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ON PARAMETRIC AND IMPLICIT ALGEBRAIC DESCRIPTIONS

OF MAXIMUM ENTROPY MODELS

AMBEDKAR DUKKIPATI

Abstract. Main aim of this paper is to present some notions on how results from
commutative algebra and algebraic geometry could be used in representation and
computation of maximum and minimum entropy (ME) models. We show that vari-
ous formulations of estimation of ME models can be transformed to solving systems
of polynomial equations in cases where an integer valued sufficient statistic exists.
We give an implicit description of ME-models by embedding them in algebraic va-
rieties for which we give a Gröbner bases method to compute it.

1. Introduction

Algebra has always played an important role in statistics, a classical example being
linear algebra. There are also many other instances of applying algebraic tools in
statistics (e.g., Diaconis, 1988; Viana and Richards, 2001). But, treating statistical
models as algebraic objects, and thereby using tools of computational commutative
algebra and algebraic geometry in the analysis of statistical models is very recent and
has led to the still evolving field of algebraic statistics.

The use of computational algebra and algebraic geometry in statistics was initiated
in the work of Diaconis and Sturmfels (1998) on exact hypothesis tests of conditional
independence in contingency tables, and in the work of Pistone et al. (2001) in ex-
perimental design. The term ‘Algebraic Statistics’ was first coined in the monograph
by Pistone et al. (2001) and appeared recently in the title of the book by Pachter and
Sturmfels (2005).

To extract the underlying algebraic structures in discrete statistical models, alge-
braic statistics treats statistical models as algebraic varieties. (An algebraic variety
is the set of all solutions to a system of polynomial equations.) Parametric statistical
models are described in terms of a polynomial (or rational) mapping from a set of
parameters to distributions. One can show that many statistical models, for example
independence models, Bernoulli random variables etc. (see Pachter and Sturmfels,
2005) can be given this algebraic formulation, and such models are referred to as
algebraic statistical models.

Information theory has a well established role (cf. Kullback, 1959; Csiszár and
Shields, 2004), and within this line of research this paper attempts to treat maximum
entropy models with the above mentioned algebraic formalisms.

We organize our paper as follows. In § 2 we present various formulations of estima-
tion of ME-models in terms of solving a system of polynomial equations. We present
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2 A. DUKKIPATI

basics of Gröbner bases theory in § 3 and in § 4 we present ME-models in an algebraic
statistical framework. Finally, we present the implicit descriptions of ME-models in
§ 5 and we make concluding remarks in § 6.

2. Estimation of ME-models as Polynomial System Solving

2.1. Maximum Entropy models.

Let X be a discrete random variable taking finitely many values from the set [m] =
{1, 2, . . .m}. A probability distribution p of X is naturally represented as a vector
p = (p1, . . . , pm) ∈ Rm if we fix the order on [m]. The set of all probability den-
sity functions (pdfs) of X w.r.t counting measure on [m] (we refer to such a pdf as
probability mass functions or pmf) is called the probability simplex

∆m = {p = (p1, . . . , pm) ∈ R
m
≥0 :

m∑

i=1

pi = 1} . (2.1)

Suppose that the only information (observations) available about the pmf p =
(p1, . . . , pm), of X is in the form of expected values of the functions ti : [m] → R,
i = 1, . . . , d (sufficient statistic). We therefore have

m∑

j=1

ti(j)pj = Ti , i = 1, . . . d , (2.2)

where Ti, i = 1, . . . , d, are assumed to be known. In an information theoretic approach
to statistics, known as Jayens maximum entropy principle (Jaynes, 1957), one would
choose the pmf p ∈ ∆m that maximizes the Shannon entropy functional

S(p) = −
m∑

j=1

pj ln pj (2.3)

with respect to the constraints (2.2). The set
{

p ∈ Λm :

m∑

j=1

ti(j)pj = Ti , i = 1, . . . , d

}
,

if non-empty, is called a linear family of probability distributions. The corresponding
Lagrangian can be written as

