, then X is consistent.

Consider an execution of method book on RoundTrip R1. Unlike the CII, the RII allows for the incon-
sistency of R1 in the poststate of the execution of book on R1’s outbound Trip and in the prestate of the
execution of book on R1’s inbound Trip (as R1 is the owner of these states). Unfortunately, the RII is not
suitable for designs like the travel agent example. As the observations in the next section show, the RII
sometimes requires certain objects to be consistent when they are not, and does not always guarantee
the consistency of certain objects when they are intended to be consistent.

3.3 Class Level Subordinate Relations

Subordinate relations do not just occur between a whole and it parts. The RII (section 3.2) can be
improved when such relations can be identified and made explicit. In this section, we identify a category
of subordinate relations at the class level. To achieve loose coupling [24], there typically is a layering of
the classes used in a design, where a layer uses functionality of its own layer and lower layers, but has
little or no dependency on higher layers. More specifically, we make the following observation.
observation 3.2: Commonly, there are classes C and D in a design such that any object of C is a
subordinate of any object of D. In particular, when layers are present in the design and class C is in
a lower layer than class D, this property almost always holds.

Especially relevant is that shared functionality is commonly in a lower layer of the design than the
classes that use this functionality. Ownership imposes a partial ordering on the object structure. We

6

root

R1: RoundTrip

L2 : Trip T2 : TripInfo

R2: RoundTrip

L3 : Trip

Figure 5: Alternative Travel Agent object configuration (partial).

say an object X provides shared functionality if different objects that are not ordered by ownership
invoke methods on X. A practical example is the use of a canvas in graphics applications. Note that
it is also common that static methods (see section 9.2) provide shared functionality. The travel agent
example contains objects that provide shared functionality. In this example, the classes that offer shared
functionality (TripInfo and ClientInfo) are in a lower layer of the design than the classes that use this
functionality (Trip and RoundTrip). Not accounting for the layering in the interpretation of invariants
complicates both specification and verification. More specifically, the RII is well suited to scenarios
where re-establishing the consistency of an object X only requires invocations of methods on objects
owned by X. However, re-establishing the consistency of X commonly requires the use of lower-layer
shared functionality. This is illustrated by the observations below.
observation 3.3: Commonly, to re-establish the consistency of an object X, control needs to flow to
a lower-layer object Y with a direct owner that owns X. Given observation 3.2 (and the definition
of subordinate), the consistency of X is not relied on when control flows to Y . The RII, however, is
not satisfied: it requires that X is consistent when control flows to an object with a direct owner that
owns X.

For instance, consider the configuration in figure 4. Successfully booking RoundTrip R1 requires an
execution of book on TripInfo T2 (invoked by R1.inbound.book()) such that R1 is inconsistent in the
prestate of this execution. The RII is too strong to allow this inconsistency.
observation 3.4: Commonly, when control flows to an object X with direct owner O, consistency of
a lower layer object Y that is not owned by O is relied on. Given observation 3.2, Y is consistent when
control flows to X. The RII, however, is too weak to guarantee this as O does not own Y .

Again consider figure 4. An execution of L2.book() invokes T2.book(), which is likely to rely on the
consistency of T2 (among others). Due to the layering of the design, we can expect that T2 is consistent
in the prestate of methods executed on L2. However, the RII does not guarantee this consistency.

Note that these problems cannot be remedied even by a counter-intuitive use of ownership. For instance,
consider the alternative configuration of figure 5. It allows the successful booking of RoundTrip R1 given
the RII (as R1 owns T2, T2 is consistent in the prestate of L2.book(), and R1 is not required to be
consistent in the prestate of T2’s book). However, with this configuration, the property that is specified
to hold in the poststate of a method executed on T2 is much weaker than necessary. In particular,
T2’s method book is no longer required to preserve the consistency of R1. Furthermore, the solution is
unsatisfactory as TripInfo objects offer shared functionality: T2 is intended to be consistent in, e.g., a
prestate of L4’s book method, but this is not guaranteed by the RII.

In the next section, we show how the different layers in a design can be made explicit in the specification,
and we present a refined interpretation of invariants that takes advantage of these layers.

4 Layers and the Layered Relevant Invariant Interpretation

In this section, the notion of layers from the previous section is formalized, and used to present a
interpretation of invariants that takes the observations of the previous section into account.
layers: There is a totally ordered set of layers Λ. Every class is in exactly one layer. A class C is in
layer l ∈ Λ (also written layer(C) = l) if C contains the specification layer l. An object of class C is in

7

layer l if C is in layer l. Finally, layer(σ) = l if control is with an object in layer l in execution state σ.
The additional structure provided by layers is used to replace the RII by a more flexible interpretation
that reflects the observations of the previous section. This Layered Relevant Invariant Interpretation
(LRII) is a conservative extension of the RII in the following sense: when every class in a program P
is in the same layer, any execution of P that satisfies the RII also satisfies the LRII, and vice versa.
Roughly, the LRII states the following. If control is with an object Y with direct owner O in a visible
state σ, and Y is in layer l′, then all objects in layers below l′, and all objects owned by O in layer l′,
are consistent (item 1 in the definition below). In addition, if σ is the poststate of a method execution
Σ′, then any object X that is owned by O and in a layer above l′, is at least as consistent as it was in
the prestate of Σ′ (item 2 in the definition below).
Layered Relevant Invariant Interpretation (LRII): Program execution Σ satisfies the Layered
Relevant Invariant Interpretation if, for every visible state σ in Σ, for every layer l in Λ, for every
non-constructing object X in l,
(1) if either l < layer(σ), or (owner(σ) owns X and l = layer(σ)), then X is consistent, and
(2) if σ is a poststate and owner(σ) owns X and l > layer(σ), then X is at least as consistent in σ

as in the prestate matching σ.
Observation 3.2 is reflected in two differences between the RII and the LRII. Consider an object X in
a layer l. The LRII is stronger than the RII in the sense that with the LRII, in a visible state σ, X is
guaranteed to be consistent if l < layer(σ). The LRII is weaker than the RII in the sense that with the
LRII, the consistency of X is not required in a prestate σ if owner(σ) owns X but l > layer(σ).

For Λ, we use double (the floating point numbers of our language). In practice, the use of double means
that an empty layer (i.e., a layer no class is in) can always be found in between any two non-empty
layers. Another advantage of this existing ordering is that it requires very little specification overhead,
in particular given default class layers.
default class layers: If class C does not specify its layer, then (1) if C is Object, C is in layer -1,
(2) if C is a Java API class and super(C) is Object, C is in layer 1, (3) if C is a user-defined class and
super(C) is Object, C is in layer 2, (4) if super(C) is not Object, C is in the same layer as super(C).

The intuition behind these default values is that classes from the Java API do not rely on user-defined
invariants. Furthermore, a user-defined class that is intended to provide shared functionality (see section
3.3) can be explicitly placed in layer 1. When a class does not contain the layer construct, that class
is in its default layer. Therefore, user-defined classes Trip and RoundTrip (see figure 3) are in layer 2.
Classes TripInfo and ClientInfo (not shown) contain the specification layer 1, which explicitly places them
in a lower layer than Trip and RoundTrip.

The differences between the RII and the LRII give the extra flexibility needed for designs like that of
the travel agent example. Again consider figure 4. Given the LRII, the specification expresses that
TripInfo T1 and ClientInfo C1 are consistent in the prestate of an execution of method book on one of R1’s
Trips. Furthermore, R1 is not required to be consistent in the prestate of T1.book(). Note that the LRII
guarantees that any invariant of R1 that does hold in a prestate of T1.book, also holds in the poststate,
as R1 must be at least as consistent in the poststate as in the prestate. In particular, in a poststate σ,
an object X owned by owner(σ) is consistent if it was consistent in the prestate matching σ.

To deal with object creation, we have to consider (1) invariants of objects that are constructing, and
(2) the consistency of objects that are created during a method execution. We make the following
observations. For (1), when a new object X is created, none of X’s invariants can be expected to
hold. Superclass constructors are called before subclass invariants can be initialized. Therefore, the
invariants of X cannot be expected to hold in the prestate of superclass constructor executions, and
subclass invariants of X cannot be expected to hold in the poststate of a superclass constructor. For
(2), it makes sense that an object X that is created during a method execution Σ is consistent in the
poststate σ of Σ, even if X is created in a layer above layer(σ), or not owned by owner(σ) (although
the latter is only possible if our language is extended with ownership transfer or object creation with an
arbitrary owner). These observations lead to the following definition.
LRII-c: Program execution Σ satisfies LRII-c if, for every poststate σ in Σ, for every object X,
1) if X is constructing and control is in class C, then X is consistent for [C, Object], and
2) if X is not allocated in the prestate matching σ, then X is consistent.

8

This concludes the first part of this paper. In section 3, we identified problems with the verification of the
running example and determined that the interpretation of invariants was the origin of these problems.
At the semantical level, the problems have been solved by the introduction of the LRII. Object creation
has been accounted for by the LRII-c. To establish the LRII and the LRII-c, one has to reason about
layer and ownership relations. In the second part of this paper, we discuss how this can be done. For
reasoning about ownership relations, two techniques have been suggested.

1. Static Reasoning [22]: extend the type system to encode ownership relations. The ownership
technique uses static reasoning to formulate its proof obligations. The main advantage of static
reasoning is that it is lightweight: simple syntactic checks (like those used by Java’s type system)
suffice to establish the desired properties.

2. Dynamic reasoning [8]: encode ownership relations using an auxiliary field that occurs in specifica-
tions, but not in regular program statements. In [8], it is shown how to use either static reasoning
or dynamic reasoning to establish a given property. Compared to static reasoning, the downside of
dynamic reasoning is that it requires more specification overhead and is not lightweight. However,
it is more flexible and can be used when static reasoning does not suffice.

In section 5, we discuss dynamic reasoning and extend it to be able to reason dynamically about layer
relations. In section 6, we discuss the type system used for static reasoning in [22] and [8]. We first
extend this type system to be able to identify two additional ownership relations that are relevant in the
context of the LRII. Then we extend the type system further, to reason about layer relations.

5 Dynamic Reasoning

In this section, a dynamic encoding of ownership and layer relations (based on the work in [8] and [17])
is introduced. Then, the role of the assert statement is discussed and illustrated by an example.

5.1 dynamic encoding

When ownership and layer relations are encoded into basic OO concepts, these relations can be reasoned
about using any existing OO proof system. The auxiliary fields owner of type Object and layer of type
double encode the direct owner and the layer of an object, respectively. These fields are treated as fields
defined in class Object. Auxiliary fields may not occur in statements other than the assert statement
(i.e., they cannot be read from or written to). Both fields are set when an object is created. Consider an
execution state σ in which control is with object Y with direct owner O. When v = new ownmod C(. . .)

is executed from σ, this allocates a fresh object X of class C, sets X’s owner and layer field, invokes the
constructor on X and then assigns X to v. X .layer is set to the layer of class C. X .owner is set to Y
when ownmod is rep, O when ownmod is peer, and null when ownmod is root. For more details and
practical aspects of the dynamic encoding, we refer to [8, 3, 17]. It is obvious that the dynamic encoding
establishes the following lemma.

Lemma 5.1 For every program execution, for every execution state σ, for every allocated object X,
(1) X.owner == null holds if and only if root is the direct owner of X,

X.owner != null holds if and only if σ(X .owner) is the direct owner of X,
(2) X.layer == l holds if and only if X is in layer l.

5.2 the assert statement

We present the relevant proof obligations in a way that is orthogonal to the other concerns of a proof
system. To this end, the statement assert BoolE is included in the programming language (see also
[16]), where boolean expression BoolE is side-effect free. A boolean expression in an assert statement

9

may mention owner and layer fields and contain quantifications (both of which are disallowed in other
statements). The assert statement causes the program execution to abort when it is executed from a
state in which the boolean expression does not hold (and has no effect otherwise).

To guarantee that a certain property holds when the program counter is at a certain point, we augment
the original program text with an assert statement. When a method contains a fragment assert B;S, we
say that statement S is guarded by boolean expression B. Then, when the program execution is at S,
B holds.

Let P be a program and let P ′ be the same program but augmented with statements assert B where
necessary. If, for every execution of P ′, B holds in any execution state with a program counter that is at
assert B, then P ′ is functionally equivalent to P . Following this approach, the question of how to prove
that B holds at every assert B can be treated as a separate concern. Our proof obligations for dynamic
reasoning can thus be formulated as requirements to insert certain assert statements.

The use of the assert statement is illustrated by the following example. Let statement v = r.m(. . .) be
guarded by r.owner == this && this.layer >= r.layer. Consider two consecutive states σ and σ′ in program
execution Σ such that the program counter of σ′ is at the method call statement. Then the program
counter of σ is at the guarding assert statement. Assume that control is with X in σ, and that r refers to
Y in σ. As the execution did not abort in σ, r.owner == this && this.layer >= r.layer must hold in σ. As
an assert statement does not change the heap or the stack, r.owner == this && this.layer >= r.layer also
holds in σ′. Therefore, in σ′, X directly owns Y , and X is not in a lower layer than Y (due to lemma
5.1).

6 Static Reasoning

In this section, we introduce a lightweight approach that significantly reduces the specification and
verification overhead that is required given only dynamic reasoning. To this end, section 6.1 discusses
an existing type system that captures ownership relations statically. We extend this type system to
capture two additional ownership relations. Then, in section 6.2, additional type-correctness rules are
introduced that allow the type system to capture layer information as well. This allows one to establish
layer and ownership properties with simple syntactic checks.

6.1 capturing ownership relations

The ownership technique relies on the Universe Type System (UTS) [21, 22, 8] to capture ownership
relations statically. In this section, we show how the UTS uses ownership modifiers to capture these
relations. To effectively reason about the LRII, we extend the type system with the ownership modifiers
root and owner. We show how to determine the ownership modifier of an expression in this extended
Universe Type System (eUTS) and briefly discuss its type-correctness rules (as the rules of the eUTS
closely resemble the rules of the UTS).

The UTS distinguishes three kinds of references [8]: (1) references between objects with the same direct
owner (peer references), (2) references from an object X to an object directly owned by X (rep references),
and (3) references between objects with arbitrary direct owners (any references4). This classification is
expressed in the UTS by adding an ownership modifier peer, rep or any (respectively) to each reference
type. For instance, the type rep T is the type of references pointing to objects of class T owned by this.
The default modifier is peer and can be omitted. peer T and rep T are subtypes of the corresponding type
any T. A type with a peer modifier is referred to as a peer type (and likewise for the other ownership
modifiers). The ownership modifier of a field f or a local variable v is the ownership modifier of the
declared type of f or v.

We introduce two additional kinds of references: (1) references from an object X to an object owned
by X (owned references), and (2) references to objects directly owned by root (root references). These

4also referred to as readonly references in earlier publications

10

kinds of references are identified by the additional ownership modifiers owned and root. Types owned T

and root T are subtypes of the corresponding type any T. Type rep T is a subtype of the corresponding
type owned T (as an object owns every object it directly owns). That owned references are relevant
follows from the definition of the LRII (see section 4). Root references are relevant because shared
functionality (see section 3.3) is often directly owned by root.

Like the Java type system, the eUTS ensures that if a reference of a type C refers to an object X, then
type(X) ⊆ C. Additionally, a type-safety property regarding ownership is established. Informally, this
property is the following. If reference r with ownership modifier ownmod refers from object X to object
Y in execution state σ, then os(X, ownmod, Y) holds in σ, where

os(X, ownmod, Y) holds in σ if either ownmod is owned and X owns Y ,
or ownmod is rep and X directly owns Y ,
or ownmod is peer and the direct owner of X directly owns Y ,
or ownmod is root and root directly owns Y ,
or ownmod is any.

We formalize this property at the level of the individual parts of a reference (i.e., stack variables and
locations).
ownership safety:5

Location X.f is ownership safe in execution state σ if: if X.f has a declared type ownmod C, and
σ(X.f) is defined, then os(X, ownmod, σ(X.f)) holds in σ.

If control is with an object X in execution state σ, then stack variable s is ownership safe in σ if: if s
has a declared type ownmod C, and σ(s) is defined, then os(X, ownmod, σ(s)) holds in σ.

Execution state σ is ownership safe if every location and every stack variable is ownership safe in σ.
Method execution Σ is ownership safe if every execution state of Σ is ownership safe.

Notice that a location or variable that is not mapped to an object is ownership safe. The type-correctness
rules of the eUTS establish ownership safety. These rules differ slightly from those of a standard type
system. As in Java, an assignment is type correct only when the type of the right-hand side expression
is a subtype of the type of the left-hand side variable. To this end, an ownership modifier is associated
with each expression E that is not of a primitive type. ownmod(E), defined below, yields the ownership
modifier of the static type of E. In this definition, A represents either a field f , or a method call m(. . .).
The ownership modifier of a method call m(. . .) is the ownership modifier of the return type of m(. . .).

shape of E ownmod(E)
new ownmod C(. . .) ownmod
(ownmod C)r ownmod
this peer

local variable v ownership modifier of v
this.A ownership modifier of A
r.A, r different from this ownmod(r) ⊕ ownership modifier of A (see below)

When r differs from this, the ownership modifier of an expression r.A is determined using the ownership
combinator ⊕ defined below. For example, a reference this.f.g (r=this.f) such that f is of a rep type has
a rep modifier when g is of a peer type. It has an owned modifier when g is of a rep type, and an any

modifier when g is of an any type.

omr ⊕ omA peer root any rep owned omA
omr peer peer root any any any

root root root any any any

any any root any any any

rep rep root any owned owned

owned owned root any owned owned

5In section 9.1, these definitions are extended to account for static fields.

11

The rationale behind this table is as follows. Consider a reference r.f where r refers from X to Y and
Y.f refers to Z. Let ownmod(r) = omr and let f be of declared type omA C. If omA is peer, then
Y and Z have the same direct owner and the ownership relation between X and Z is the same as that
between X and Y . Therefore, ownmod(r.f) = ownmod(r). If omA is root, then Z is directly owned
by root, independent of omr. Therefore, ownmod(r.f) = root. If omA is any, then Z has an arbitrary
direct owner, i.e., the ownership relation between the direct owners of Y and Z is unknown. Then the
same is true for X and Z. Therefore, ownmod(r.f) = any. If omA is rep or owned, then Y (directly)
owns Z. Then X owns Z if X owns Y (i.e., ownmod(r.f) = owned). If X does not own Y , the relation
can only be expressed by any.

As the ownership modifier of a field is relative to the object the field belongs to, one has to be careful
when assigning to fields of objects other than the this object. For instance, consider a class Node with a
field rep Node next. Then this.next has static type rep Node and this.next.next has static type owned Node. Al-
though rep Node ⊆ owned Node, assignment this.next.next = this.next should not be allowed as this.next.next

must refer to an object that is directly owned by this.next. Assignments that do not preserve ownership
safety (such as the one above) are prevented by the following type-correctness rule.
syntactic restriction SR6.1: Every assignment r.f = SimpleE is such that either ownmod(r.f) 6∈
{any, owned}, or r is this, or the ownership modifier of f is any.

This rule resembles the one in [8], but accounts for owned and is more liberal ([8] additionally aims for a
strong encapsulation property and therefore disallows assignments where ownmod(r.f) is any altogether).
For simplicity, we do not weaken this rule further, and do not show how dynamic reasoning can be used
in cases where it is not met.

Method calls require a similar treatment, as the ownership modifier of a formal parameter of a method
is relative to the object on which the method is called. For the purpose of the type-correctness rules of
the eUTS, a method call r.m(s0, . . . , sn) is treated as a series of assignments r.p0=s0, . . . , r.pn=sn, where
p0, . . . , pn are the formal parameters of m. So, if the static type of pi (0 ≤ i ≤ n) is o C, and the static
type of si is o′ D, then o′ D ⊆ (ownmod(r) ⊕ o) C. Furthermore, if (ownmod(r) ⊕ o) ∈ {any, owned},
then either r is this, or o is any. For the kind of dynamic reasoning that is needed for a downcast we
refer to [8].

The above leads to the following lemma.

Lemma 6.1 If program P meets the type-correctness rules of the eUTS (including SR6.1), then every
execution of P is ownership safe.

The proof is omitted given the similarities with the work in [8] and [21] (for which a very similar lemma
is proven). The use of the eUTS is illustrated in section 6.2.

6.2 capturing layer relations

This section shows how to use the layer of the static type of a reference to determine the layer of the
object it refers to. More specifically, the following type-safety property is ensured: if a reference r with
static type ownmod C refers to an object of class D, then C and D are in the same layer, unless r is
this, or ownmod is any. Furthermore, if r is this, then D is not in a lower layer than C. The latter allows
the static type of this to be used as a lower bound on the layer of an execution state (without which no
invariants can be assumed to hold given the LRII). As with reasoning statically about ownership, any is
used as a mechanism to deal with atypical cases.

To formalize the above, the type-safety property is formulated at the level of the individual parts of a
reference (i.e., stack variables and locations). Then, the type-correctness rules that establish the property
are introduced. Finally, the use of static reasoning is illustrated by an example.
layer safety:5

this is layer safe in execution state σ if: if control in σ is in class C and with an object of class D, then
layer(D) ≥ layer(C).

12

Location X.f is layer safe in execution state σ if: if X.f has declared type ownmod C, and σ(X.f) is
defined, then either ownmod equals any, or σ(X.f) is in layer layer(C).

Local variable v is layer safe in execution state σ if: if v has declared type ownmod C, and σ(v) is
defined, then either ownmod equals any, or σ(v) is in layer layer(C).

Execution state σ is layer safe if every location and every stack variable is layer safe in σ. Method
execution Σ is layer safe if every execution state in Σ is layer safe.

Notice that a location or local variable that is not mapped to an object is layer safe. To ensure that
all possible executions of a program are layer safe, a number of additional type-correctness rules are
introduced (in the form of syntactical restrictions and proof obligations). These are motivated as follows.
motivation: Suppose control in execution state σ is in class C and with an object of class D. Then
D is a subclass of C. Due to syntactic restriction SR6.2, layer(D) ≥ layer(C), which ensures layer
safety of this. Now consider locations and local variables. These can only be changed by assignments,
context switches, and object allocation. The latter cannot violate layer safety of a location or local
variable because (1) a newly allocated location is not mapped to an object, and (2) no location or local
variable is mapped to the newly allocated object.

That leaves assignments and context switches. To treat these uniformly, a method call is treated as a
series of assignments of actual to formal parameters in the remainder of this section (see also section
6.1). Consider an assignment r = E to a local variable or location of declared type ownmod C from
a layer-safe execution state σ. Then either ownmod(r) = ownmod, or r is r′.f (with f of declared
type ownmod C) and r′ differs from this. Assume that E has static type ownmod′ D and is mapped
to an object in layer l. If ownmod = any, then layer safety is preserved (by definition). Now assume
ownmod 6= any. Then SR6.1 ensures that ownmod(r) 6= any. Then standard type correctness ensures
that ownmod′ 6= any. Three cases can be distinguished. E is either (1) this, or (2) a method call or a
reference other than this, or (3) a typecast (ownmod′ D)r′.

For convenience, SR6.3 forbids case (1). Note that a program in which this appears as the right-
hand side of an assignment can be rewritten to a program in which it does not, by using a statement
like v = (peer D)this, after which v can be used instead of this. In case (2), layer safety ensures that
l = layer(D) (if E is a reference, proof by structural induction on references is straightforward, and
if E is a method call, proof is only slightly more involved as a method call returns a reference result).
Then SR6.4 ensures that layer(C) = layer(D). Therefore, layer(C) = l and the assignment preserves
layer safety. In case (3), proof obligation PO6.1 ensures that either (A) r′ is an any reference of type
D′ that differs from this and layer(D) = layer(D′), or (B) r.layer == layer(D) holds in σ. In case (A),
layer safety ensures that l = layer(D′), in case (B) the same is guaranteed by the guard. In either
case, the reasoning of case (2) applies.
syntactic restrictions:
SR6.2: If C = super(D), and class D contains the specification layer l, then l ≥ layer(C).
SR6.3: this does not appear as the right-hand side of an assignment.6

SR6.4: If the left-hand side and right-hand side of an assignment have static type ownmod C and
ownmod′ D, then either ownmod is any, or layer(C) = layer(D).
proof obligation PO6.1: For every statement v = (ownmod′ D)r such that the static type of r is
ownmod C, either ownmod′ is any,

or ownmod differs from any and r differs from this and layer(C) = layer(D),
or the statement is guarded by r.layer == layer(D)

Given the motivation above, the following lemma holds.

Lemma 6.2 If program P meets the type-correctness rules of the eUTS (including SR6.2, SR6.3, SR6.4
and PO6.1), then every execution of P is layer safe.

The use of static reasoning is illustrated by the following example. Consider a program execution
Σ that is ownership safe and layer safe. Consider an execution state σ in Σ such that the program
counter of σ is at a statement v = r.m(. . .) in a method of class C. If the static type of r is rep D, and

6Note that this does not prohibit assignments like v = this.f and v = (peer C)this.

13

layer(C) ≥ layer(D), then r.owner == this && this.layer >= r.layer holds in σ (due to lemmas 5.1 and
6.2). Note that the simple syntactic check above allows the same conclusion as the assert statement used
in the example in section 5.2.

This concludes the second part of this paper. Two techniques for reasoning about layer and ownership
relations have been introduced. In the third part of this paper, a verification technique is introduced
that uses these techniques to establish the LRII. The restrictions imposed by this technique are similar
to those of the ownership technique. Furthermore, the technique is lightweight: in typical cases, simple
syntactical checks suffice to discard the proof obligations.

7 Establishing the Layered Relevant Invariant Interpretation

The verification technique is presented in two steps. In this section, five properties are identified. If
a program execution Σ satisfies these properties, then Σ satisfies the LRII. How to establish these
individual properties is a separate concern, which is treated in the next section. In many ways, these
properties are similar to those underlying model-based Abstract Data Type (ADT) specifications, where
invariants range over the state of the type and where the state of the type is encapsulated from clients
of the type [11]. In turn, this allows a form of reasoning that is similar to the data type induction used
for ADTs. That is, establishing the LRII reduces to a local property, i.e., a property that only considers
the object that has control.

A modular verification technique needs to restrict the invariants that are considered [20]. Our technique
restricts invariants such that an invariant of object X can only be invalidated when either X, or an
object owned by X is modified. More formally, we define the following property of an invariant.
ownership based: Invariant invC is ownership based in program P if, for every execution Σ of P , for
every two consecutive execution states σ and σ′ in Σ, for every object X, if invC(X) holds in σ but
not in σ′, then σ and σ′ differ either on X, or on an object that is owned by X in σ′.

Note that invariants that are admissible in the ownership technique are also ownership based. Weakening
this restriction is discussed in section 10. When all invariants are ownership based, a change of the state
of an object X can (only) invalidate invariants of X and its owners. A method can change the state of X
either directly, by an assignment to a field of X, or indirectly, by a method invocation. Field assignment
is restricted by classical encapsulation (in particular, it is ensured that assignments to X.f only occur
when control is with X).
classical encapsulation: Location X.f is classically encapsulated in a program execution Σ if, for
every two consecutive execution states σ and σ′ in Σ, if σ and σ′ differ on X.f , then control is with
X in σ′. A program execution Σ satisfies classical encapsulation if every location X.f is classically
encapsulated in Σ.

Method invocation is restricted by ownership encapsulation. In particular, it ensures the following two
properties: (1) if object X is the direct owner of object Y , then a method execution on Y can only be
invoked by a method execution on X or on an object directly owned by X, and (2) a method execution
in layer l cannot invoke a method execution in a layer above l.
ownership encapsulation: Program execution Σ satisfies ownership encapsulation if, for every two
consecutive execution states σ and σ′ in Σ, if σ′ is a prestate, then
either layer(σ) ≥ layer(σ′) and owner(σ) = owner(σ′),

or layer(σ) ≥ layer(σ′) and control is with owner(σ′) in σ,
or layer(σ) > layer(σ′) and owner(σ′) = root.

Actually, one can also allow any method execution to invoke executions of methods that are pure [22, 4, 7].
Executions of pure methods do not have visible states, do not change the state and do not call non-
pure methods. For simplicity, pure methods are ignored in this paper. Extending our technique to
accommodate pure methods is straightforward.

Roughly said, the three properties above ensure that method calls that cross a boundary of the layer or
ownership hierarchy do not violate the LRII. That is, when control is with X, only the state of X can be
changed (classical encapsulation). Such a change can only invalidate invariants of X and its owners (as

14

invariants are ownership based). When control flows to an object that is owned by X or in a lower layer
than X, the LRII does not require these invariants to hold. Ownership encapsulation forbids method
calls that ascend in the layer or ownership hierarchy. That leaves poststates and horizontal call states:

In program execution Σ, Σ[i] is a horizontal call state if Σ[i + 1] is a prestate and owner(Σ[i]) =
owner(Σ[i + 1]) and layer(Σ[i]) = layer(Σ[i + 1]).

As mentioned above, establishing the LRII is reduced to establishing a local property that only considers
the object that has control. Consider an execution Σ of a program in which all invariants are ownership
based. Assume Σ satisfies classical and ownership encapsulation. Then Σ satisfies the LRII if Σ satisfies
local consistency: for every i, if control is with X in Σ[i], and Σ[i] is a either a horizontal call state
or a poststate, then X is consistent in Σ[i]. Unfortunately, matters are slightly complicated by the
presence of constructors: object X is not always consistent in a visible state in which X is constructing.
Therefore, the notion of a relevant horizontal call state is introduced, and local consistency is split into
upward local consistency and downward local consistency.

In program execution Σ, horizontal call state Σ[i] is relevant if there is no object that is constructing
in both Σ[i] and Σ[i + 1].

That is, a horizontal call state is relevant when its program counter is not at a superclass constructor
call.
upward local consistency: Program execution Σ satisfies upward local consistency if, for every
execution state σ in Σ, if control is with object X and in class C in σ, and σ is either a relevant
horizontal call state or a poststate, then X is consistent for [C, Object] in σ.
downward local consistency: Program execution σ satisfies downward local consistency if, for every
execution state σ in Σ, if control is with non-constructing object X and in class C in σ, and σ is either
a relevant horizontal call state or a poststate, then X is consistent for [type(X), C〉 in σ.

Note that, if X is consistent for both [type(X), C〉 and [C, Object], then X if consistent. Given these
properties, the following theorem holds.

Theorem 7.1 Consider an execution Σ of a program P in which all invariants are ownership based. If
Σ satisfies classical encapsulation, ownership encapsulation and upward and downward local consistency,
then Σ satisfies the LRII and the LRII-c.

A proof of this theorem can be found in appendix A.3.

8 Proof Techniques

In this section, a proof technique is introduced for each of the properties of the previous section.

8.1 establishing ownership based invariants

To ensure that invariants are ownership based, a syntactical restriction is imposed on invariants.
An invariant invC that is defined as inv BoolE is ownership admissible if BoolE is composed of (quan-
tifications over) primitive values, the usual unary and binary operators (see for instance [21]), and
references this.f1fi (i ≥ 0) such that if i > 1, then ownmod(this.f1 . . . fi−1) is either rep or owned.

Note that the invariant of RoundTrip in figure 3 is ownership admissible. It contains two references,
this.inbound.booked and this.outbound.booked. As fields inbound and outbound are both declared with a rep

modifier, both ownmod(this.inbound) and ownmod(this.outbound) yield rep. Therefore, both references are
admissible.

Lemma 8.1 If invariant invC is ownership admissible and every execution of program P is ownership
safe, then invC is ownership based in P .

15

Informally, the reasoning is the following. An object invariant invC(X) can only be invalidated by
changing the value of a reference this.f1 . . . fi that occurs in invC . This requires modification of a
location Y.fj+1, where this.f1 . . . fj (j < i), refers from X to Y . If j = 0, then Y = X. Otherwise,
ownmod(this.f1 . . . fi−1) is either rep or owned (as invC is ownership admissible). Then the same is true
for ownmod(this.f1 . . . fj) (by definition of ownmod, see section 6.1). Then X owns Y (due to ownership
safety). A more formal proof can be found in appendix A.4.

When more details of the grammar of boolean expressions are fixed, a weaker admissibility obligation
could be imposed. In particular, one can allow quantifications over owned objects. For instance, invariant
∀ X : C • (X.owner == this ==> X.f == 4) (meaning that every directly owned C object has an f-field with
a value of 4) is ownership based. Likewise, if head is a field of type rep Node, and Node’s next field has
a rep modifier, then invariant ∃i • (this.head.nexti.val == 4 (meaning that there is a node in the list that
has a value of 4) is ownership based.

8.2 establishing classical encapsulation

Classical encapsulation does not require reasoning about layer or ownership relations. If two consecutive
execution states σ and σ′ in a program execution differ on a location X.f , then the program counter of
σ is either at a field assignment (to a reference r.f such that r refers to X in σ), or at an object creation
statement (that allocates object X). In the latter case, control is with X in σ′ by definition (σ′ is the
prestate of a constructor on X). Therefore, classical encapsulation can be established by imposing a
restriction on field assignment r = SimpleE.
syntactic restriction SR8.1: Every assignment r.f = SimpleE is such that r is this.

Note that the code in figure 3 meets SR8.1: only fields of this are assigned to.

Lemma 8.2 If program P meets SR8.1, then every execution of P satisfies classical encapsulation.

Proof is straightforward given the reasoning above.

8.3 establishing ownership encapsulation

In this section, two proof techniques that establish ownership encapsulation are introduced. The first
uses only dynamic reasoning. The second offers a lightweight solution for programs that also allow static
reasoning.

The assert statement statement (see section 5.2) is used in combination with the dynamic encoding
of ownership and layer information (see section 5.1) to formulate a straightforward proof obligation
that establishes ownership encapsulation. The proof obligation ensures that method call statements are
guarded. More specifically, the notion of guarding a method call for encapsulation is introduced. A
method call that is guarded for encapsulation does not invalidate ownership encapsulation. Note that
the three cases of the definition of ownership encapsulation can be recognized in the definitions below
(and that as in Java, && binds stronger than ‖).

Statement v = r.m(. . .) is guarded for encapsulation if it is guarded by
(r.owner == this ‖ r.owner == this.owner) && this.layer >= r.layer ‖ r.owner == null && this.layer > r.layer

Statement v = new ownmod C(. . .) is guarded for encapsulation if
either ownmod is rep and it is guarded by this.layer >= layer(C),

or ownmod is peer and it is guarded by this.layer >= layer(C),
or ownmod is root and it is guarded by

this.layer > layer(C) ‖ this.owner == null && this.layer == layer(C).

Statement v = C(. . .) is always guarded for encapsulation.
The reason that a superclass constructor call v = C(. . .) is always guarded for encapsulation (i.e, does
not have to be guarded) is the following. Superclass constructor calls only occur in constructors. If an

16

execution Σ of a constructor executed on object X invokes the execution of a superclass constructor
Σ′, then Σ′ is executed on X. That is, Σ and Σ′ have the same owner and are in the same layer. The
definitions above allow for the following proof obligation and corresponding lemma.
proof obligation PO8.1: Every method call statement is guarded for encapsulation7.

Lemma 8.3 If program P meets PO8.1, then every execution of P satisfies ownership encapsulation.

A proof of this lemma can be found in appendix A.5. Guarding all method calls introduces much
verification overhead. Given static reasoning (see section 6), the desired property can typically be
established by simple syntactic checks. This allows one to omit many of the assert statements that
guard method calls and yet end up with a functionally equivalent program. More specifically, the notion
of statically meeting encapsulation is introduced. A method call that statically meets encapsulation does
not violate ownership encapsulation.

encap(C, ownmod,D) holds if either layer(C) ≥ layer(D) and ownmod is peer,
or layer(C) ≥ layer(D) and ownmod is rep,
or layer(C) > layer(D) and ownmod is root,

Let the static type of reference r be ownmod D. Statement v = r.m(. . .) in a method of class C statically
meets encapsulation if encap(C, ownmod,D) holds.

Statement v = new ownmod D(. . .) in a method of class C statically meets encapsulation if
encap(C, ownmod,D) holds.

Again, there are three cases (in the definition of encap) that match the three cases of the ownership
encapsulation definition. For programs that use static reasoning, PO8.1 can be replaced by the weaker
proof obligation below.
proof obligation PO8.2: Every method call statement either statically meets encapsulation7, or is
guarded for encapsulation.

Note that every method call in the code in figure 3 statically meets encapsulation: class Trip calls methods
on this.ti of static type root TripInfo, and layer(Trip) > layer(TripInfo). Class RoundTrip calls methods on its
inbound and outbound trips, which have static type rep Trip, and layer(RoundTrip) = layer(Trip). Static
reasoning is only possible in programs that are layer and ownership safe. This leads to the following
lemma (a proof can be found in section A.6).

Lemma 8.4 If every class of program P meets PO8.2, then every execution of P that is ownership safe
and layer safe, satisfies ownership encapsulation.

We conclude with a small remark. Usually, if a method call v = r.m(. . .) does not meet encapsulation
statically, then it is easy to deduce that the call violates ownership encapsulation. In that case, there is
no point in guarding the call for encapsulation as the guard is not met (and the program will terminate
abnormally, i.e., cannot be verified by the underlying proof system). However, if r has an any modifier,
guarding the call can be useful, for instance if dynamic reasoning can be used to determine that r refers
to an object that has the same direct owner and is not in a higher layer.

8.4 establishing upward local consistency

In this section, two proof techniques that establish upward local consistency are introduced. The first
uses only dynamic reasoning. The second offers a lightweight solution for programs that also allow static
reasoning.

Upward local consistency requires that, in an execution of a method of class C, the object that has
control is consistent for [C, Object] in poststates and relevant horizontal call states. Let upinvC denote
the conjunction of the invariants declared in class C and C’s superclasses. The object that has control
is guaranteed to be consistent for [C, Object] in states in which upinvC holds (as field shadowing is
disallowed). Therefore, the proof obligation below ensures the desired property for poststates.