Ξ(p, ξ) ≡ S(p) − ξ0

(
m∑

j=1

pj − 1

)
−

d∑

i=1

ξi

(
m∑

j=1

ti(j)pj − Ti

)
. (2.4)

Holding ξ = (ξ1, . . . , ξd) fixed, the unconstrained maximum of Lagrangian Ξ(p, ξ) over
all p ∈ ∆m is given by an exponential family

pj(ξ) = Z−1(ξ) exp

(
−

d∑

i=1

ξiti(j)

)
, j = 1, . . . , m, (2.5)
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where Z(ξ) is a normalizing constant (or partition function) given by

Z(ξ) =
m∑

j=1

exp

(
−

d∑

i=1

ξiti(j)

)
. (2.6)

This model is an exponential family and is known as maximum entropy (ME) model.

One can show that the Lagrange parameters in ME-model (2.5) can be estimated,
when the values of Ti, i = 1, . . . , d are available, by solving the set of partial differential
equations (Jaynes, 1968)

∂

∂ξi

ln Z(ξ) = Ti , i = 1, . . . , d, (2.7)

which has no explicit analytical solution. In this case one could employ Newton-
Raphson procedures. One of the important methods is Darroch and Ratcliff’s gener-
alized iterative scaling algorithm (Darroch and Ratcliff, 1972), which has a geometric
interpretation in information theoretic statistics (Csiszár, 1989).

Here one can show that, by a simple transformation of coordinates and imposing
certain constraints on feature functions one could transform this problem into solving
polynomial equations.

Proposition 2.1. Estimation of the maximum entropy model (2.5), given the infor-
mation in the form of (2.2) amounts to solving a set of polynomial equations provided
that the sufficient statistic ti, i = 1, . . . , d, is nonnegative and integer valued.

Proof. Set ξi = − ln θi, i = 1, . . . , d. Now, (2.5) gives us

pj = Z−1(θ) exp

(
d∑

i=1

ti(j) ln θi

)
= Z−1(θ)

d∏

i=1

θ
ti(j)
i , (2.8)

where

Z(θ) =
m∑

j=1

d∏

i=1

θ
ti(j)
i . (2.9)

By substituting these maximum entropy distributions into (2.2) we get

m∑

j=1

t`(j)

d∏

i=1

θ
ti(j)
i = T`Z(θ) , ` = 1, . . . , d. (2.10)

This can be written as

m∑

j=1

(t`(j) − T`)
d∏

i=1

θ
ti(j)
i = 0 , ` = 1, . . . , d, (2.11)

which is a system of polynomial equations in indeterminates θ1, . . . , θd since ti, i =
1, . . . , d, are nonnegative integer valued functions. The solution of system of poly-
nomial equations (2.11) gives the maximum entropy model specified by the available
information (2.2). �
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Later in this paper, we show that one could alternatively give an ‘implicit’ repre-
sentation of ME-models (polynomial equations involving only p1, . . . , pm). Before we
study algebraic formalisms for representation of ME-models, we study applicability
of two other cases of ME estimation, namely, the dual method and Kullback-Csiszár’s
iterative methods.

2.2. Dual Method. By using the Karush-Kuhn-Tucker theorem one can calculate
the Lagrange parameters ξi, i = 1, . . . , d, in (2.5) by optimizing the dual of Ξ(p, ξ).
That is, the task is to find ξ that maximizes

Ψ(ξ) ≡ Ξ(p, ξ) . (2.12)

Note that Ψ(ξ) is nothing but the entropy of ME-distribution (2.5), and we get

Ψ(ξ) = ln Z +
d∑

i=1

ξiTi . (2.13)

This can be written as

Ψ(ξ) = ln

m∑

j=1

exp

(
−

d∑

j=1

ξiti(j)