7in section 9.2, these definition is extended to account for static methods

17

proof obligation PO8.3: For every method M in class C, the last statement in M is assert upinvC ;

By guarding method calls, it can be ensured that upinvC holds in relevant horizontal call states. In
particular, a method call that is guarded for consistency does not violate upward local consistency. Note
that the definitions below are the result of a straightforward translation of the definition of a relevant
horizontal call state using the dynamic encoding.

Statement v = r.m(. . .) in a method of class C is guarded for consistency if it is guarded by
this.owner != r.owner ‖ this.layer != r.layer ‖ upinvC

Statement v = new ownmod D(. . .) in a method of class C is guarded for consistency if
either ownmod is rep,

or ownmod is peer and it is guarded by this.layer ! = layer(D) ‖ upinvC ,
or ownmod is root and it is guarded by this.layer ! = layer(D) ‖ this.owner != null ‖ upinvC .

Statement v = C(. . .) is always guarded for consistency.
That a superclass constructor call v = C(. . .) never violates upward local consistency (and is therefore
always guarded for consistency) follows immediately from the definition of relevant horizontal call states
in section 8. Together, these definitions allow for the following proof obligation and corresponding lemma
(that is proven in appendix A.5).
proof obligation PO8.4: Every method call statement is guarded for consistency7.

Lemma 8.5 If program P meets PO8.3 and PO8.4, then every execution of P satisfies upward local
consistency.

As is the case with ownership encapsulation (see section 8.3), static reasoning allows for a lightweight
solution. To this end, the notion of a statically relevant call is introduced. A method call that is not
statically relevant does not lead to a relevant horizontal call state. For a statically relevant call in a class
C, dynamic reasoning has to be used to either establish that it does not lead to a relevant horizontal
call state, or establish that the object that has control is consistent for [C, Object].

statrel(C, ownmod,D) holds if either ownmod is any,
or ownmod is peer and layer(C) = layer(D),
or ownmod is root and layer(C) = layer(D).

Let the static type of reference r be ownmod D. In a method of class C, statement v = r.m(. . .) is
statically relevant if statrel(C, ownmod,D) holds.

In a method of class C, statement v = new ownmod D(. . .) is statically relevant if statrel(C, ownmod,D)
holds.

Statement v = C(. . .) is never statically relevant.
For programs that use static reasoning, PO8.4 can be replaced by the weaker proof obligation and
corresponding lemma below.
proof obligation PO8.5: Every statically relevant7 method call is guarded for consistency.

Note that none of the method calls in the code in figure 3 is statically relevant.

Lemma 8.6 If program P meets PO8.3 and PO8.5, then every execution of P that is ownership safe
and layer safe, satisfies upward local consistency.

A proof of this lemma can be found in appendix A.8.

8.5 establishing downward local consistency

Let σ be a horizontal call state or poststate in which control is in class C and with non-constructing object
X. To satisfy downward local consistency, X must be consistent for [type(X), C〉 in σ. Establishing this
is complicated by the fact that not all subclasses are available at superclass verification time. Therefore,

18

consistency of X for [type(X), C〉 has to follow from an inductive argument: it is ensured that for any
execution state σ′, if control is with non-constructing object X and in class C, then X is consistent for
[type(X), C〉.

An inductive proof of this property is straightforward when (1) an assignment cannot invalidate a subclass
invariant, and (2) a method call in a constructor does not lead to the execution of a method with the
same owner and in the same layer (as consistency for [type(X), C〉 of a constructing object X cannot
be guaranteed), and (3) if a subclass invariant holds in the prestate of an invoked method execution Σ,
then it also holds in Σ’s poststate. Note that a subclass invariant may be temporarily violated by Σ, as
long as it has been re-established in Σ’s poststate.

To establish (1), it is ensured that (A) a method does not assign to subclass fields, and (B) a subclass
invariant does not depend on a superclass field. (A) is established by ’re-using’ SR8.1: a method can
only assign to a subclass field using a typecast, and SR8.1 forbids such assignments. (B) is established
by ownership safety, ownership admissibility and the restriction below.
syntactic restriction SR8.2: If invariant invC contains reference this.f0fi (i ≥ 0), then field f0

is defined in class C.
Ownership admissibility and ownership safety ensure that if object invariant invC(X) contains a reference
this.f0fi, and i ≥ 1, then X.f0fj (0 ≤ j < i) refers to an object owned by X. Therefore, only
X.f0 is a field of X. SR8.2 ensures that f0 is not a field of a superclass of C.

The simplest way to establish (2) is by means of the syntactic restriction below (a weaker proof obligation
that utilizes dynamic reasoning as well is omitted).
syntactic restriction SR8.3: There are no statically relevant method calls in constructors.

(3) is established by the use of a form of encapsulation that goes beyond that provided by ownership.
Consider an object X of class D. The objects owned by X are divided into class frames [17]. There is
a frame for every class C such that D ⊆ C (called the C-frame of X). It is ensured that invariants are
frame based: if object invariant invC(X) holds in Σ[i], but not in Σ[i + 1], then Σ[i] and Σ[i + 1] differ
either on a field of X defined in class C, or on an object in the C-frame of X. Furthermore, it is ensured
that every program execution Σ satisfies frame encapsulation: if Σ[i] is a prestate in which control is
with an object in the C-frame of X, then in Σ[i − 1] control was either with an object in the C-frame
of X, or with X and in C. These two properties are established by combining the proof techniques
presented so far with a number of additional syntactic restrictions refined from those of the ownership
technique.
syntactic restrictions:
SR8.4: Every field of a rep type is private.
SR8.5: No field or local variable is of an owned type.
SR8.6: Every method with a parameter or result of a rep type or an owned type is private.
SR8.7: Every statement v = (ownmod C)r is either such that r is not of an any type, or such that
ownmod differs from rep and from owned.
SR8.8: No statement v = r.m(. . .) is such that r is of an any type.

Note that fields of owned types have been forbidden to simplify the proof (which can be found in
appendix A.9). Requiring such fields to be private would be sufficient as well. The proof depends on
two intermediate encapsulation properties.

(P1) If σ(X.f) = Y , and field f is of a rep or owned type and is defined in a class C, then object Y is
in the C-frame of object X.
(P2) If Y is an object in the C-frame of object X, and σ(Y.f) = Z, and field f is of a rep, owned or
peer type, then object Z is in the C-frame of X.

For the purpose of these definitions, if control is with an object X an in a class C, then local variables are
treated as fields of X defined in C. Roughly, the proof of these intermediate properties is the following.
When control is with X in C, SR8.4 and SR8.5 prevent X from reaching owned objects outside the
C-frame via rep or owned fields. SR8.6 prevents the exposure of owned objects outside the C-frame to
X via a method return. If X can reach an object outside the C-frame via an any reference r, SR8.7
prevents X from casting r to a rep or owned type. When control is not with X or not in C, SR8.4
prevents the update of owned and rep fields of X defined in C. SR8.6 prevents the exposure of owned
objects outside the C-frame to X via (the parameters of) a C-method call on X.

19

That invariants are frame based follows almost directly from ownership admissibility of invC , SR8.2,
and the intermediate properties. The proof outline for frame encapsulation is more involved: if Σ[i] is a
prestate in which control is with an object Y in the C-frame of X, then the program counter of Σ[i− 1]
is at a method call v = r.m(. . .). Due to SR8.8, r is not an any reference. As Y is owned by X, r is
not a root reference (ownership safety). Then r is either a peer or a rep reference (as the method call
statically meets encapsulation). Let control be with an object Z in Σ[i − 1]. Then, due to ownership
safety, either (A) Z is owned by X, or (B) Z = X. In case (A), Z can reach Y via r, therefore P2
ensures Z is in the C-frame. In case (B), r has a subreference v or this.f , that refers to an object Z ′. As
Z ′ can reach Y (r is mapped to Y), P2 ensures that Z is in the C-frame. Then P1 and SR8.4 ensure
that control is with C in Σ[i− 1].

Now we can present the outline for case (2). Let control in Σ[i−1] be with X and in class C. Let Σ[i..j]
be a method execution. Let invD(X) (D ⊂ C) hold in Σ[i]. If invD(X) holds in Σ[k] ∈ Σ[i..j − 1], but
not in Σ[k + 1], then Σ[k] and Σ[k + 1] differ either (A) on a field of X defined in class D, or (B) on an
object Y in the D-frame of X (invD is frame based). In either case, there is a state σ ∈ Σ[i..k] in which
control is with X and in a class E, E ⊆ D: in case (A), control in Σ[k] is with X and in a class E,
E ⊆ D (classical encapsulation, fields of subclasses cannot be assigned to). In case (B), control is with
Y in Σ[k] (classical encapsulation). Then in the state Σ[l] from which Y was called, control was either
(C) with X and in C, or (D) with another object in the C-frame of X (frame encapsulation). In either
case, i ≥ l < k. In case (D), to find σ, the reasoning of case (B) can be applied again to Σ[l]. Given this
state σ, we know there must be a poststate σ′ ∈ Σ[k..j] in which control is with X and in a class E,
E ⊆ D. Due to PO8.3, invD(X) is re-established in σ′. Given this reasoning, it can be concluded that
invD(X) holds in Σ[j]. Combining all the above, we formulate the following lemma.

Lemma 8.7 If every invariant in program P is ownership admissible, and P meets the type-correctness
rules of the eUTS, SR8.1-SR8.8, PO8.2, PO8.3, and PO8.5, then every execution of P satisfies local
consistency.

A detailed proof can be found in appendix A.10. Its outline is fairly straightforward: if control in
poststate or horizontal call state σ is with X and in C, PO8.3, PO8.5 ensure X is consistent for [C, Object]
in σ. Furthermore, it has been ensured that if control is with X and in class C in execution state σ,
then X is consistent for [type(X), C〉 in σ. If X is consistent for both [type(X), C〉 and [C, Object], then
C is consistent, which concludes the proof.

9 Static Fields and Static Methods

This section discusses how static fields and static methods can be added to the language. To this end, a
number of definitions introduced earlier are extended. Note that the proofs of all lemmas and theorems
in this paper (see the appendix) account for the presence of static fields and static methods.

9.1 static fields

The grammar of references (figure 1) is extended in the following way:
r ::= . . . | C.f

The notion of a location (see section 2) is extended: a location is either an instance field of an object,
or a static field of a class (written C.f). The object store of an execution state maps static fields of a
class to values. σ(C.f) = υ if σ’s object store maps location C.f to value υ.

It does not make sense for static fields to have a rep type or an owned type, as classes cannot own objects
(although an extension that allows this is possible, see [18]). We also do not allow a static field to have
a peer type, as a class does not have an owner. In other words, the declared type of a static field must
be either a primitive type, or a root type, or an any type.

20

Extending the definition of the ownmod function to account for static fields is straightforward:
ownmod(C.f) yields the ownership modifier of the declared type of f . The definitions of ownership
safety and layer safety (section 6.1) are extended:
layer and ownership safety (extended):
A location C.f is ownership safe in execution state σ if, if f has declared type ownmod D, and σ(C.f)
is defined, then ownmod is any, or ownmod is root and root directly owns σ(C.f).

A location C.f is layer safe in execution state σ if: if C.f has declared type ownmod D, and σ(C.f)
is defined, then either ownmod equals any, or σ(C.f) is in layer layer(D).

No additional type-correctness rules are needed for lemmas 6.1 and 6.2. Ownership admissibility (section
8.1) ensures that static fields do not occur in invariants. Therefore, invariants cannot be invalidated by a
modification of a static field. The definitions and proof techniques for classical encapsulation, ownership
encapsulation, and upward and downward local consistency account for the extension with static fields.

9.2 static methods

Static methods are a fairly straightforward, but important extension to the language. Static methods
often provide shared functionality (see section 3.3). For instance, re-establishing an invariant might
require the calculation of a square root, which (in Java) can be done by an invocation of method sqrt of
class Math from the Java API. A static method call is difficult to deal with given the RII (in particular
when the static method relies on invariants). Our approach ensures that a lower layer static method
can be called from a higher layer method. Furthermore, it guarantees that objects reachable via a static
field or parameter of a root type are consistent in the prestate of a static method execution.

The grammar of expressions (figure 1) is extended in the following way:
E ::= . . . | C.m(~s)

The extension with static methods requires a number of earlier definitions to be extended. First of all,
we extend the definitions of the function owner (section 3.2) and layer (section 4). If control is in a
static method of class C in execution state σ, then owner(σ) = root and layer(σ) = layer(C).

As a static method is not executed on an object, local variables (which include parameters) of a static
method are required to be of a primitive, root, or any type. The same is true for the return type of a
static method.

Extending the definition of the ownmod function (section 6.1) to account for static methods is straight-
forward: ownmod(C.m(. . .)) yields the ownership modifier of the return type of m. No additional
type-correctness rules are needed for lemmas 6.1 and 6.2.

Adding static methods does not affect lemma 8.1 (establishing ownership based invariants), or lemma
8.2 (establishing classical encapsulation). Adding static methods does require a re-evaluation of how
to establish ownership encapsulation. In particular, the definitions of ’guarded for encapsulation’ and
’statically meeting encapsulation’ (see section 8.3) are extended to account for static methods. Section 8.3
defines when a method call to a non-static method in a non-static method is guarded for encapsulation,
and when it statically meets encapsulation. Two extensions are required to account for static methods:
the definitions have to account for (1) method calls to static methods from non-static methods, and (2)
method calls from static methods. First consider case (1). A statement v = C.m(~s) leads to a method
execution with a prestate σ such that owner(σ) = root and layer(σ) = layer(C). Note that the same
is true for a statement v = new root C. Therefore, the same requirements can be imposed for both
statements:

in a non-static method of class C, statement v = D.m(~s) is guarded for encapsulation if it is guarded by
this.layer > layer(D) ‖ this.owner == null && this.layer == layer(D). Furthermore, the statement statically
meets encapsulation if encap(C, root, D) holds.

Accounting for case (2) is fairly straightforward, given that the execution of a method call in a static
method of class C is done from a state in which owner(σ) = root and layer(σ) = layer(C).

In a static method of class C, statement v = r.m(. . .) is guarded for encapsulation if it is guarded
by r.owner = null && layer(C) ≥ r.layer. In a static method of class C, statement v = r.m(. . .) with

21

ownmod D as static type of r statically meets encapsulation if ownmod(r) = root and layer(C) ≥
layer(D). In a static method of class C, statement v = new ownmod D(. . .) is guarded for encapsulation
if ownmod is root and layer(C) ≥ layer(D). In a static method of class C, statement v = D.m(. . .) is
guarded for encapsulation if layer(C) ≥ layer(D). In static methods, object creation statements and
static method calls never statically meet encapsulation.8

Given these extensions, lemmas 8.3 and 8.4 hold in the presence of static methods. Establishing upward
local consistency only poses a requirement for states in which control is with an object X, which is not
the case if control is in a static method. However, calls to static methods have to be accounted for. In
particular, the notions of ’guarded for consistency’ and ’statically relevant’ have to be extended. Again,
such a call v = D.m(. . .) is treated in the same way as a call v = new root D.

In a method of class C, statement v = D.m(. . .) is guarded for consistency if it is guarded by
this.layer ! = layer(D) ‖ this.owner != null ‖ upinvC . Furthermore, the statement is statically relevant if
layer(C) = layer(D).

Given these extensions, lemmas 8.5 and 8.6 hold in the presence of static methods. Lemma 8.7 holds in
the presence of static methods as a static method cannot invalidate any ownership admissible invariants.

10 Related and Future Work

Non-modular verification techniques for the CII are suggested in [13, 27]. That the CII is not suitable
for non-local invariants is also observed in [5] (in the context of OCL specifications [28]). It is proposed
in [5] to make components explicit at the level of OCL designs. An invariant can be associated either
with a component or with a class. A component invariant is interpreted to hold when control is outside
the component. A class invariant is interpreted to hold in all visible states. The notion of a component
seems closely related to the concept of ownership. In some sense, the objects inside a component are
subordinates of that component. A problem might be that components cannot be used to easily capture
class level subordinate relations. A more detailed analysis is considered future work.

Next, we consider programs with executions where the LRII does not capture the intention of the specifier
and where refactoring is either impossible or undesirable. Two cases can be distinguished.

(A) The specifier intends that an invariant holds where the LRII does not require it (i.e., the LRII is
too weak). In this case, if the execution represents a common scenario that can be identified, then
a further refinement of the interpretation of invariants might be warranted. Otherwise, the invariant
property can be made explicit in the precondition or postcondition where that property is expected to
hold. The additional specification overhead is not really an issue as the scenario is uncommon. If the
definition of an invariant is intended to be hidden, predicate abstraction techniques [23, 1, 15, 17, 20] can
be used. These identify a predicate by an abstraction, which allow one to reason about the predicate
without exposing its definition. These techniques are orthogonal to the discussion on the interpretation
of invariants.

(B) An invariant is not intended to hold where the LRII guarantees it (i.e., the LRII is too strong).
Due to observations 3.1 and 3.2, such an execution represents an atypical scenario. One could use
specification constructs that make explicit that a certain invariant does not have to hold in a specific
pre- or postcondition (note that this constitutes a refinement of the interpretation). One such construct
(called inc) is provided in [20]. This construct allows the specifier of a method M to make explicit that
M does not rely on a certain invariant. Combining the technique in [20] with the one in this paper is
future work.

Note that [1, 17] use the Boogie methodology for invariants. In this methodology, invariants are used
only for predicate abstraction: the specification of an invariant does not express that it holds in any
given state. The Spec# verification tool [2] combines this methodology with a RII-like interpretation.
Extensions of this methodology treat invariants that depend on static fields [18] or quantifications over
objects [26], as well as multi-threaded programs [14]. Furthermore, [3] suggests a modular verification
technique for invariants that are not ownership based. Other such techniques are discussed in [22, 20].

8Note that a simple syntactic check suffices to show that such statements are guarded for encapsulation

22

Finally, using a partially ordered set of layers might provide some additional flexibility at the cost
of some additional specification and verification overhead. Adapting the definitions in section 4 is
straightforward.

11 Conclusion

The topic of this paper is the formal specification and verification of invariants in OO designs. Several
common scenarios are identified in which current interpretations do not allow for (easy) specification.
The reason is that current interpretations do not account for the layering that is present in many OO
designs. In particular, these interpretations do not exploit the subordinate relations at the class level
that result from the layering. The paper shows how these layers can be made explicit with a minimum
of specification overhead. Furthermore, it introduces the LRII, a refined interpretation of invariants that
exploits these explicit layers. Together, this allows for easy specification of the identified problematic
scenarios without adding much overhead to the specification of other scenarios. A sound, modular, and
lightweight verification technique is introduced that ensures this refined interpretation is satisfied.

References

[1] Barnett, M., R. DeLine, M. Fähndrich, K. R. M. Leino and W. Schulte, Verification of object-oriented
programs with invariants, Journal of Object Technology 3 (2004), pp. 27–56, special issue: ECOOP 2003
workshop on Formal Techniques for Java-like Programs.
URL http://www.jot.fm/issues/issue 2004 06/article2

[2] Barnett, M., K. R. M. Leino and W. Schulte, The Spec# programming system: An overview, in: G. Barthe,
L. Burdy, M. Huisman, J.-L. Lanet and T. Muntean, editors, Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices (CASSIS ’04), LNCS 3362 (2005).

[3] Barnett, M. and D. A. Naumann, Friends need a bit more: Maintaining invariants over shared state, in:
D. Kozen and C. Shankland, editors, Mathematics of Program Construction (MPC ’04), LNCS 3125 (2004),
pp. 54–84.

[4] Barnett, M., D. A. Naumann, W. Schulte and Q. Sun, 99.44% pure: Useful abstractions in specifications,
in: The ECOOP’04 workshop on Formal techniques for Java-like programs (FTfJP) (2004), pp. 11–18.
URL http://www.cs.ru.nl/ftfjp/2004/Purity.pdf

[5] Baumeister, H., R. Hennicker, A. Knapp and M. Wirsing, Ocl component invariants, in: Monterey Workshop
2001, Engineering Automation for Software Intensive System Integration, Monterey, USA, 2001, pp. 208–
215.

[6] Clarke, D., “Object Ownership and Containment,” Ph.D. thesis, University of New South Wales (2001).

[7] Darvas, Á. and K. R. M. Leino, Practical reasoning about invocations and implementations of pure methods,
in: M. B. Dwyer and A. Lopes, editors, Fundamental Approaches to Software Engineering (FASE ’07),
LNCS 4422 (2007), pp. 336–351.

[8] Dietl, W. and P. Müller, Universes: Lightweight Ownership for JML, Journal of Object Technology 4 (2005),
pp. 5–32.
URL http://www.jot.fm/issues/issue 2005 10/article1

[9] Fitzgerald, J., I. J. Hayes and A. Tarlecki, editors, “FM 2005: Formal Methods, International Symposium
of Formal Methods Europe, Newcastle, UK, July 18-22, 2005, Proceedings,” LNCS 3582, Springer, 2005.

[10] Gamma, E., R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of Reusable Object-Oriented
Software,” Addison-Wesley, 1995.

[11] Guttag, J. V. and J. J. Horning, “Larch: Languages and Tools for Formal Specification,” Springer, New
York, NY, USA, 1993.

[12] Hoare, C. A. R., Proof of correctness of data representations, Acta Informatica 1 (1972), pp. 271–281.

[13] Huizing, K. and R. Kuiper, Verification of object oriented programs using class invariants, in: T. S. E.
Maibaum, editor, Fundamental Approaches to Software Engineering (FASE ’00), LNCS 1783 (2000), pp.
208–221.

23

http://www.jot.fm/issues/issue_2004_06/article2
http://www.cs.ru.nl/ftfjp/2004/Purity.pdf
http://www.jot.fm/issues/issue_2005_10/article1

[14] Jacobs, B., F. Piessens, K. R. M. Leino and W. Schulte, Safe concurrency for aggregate objects with invari-
ants, in: B. K. Aichernig and B. Beckert, editors, Software Engineering and Formal Methods (SEFM ’05)
(2005), pp. 137–147.

[15] Kassios, I. T., Dynamic frames: Support for framing, dependencies and sharing without restrictions, in:
J. Misra, T. Nipkow and E. Sekerinski, editors, Formal Methods (FM ’06), LNCS 4085 (2006), pp. 268–283.

[16] Leavens, G. T., E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller and J. Kiniry, “JML Reference
Manual (draft),” 2007.
URL http://www.jmlspecs.org

[17] Leino, K. R. M. and P. Müller, Object invariants in dynamic contexts, in: M. Odersky, editor, European
Conference on Object-Oriented Programming (ECOOP ’04), LNCS 3086 (2004), pp. 491–516.

[18] Leino, K. R. M. and P. Müller, Modular verification of static class invariants, in: Fitzgerald et al. [9], pp.
26–42.

[19] Meyer, B., “Object-Oriented Software Construction, Second Edition,” Prentice-Hall, New Jersey, 1997.

[20] Middelkoop, R., C. Huizing, R. Kuiper and E. J. Luit, Invariants for non-hierarchical object structures,
in: L. Ribeiro and A. M. Moreira, editors, Proceedings of the 9th Brazilian Symposium on Formal Methods
(SBMF’06), Natal, Brazil, 2006.

[21] Müller, P., “Modular Specification and Verification of Object Oriented Programs,” LNCS 2262, Springer-
Verlag, 2002.

[22] Müller, P., A. Poetzsch-Heffter and G. T. Leavens, Modular invariants for layered object structures, Science
of Computer Programming 62 (2006), pp. 253–286.

[23] Parkinson, M., “Local Reasoning for Java,” Ph.D. thesis, University of Cambridge (2005).

[24] Parnas, D. L., On the criteria to be used in decomposing systems into modules, Communications of the ACM
15 (1972), pp. 1053–1058.

[25] Pierik, C., “Validation Techniques for Object-Oriented Proof Outlines,” Ph.D. thesis, Universiteit Utrecht
(2006).

[26] Pierik, C., D. Clarke and F. S. de Boer, Controlling object allocation using creation guards, in: Fitzgerald
et al. [9], pp. 59–74.

[27] Poetzsch-Heffter, A., “Specification and Verification of Object-Oriented Programs,” Habilitationsschrift,
Technische Universität München, 1997.

[28] Warmer, J. and A. Kleppe, “The Object Constraint Language: Precise modeling with UML,” Addison-
Wesley, 1999.

A Appendix

A.1 preliminaries

The proofs in this appendix rely on a number of additional definitions and lemmas.

First, three definitions are introduced. If Σ is a sequence, then top(Σ) = Σ[0]. Sequence concatenation is
denoted by #. A number of inductive proofs need a notion that is more involved than that of matching
pre- and poststates. To this end, the notion of a callstack is introduced. Informally, callstack(Σ, i) is the
sequence of prestates Σ[j], j ≤ i, that are unmatched in Σ[0..i], where the first element of callstack(Σ, i)
is the last unmatched element of Σ[0..i] (i.e., the order is reversed). Formally, the definition is the
following.

callstack(Σ, 0) = Σ[0]

callstack(Σ, i + 1)=


Σ[i + 1]#callstack(Σ, i) if Σ[i + 1] is a prestate
Σ′ if Σ[i + 1] is a poststate, and

callstack(Σ, i) = σ#Σ′ for some prestate σ
callstack(Σ, i) otherwise

The semantics of Java-like programs allow for the following axiom (because after a method execution,
control returns to the method execution that invoked it).

24

http://www.jmlspecs.org

Axiom A.1 If Σ is a program execution, and callstack(Σ, i) = callstack(Σ, j), then if control is with
an object X and in a class C in Σ[i], then the same is true in Σ[j].

Next, a number of lemmas is formulated.

Lemma A.2 If Σ is a program execution and top(callstack(Σ, i)) = top(callstack(Σ, j)), then
callstack(Σ, i) = callstack(Σ, j)

Lemma A.2 follows directly from the definition of callstack.

Lemma A.3 If Σ is a program execution, and Σ[i..j] is a method execution, then top(callstack(Σ, j)) =
Σ[i].

Lemma A.4 If Σ is a program execution, and Σ[i..j] is a method execution, and Σ[i..] 6= Σ[i..j], then
callstack(Σ, j + 1) = callstack(Σ, i− 1).

Lemma A.5 If Σ is a program execution, and Σ[i..j] is a method execution, and i ≤ k ≤ j, and
top(callstack(Σ, k)) = l, then i ≤ l < j.

Proof of these three lemmas is straightforward given te definitions of method execution and callstack().
For lemma A.4, note that Σ[i..] 6= Σ[i..j] says that j is not the last element of Σ. This implies that
Σ[j + 1] exists and that i > 0.

Lemma A.6 If Σ is a program execution that satisfies ownership encapsulation, and in Σ[i], an object
in layer l owns an object in layer l′, then l ≥ l′.

Proof of lemma A.6 is by induction on i.
Base i = 0: In Σ[0], no objects are allocated (language property) and the induction hypothesis holds
trivially.
Step: Assume the induction hypothesis holds for i = n, and prove that it holds for i = n+1. Two cases
can be distinguished.

Case 1: Σ[n + 1] and Σ[n] have the same set of allocated objects. Then the induction hypothesis
holds for i = n + 1 (as the layer of an allocated object can not be changed).
Case 2: Σ[n + 1] and Σ[n] do not have the same set of allocated objects. Then the program counter
of Σ[n] is at an object creation statement v = new ownmod C(), and there is exactly one object X that
is allocated in Σ[n+1] but not in Σ[n] (objects can only be allocated by an object creation statement,
and object cannot be de-allocated). Two cases can be distinguished

Case 2.1: X is directly owned by root. Then there is no object that owns X. Then the induction
hypothesis holds for i = n + 1 (as it holds for i = n).
Case 2.2: X is not directly owned by root. Then ownmod differs from root. Then control in Σ[n]
is with an object Y (only v = new root C() occurs in a static method). Then the direct owner of X
either is Y , or owns Y (as ownmod is peer or rep). Let object Z in layer l own X. Then either
Z = Y , or Z owns Y . Then l ≥ layer(Σ[n]) (as Y is in layer layer(Σ[n]), and as the induction
property holds for i = n). Due to ownership encapsulation, layer(Σ[n]) ≥ layer(Σ[n + 1]). Then
l ≥ layer(Σ[n + 1]). As X is in layer layer(Σ[n + 1]) (by definition), the induction hypothesis holds
for i = n + 1.

In all cases, the induction hypothesis holds for i = n + 1, which concludes the proof.

Lemma A.7 If Σ is a program execution, and object X owns object Y in Σ[i], then X is allocated in
Σ[i].

Proof by induction on i is straightforward. The outline is the following. In the base case (i=0), no
objects are allocated and the hypothesis holds trivially. In the step case (i = n+1), the hypothesis holds

25

trivially unless an object is newly allocated in Σ[n + 1]. A newly allocated object X is either directly
owned by root (no object owns X), or owned by the object with which control is in Σ[i] (and control is
always with an allocated object), or directly owned by owner(Σ[n]) (which is allocated as the induction
property holds for i = n). All objects that own the direct owner of X are allocated as the induction
property holds for i = n, which concludes the proof sketch.

Lemma A.8 Assume σ is an execution state in a program execution that is ownership safe and layer
safe. Assume σ maps reference r to object X of class D. Assume r has static type ownmod C and
differs from this. Then either ownmod is any, or layer(C) = layer(D). Furthermore, either ownmod is
root and root directly owns X, or control is with an object Y in σ and ownmod(Y, ownmod, X) holds.

This lemma essentially extends the notions of layer and ownership safety (see section 6) to references.
Note that ownmod(Y, ownmod, X)is defined in section 6.1. Proof by structural induction on r is straight-
forward.

A.2 towards theorem 7.1

Theorem 7.1 is proven in two steps. Here, it is proven that if an object X is consistent in a prestate
Σ[j], and top(callstack(Σ, i)) = j, then X is consistent in Σ[i] unless control is with X or with an object
owned by X. In appendix A.3, this lemma is used to prove the theorem.

Lemma A.9 Let P be a program in which all invariants are ownership based. Let Σ be an execution
of P that satisfies classical encapsulation, ownership encapsulation and upward and downward local
consistency. Then for every i, j such that top(callstack(Σ, i)) = j, for every X that is allocated in Σ[i],
either X is consistent in Σ[i],

or X is allocated but not consistent in any execution state in Σ[j..i],
or control is with an object Y in Σ[i] and either X = Y , or X owns Y .

Let IH(n) be equal to lemma A.9, but with ”For every i, j such that top(callstack(Σ, i)) = j” replaced
by ”For every i, j such that i − j = n and top(callstack(Σ, i)) = j”. From the definition of callstack,
it follows immediately that j ≤ i, i.e., that n ≥ 0. We prove (by induction on n) that IH(n) holds for
every n.

Base (n = 0): If i − j = 0, then i = j. Therefore, Σ[j..i] = Σ[i]. Therefore, IH(0) is implied by the
following proposition: For every X that is allocated in Σ[i], either X is consistent in Σ[i], or X not
consistent in Σ[i]. This proposition is trivially true, which concludes the proof of this case.

Step: We assume IH(m) holds for every m such that m < n + 1, and prove IH(n + 1). Let Σ
be an execution of a program P in which all invariants are ownership based. Let Σ satisfies classical
encapsulation, ownership encapsulation and upward and downward local consistency. Let i− j = n + 1
and let top(callstack(Σ, i)) = j. Let X be an object that is allocated Σ[i].

As i − j = n + 1, i 6= j, i.e., i 6= top(callstack(Σ, i)). Therefore, Σ[i] is not a prestate (by definition of
callstack). As Σ[i] is not a prestate and X is allocated in Σ[i], X is allocated in Σ[i− 1].

Let top(callstack(Σ, i− 1)) = k. Two cases can be distinguished.
Case 1: k = j.
Case 2: k 6= j. Then callstack(Σ[i − 1]) 6= callstack(Σ[i]). Then, as Σ[i] is not a prestate, Σ[i − 1]
is a poststate (by definition of callstack). Then Σ[i− 1] matches Σ[top(callstack(Σ, i− 1))] (proof by
induction is straightforward), i.e., then Σ[k..i− 1] is a method execution. Then it follows from lemma
A.4 that callstack(Σ, i) = callstack(Σ, k − 1). As top(callstack(Σ, k − 1)) < k, it follows that k > j.

So, either k = j, or Σ[k..i − 1] is a method execution and k > j. In both cases, k ≥ j. Then
(i−1)−k ≤ n+1. Then IH((i−1)−k) holds (by assumption). Then three cases can be distinguished.

Case 1: X is consistent in Σ[i−1]. Then, as all invariants are ownership based, either X is consistent
in Σ[i], or Σ[i − 1] and Σ[i] differ on an object Y and X = Y or X owns Y . In the latter case, as Σ
satisfies classical encapsulation, control is with Y in Σ[i]. That concludes the proof of this case.

26

Case 2: X is allocated but not consistent in any execution state in Σ[k..i − 1]. Two cases can be
distinguished (see above).

Case 2.1: k = j. Then either X is consistent in Σ[i], or X is allocated but not consistent in any
execution state in Σ[j..i]. That concludes the proof of this case.
Case 2.2: Σ[k..i− 1] is a method execution and k > j. Two cases can be distinguished.

Case 2.2.1: X is not allocated in Σ[k − 1]. Then X is newly allocated in Σ[k]. Then Σ[k] is a
prestate in which X is constructing, and in which control is in class type(X) (language property).
Then X is consistent for [type(X), Object] in poststate Σ[i−1] (Σ satisfies upward local consistency).
Then X is consistent in Σ[i − 1]. As this contradicts that X is not consistent in any execution
state in Σ[j..i], this case is not feasible.
Case 2.2.2: X is allocated in Σ[k − 1]. Note that callstack(Σ, k − 1) = callstack(Σ, i) (lemma
A.4). Furthermore, (k − 1) − j ≤ n + 1 (as j > k < i). Then the the following cases can be
distinguished (as IH((k − 1)− j) holds by assumption).

Case 2.2.2.1: X is consistent in Σ[k − 1]. Then X is consistent in Σ[k − 1], but not in Σ[k].
Then Σ[k−1] and Σ[k] differ on an object Y and either X = Y , or X owns Y (all invariants in P
are ownership based). Then control is with Y in Σ[k] (Σ satisfies classical encapsulation). Then
Y is not allocated in Σ[k− 1] (due to a language property: a context switch does not change the
object store. Therefore, Y must be newly created). Then X 6= Y (X is allocated in Σ[k − 1]).
Then X owns Y . Let O be the direct owner of Y , i.e., owner(Σ[k]) = O. Then either X = O, or
X owns O (as X owns Y). Then O 6= root. Then either owner(Σ[k− 1]) = O, or control is with
O in Σ[k− 1] (Σ satisfies ownership encapsulation). Then control is with an object Z in Σ[k− 1]
and either X = Z, or X owns Z. Then the same is true in Σ[i] (axiom A.1). That concludes the
proof of this case.
Case 2.2.2.2: X is allocated but not consistent in any execution state in Σ[j..k−1]. Then either
X is consistent in Σ[i], or X is allocated but not consistent in any execution state in Σ[j..i]. That
concludes the proof of this case.
Case 2.2.2.3: Control is with an object Y in Σ[k − 1] and either X = Y , or X owns Y . Then
the same is true in Σ[i] (due to axiom A.1). That concludes the proof of this case.

Case 3: Control is with an object Y in Σ[i− 1] and either X = Y , or X owns Y . Two cases can be
distinguished (see above).

Case 3.1: k = j. Then control is with Y in Σ[i] (lemma A.2 and axiom A.1). That concludes the
proof of this case.
Case 3.2: Σ[k..i− 1] is a method execution and k > j. Two cases can be distinguished.

Case 3.2.1: X = Y . Two cases can be distinguished.
Case 3.2.1.1: X is not constructing in Σ[i − 1]. Then X is consistent in poststate Σ[i − 1] (Σ
satisfies upward and downward local consistency). Then X is consistent in Σ[i] (a context switch
does not change the object store). That concludes the proof of this case.
Case 3.2.1.2: X is constructing in Σ[i − 1]. Then X is constructing in Σ[k]. Then two cases
can be distinguished (language property: a constructor on X can only be executed as a result of
a superclass constructor call, or an object creation statement).

Case 3.2.1.2.1: X is constructing in Σ[k−1]. Then control is with X in Σ[k−1] (by definition).
Note that callstack(Σ, k − 1) = callstack(Σ, i) (lemma A.4). Then control is with X in Σ[i]
(axiom A.1). That concludes the proof of this case.
Case 3.2.1.2.2: X is not allocated in Σ[k − 1]. Then control is in class type(X) in Σ[k]
(language property). Then control is in type(X) in poststate Σ[i − 1] (axiom A.1). Then X
is consistent for [type(X), Object] in Σ[i− 1] (Σ satisfies upward local consistency). Then X is
consistent in Σ[i − 1]. Then X is consistent in Σ[i] (as a context switch does not change the
object store). That concludes the proof of this case.

Case 3.2.2: X owns Y . Recall that control is with Y in Σ[i− 1]. Then control is with Y in Σ[k]
(axiom A.1). Let O be the direct owner of Y , i.e., owner(Σ[k]) = O. Then either X = O, or X
owns O (as X owns Y). Then O 6= root. Then either owner(Σ[k − 1]) = O, or control is with O
in Σ[k− 1] (Σ satisfies ownership encapsulation). Then control is with an object Z in Σ[k− 1] and
either X = Z, or X owns Z. Then the same is true in Σ[i] (axiom A.1). That concludes the proof
of this case.

27

In every feasible case in the proof above, it is deduced that
either X is consistent in Σ[i],

or X allocated but not consistent in any execution state in Σ[j..i],
or control is with an object Y in Σ[i] and either X = Y , or X owns Y .

Then IH(n + 1) holds. That concludes the proof of the step case of the induction proof.

A.3 proof of theorem 7.1

Proof of theorem 7.1 is by induction on the number of visible states in Σ:
IH(n): Let P be a program in which all invariants are ownership based. Let Σ be an execution
of P that satisfies classical encapsulation, ownership encapsulation and upward and downward local
consistency. If i is such that Σ[0..i] contains at most n visible states, then Σ[0..i] satisfies the LRII and
the LRII-c.