)
+

d∑

i=1

ξiTi

= ln

m∑

j=1

exp

(
d∑

i=1

ξi(Ti − ti(j))

)
. (2.14)

Note that maximizing Ψ(ξ) is equivalent to maximizing

Ψ̂(ξ) =
m∑

j=1

exp

(
d∑

i=1

ξi(Ti − ti(j))

)
. (2.15)

By introducing ξi = − ln θi, i = 1, . . . , d, we maximize (for convenience we use same

notation Ψ̂)

Ψ̂(θ) =

m∑

j=1

d∏

i=1

θ
ti(j)−Ti

i . (2.16)

The solution is given by solving the following set of equations

∂Ψ̂

∂θj

= 0 , j = 1, . . . d. (2.17)

Unfortunately, this does not give rise to solving polynomial equations. With this
observation, we now consider the case where the expected values are available as
sample means.

In most practical problems the information in the form of expected values is
available via sample or empirical means. That is, given a sequence of observations
X1, . . . , XN (i.i.d. random variables) the sample means T̃i, i = 1, . . . , d, with respect
to the functions ti, i = 1, . . . , d are given by

T̃i =
1

N

N∑

`=1

ti(X`), i = 1, . . . , d, (2.18)
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and the underlying hypothesis is that Ti ≈ T̃i. That is

m∑

j=1

pjti(j) ≈
1

N

N∑

`=1

ti(X`) , i = 1, . . . , d. (2.19)

We show that, by choosing alternate Lagrangian in the place of (2.4) we can transform
the parameter estimation of ME-model to a problem of solving a set of polynomial
(Laurent) equations. (Laurent polynomial is a polynomial where exponents can be
negative; see § 3).

Proposition 2.2. Given the hypothesis (2.19), the problem of estimating the ME-
model (2.5) with respect to (2.2) in the dual method amounts to solving a set of
Laurent polynomial equations (assuming that the sufficient statistic is nonnegative
and integer valued).

Proof. To retain the integer valued exponents in our final solution, by the hypothesis
(2.19) we consider the constrains in the form

N

m∑

j=1

ti(j)pj = σi , i = 1, . . . d , (2.20)

where σi =
∑N

l=1 ti(Ol) denotes the integer valued sample sum. In this case La-
grangian may be written as

Ξ̃(p, ξ̃) ≡ S(p) − ξ̃0

(
m∑

j=1

pj − 1

)
−

d∑

i=1

ξ̃d

(
N

m∑

j=1

pjti(j) − σi

)
. (2.21)

This results in the ME-distribution

pj(ξ̃) = Z̃(ξ̃)−1 exp

(
−N

d∑

i=1

ξ̃iti(j)

)
, j = 1, . . . , m, (2.22)

where Z̃(ξ̃) is the normalizing constant given by

Z̃(ξ̃) =

m∑

j=1

exp

(
−N

d∑

i=1

ξ̃iti(j)

)
. (2.23)

To calculate the parameters we maximize the dual Ψ̃(ξ̃) of Ξ̃(p, ξ̃). That is, we
maximize the functional

Ψ̃(ξ̃) = ln Z̃ +

d∑

i=1

ξ̃iσi . (2.24)

This is equivalent to optimizing the functional

ˆ̃
Ψ(ξ̃) =

m∑

j=1

exp

(
d∑

i=1

ξ̃iσi − N

d∑

i=1

ξ̃iti(j)

)
.
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By setting ln θ̃i = ξ̃i we have

ˆ̃
Ψ(θ̃) =

m∑

j=1

d∏

i=1

θ̃
(σi−Nti(j))
i . (2.25)

The solution is given by solving the following set of equations

∂
ˆ̃
Ψ

∂θ̃i

= 0 , i = 1, . . . d. (2.26)

Note that ∂ êΨ
∂eθi

is a Laurent polynomial and hence the result is implied. �

We mention here that Gröbner bases methods have been extended to the case of
Laurent polynomials (Pauer and Unterkircher, 1999); we will not address this issue
in this paper.

2.3. Estimation by the Minimum I-Divergence principle. The Minimum I-
divergence principle is a generalization of the maximum entropy principle that con-
siders the cases where a prior estimate of the distribution p is available. Given a
prior estimate r ∈ ∆m and information in the form of (2.2), one would choose the pdf
p ∈ ∆m that minimizes the Kullback-Leibler divergence

I(p‖r) =

m∑

j=1

pj ln
pj

rj

(2.27)

with respect to the constraints (2.2). The corresponding minimum entropy distribu-
tions are in the form of

pj(ξ) = Z(ξ)−1rj exp

(
−

d∑

i=1

ξiti(j)

)
, j = 1, . . . , m, (2.28)

where Z(ξ) is normalizing constant given by

Z(ξ) =

m∑

j=1

rj exp

(
−

d∑

i=1

ξiti(j)

)
. (2.29)

It is easy to see that estimating minimum entropy distributions can be translated to
solving polynomial equations, when the feature functions are nonnegative and integer
valued. Polynomial system one would solve in this case is

m∑

j=1

rj(t`(j) − T`)

d∏

i=1

θ
ti(j)
i = 0 , ` = 1, . . . , d. (2.30)

Hence we have the following proposition.

Proposition 2.3. The estimation of minimum entropy model (2.28) given the infor-
mation in the form of (2.2) amounts to solving a set of polynomial equations provided
that the sufficient statistic ti, i = 1, . . . , d are nonnegative and integer valued.
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Estimating ME-distributions involves solving a system of nonlinear equations, si-
multaneously, which becomes computationally inefficient. Here, one would employ
an iterative method where one would estimate the distribution considering only one
constraint at a time. We describe this procedure as follows.

At the N th iteration, the algorithm computes the distribution p(N) that minimizes
I(p(N)‖p(N−1)) with respect the ith constraint, if N = ad+i (1 ≤ i ≤ d) for any positive
integer a. This iteration will ultimately converge to the maximum entropy distribu-
tion, which is demonstrated for discrete distributions by Ireland and Kullback (1968),
and for continuous distributions by Kullback (1968). A general and rigorous treat-
ment of convergence, existence, and uniqueness analysis is given by Csiszár (1975).
We refer to this iteration as Kullback-Csiszár iteration.

In this iterative procedure, we have p(0) = r and p(1) is given by

p
(1)
j = rj

(
Z(1)

)−1
ζ

t1(j)
1 ,

where
(
Z(1)

)−1
=
∑m

j=1 rjζ
t1(j)
1 . The first constraint in (2.2) can be estimated by

solving polynomial equation

m∑

j=1

rj(t1(j) − T1)ζ
t1(j)
1 = 0 , (2.31)

with indeterminate ζ1. Similarly we have

p
(2)
j = rj

(
Z(1)

)−1(
Z(2)

)−1
ζ

t1(j)
1 ζ

t2(j)
2 ,

where
(
Z(2)

)−1
=
∑m

j=1 ζ
t1(j)
2 . Considering the first two constrains in (2.2) the ME

distribution can be estimated by solving

m∑

j=1

rj(t2(j) − T2)ζ
t1(j)
1 ζ

t2(j)
2 = 0 , (2.32)

along with (2.31).

In general, when N = ad + i for some positive integer a, p
(N)
j , for N = 1, 2 . . . is

given by

p
(N)
j = rj

(
Z(1)

)−1
. . .
(
Z(N)

)−1
ζ

t1(j)
1 . . . ζ

ti(j)
N

and is determined by the following system of polynomial equations

m∑

j=1

rj(t1(j) − T1)ζ
t1(j)
1 = 0 ,

m∑

j=1

rj(t2(j) − T2)ζ
t1(j)
1 ζ

t2(j)
2 = 0 ,

...
m∑

j=1

rj(ti(j) − Ti)ζ
t1(j)
1 ζ

t2(j)
2 . . . ζ

ti(j)
N = 0 .