Base (n = 0): If there are no visible states in Σ[0..i], then Σ[0..i] trivially satisfies the LRII and the
LRII-c. That concludes the proof of the base case.

Step: We assume IH(n), and prove IH(n + 1).
Let P be a program in which all invariants are ownership based. Let Σ be an execution of P that satisfies
classical encapsulation, ownership encapsulation and upward and downward local consistency. Let i be
such that (1) Σ[i] is a visible state, and (2) the number of visible states in Σ[0..i] is n + 1.

Let X be an object that is allocated in Σ[i]. Let X be in layer l. Two cases can be distinguished.
Case 1: Σ[i] is a poststate. Let top(callstack(Σ, i)) = j. Then lemma A.9 allows the following case
distinction (informally, the intention is to show that X satisfies the requirements of the LRII and
LRII-c in each (sub)case).

Case 1.1: X is consistent in Σ[i].
Case 1.2: X is allocated but not consistent in any execution state in Σ[j..i]. As Σ[j] is a prestate
(by definition of callstack), and as j < i, it follows from IH(n) that Σ[0..j] satisfies the LRII and
the LRII-c. Two cases can be distinguished.

Case 1.2.1: X is constructing in Σ[j]. Then X is constructing in Σ[i] (lemma A.2 and axiom
A.1). Let control be in class C in Σ[i]. As Σ satisfies upward local consistency, X is consistent for
[C, Object] in Σ[i].
Case 1.2.2: X is not constructing in Σ[j]. Recall that X is not consistent in Σ[j]. Then either
l > layer(Σ[j]), or owner(Σ[j]) does not own X and l = layer(Σ[j]) (due to LRII). Due to
lemma A.2 and axiom A.1, layer(Σ[j]) = layer(Σ[i]) and owner(Σ[j]) = owner(Σ[i]). Then either
l > layer(Σ[i]), or owner(Σ[i]) does not own X and l = layer(Σ[i]).

Case 1.3: Control is with X in Σ[i]. Let control be in class C in Σ[i]. Then, as Σ satisfies upward
and downward local consistency, X is consistent for [C, Object], and either X is constructing in Σ[i]
or X is consistent for [type(X), C〉. Then either X is consistent in Σ[i], or X is constructing and
consistent for [C, Object] in Σ[i]. Note that if X is constructing in Σ[i], then X is constructing (and
thus allocated) in Σ[j] (lemma A.2 and axiom A.1).
Case 1.4: Control is with an object Y in Σ[i] and X owns Y . Then owner(Σ[i]) does not own X
and X is not constructing in Σ[i]. Furthermore, l ≥ layer(Σ[i]) (lemma A.6). Also, due to lemma
A.2 and axiom A.1, control is with Y in Σ[j]. Then X owns Y in Σ[j] (language property). Then X
is allocated in Σ[j] (lemma A.7).

From the four cases above, it follows that if Σ[i] is a poststate, then
either X is consistent in Σ[i],

or X is allocated in Σ[j] and
either in Σ[i], X is constructing and control is in class C and X is consistent for [C, Object],

or in Σ[i], X is non-constructing and
either l > layer(Σ[i]), or owner(Σ[i]) does not own X and l = layer(Σ[i]).

Case 2: Σ[i] is a prestate. As X is allocated in Σ[i], i > 0 (language property: no objects are allocated
in Σ[0]). Two cases can be distinguished.

Case 2.1: X is not allocated in Σ[i− 1]. Then X is constructing in Σ[i] (language property).
Case 2.2: X is allocated in Σ[i − 1]. Let top(callstack(Σ, i − 1)) = j. Then lemma A.9 allows the

28

following case distinction (informally, the intention is to show that X satisfies the requirements of
the LRII and LRII-c in each (sub)case).

Case 2.2.1: X is consistent in Σ[i− 1]. Two cases can be distinguished.
Case 2.2.1.1: X is consistent in Σ[i].
Case 2.2.1.2: X is not consistent in Σ[i]. Then Σ[i−1] and Σ[i] differ on an object Y and either
X = Y , or X owns Y (all invariants are ownership based). Then Y is not allocated in Σ[i − 1]
(a context switch does not change the object store). Then X 6= Y (X is allocated in Σ[i − 1]).
Then X owns Y in Σ[i]. Then l ≥ layer(Σ[i]) (lemma A.6), and owner(Σ[i]) does not own X
(by definition).

Case 2.2.2: X is allocated but not consistent in any execution state in Σ[j..i− 1], and control is
not with X in Σ[i − 1]. Then X is non-constructing in Σ[i − 1]. Then X is non-constructing in
Σ[j] (lemma A.2 and axiom A.1). As Σ[j] is a prestate (by definition of callstack), and as j < i,
it follows from IH(n) that Σ[0..j] satisfies the LRII. Then either l > layer(Σ[j]), or owner(Σ[j])
does not own X and l = layer(Σ[j]) (X is non-constructing but not consistent in Σ[j]). Due to
lemma A.2 and axiom A.1, layer(Σ[j]) = layer(Σ[i]) and owner(Σ[j]) = owner(Σ[i]). Then either
l > layer(Σ[i]), or owner(Σ[i]) does not own X and l = layer(Σ[i]).
Case 2.2.3: In Σ[i−1], X is not consistent and control is with X. Two cases can be distinguished.

Case 2.2.3.1: Σ[i−1] is a horizontal call state. Then Σ[i−1] is not relevant (X is not consistent
in Σ[i − 1] and Σ satisfies upward and downward local consistency). Then X is constructing in
Σ[i] (by definition of ’relevant’).
Case 2.2.3.2: Σ[i − 1] is not a horizontal call state. As Σ satisfies ownership encapsulation,
three cases can be distinguished.

Case 2.2.3.2.1: layer(Σ[i − 1]) ≥ layer(Σ[i]) and owner(Σ[i − 1]) = owner(Σ[i]). Then
layer(Σ[i − 1]) > layer(Σ[i]) (Σ[i − 1] is not a horizontal call state). Then l > layer(Σ[i])
(control is with X in Σ[i− 1]).
Case 2.2.3.2.2: layer(Σ[i−1]) ≥ layer(Σ[i]) and control is with owner(Σ[i]) in Σ[i−1]. Then
X = owner(Σ[i− 1]). Then owner(Σ[i− 1]) does not own X (by definition).
Case 2.2.3.2.3: layer(Σ[i− 1]) > layer(Σ[i]) and owner(Σ[i]) = root. Then l > layer(Σ[i]).

Case 2.2.4: In Σ[i−1], X is not consistent, and control is with an object Y , and X owns Y . Then
l ≥ layer(Σ[i− 1]) (due to lemma A.6). As Σ satisfies ownership encapsulation, three cases can be
distinguished.

Case 2.2.4.1: layer(Σ[i − 1]) = layer(Σ[i]) and owner(Σ[i − 1]) = owner(Σ[i]). Then l ≥
layer(Σ[i]), and owner(Σ[i]) does not own X (by definition).
Case 2.2.4.2: layer(Σ[i − 1]) ≥ layer(Σ[i]) and control is with owner(Σ[i]) in Σ[i − 1]. Then
l ≥ layer(Σ[i]), and owner(Σ[i]) does not own X (by definition).
Case 2.2.4.3: layer(Σ[i− 1]) > layer(Σ[i]) and owner(Σ[i]) = root. Then l > layer(Σ[i].

From the two cases above, it follows that if Σ[i] is a prestate, then
either X is consistent in Σ[i],

or in Σ[i], X is constructing,
or in Σ[i], X is non-constructing and

either l > layer(Σ[i]), or owner(Σ[i]) does not own X and l = layer(Σ[i]),
From the two cases above, it follows that if X is non-constructing in Σ[i], then
1) if either l < layer(σ), or owner(σ) owns X and l = layer(σ), then X is consistent, and
2) if σ is a poststate and owner(σ) owns X and l > layer(σ), then X is at least as consistent in σ as
in the prestate matching σ.

Therefore, Σ[0..i] satisfies the LRII. It also follows that if Σ[i] is a poststate, then
1) if X is constructing and control is in class C, then X is consistent for [C, Object], and
2) if X is not allocated in top(callstack(Σ[i])), then X is consistent.

As top(callstack(Σ[i])) is the prestate matching Σ[i] (proof is straightforward), Σ[0..i] satisfies the LRII-
c. As Σ[0..i] contains n + 1 visible states, if j is such that Σ[0..j] contains n + 1 visible states, then
Σ[0..j] satisfies the LRII and the LRII-c. Then IH(n + 1) holds (as IH(n) holds by assumption). That
concludes the proof of the step case of the induction proof.

29

A.4 proof of lemma 8.1

This section sketches the proof of lemma 8.1.

Assume that invariant invC is ownership admissible, and that every execution of program P is ownership
safe. Consider two consecutive execution states σ and σ′ in execution Σ of P . Assume that object
invariant invC(X) holds in σ but not in σ′. Let σ̄ and σ̄′ be the execution states like σ and σ′, but with
this mapped to X. Then, by definition, invC holds in σ̄, but not in σ̄′. As invC is ownership admissible,
it must be the case that invC contains a reference this.f1fi (i ≥ 1) that is not mapped to the same
value in both σ̄ and σ̄′. Then there is a j, j < i, such that (1) this.f1 . . . fj is mapped to an object Y by
both σ̄ and σ̄′, and (2) σ̄ and σ̄′ differ on Y.fj+1. Then σ and σ′ differ on Y.fj+1 as well. Two cases can
be distinguished.

Case 1: j = 0. Then Y = X. Then σ and σ′ differ on X.
Case 2: j > 0. Then, as invC is ownership admissible, ownmod(this.f1 . . . fi−1) is either rep or owned.
Then, by definition of ownmod, ownmod(this.f1 . . . fj) is either rep or owned (see the table in section
6.1). Then, as Σ is ownership safe, X owns Y (this follows from a straightforward proof by structural
induction on references).

In both cases, σ and σ′ differ either on X, or on an object owned by X. That concludes the proof.

A.5 proof of lemma 8.3

This section contains a proof of the ownership encapsulation lemma, lemma 8.3. The lightweight variant
of this lemma is proven in appendix A.6.

Assume program P meets PO8.1. Consider an arbitrary execution Σ of P . Consider two consecutive
execution states Σ[i] and Σ[i + 1] in Σ such that Σ[i + 1] is a prestate. The goal is to prove that
either layer(Σ[i]) ≥ layer(Σ[i + 1]) and owner(Σ[i]) = owner(Σ[i + 1]),

or layer(Σ[i]) ≥ layer(Σ[i + 1]) and control is with owner(Σ[i + 1]) in Σ[i],
or layer(Σ[i]) > layer(Σ[i + 1]) and owner(Σ[i + 1]) = root.

The proof is as follows. By definition, the program counter in Σ[i] is at a method call statement Stat.
Then, as P meets PO8.1, Stat is guarded for encapsulation (see sections 8.3 and 9.2). Then, by definition,
either (1) Stat is a superclass constructor call, or (2) the program counter in Σ[i− 1] is at a statement
assert BoolE. In case (2), BoolE holds in Σ[i−1] (as the execution of this assert statement did not cause
the program execution to abort). Then BoolE holds in Σ[i] as well (an assert statement does not change
the stack or object store). Two cases can be distinguished.

Case 1: Control is with an object X in Σ[i]. Then the program counter in Σ[i] is not in a static
method. Then, by definition, owner(Σ[i]) = X.owner and layer(Σ[i]) = X.layer. Four cases can be
distinguished (and in each case, it is deduced that the goal is met).

Case 1.1: Stat is an instance method call v = r.m(. . .). Then BoolE is
(r.owner == this ‖ r.owner == this.owner) && this.layer >= r.layer ‖ r.owner == null && this.layer > r.layer

(Stat is guarded for encapsulation, see section 8.3). Note that in Σ[i + 1], control is with the object
referred to by r in Σ[i] (language property). Three cases can be distinguished.

Case 1.1.1: r.owner == this && this.layer >= r.layer holds in Σ[i]. Then owner(Σ[i + 1]) = X and
X.layer ≥ layer(Σ[i + 1]) (lemma 5.1). Then layer(Σ[i]) ≥ layer(Σ[i + 1]) and control is with
owner(Σ[i + 1]) in Σ[i].
Case 1.1.2: r.owner == this.owner && this.layer >= r.layer holds in Σ[i]. Then owner(Σ[i + 1]) =
owner(Σ[i]) and X.layer ≥ layer(Σ[i + 1]) (lemma 5.1). Then layer(Σ[i]) ≥ layer(Σ[i + 1]) and
owner(Σ[i]) = owner(Σ[i + 1]).
Case 1.1.3: r.owner == null && this.layer > r.layer holds in Σ[i]. Then owner(Σ[i + 1]) = root and
X.layer > layer(Σ[i + 1]) (lemma 5.1). Then layer(Σ[i]) > layer(Σ[i + 1]) and owner(Σ[i + 1]) =
root.

Case 1.2: Stat is an object creation statement v = new ownmod C(. . .). Assume, without loss of
generality, that control is with an object Y in Σ[i + 1]. Three cases can be distinguished.

Case 1.2.1: ownmod is rep. Then, by definition (see section 5.1), Y.owner = X and Y.layer =
layer(C). Then control is with owner(Σ[i+1]) in Σ[i]. Furthermore BoolE is this.layer >= layer(C)

30

(Stat is guarded for encapsulation). Then X.layer ≥ Y.layer. Then layer(Σ[i] ≥ layer(Σ[i + 1]))
and control is with owner(Σ[i + 1]) in Σ[i].
Case 1.2.2: ownmod is peer. Then, by definition (see section 5.1), Y.owner = X.owner and
Y.layer = layer(C). Then owner(Σ[i]) = owner(Σ[i + 1]). Furthermore BoolE is
this.layer >= layer(C) (Stat is guarded for encapsulation). Then X.layer ≥ Y.layer. Then
layer(Σ[i] ≥ layer(Σ[i + 1])) and owner(Σ[i]) = owner(Σ[i + 1]).
Case 1.2.3: ownmod is root. Then, by definition (see section 5.1), Y.owner = root and Y.layer =
layer(C). Furthermore BoolE is
this.layer > layer(C) ‖ this.owner == null && this.layer == layer(C) (Stat is guarded for encapsulation).
Then either X.layer > Y.layer, or X.owner = root and X.layer = Y.layer (lemma 5.1). Then
either layer(Σ[i]) > layer(Σ[i + 1]) and owner(Σ[i + 1]) = root , or layer(Σ[i] ≥ layer(Σ[i + 1]))
and owner(Σ[i]) = owner(Σ[i + 1]).

Case 1.3: Stat is an superclass constructor call v = C(. . .). Then control is with X in Σ[i + 1]
(language property). Then layer(Σ[i]) ≥ layer(Σ[i + 1]) and owner(Σ[i]) = owner(Σ[i + 1]).
Case 1.4: Stat is an static method call v = C.m(. . .). Then, by definition, owner(Σ[i + 1]) = root
and layer(Σ[i + 1]) = layer(C). Furthermore, BoolE is
this.layer > layer(C) ‖ this.owner == null && this.layer == layer(C) (Stat is guarded for encapsulation).
Then either X.layer > layer(C), or X.owner = root and X.layer = layer(C) (lemma 5.1). Then
either layer(Σ[i]) > layer(Σ[i + 1]) and owner(Σ[i + 1]) = root , or layer(Σ[i] ≥ layer(Σ[i + 1]))
and owner(Σ[i]) = owner(Σ[i + 1]).

Case 2: Control is not with an object in Σ[i]. Then the program counter in Σ[i] is in a static
method. Let control in class C be in Σ[i]. Note that superclass constructor calls do not occur in static
methods. Therefore, three cases can be distinguished (and in each case, it is deduced that ownership
encapsulation is not violated).

Case 2.1: Stat is an instance method call v = r.m(. . .). Then BoolE is (r.owner == null &&

layer(C) >= r.layer (Stat is guarded for encapsulation). Note that in Σ[i+1], control is with the object
referred to by r in Σ[i] (language property). Then layer(Σ[i]) ≥ layer(Σ[i + 1]) and owner(Σ[i]) =
owner(Σ[i + 1]) (lemma 5.1).
Case 2.2: Stat is an object creation statement v = new ownmod D(. . .). Then ownmod is root and
layer(C) ≥ layer(D) (Stat is guarded for encapsulation). Let control be with an object Y in Σ[i+1].
Then Y.owner = root and Y.layer = layer(C) (lemma 5.1). Then layer(Σ[i]) ≥ layer(Σ[i + 1]) and
owner(Σ[i]) = owner(Σ[i + 1]).
Case 2.3: Stat is an static method call v = D.m(. . .). Then, by definition, owner(Σ[i + 1]) = root
and layer(Σ[i + 1]) = layer(D). Furthermore, layer(C) ≥ layer(D) (Stat is guarded for encapsula-
tion). Then layer(Σ[i]) ≥ layer(Σ[i + 1]) and owner(Σ[i]) = owner(Σ[i + 1]).

That concludes the proof (as the goal is met in each (sub)case).

A.6 proof of lemma 8.4

This section contains a proof of lightweight ownership encapsulation lemma, lemma 8.4.

Assume program P meets PO8.2. Consider an execution Σ of P that is ownership safe and layer safe.
Consider two consecutive execution states Σ[i] and Σ[i + 1] in Σ such that Σ[i + 1] is a prestate. The
goal is to prove that
either layer(Σ[i]) ≥ layer(Σ[i + 1]) and owner(Σ[i]) = owner(Σ[i + 1]),

or layer(Σ[i]) ≥ layer(Σ[i + 1]) and control is with owner(Σ[i + 1]) in Σ[i],
or layer(Σ[i]) > layer(Σ[i + 1]) and owner(Σ[i + 1]) = root.

The proof is as follows. The program counter in Σ[i] is at a method call statement Stat (Σ[i + 1] is
a prestate). Then Stat either statically meets encapsulation, or is guarded for encapsulation (P meets
PO8.2, see sections 8.3 and 9.2). It was proven in appendix A.5 that the goal is met if Stat is guarded
for encapsulation. Here, it is proven that the goal is met under the assumption that Stat statically meets
encapsulation. Let control be in class C in Σ[i]. Two cases can be distinguished.

Case 1: Control is with an object X in Σ[i]. Then the program counter in Σ[i] is not in a static
method. Then, by definition, owner(Σ[i]) = X .owner and layer(Σ[i]) = X .layer. Then, as Σ is layer
safe, layer(Σ[i]) ≥ layer(C) (i.e., the layer of X is at least layer(C)). Four cases can be distinguished

31

(and in each case, it is deduced that the goal is met).
Case 1.1: Stat is a superclass constructor call v = B(. . .). Then control in Σ[i + 1] is still with X
(language property). Then, trivially, layer(Σ[i+1]) = layer(Σ[i] and owner(Σ[i+1] = owner(Σ[i]).
Case 1.2: Stat is an instance method call v = r.m(. . .), and the static type of reference r is ownmod
D. Let r refer to an object Y of a class E in Σ[i]. Then control is with Y in Σ[i + 1] (language
property), and Y is in layer layer(E) (by definition). Then layer(Σ[i+1]) = layer(E) (by definition).
Two cases can be distinguished.