(2.33)
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Note that this system has a triangular structure which makes it easy to solve.
Also one could observe that the technique of Kullback-Csiszár iteration reflects in the
system of polynomial equations which determines the ME distribution.

3. Gröbner bases Fundamentals

Gröbner bases were introduced by Buchberger (1965) as a computational tool for
testing solvability of polynomial equations. It serves as a general algorithmic solution
of some fundamental problems in commutative algebra (polynomial ideal theory and
algebraic geometry). Since then the theory of Gröbner bases has held an important
place in mathematical research. In this section we give a brief introduction to Gröbner
bases.

Basic problem of algebraic geometry is to understand the set of points (a1, . . . , an) ∈
kn satisfying a system of polynomial equations f1(x1, . . . , xn) = 0, . . . , fs(x1, . . . , xn) =
0 where f1, . . . , fs ∈ k[x1, . . . , xn]. Here, and throughout this paper, k represents a
field (e.g., R, C). The algebraic closure of the field k is represented by k̄ (the algebraic
closure of R is C). k[x1, . . . , xn] denotes the set of all polynomials in indeterminates
x1, . . . , xn. From now on k represents the field R and k̄ represents C. Though we
work with R, we use k for a field.

A monomial in indeterminates x1, . . . , xn is a power product of the form xα1
1 . . . xαn

n ,
where all the exponents are nonnegative integers, i.e. αi ∈ Z≥0, i = 1, . . . n. One can
simplify the notation for monomial as follows: denote α = (α1, . . . , αn) ∈ Zn

≥0 and by
using multi-index notation we set

xα = xα1
1 . . . xαn

n

with the understanding that x = (x1, . . . , xn). Note that xα = 1 whenever α =
(0, . . . , 0). Once the order of the indeterminates is fixed, the monomial xα1

1 . . . xαn
n =

xα is identified by (α1, . . . , αn). Hence, the set of all monomials in indeterminates
x1, . . . , xn can be represented by Zn

≥0. A polynomial f in inderterminates x1, . . . , xn

with coefficients in k is a finite linear combination of monomials and can be written
in the form of

f =
∑

α∈Λf

aαxα ,

where Λf ⊂ Zn
≥0 is a finite set and aα ∈ k. The collection of all such polynomials

k[x1, . . . , xn] has the structure not only of a vector space but also of a ring. Indeed
the ring structure of k[x1, . . . , xn] plays a main role in computational algebra and
algebraic geometry. The ring k[x1, . . . , xn] is called the ring of polynomials in n

indeterminates. If we allow negative exponents, i.e., the polynomial of the form
f =

∑
α∈Λf

aαxα where α ∈ Zn, it is known as Laurent polynomial (Λf ⊂ Zn
≥0 is

finite). The set of all Laurent polynomials in the indeterminates x1, . . . , xn is denoted
by k[x1, . . . , xn, x−1

1 , . . . , x−1
n ] or k[x±

1 , . . . , x±
n ] and it has the structure of a ring.

A subset a ⊂ k[x1, . . . , xn] is said to be an ideal if it satisfies: (i) 0 ∈ a (ii) f, g ∈ a,
then f + g ∈ a (iii) f ∈ a and h ∈ k[x1, . . . , xn] then hf ∈ a. A set V ⊂ kn is said to
be an algebraic variety if there exist f1, . . . , fs ∈ k[x1, . . . , xn] such that

V = {(c1, . . . cn) ∈ kn : fi(c1, . . . cn) = 0, 1 ≤ i ≤ s} .
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We use the notation V(f1, . . . , fs) = V to represent the varieties. In this case V is
uniquely determined by the ideal generated by f1, . . . , fs. This ideal is denoted by
〈f1, . . . , fs〉 and hence we have

V(f1, . . . , fs) = V(〈f1, . . . , fs〉) .