Case 1.2.1: r is this. Then X = Y . Then, trivially, layer(Σ[i]) ≥ layer(Σ[i+1]) and owner(Σ[i]) =
owner(Σ[i + 1]).
Case 1.2.2: r differs from this. Then encap(C, ownmod,D) holds (Stat statically meets encapsu-
lation, section 8.3). Then, due to lemma A.8, layer(D) = layer(E), and ownmod(X, ownmod, Y)
holds (control is with X in Σ[i] and encap ensures that ownmod differs from any). Then layer(Σ[i+
1]) = layer(D). Three cases can be distinguished (due to the definition of encap).

Case 1.2.2.1: layer(C) ≥ layer(D) and ownmod is peer. Then layer(Σ[i]) ≥ layer(Σ[i +
1]) (as layer(Σ[i]) ≥ layer(C)). Furthermore the direct owner of X directly owns Y (as
ownmod(Y, peer, X) holds). Then, by definition, owner(Σ[i]) = owner(Σ[i + 1]).
Case 1.2.2.2: layer(C) ≥ layer(D) and ownmod is rep. Then layer(Σ[i]) ≥ layer(Σ[i + 1]) (as
layer(Σ[i]) ≥ layer(C)). Furthermore X directly owns Y (as ownmod(Y, rep, X) holds). Then,
by definition, control is with owner(Σ[i + 1]) in Σ[i].
Case 1.2.2.3: layer(C) > layer(D) and ownmod is root. Then layer(Σ[i]) > layer(Σ[i + 1])
(as layer(Σ[i]) ≥ layer(C)). Furthermore root directly owns Y (as ownmod(Y, root, X) holds).
Then, by definition, owner(Σ[i + 1]) is root.

Case 1.3: Stat is an object creation statement v = new ownmod D(. . .). Then layer(Σ[i + 1]) =
layer(D) (by definition). Furthermore, encap(C, ownmod,D) holds (Stat statically meets encapsu-
lation, section 8.3). Then three cases can be distinguished.

Case 1.3.1: layer(C) ≥ layer(D) and ownmod is peer. Then layer(Σ[i]) ≥ layer(Σ[i + 1])
(layer(Σ[i]) ≥ layer(C)). Furthermore, by definition (see section 5.1), the direct owner of X
directly owns Y . Then owner(Σ[i] = owner(Σ[i + 1])).
Case 1.3.2: layer(C) ≥ layer(D) and ownmod is peer. Then layer(Σ[i]) ≥ layer(Σ[i + 1]) (as
layer(Σ[i]) ≥ layer(C)). Furthermore, by definition (see section 5.1), the direct owner of X directly
owns Y . Then owner(Σ[i] = owner(Σ[i + 1])).
Case 1.3.3: layer(C) > layer(D) and ownmod is root. Then layer(Σ[i]) > layer(Σ[i + 1]) (as
layer(Σ[i]) ≥ layer(C)). Furthermore, by definition (see section 5.1), root directly owns Y . Then,
by definition, owner(Σ[i + 1]) is root.

Case 1.4: Stat is an static method call v = D.m(. . .). Then, by definition (see section 9.2), layer(Σ[i+
1]) = layer(D) and owner(Σ[i + 1] = root). As Stat statically meets encapsulation (see section
9.2), encap(C, root, D) holds. Then, by definition (see section 8.3), layer(C) > layer(D). Then
layer(Σ[i]) > layer(Σ[i + 1]) (as layer(Σ[i]) ≥ layer(C)).

Case 2: Control is not with an object in Σ[i]. Then the program counter in Σ[i] is in a static
method. Then, by definition (see section 9.2), layer(Σ[i]) = layer(C) and owner(Σ[i]) = root. In
a static method, the notion of ’statically meeting encapsulation’ is only defined for instance method
calls. Therefore, it can be assumed without loss of generality that Stat is an instance method call
v = r.m(. . .) such that the static type of reference r is root D, and that layer(C) ≥ layer(D). Assume
r refers to an object X of class E in Σ[i]. Then control is with X in Σ[i + 1] (language property), and
layer(D) = layer(E) and root directly owns X (due to lemma A.8 and language property: this does not
occur in static methods). Then, by definition, owner(Σ[i + 1]) = root. Also, as layer(D) = layer(E),
layer(Σ[i + 1]) = layer(D). Then layer(Σ[i]) ≥ layer(Σ[i + 1]) and owner(Σ[i]) = owner(Σ[i + 1]).

That concludes the proof (as the goal is met in each (sub)case).

A.7 proof of lemma 8.5

This section contains a proof of the upwards local consistency lemma, lemma 8.5. The lightweight variant
of this lemma is proven in appendix A.8.

Assume program P meets PO8.3 and PO8.4. Assume Σ is an arbitrary execution of P . Assume control

32

is with object X and in class C in execution state Σ[i]. Assume Σ[i] is either a relevant horizontal call
state or a poststate. Then the goal is to prove that X is consistent for [C, Object] in Σ[i]. Let upinvC be
the conjunction of the invariants of class C and C’s superclasses. Two cases can be distinguished.

Case 1: Σ[i] is a poststate. Then the program counter in Σ[i] is at the end of a method (by definition).
As P meets PO8.3, the program counter in Σ[i] is at a statement assert upinvC . As the execution of
this assert statement did not cause the program execution to abort, upinvC holds in Σ[i − 1]. As an
assert statement does not change the stack or object store, upinvC holds in Σ[i] as well. Then, by
definition, X is consistent for [C, Object] in Σ[i] (as control is with X in Σ[i]).
Case 2: Σ[i] is a relevant horizontal call state. Then Σ[i + 1] is a prestate and owner(Σ[i]) =
owner(Σ[i + 1]) and layer(Σ[i]) = layer(Σ[i + 1]) (due to the definition of ’horizontal call state’,
see section 7). Then, by definition, the program counter in Σ[i] is at a method call statement Stat.
Furthermore, X is not constructing in Σ[i+1] (due to the definition of ’relevant’, see section 7). Then
Stat is not a superclass constructor call. Therefore, three cases can be distinguished.

Case 2.1: Stat is an instance method call v = r.m(. . .). As P meets PO8.4, Stat is guarded for
consistency. Then the program counter in Σ[i− 1] is at a statement
assert this.owner != r.owner ‖ this.layer != r.layer ‖ upinvC (see section 8.4). Let r refer to an object Y
in Σ[i]. Then control is with Y in Σ[i + 1] (language property). Then the direct owner of X is the
direct owner of Y , and X and Y are in the same layer (as Σ[i] is a horizontal call state, see above).
Then this.owner != r.owner ‖ this.layer != r.layer does not hold in Σ[i] (lemmas 5.1 and A.8). Then the
same is true in Σ[i+1] (an assert statement does not change the stack or object store). Then upinvC

holds in Σ[i − 1] (the execution of this assert statement did not cause the program execution to
abort). Then upinvC also holds in Σ[i]. Then X is consistent for [C, Object] in Σ[i] (by definition, as
control is with X in Σ[i]).
Case 2.2: Stat is an object creation statement v = new ownmod D(. . .). Let control be with an object
Y in Σ[i + 1]. Then Y is in layer layer(D) (by definition, see section 4). As Σ[i] is a horizontal
call state, X and Y are in the same layer. Then X is in layer layer(D). Then this.layer = layer(D)

holds in Σ[i] (lemma 5.1). As P meets PO8.4, Stat is guarded for consistency, and three cases can
be distinguished (see section 8.4).

Case 2.2.1: ownmod is rep. Then X directly owns Y (by definition, see section 3.2). Then
owner(Σ[i + 1]) = X. Then owner(Σ[i]) 6= owner(Σ[i + 1]). Then Σ[i] is not a horizontal call
state, which contradicts the above. This case is not feasible.
Case 2.2.2: ownmod is peer and the program counter in Σ[i− 1] is at a statement
assert this.layer ! = layer(D) ‖ upinvC . Then this.layer = layer(D), which holds in Σ[i], also holds in
Σ[i − 1] (as an assert statement does not change the stack or object store). Then upinvC holds
in Σ[i − 1] (the the execution of the assert statement from Σ[i − 1] did not cause the program
execution to abort). Then upinvC also holds in Σ[i]. Then X is consistent for [C, Object] in Σ[i]
(by definition, as control is with X in Σ[i]).
Case 2.2.3: ownmod is root and the program counter in Σ[i− 1] is at a statement
assert this.layer ! = layer(D) ‖ this.owner != null ‖ upinvC . Then this.layer = layer(D), which holds in
Σ[i], also holds in Σ[i − 1] (as an assert statement does not change the stack or object store).
Furthermore, root directly owns Y (by definition, see section 3.2). As Σ[i] is a horizontal call
state, X and Y have the same owner. Then root directly owns X. Then this.layer = null holds in
Σ[i] (lemma 5.1). Then this.layer = null also holds in Σ[i − 1]. Then upinvC holds in Σ[i − 1] (the
the execution of the assert statement from Σ[i− 1] did not cause the program execution to abort).
Then upinvC also holds in Σ[i]. Then X is consistent for [C, Object] in Σ[i] (by definition, as control
is with X in Σ[i]).

Case 2.3: Stat is an static method call v = D.m(. . .). Then owner(Σ[i+1]) = root and layer(Σ[i+
1]) = layer(D) (by definition). Then, root directly owns X, and X is in layer layer(D) (Σ[i] is
a horizontal call state). Then this.layer = layer(D) && this.owner = root holds in Σ[i] (due to lemma
5.1). As P meets PO8.4, Stat is guarded for consistency. Then the program counter in Σ[i− 1] is at
a statement assert this.layer ! = layer(D) ‖ this.owner != null ‖ upinvC (see the definition in 9.2). As an
assert statement does not change the heap or object store, this.layer = layer(D) && this.owner = root

holds in Σ[i − 1] as well. Then upinvC holds in Σ[i − 1] (the the execution of the assert statement
from Σ[i− 1] did not cause the program execution to abort). Then upinvC also holds in Σ[i]. Then
X is consistent for [C, Object] in Σ[i] (by definition, as control is with X in Σ[i]).

In all feasible (sub)cases, the goal is met, which concludes the proof.

33

A.8 proof of lemma 8.6

This section contains a proof of the lightweight upwards local consistency lemma, lemma 8.5.

Assume program P meets PO8.3 and PO8.5. Assume Σ is an execution of P that is ownership safe and
layer safe. Assume control is with object X and in class C in execution state Σ[i]. Assume Σ[i] is either a
relevant horizontal call state or a poststate. Then the goal is to prove that X is consistent for [C, Object]
in Σ[i]. It was proven in appendix A.5 that the goal is met if Σ[i] is a poststate. Here, it is proven that
the goal is met under the assumption that Σ[i] is a relevant horizontal call state. Then Σ[i + 1] is a
prestate and owner(Σ[i]) = owner(Σ[i + 1]) and layer(Σ[i]) = layer(Σ[i + 1]) (due to the definition of
’horizontal call state’, see section 7). Then the program counter in Σ[i] is at a method call statement
Stat (by definition of ’prestate’). As P meets PO8.5, Stat is either not statically relevant, or guarded
for consistency. It was proven in appendix A.5 that the goal is met if Stat is guarded for consistency.
Here, it is proven that the goal is met under the assumption that Stat is not statically relevant. X is not
constructing in Σ[i + 1] (Σ[i] is ’relevant’, see section 7). Then Stat is not a superclass constructor call.
Therefore, three cases can be distinguished. It is proven that none of these cases is feasible, i.e., that
the execution of a method call that is not statically relevant, does not lead to a horizontal call state.

Case 1: Stat is an instance method call v = r.m(. . .), and the static type of r is ownmod D. Let r
refer to an object Y in Σ[i]. Then control is with Y in Σ[i + 1] (language property). As Stat is not
statically relevant, statrel(C, ownmod,D) does not hold (see the definition in section 8.4). Then two
cases can be distinguished.

Case 1.1: either ownmod is rep, or ownmod is owned. Then r differs from this (as ownmod(this) =
peer). Then X owns Y (lemma A.8, as Σ is layer safe and ownership safe). Then X and Y do not
have the same direct owner. Then owner(Σ[i]) 6= owner(Σ[i + 1]). Then Σ[i] is not a horizontal call
state, which contradicts the above. This case is not feasible.
Case 1.2: layer(C) 6= layer(D), and ownmod is either peer, or root. Then r differs from this (as
the static type of this is peer C). Then Y is in layer layer(D) (lemma A.8, as Σ is layer safe
and ownership safe). As Σ is ownership safe, X is not in a layer that below layer(C). Then
layer(Σ[i]) 6= layer(Σ[i + 1]). Then Σ[i] is not a horizontal call state, which contradicts the above.
This case is not feasible.

Case 2: Stat is an object creation statement v = new ownmod D(. . .). Let control be with Y in Σ[i+1].
As Stat is not statically relevant, statrel(C, ownmod,D) does not hold (see the definition in section
8.4). Then two cases can be distinguished.

Case 2.1: ownmod is rep. Then X directly owns Y (see section 3.2). Then X and Y do not have
the same direct owner. Then owner(Σ[i]) 6= owner(Σ[i+1]). Then Σ[i] is not a horizontal call state,
which contradicts the above. This case is not feasible.
Case 2.2: layer(C) 6= layer(D), and ownmod is either peer, or root. Note that Y is in layer layer(D)
(see section 4). As Σ is ownership safe, X is not in a layer that is below layer(C). Then layer(Σ[i]) 6=
layer(Σ[i + 1]). Then Σ[i] is not a horizontal call state, which contradicts the above. This case is
not feasible.

Case 3: Stat is an static method call v = D.m(. . .). Then layer(Σ[i + 1]) = layer(D) (by definition,
see section 9.2). As Stat is not statically relevant, layer(C) 6= layer(D). As Σ is ownership safe, X is
not in a layer that is below layer(C). Then layer(Σ[i]) 6= layer(Σ[i+1]). Then Σ[i] is not a horizontal
call state, which contradicts the above. This case is not feasible.

That concludes the proof.

A.9 towards lemma 8.7: frames

As sketched in section 8.5, proof of the downwards consistency lemma (lemma 8.7) is done in two steps,
and depends on the notion of class frames (or frames for short).
frames: A frame is a tuple of an owner and a class. In any given state, every allocated object is directly
framed by exactly one frame. This relation is acyclic. Let frame (X, C) directly frame object Y . Then
frame (Z,D) frames Y if either (Z,D) = (X, C), or (Z,D) frames X. Finally, frame(σ) = (O,C) if
control is with an object that is directly owned by owner O and in a class C in execution state σ.

34

Frames imposes a partial ordering on the object structure as well as on states. In our language (see
section 2), the direct frame of an object is determined by the ownership modifier ownmod of an object
creation statement v = new ownmod C(. . .) (and can not be changed afterwards). Consider a program
execution Σ. Assume that the program counter in Σ[i] is at a statement v = new ownmod C(. . .). Assume
that control is with object X with direct frame (O, D) in Σ[i], and assume that control is in class E in
Σ[i]. Then there is an object Y that is constructing in Σ[i + 1]. The direct frame of Y is (X, D) when
ownmod is rep, (O,D) when ownmod is peer, and (root, Object) when ownmod is root. Note that the
default modifier is peer and can be omitted.

The above allows the following lemma. Proof is straightforward given how both the direct frame and
direct owner of an object X are set on creation of X.

Lemma A.10 If X is owned by Y , then there is exactly one class C such that (Y, C) frames X.

In this section, a number of properties are formulated (and proven to hold) that match those in the
proof outline in section 8.5. These properties use the following notion of reachability.

X ∈ reach(Y, σ) if either X = Y , or there is field f of a rep or peer type such that Y.f is mapped to
object Y by σ’s object store, and X ∈ reach(Y, σ).

For the purpose the definition of reach, if control is in class C and with an object X, then stack variables
are treated as fields of X defined in class C. Next, the lemma proven in section is formulated.

Lemma A.11 If P1 and object X is framed by (Y,C) in Σ[i], then C1i and C2i and C3i and C4i.

The shorthands used in lemma A.11 are defined below.

P1: Program P meets the type-correctness rules of the eUTS, and
every class of P meets SR8.1 and SR8.4-SR8.8, and Σ satisfies ownership encapsulation.

C1i: If control is with X in Σ[i], then there is a prefix Σ′ of callstack(Σ[i]) such that the last
element of Σ′ is a prestate in which control is with Y and in a class D ⊆ C, and
every other element of Σ′ is a prestate in which control is with an object owned by Y .

C2i: If object Z ∈ reach(X, Σ[i]), then Z is framed by (Y,C) in Σ[i].
C3i: If location Y.f is mapped to object X in Σ[i], and f is of a rep type,

then f is defined in class C.
C4i: If control is with Y in Σ[i], and Σ[i]’s stack maps stack variable v to X, and v is of a rep type,

then control is in class C.

Note that what C3i expresses for fields, C4i expresses for stack variables. The relation between the
properties above and those in the proof outline of downwards local consistency in section 8.5 is as
follows. C1i is a more elaborate version of frame encapsulation, C2i is a more elaborate version of
intermediate property P2, and C3i and C4i combine into intermediate property P1.

Proof is by generalized induction on i. That is, we prove that given P1, for every i, IH(i) holds, where
IH(i): if X is framed by (Y,C) in Σ[i], then C1i and C2i and C3i and C4i.

Base (i = 0): Assume P1. Then IH(0) holds trivially as no objects are allocated in Σ[0] (language
property). More specifically, there is no object X that is is framed.

Step: Assume P1. Then Σ is layer safe and ownership (lemmas 6.1 and 6.2). Assume that IH(j) holds
for every j, j ≤ i. Then the goal is to prove IH(i + 1). Assume that X is framed by (Y, C) in Σ[i].
Three cases can be distinguished.

Case 1: The program counter in Σ[i] is at a non-methodcall statement Stat. Then X is framed by
(Y, C) in Σ[i] (X was already allocated in Σ[i] as Stat is not a object creation statement). Then C1i,
C2i, C3i and C4i hold (IH(i) holds). Furthermore, control is with the same object in Σ[i] and Σ[i+1]
(language property) and callstack(Σ[i]) = callstack(Σ[i + 1]) (by definition). Then C1i+1 holds (C1i

holds). To prove C2i+1, C3i+1 and C4i+1, the following cases are distinguished (due to the grammar
of statements, see figure 1 and section 9.2).

Case 1.1: Stat is a controlflow statement ControlFlowS, or an assert statement assert BoolE. Then
Σ[i] and Σ[i + 1] have the same stack and object store (language property, as boolean expressions

35

do not have side effects, see also section 5.2). Then C2i+1, C3i+1 and C4i+1 hold. Then IH(i + 1)
holds.
Case 1.2: Stat is a local variable declaration T v. Then Σ[i] and Σ[i+1] have the same object store,
and stacks that only differ on v. Then C3i+1 holds (same object store), and as v is not mapped
to an object in Σ[i + 1], C2i+1 and C4i+1 hold (same object store, stack only differs on v). Then
IH(i + 1) holds.
Case 1.3: Stat is a field assignment C.f = SimpleE. Then Σ[i] and Σ[i + 1] have the same stack,
and object stores that only differ on C.f . Then C2i+1 holds (same reach()), and C3i+1 holds (the
values of locations Y.f are unchanged), and C4i+1 holds (same stack). Then IH(i + 1) holds.
Case 1.4: Stat is a field assignment r.f = SimpleE. Then r is this (SR8.1). Let Σ[i]’s stack map
this to object Z. Then Σ[i] and Σ[i + 1] have the same stack, and object stores that only differ on
location Z.f .

Then C4i+1 holds.

To prove C2i+1, assume object Z ′ ∈ reach(X, Σ[i + 1]). Two cases can be distinguished.
Case 1.4.1: Z ′ ∈ reach(X, Σ[i]). Then Z ′ is framed by (Y, C) in Σ[i] (C2i holds). Then Z ′ is
framed by (Y, C) in Σ[i + 1].
Case 1.4.2: Z ′ 6∈ reach(X, Σ[i]). Then there is an object W such that SimpleE is mapped to
W in Σ[i], and Z ′ ∈ reach(W,Σ[i]), and Z ∈ reach(X, Σ[i]) and f is of a peer or rep type (only
Z.f is changed by the assignment). Then ownmod(this.f) = rep or ownmod(this.f) = peer. Then
ownmod(SimpleE) = rep or ownmod(SimpleE) = peer (standard type correctness). Then W ∈
reach(Z,Σ[i]) (given ownership safety, proof by structural induction on SimpleE is straightforward).
Then Z ′ ∈ reach(X, Σ[i]) (transitivity of reach). Then Z ′ is framed by (Y, C) in Σ[i] (C2i holds).
Then Z ′ is framed by (Y, C) in Σ[i + 1].

In both cases, C2i+1 holds.

To prove C3i+1, two cases can be distinguished.
Case 1.4.1: Z 6= Y or SimpleE is not mapped to X in Σ[i]. Then C3i+1 holds as C3i holds and
no location Y.f was changed to X by the assignment.
Case 1.4.2: Z = Y and SimpleE is mapped to X in Σ[i]. Note that Y owns X ((Y,C) frames
X). Then ownmod(SimpleE) 6= root (Σ[i] is ownership safe). Two cases can be distinguished.

Case 1.4.2.1: ownmod(SimpleE) = any. Then ownmod(this.f) = any (standard type correct-
ness). Then f has an any modifier (by definition of ownmod()). Then C3i+1 holds as (1) C3i

holds and (2) only location Y.f is changed by the assignment, and (3) f is not of a rep type.
Case 1.4.2.2: ownmod(SimpleE) = rep or ownmod(SimpleE) = owned. Then SimpleE is not
this (this is of a peer type). Two cases can be distinguished (language property).

Case 1.4.2.2.1: SimpleE is a stack variable v. Then v is of a rep type (SR8.5). Then control
is in class C (C4i holds), and this.f is of a rep type or an owned type (standard type correctness).
Then f is of a rep type or of an owned type (definition of ownmod()). Then f is of a rep type
(SR8.5).
Case 1.4.2.2.2: SimpleE is a reference r′.f ′. Then r′ is this (by definition of ownmod() and, if
ownmod(SimpleE) = owned, by SR6.1). Then location Y.f ′ is mapped to X in Σ[i] (SimpleE
is mapped to X and this is mapped to Y), and f ′ is of a rep type (by definition of ownmod()
and SR8.5). Then control is in class C (due to C4i), and SimpleE is of a rep type (f ′ is of a
rep type). Then this.f is of a rep type (standard type correctness). Then f is of a rep type (by
definition of ownmod()).

In either case, control is in class C in Σ[i], and f is of a rep type. Then f is private (SR8.4).
Then f is defined in class C (control is in C). Then C3i+1 holds.

In all cases, C3i+1 holds.

Then IH(i + 1) holds.
Case 1.5: Stat is an assignment v = E. Then Σ[i] and Σ[i + 1] have the same object store, and
stacks that only differ on v. E is either a reference r, or a type cast (T)r (as E is not a method call).

To prove C2i+1, assume object Z ∈ reach(X, Σ[i + 1]). Two cases can be distinguished.
Case 1.5.1: Z ∈ reach(X, Σ[i]). Then Z is framed by (Y,C) in Σ[i] (C2i holds). Then Z is framed
by (Y,C) in Σ[i + 1]. Then C2i+1 holds.

36

Case 1.5.2: Z 6∈ reach(X, Σ[i]). Then there are objects W and W ′ such that E is mapped to
W ′ in Σ[i], and Z ∈ reach(W ′,Σ[i]), and control is with W in Σ[i], and W ∈ reach(X, Σ[i]) and
v is of a peer or rep type (as only v is changed by the assignment). Then ownmod(E) = rep or
ownmod(E) = peer (standard type correctness). Note that W is owned by Y (as X is owned by
Y , and W ∈ reach(X, Σ[i]), and as Σ[i] is ownership safe).

Then root is not the direct owner of W ′ (v is mapped to W ′ in Σ[i + 1], and Σ is ownership safe).
Then r is not of a root type (r is mapped to W ′ in Σ[i] and Σ is ownership safe). Furthermore, r
is not of an any type (standard type correctness: v is not of an any type and down-casting of any
types is disallowed by SR8.7). Then r is of a peer, rep or owned type. Then W ′ ∈ reach(W,Σ[i]).
Then Z ∈ reach(X, Σ[i]) (transitivity of reach). Then Z is framed by (Y, C) in Σ[i] (C2i holds).
Then Z is framed by (Y, C) in Σ[i + 1]. Then C2i+1 holds.

In both cases, C2i+1 holds.

C3i+1 holds as C3i holds and as Σ[i] and Σ[i + 1] have the same object store.

To prove C4i+1, assume control is with Y in Σ[i + 1], and assume the stack of Σ[i + 1] maps stack
variable w to X, and w is of a rep type. Then control is with Y in Σ[i]. The following cases can be
distinguished.

Case 1.5.1: The stack of Σ[i] maps w to X. Then control is in class C in Σ[i] (C4i holds). Then
control is in class C in Σ[i + 1]. Then C4i+1 holds.
Case 1.5.2: The stack of Σ[i] does not map w to X. Then v = w and E is mapped to X in Σ[i]
(as the stacks only differ on v). Then E is of a rep type (standard type correctness: w is of a rep
type). Then r is mapped to X in Σ[i] (E is mapped to X). Then r is not of a root type (X is
owned by Y and Σ is ownership safe). Then r is of a rep, owned, or any type. r is not of an owned
type (by definition of ownmod: SR8.5 forbids fields and local variables of owned types, and fields
of rep types are private (SR8.4). r is not of an any type (standard type correctness: w is not of
an any type and down-casting of any types is disallowed by SR8.7). Therefore, r is of a rep type.
Then r differs from this (this is of a peer type). Furthermore, r is not a reference C.f0 . . . fj (static
field f0 is not of a rep type, see section 9.1). Two cases can be distinguished.

Case 1.5.2.1: r is a stack variable w. Then Σ[i]’s stack maps w to X, and w is of a rep type.
Then control is in C in Σ[i] (C4i holds and control is with Y in Σ[i]). Then control is in C in
Σ[i + 1]. Then C4i+1 holds.
Case 1.5.2.2: r is a reference this.f0 . . . fj (j ≥ 0). Then f0 is of a rep type, and f1, . . . , fj are of
a peer type (proof by structural induction on the shape of references is straightforward given the
definition of ownmod()). Let location Y.f0 be mapped to an object Z in Σ[i]. Then Y directly
owns Z (Σ is ownership safe), and X ∈ reach(Z,Σ[i]) (r is mapped to X). Then Z is framed by
(Y, C) in Σ[i] (from C2i and lemma A.10). Then f0 is defined in C (C3i holds). Then control
is in C in Σ[i] (SR8.4: fields of rep types are private). Then control is in C in Σ[i + 1]. Then
C4i+1 holds.

In all cases, C4i+1 holds.

Then IH(i + 1) holds.

Case 2: The program counter in Σ[i] is at a methodcall statement v = E. Then Σ[i + 1] is a prestate
(by definition of ’prestate’).

To prove C1i+1, assume control is with X in Σ[i+1]. X is owned by Y (as X is framed by (Y, C), proof
is straightforward). Then X is not directly owned by root. Then owner(Σ[i + 1) 6= root. Then Stat
is not a static method call. As Σ satisfies ownership encapsulation, two cases can be distinguished.

Case 2.1: owner(Σ[i + 1]) = owner(Σ[i]). Then owner(Σ[i]) 6= root. Then control in Σ[i] is with
an object Z that has the same direct owner as X. Then Z is owned by Y (X is owned by Y). Three
cases can be distinguished.

Case 2.1.1: E is an object construction new ownmod D(. . .). Then ownmod is peer (Z and X
have the same direct owner, which differs from root). Then Z has the same direct frame as X (by
definition). Then Z is framed by (Y, C) in Σ[i].
Case 2.1.2: E is a superclass constructor call D(. . .). Then Z = X. Then Z is framed by (Y, C)
in Σ[i].

37

Case 2.1.3: E is a call r.m(. . .). Then r is mapped to X in Σ[i] (control is with X in Σ[i + 1]).
Then r is of a peer or any type (X and Z have the same direct owner and Σ[i] is ownership safe).
Then r is of a peer type (SR8.8). Then X ∈ reach(Z,Σ[i]). Then Z is framed by (Y, C) in Σ[i]
(due to C2i+1 and lemma A.10, as Z is owned by Y).

Note that in all three cases, Z is framed by (Y, C) in Σ[i].
Case 2.2: Control is with owner(Σ[i + 1]) in Σ[i]. Then control in Σ[i] is with an object Z that
directly owns X. Then E is not a superclass constructor call D(. . .) (in that case, control would be
with X in Σ[i]). Two cases can be distinguished.

Case 2.2.1: E is an object construction new ownmod D(. . .). Then ownmod is rep (as Z directly
owns X). Let control in Σ[i] be in a class E. Then the direct frame of X is (Z,E). Then two cases
can be distinguished (by definition of ’framed’: X is framed by (Y, C)).

Case 2.2.1.1: Z is framed by (Y, C).
Case 2.2.1.2: Y = Z. Then E = C (lemma A.10). Then control is with Y and in C in Σ[i]
(direct frame is set on allocation). Then control is in C and with Y in top(callstack(Σ[i])). Then
Σ[i+1]#top(callstack(Σ[i])) is a prefix of callstack(Σ[i+1]) such that (1) the last element of the
prefix is a prestate in which control is with Y and in a class D ⊆ C, and (2) every other element
of the prefix is a prestate in which control is with an object owned by Y . Then C1i+1 holds.

Case 2.2.2: E is a call r.m(. . .). Then r is mapped to X in Σ[i]. Then r is not of a root type (as
Y is the direct owner of X and Σ[i] is ownership safe). Then r is of a rep, owned or any type. r is
not of an any type (SR8.8), and r is not of an owned type (SR8.5 forbids fields and stack variables
of owned types, and SR8.4 requires fields of rep types to be private). Then r is of a rep type. Two
cases can be distinguished (as Y owns X and Z directly owns X).

Case 2.2.2.1: Y owns Z. Then X ∈ reach(Z,Σ[i]) (r is mapped to X). Then Z is framed by
(Y, C) in Σ[i] (due to C2i+1 and lemma A.10, as Z is owned by Y).
Case 2.2.2.2: Y = Z. Then either (1) r is a reference this.f0 . . . fj (j ≥ 0), and f0 is of a rep
type, and f1, . . . , fj are of a peer type, or (2) r is a reference w.f1 . . . fj , (j ≥ 0), and w is of a rep
type, and f1, . . . , fj are of a peer type (proof by structural induction on the shape of references
is straightforward given the definition of ownmod()). As proof of both cases is similar, we only
consider the first case (the second case only uses C4i instead of C3i). Let location Y.f0 be mapped
to an object W in Σ[i]. Then Y directly owns W (Σ is ownership safe), and X ∈ reach(W,Σ[i])
(r is mapped to X). Then W is framed by (Y,C) in Σ[i] (due to C2i and lemma A.10). Then f0

is defined in C (C3i holds). Then control is in C in Σ[i] (SR8.4: a field of a rep type is private).
Then control is in C and with Y in top(callstack(Σ[i])). Then Σ[i + 1]#top(callstack(Σ[i])) is
a prefix of callstack(Σ[i + 1]) such that (1) the last element of the prefix is a prestate in which
control is with Y and in a class D ⊆ C, and (2) every other element of the prefix is a prestate in
which control is with an object owned by Y . Then C1i+1 holds.

In all cases above, either C1i+1 holds, or control in Σ[i] is with an object Z that is framed by (Y, C).
In the latter case, there is a prefix Σ′ of callstack(Σ[i]) such that the last element of Σ′ is a prestate
in which control is with Y and in a class D ⊆ C, and every other element of Σ′ is a prestate in which
control is with an object owned by Y (due to C1i). Then Σ[i+1]#Σ′ is a prefix of callstack(Σ[i+1]).
Then C1i+1 holds (control is with an object owned by Y in Σ[i + 1]). Then C1i+1 holds in all cases.

To prove C2i+1, assume object Z ∈ reach(X, Σ[i + 1]). Two cases can be distinguished.
Case 2.1: Z ∈ reach(X, Σ[i]). Then Z is framed by (Y, C) in Σ[i] (C2i holds), and therefore in
Σ[i + 1]. Then C2i+1 holds.
Case 2.2: Z 6∈ reach(X, Σ[i]). The following cases can be distinguished.

Case 2.2.1: E is an object construction new ownmod D(. . .). Then control is with a newly al-
located object W in Σ[i + 1] (language property). Then W 6∈ reach(X, Σ[i + 1]). Let σ be the
state like Σ[i + 1], but with an empty stack. Then Z ∈ reach(X, σ) (the stack of Σ[i + 1] only
maps formal parameters to values, which are treated as fields of W). Then Z ∈ reach(X, Σ[i]) (the
object stores of Σ[i] and Σ[i + 1] differ only on fields of W). As this contradicts the above, this
case is not feasible.
Case 2.2.2: E is a static method call C.m(. . .). Then control is not with an object in Σ[i + 1].
Let σ be the state like Σ[i + 1], but with an empty stack. Then Z ∈ reach(X, σ) (as the stack is
not relevant when control is not with an object). Then Z ∈ reach(X, Σ[i]) (as Σ[i] and Σ[i + 1]
have the same object store). As this contradicts the above, this case is not feasible.

38

Case 2.2.3: E is a call r.m(. . .) or a superclass constructor call D(. . .). Then Σ[i] and Σ[i + 1]
have the same object store, and the stack of Σ[i + 1] only maps formal parameters to values, and
control is with an object W in Σ[i+1] (language property). Then W ∈ reach(X, Σ[i]) (same object
store, and the stack is not relevant as control is with W in Σ[i + 1]). Then W is framed by (Y, C)
in Σ[i] (C2i with W for Z). Furthermore, there is a formal parameter p of a rep or a peer type
that is mapped to an object V in Σ[i + 1], and W ∈ reach(X, Σ[i + 1]) and Z ∈ reach(V,Σ[i + 1])
(Z 6∈ reach(X, Σ[i])). Then there is an actual parameter r′ of a rep or peer type that is mapped
to V in Σ[i] (actual parameters are assigned to formal parameters), and Z ∈ reach(V,Σ[i]) (V can
be picked such that the stack is not relevant). Two cases can be distinguished.

Case 2.2.3.1: E is a superclass constructor call D(. . .). Then control in Σ[i] is with W . Then
actual parameter r′ is of a rep or a peer type (standard type correctness: formal parameter p
is of a rep or peer type). Then V ∈ reach(W,Σ[i]). Then Z ∈ reach(W,Σ[i]) (transitivity of
reach()). Then Z is framed by (Y,C) in Σ[i] (C2i with W for X). Z is framed by (Y,C) in
Σ[i + 1]. Then C2i+1 holds.
Case 2.2.3.2: E is a call r.m(. . .). Note that Y owns W (as W is framed by (Y, C)). Then
owner(Σ[i + 1]) 6= root (control is with W in Σ[i + 1]). Then owner(Σ[i]) 6= root (Σ satisfies
ownership encapsulation). Then control is with an object U in Σ[i] (control is not in a static
method). Note that r is mapped to W in Σ[i] (control is with W in Σ[i + 1]). r is not of an any
type (SR8.8), and not of an owned type (SR8.5 and the definition of ownmod()), and not of a
root type (W is owned by Y and Σ is ownership safe). Then W ∈ reach(U,Σ[i]) (r is mapped
to W , and r is of a rep or peer type). Then two cases can be distinguished.

Case 2.2.3.2.1: r is of a rep type. Two conclusions can be drawn. (1) Then r differs from this

(this is of a peer type). Then m() is not private (language property). Then p is not of a rep
type (SR8.6. Then p is of a peer type. Then ownmod(r′) = ownmod(r)⊕peer = rep⊕peer = rep

(standard type correctness). Then V ∈ reach(U,Σ[i]) (r′ is mapped to V), and U directly owns
V (Σ is ownership safe and r′ is of a rep type). (2) Then W ∈ reach(U,Σ[i]) and U directly
owns W (Σ is ownership safe). Then two cases can be distinguished (as Y owns W).

Case 2.2.3.2.1.1: U is owned by Y in Σ[i]. Then there is a class D such that U is framed
by (Y,D) in Σ[i] (lemma A.10 with U for X). Then U is framed by (Y,C) in Σ[i] (C2i with
U for X and W for Z, as W is framed by (Y, C)). Then V is framed by (Y, C) in Σ[i] (C2i

with U for X and V for Z). Then Z is framed by (Y, C) in Σ[i] (C2i with V for X). Then
C2i+1 holds.
Case 2.2.3.2.1.2: Y = U . Then either (1) r is a reference this.f0 . . . fj (j ≥ 0), and f0 is of
a rep type, and f1, . . . , fj are of a peer type, or (2) r is a reference w.f1 . . . fj , (j ≥ 0), and w
is of a rep type, and f1, . . . , fj are of a peer type. As proof of both cases is similar, we only
consider the first case (the second case only uses C4i instead of C3i). Let U.f0 be mapped
to an object T in Σ[i]. Then W ∈ reach(T,Σ[i]) (r is mapped to Z), and T is directly owned
by Y (Σ is ownership safe). Then there is a class D such that T is framed by (Y, D) in Σ[i]
(lemma A.10 with T for X). Then T is framed by (Y, C) in Σ[i] (C2i with T for X and W for
Z, as W is framed by (Y, C)). Then f0 is defined in C (C3i with T for X). Then control is
in C in Σ[i] (SR8.4: a field of a rep type is private). As actual parameter r′ is of a rep type,
either (1) r′ is a reference this.g0 . . . gj (j ≥ 0), and g0 is of a rep type, and g1, . . . , gj are of a
peer type, or (2) r′ is a reference w′.g0 . . . gj (j ≥ 0), and w′ is of a rep type, and g1, . . . , gj

are of a peer type. As proof of both cases is similar, we only consider the first case. Let Y.g0

be mapped to an object S in Σ[i]. Then V ∈ reach(S, Σ[i]) (r′ is mapped to V), and S is
directly owned by Y (g0 is of a rep type and Σ is ownership safe). Then there is a class D
such that S is framed by (Y,D) in Σ[i] (lemma A.10 with S for X). Note that g0 is defined
in class C (control is in class C and SR8.4 ensures fields of a rep type are private). Then S
is framed by (Y,C) in Σ[i] (C3i with S for X and g0 for f). Then V is framed by (Y,C) in
Σ[i] (C2i with S for X and V for Z). Then Z is framed by (Y, C) in Σ[i] (C2i with V for
X). Then C2i+1 holds.