Further,

〈f1, . . . , fs〉 = 〈g1, . . . , gt〉 =⇒ V(f1, . . . , fs) = V(g1, . . . , gt) .

Though one can recover varieties from the ideals, the converse is not true. To see
this we need the following notion of vanishing ideal of a variety. The vanishing ideal
of a variety E ⊂ kn is defined as

I(E) = {f ∈ k[x1, . . . , xn] : f(a) = 0, ∀a ∈ E} ,

which is, indeed an ideal. Further, this definition can be extended to any arbitrary
subset of kn. Now, varieties can be uniquely identified by their corresponding vanish-
ing ideals. That is

V = W ⇐⇒ I(V ) = I(W ) .

For any algebraic variety V ⊂ kn we have

V ⊆ V(I(V )) .

But when it comes to recovering ideals from varieties we have

〈f1, . . . , fs〉 ⊆ I(V(f1, . . . , fs)) ,

and by Hilbert’s Nullstellensatz (Adams and Loustaunau, 1994, p. 62) given a variety,
we can recover the ideal up to its radical only in the case of algebraically closed fields.

The basic idea behind Gröbner bases is the generalization of the division algorithm
in a single variable case (k[x]) to the multivariate case (k[x1, . . . , xn]). For this we
need the notion of monomial order.

Definition 3.1. A monomial order or term order on k[x1, . . . , xn] is a relation ≺ (we
use � for the corresponding ‘greater than’) on Z

n
≥0 that satisfies following conditions

(i) ≺ is a total (or linear) ordering on Zn
≥0, (ii) if α ≺ β, for α, β ∈ Zn

≥0 then for any
γ ∈ Zn

≥0 it holds α + γ ≺ β + γ, and (iii) ≺ is a well-ordering on Zn
≥0.

Given such an ordering ≺, one can define the leading term of non-zero polynomial
f ∈ k[x1, . . . , xn] as the term of f (the coefficient times its monomial) whose monomial
is maximal for ≺. We denote this leading term by LT≺(f) and the corresponding
monomial is denoted by LM≺(f).

Definition 3.2. An ideal a ⊂ k[x1, . . . , xn] is said to be a monomial ideal if there is
a set A ⊂ Zn

≥0, possibly infinite, such that a = 〈xα : α ∈ A〉.

Given any ideal a ⊂ k[x1, . . . , xn], the ideal defined as 〈LM≺f : f ∈ a〉 is a
monomial ideal and is denoted by LM≺(a), which is known as leading monomial ideal
of a. By Dickson’s lemma (Cox et al., 1991, p. 69), the ideal LT≺(a) is generated by
a finite set of monomials. Dickson’s lemma and the multivariate division algorithm
leads to a proof of Hilbert bases theorem which states that every polynomial ideal
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can be finitely generated, which further lead to a definition of Gröbner basis (see Cox
et al., 1991, § 2.5).

Definition 3.3. Fix a monomial order ≺ on k[x1, . . . , xn]. A finite subset G =
{g1, . . . , gt} of an ideal a ⊂ k[x1, . . . , xn] is a Gröbner basis if and only if

LT≺(a) = 〈LT≺(g1), . . . , LT≺(gt)〉.

Given a set of generators of an ideal, the Buchberger algorithm (Buchberger and
Gröbner, 1985) can be used to compute a Gröbner basis of the ideal with respect to
various term orders. The algorithm and its variants are implemented in most symbolic
computation programs. Note that a Gröbner basis is not unique, but one can trans-
form it to a reduced Gröbner basis which is unique for every ideal in k[x1, . . . , xn]. The
Buchberger algorithm provides a common generalization of the Euclidean algorithm
and the Gaussian elimination algorithm to multivariate polynomial rings.