Case 2.2.3.2.2: r is of a peer type. Then U and W have the same direct owner (Σ is ownership
safe). Then U is owned by Y in Σ[i]. Then there is a class D such that U is framed by (Y, D)
in Σ[i] (lemma A.10 with U for X). Then U is framed by (Y, C) in Σ[i] (C2i with U for X and
W for Z, as W is framed by (Y,C)). Then two cases can be distinguished.

Case 2.2.3.2.2.1: p is of a rep type. Note that ownmod(r) ⊕ rep ∈ {any, owned}. Then r

39

is this (SR6.1, a context switch is treated as an assignment of actual to formal parameters).
Then actual parameter r′ is of a rep type (standard type correctness: ownmod(r.p) = rep).
Case 2.2.3.2.2.2: p is of a peer type. Then actual parameter r′ is of a peer type (standard
type correctness: ownmod(r.p) = peer).

In either case, r′ is of a rep or a peer type. Then V ∈ reach(U,Σ[i]) (as r is mapped to V).
Then V is framed by (Y,C) in Σ[i] (C2i with U for X and V for Z). Then Z is framed by
(Y, C) in Σ[i] (C2i with V for X). Then C2i+1 holds.

In each of these cases, C2(i+1 holds).

C3i+1 holds as C3i holds and as every location that is mapped to a value in Σ[i], is mapped to the
same value in Σ[i + 1].

To prove C4i+1, assume control is with Y in Σ[i + 1], and assume Σ[i + 1]’s stack maps stack variable
v to X, and assume v is of a rep type. Then v is a formal parameter p (Σ[i + 1]’s stack only maps
formal parameters to values). Then E is a private method call (SR8.6). X is not newly allocated in
Σ[i] (as X is framed by (Y, C)). Then E is not an object construction new ownmod D(. . .). E is not a
static method call (control is with Y in Σ[i + 1]). E is not a superclass constructor call (E is a private
method call). Then E is an instance method call this.m(. . .). Then control is with Y in Σ[i]. Then
there is an actual parameter r that is mapped to X in Σ (p is mapped to X in Σ[i + 1]), and r is of
a rep type (parameters are treated as fields of this, standard type correctness: ownmod(this.p) = rep).
Then either (1) r is a reference this.f0 . . . fj (j ≥ 0), and f0 is of a rep type, and f1, . . . , fj are of a
peer type, or (2) r is a reference w.f1 . . . fj , (j ≥ 0), and w is of a rep type, and f1, . . . , fj are of a peer
type. As proof of both cases is similar, we only consider the first case (the second case only uses C4i

instead of C3i). Let Y.f0 be mapped to an object Z in Σ[i]. Then X ∈ reach(Z,Σ[i]) (r is mapped to
X), and Z is directly owned by Y (Σ is ownership safe, f0 is of a rep type). Then there is a class D
such that Z is framed by (Y,D) in Σ[i] (lemma A.10 with Z for X). Then Z is framed by (Y, C) in
Σ[i] (C2i with Z for X and X for Z). Then f0 is defined in class C (C3i with Z for X). Then control
is in C in Σ[i] (SR8.4: a field of a rep type is private). Then control is in C in Σ[i + 1] (E is a private
method call). Then C4i holds.

Then IH(i + 1) holds.

Case 3: The program counter in Σ[i] is not at a statement (i.e., it is at the end of a method).
Then Σ[i] is a poststate (by definition of ’poststate’). Let Σ[j] be the prestate matching Σ[i]. Then
Σ[j..i] is a method execution (by definition), and the program counter in Σ[j − 1] is at a methodcall
statement v = E (by definition of ’prestate’). Then Σ[i] and Σ[i + 1] have the same object store, and
Σ[j − 1] and Σ[i + 1] have stacks that only differ on v (language property). Then callstack(Σ, i + 1) =
callstack(Σ, j − 1) (lemma A.4).

To prove C1i+1, assume control is with X in Σ[i + 1]. Then control is with X in Σ[j− 1] (axiom A.1).
Then X is framed by (Y, C) in Σ[j−1] (frame does not change after allocation). Then there is a prefix
Σ′ of callstack(Σ, j − 1) such that the last element of Σ′ is a prestate in which control is with Y and
in a class D ⊆ C, and every other element of Σ′ is a prestate in which control is with an object owned
by Y (C1j−1 holds). Then C1i+1 holds (callstack(Σ, i + 1) = callstack(Σ, j − 1)).

To prove C2i+1, assume object Z ∈ reach(X, Σ[i + 1]). Two cases can be distinguished.
Case 3.1: Z ∈ reach(X, Σ[i]). Then Z is framed by (Y, C) in Σ[i] (C2i holds). Then Z is framed
by (Y,C) in Σ[i + 1]. Then C2i+1 holds.
Case 3.2: Z 6∈ reach(X, Σ[i]). Then control in Σ[i+1] is with an object W , and W ∈ reach(X, Σ[i+
1]), and Z ∈ reach(W,Σ[i + 1]) (Σ[i] and Σ[i + 1] have the same object store, so the stack must
be relevant, which means control is not in a static method). Then there is a stack variable w of
a rep or peer type that is mapped to an object V in Σ[i + 1], and Z ∈ reach(V,Σ[i + 1]), and
Z ∈ reach(V,Σ[i])(Σ[i] and Σ[i + 1] have the same object store). Let σ be the state like Σ[i + 1].
Then W ∈ reach(X, σ) (control is in W in Σ[i + 1], so Σ[i + 1]’s stack is not relevant). Then
W ∈ reach(X, Σ[i]) (as Σ[i] and Σ[i] have the same object store). Then W is framed by (Y, C) in
Σ[i] (C1i with W for Z). Note that control is with W in Σ[j − 1] (lemma A.4 and axiom A.1). Two
cases can be distinguished.

Case 3.2.1: w 6= v. Then w is mapped to V in Σ[j − 1] (language property). Then V ∈

40

reach(W,Σ[j − 1]). Then V is framed by (Y, C) in Σ[j − 1] (C2j−1 with W for X and V for
Z). Then V is framed by (Y, C) in Σ[i]. Then Z is framed by (Y,C) in Σ[i] (C2i with V for X).
Case 3.2.2: w = v. Then result is mapped to V in Σ[i] (language property). Then E is not a
superclass constructor call D(. . .) (which returns null), and E is of a peer or rep type (standard
type correctness: v is of a peer or per type). Then E is not a static method call (which cannot be
of a peer or rep type). Then control is with an object U in Σ[i], and two cases can be distinguished.

Case 3.2.2.1: E is an object construction new ownmod D(. . .). Then ownmod is rep or peer (E
is of a peer or rep type). Then two cases can be distinguished.

Case 3.2.2.1.1: There is a class D such that (W,D) is the direct frame of U . Then U is framed
by (Y, C) (by definition of framed: Y, C frames W).
Case 3.2.2.1.2: U has the same direct frame as W . Then U is framed by (Y,C) (by definition
of framed: Y,C frames W).

In either case, U is framed by (Y,C). As V = U (the newly constructed object is returned),
Z ∈ reach(U,Σ[i]). Then Z is framed by (Y,C) in Σ[i] (C2i with U for X). Then Z is framed
by (Y, C) in Σ[i + 1]. Then C2i+1 holds.
Case 3.2.2.2: E is a method call r.m(. . .). Then r is mapped to U in Σ[j−1] (as control is with
U in Σ[j]), and both ownmod(r) and the return type of m() are either rep or peer (standard type
correctness: ownmod(E) = peer). Then U ∈ reach(W,Σ[j − 1]). Then U is framed by (Y,C) in
Σ[j − 1] (C2j−1 with W for X and U for Z). Furthermore, result is of a rep or a peer type in
Σ[i] (the static type of result is the return type of m()). Then V ∈ reach(U,Σ[i]) (control is with
U and result is mapped to V in Σ[i]). Then Z ∈ reach(U,Σ[i]) (transitivity of reach()). Then Z
is framed by (Y, C) in Σ[i] (C2i with U for X). Then Z is framed by (Y, C) in Σ[i + 1]. Then
C2i+1 holds.

In all case above, C2i+1 holds.

C3i+1 holds as C3i holds and as Σ[i] and Σ[i + 1] have the same object store.

To prove that C4i+1 holds, assume control is with Y in Σ[i+1], and assume Σ[i+1]’s stack maps stack
variable w to X, and assume w is of a rep type. Note that callstack(Σ, i + 1) = callstack(Σ, j − 1)
(lemma A.4). Then control is with Y in Σ[j − 1] (axiom A.1). Two cases can be distinguished.

Case 3.1: Σ[j− 1]’s stack maps w to X. Then control is in class C in Σ[j− 1] (C4j−1 holds). Then
control is in class C in Σ[i + 1] (axiom A.1). Then C4i+1 holds.
Case 3.2: Σ[j − 1]’s stack does not map w to X. Then v = w (language property: Σ[j − 1] and
Σ[i + 1] have stacks that only differ on v). Then result is mapped to X by Σ[i]’s stack (v is mapped
to X in Σ[i + 1]). As v is of a rep type, E is of a rep type. Two cases can be distinguished.

Case 3.2.1: E is an object construction new rep D(. . .). Then X is newly allocated in Σ[j], and
Y directly owns X (by definition). Then (Y,C) is the direct frame of X (by definition of ’direct
owner’ and ’direct frame’). Then control is in C in Σ[j − 1] (by definition). Then control is in C
in Σ[i + 1] (axiom A.1). Then C4i+1 holds.
Case 3.2.2: E is a method call r.m(. . .). Then r is not a reference C ′.f0 . . . fk (as E is of a rep
type and f0 is not, see section 9.1). Two cases can be distinguished.

Case 3.2.2.1: r is this and m() has a rep return type. Then control is with Y in Σ[j] (language
property). Then control is with Y in Σ[i] (lemma A.2 and axiom A.1). Then control is in class
C in Σ[i] (from C4i, as result has a rep type and is mapped to X). As m() has a rep return
type, m() is private (SR8.6). Then control is in class C in Σ[j − 1]. Then control is in class C in
Σ[i + 1] (axiom A.1). Then C4i+1 holds.
Case 3.2.2.2: r is a reference this.f0 . . . fk, 0 ≤ k, such that f0 is of a rep type, and f1, . . . , fk

are of a peer type and m() has a peer return type. Let location Y.f0 be mapped to an object Z
in Σ[j − 1]. Then Y directly owns Z (Σ is ownership safe), and X ∈ reach(Z,Σ[j − 1]) (as r is
mapped to X). Then there is a class D such that Z is framed by (Y, D) in Σ[j−1] (lemma A.10).
Then Z is framed by (Y,C) in Σ[j − 1] (C2i with Z for X and X for Z). Then f0 is defined in
C (C3i holds). Then control is in C in Σ[j − 1] (SR8.4: fields of rep types are private). Then
control is in C in Σ[i + 1] (axiom A.1). Then C4i+1 holds.
Case 3.2.2.3: r is a reference v′.f1 . . . fk, 0 ≤ k, such that v′ is of a rep type, and f1, . . . , fk are
of a peer type and m() has a peer return type. Proof of this case is omitted as it is similar to
the previous case (it only uses C4i instead of C3i).

In all cases, C4i+1 holds.

41

Then IH(i + 1) holds.
In all cases, IH(i+1) holds. That concludes the proof of the step case.

A.10 proof of lemma 8.7

This section contains a proof of the downward local consistency lemma, lemma 8.7.

In this section, Prem is used as a shorthand for the premisse of lemma 8.7:
Prem: Every invariant in program P is ownership admissible, and P meets the type-correctness rules
of the eUTS, SR8.1-SR8.8, PO8.2, PO8.3, and PO8.5.

Proof is by generalized induction on the length of program execution Σ in lemma 8.7. That is, we prove
that given Prem, if Σ is an execution of P , then for every i, IH(i) holds, where

IH(i): if control is with object X and in class C in Σ[i], and Σ[i] is either a relevant horizontal call
state or a poststate in which X is not constructing, then X is consistent for [type(X), C〉 in Σ[i].

Base (i = 0): IH(0) holds trivially as Σ[0] is neither a relevant horizontal call state nor a poststate.

Step: Assume Prem. Assume IH(j) holds for every j such that 0 ≤ j < i. Then the goal is to prove
IH(i). Let Σ be an arbitrary execution of P . Then Σ satisfies classical encapsulation (lemma 8.2).
Furthermore, Σ is ownership safe (lemma 6.1) and layer safe (lemma 6.2). Then Σ satisfies ownership
encapsulation (lemma 8.4) and upward local consistency (lemma 8.6). Σ[0..i − 1] satisfies downward
local consistency (IH(j) holds for every j such that 0 ≤ j < i). Then Σ[0..i− 1] satisfies the LRII and
the LRII-c (follows from the proof of theorem 7.1 in appendix A.3).

Assume that control is with object X and in class C in Σ[i], and assume Σ[i] is either a relevant horizontal
call state or a poststate in which X is not under construction. Proof is by contradiction: Assume that
X is not consistent for [type(X), C〉 in Σ[i]. Let X be of a class E. Then there is a class D, E ⊆ D ⊂ C,
such that invD(X) does not hold in Σ[i]. Let top(callstack(Σ, i)) = Σ[j]. Then Σ[j] is a prestate (by
definition of callstack()). Then top(callstack(Σ, j)) = Σ[j] (by definition of callstack()). Then control
is with X and in C in Σ[j] (lemma A.3 and axiom A.1), and X is not constructing in Σ[j] (as it is not
constructing in Σ[i]). Then X is consistent for [type(X), C〉 in Σ[j] (LRII holds for Σ[0..i − 1]). Then
there is a k, j ≤ k < i, such that invD(X) holds in Σ[k], but not in any state in Σ[k + 1..i].

As invD is ownership admissible, invD is ownership based (lemma 8.7). Then two cases can be distin-
guished.

Case 1: Σ[k] and Σ[k +1] differ on X. Then Σ[k] and Σ[k +1] differ on a location X.f . Then control
is with X in Σ[k +1] (classical encapsulation), and invD contains a reference this.f (invD is ownership
admissible). Then f is defined in class D (SR8.2). X is not newly allocated in Σ[k + 1] (as it is
allocated in Σ[j]). Then the program counter of Σ[k] is at an assignment r.f = SimpleE (locations
can only be changed by allocation an field assignment). Then r is this (SR8.1). Then control in Σ[k]
and Σ[k + 1] is in a class E ⊆ D (SR8.1, f is defined in class D). Then k + 1 < i (control is in C in
Σ[i]). Let top(callstack(Σ, k + 1)) = Σ[l]. Then Σ[l] is a prestate (by definition of callstack()). Then
top(callstack(Σ, l)) = Σ[l] (by definition of callstack()). Then control is with X and in a class E ⊆ D
in Σ[l] (lemma A.3 and axiom A.1). Then l 6= j (control is in C in Σ[j]). Then l > j (lemma A.5).
Case 2: Σ[k] and Σ[k + 1] differ on an object Y owned by X in Σ[k + 1]. Then control is with Y in
Σ[k + 1] (classical encapsulation), and invD contains a reference this.f0 . . . fi (i > 0) of a rep or owned
type, such that X.f0 . . . fj (0 ≤ j < i) is mapped to Y in Σ[k] (invD is ownership admissible). Then f0

is defined in class D (SR8.2), and f0 is of a rep or owned type (by definition of ownmod(): this.f0 . . . fi

is of a rep or owned type). Then f0 is of a rep type (SR8.5 forbids fields of a owned type). Let X.f0

be mapped to an object Z in Σ[k]. Then X directly owns Z (Σ is ownership safe). Then there is a
class F such that Z is framed by (X, F) in Σ[k]. Then Z is framed by (X, D) in Σ[k] (from C3k of
lemma A.11 with X for Y and Z for X, as f0 is defined in class D). Note that Y ∈ reach(Z, σ[k])
(as X.f0 . . . fj is mapped to Y). Then Y is framed by (X, D) in Σ[k] (from C2k of lemma A.11 with
(X, D) for (Y,C), Z for X and Y for Z). Then Y is framed by (X, D) in Σ[k + 1]. Then there is a
prefix Σ′ of callstack(Σ, k + 1) such that (1) the last element of Σ′ is a prestate Σ[l] in which control
is with X and in a class E ⊆ D, and (2) every other element of Σ′ is a prestate in which control is
with an object owned by X (from C1k+1 of lemma A.11 with (X, D) for (Y,C) and Y for X). Then

42

Σ[j] 6∈ Σ′ (as control is with X and in C in Σ[j]). Then l > j (proof by induction, using lemma A.5,
is straightforward).

In either case, there is a prestate Σ[l], l > j, such that control is with X and in a class E ⊆ D in
Σ[l]. Then there is a poststate Σ[m], m < i, such that top(callstack(Σ,m)) = Σ[l] (by definition of
callstack(), as top(callstack(Σ, i)) = j). Then control is with X and in a class E ⊆ D in Σ[m] (lemma
A.2 and axiom A.1). Then X is consistent in Σ[m] (Σ[0..i−1] satisfies LRII and LRII-c). Then invD(X)
holds in Σ[m]. As this contradicts that invD(X) does not hold in any state in Σ[k+1..i], X is consistent
for [type(X), C〉 in Σ[i]. That concludes the proof of the step case.

43

	Introduction
	Programming and Specification Language
	Problem Analysis
	Classical Invariant Interpretation
	Ownership and the Relevant Invariant Interpretation
	Class Level Subordinate Relations

	Layers and the Layered Relevant Invariant Interpretation
	Dynamic Reasoning
	dynamic encoding
	the assert statement

	Static Reasoning
	capturing ownership relations
	capturing layer relations

	Establishing the Layered Relevant Invariant Interpretation
	Proof Techniques
	establishing ownership based invariants
	establishing classical encapsulation
	establishing ownership encapsulation
	establishing upward local consistency
	establishing downward local consistency

	Static Fields and Static Methods
	static fields
	static methods

	Related and Future Work
	Conclusion
	Appendix
	preliminaries
	towards theorem 7.1
	proof of theorem 7.1
	proof of lemma 8.1
	proof of lemma 8.3
	proof of lemma 8.4
	proof of lemma 8.5
	proof of lemma 8.6
	towards lemma 8.7: frames
	proof of lemma 8.7