One of the important results in Gröbner bases theory is the elimination theorem,
which we will use in the next section, and here we present a brief discussion on it.

Definition 3.4. Consider k[x1, . . . , xn, y1, . . . , ym] a polynomial ring in indetermi-
nates x1, . . . , xn, y1, . . . , ym. We refer to {x1, . . . , xn} as x-variables and {y1, . . . , ym}
as y-variables. Let ≺x and ≺y be monomial orderings on x and y variables respec-
tively. Define an ordering relation ≺[{x}�{y}] on Z

n+m
≥0 (i.e set of all monomials in

indeterminates x1, . . . , xn, y1, . . . , ym) as follows:

xα(1)

yβ(1)

≺[{x}�{y}] xα(2)

yβ(2)

⇐⇒






α(1) ≺x α(2)

or
α(1) = α(2) and β(1) ≺y β(2)

,

where α(1), α(2) ∈ Zn
≥0 and β(1), β(2) ∈ Zm

≥0. The term order ≺[{x}�{y}] is called elimi-
nation order with the x variables larger than the y variables (which is indeed a term
order).

Similarly one can define elimination order for more than two subsets of indetermi-
nates. For example, one can consider a polynomial ring k[x, y, z] in x, y and z variables
and one can define an elimination term order ≺[{x}�{y}�{z}]. An example for this is
term order ≺[{x1}�...�{xn}] (or simply we denote this as ≺[x1�...�xn]) on polynomial ring
k[x1, . . . , xn].

Now we are ready to define important algebraic objects called elimination ideals.

Definition 3.5. Given a ⊂ k[x1, . . . , xn], the lth elimination ideal al in the polynomial
ring k[xl+1, . . . , xn] is defined as al = a ∩ k[xl+1, . . . , xn].

With these concepts we now state the elimination theorem.

Theorem 3.6. (Adams and Loustaunau, 1994, p. 69) Let a ⊂ k[x1, . . . , xn] be an
ideal and let G ⊂ k[x1, . . . , xn] be a Gröbner basis of a with respect a term order
{x1, . . . , xl} � {xl+1, . . . , xn} (for example consider the term order x1 � . . . � xn) for
0 ≤ l ≤ n. Then the set Gl = G∩k[xl+1, . . . , xn] is a Gröbner basis of lth elimination
ideal al.
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4. ME in the framework of Algebraic Statistics

There has been some attempts to give a common terminology for the rapidly devel-
oping field of algebraic statistics (e.g., Drton and Sullivant, 2006). Here, we adopt
the appropriate definition of statistical model from (Pachter and Sturmfels, 2005).

A statistical model M is a subset of ∆m and is said to be algebraic if ∃f1, . . . , fs ∈
k[p1, . . . , pm] such that

M = V(f1, . . . , fs) ∩ ∆m .

Let Θ ⊆ Rd be a parameter space and κ : Θ → ∆m be a map. The image κ(Θ)
is called a parametric statistical model. Given a statistical model M ⊆ ∆m, by
parametrization of M we mean, identifying a set Θ ⊆ Rd and a function κ : Θ → ∆m

such that M = κ(Θ). To define an algebraic counter part of parametric statistical
models one needs some restrictions on Θ and κ which are of algebraic nature. First,
we need the following definition.

Definition 4.1. A set Θ ⊆ Rd is called a semi-algebraic set, if there are two finite
collections of polynomials F ⊂ k[x1, . . . , xd] and G ⊂ k[x1, . . . , xd] such that

Θ = {θ ∈ R
d : f(θ) = 0, ∀f ∈ F and g(θ) ≥ 0, g ∈ G} .

The simplest example of a semialgebraic set is the probability simplex ∆m itself.
In general, any convex polyhedron or polytope is semialgebraic (the requisite G and
G will consist of linear polynomials).

Now we have the following definition of parametric algebraic statistical model.

Definition 4.2. Let ∆m be a probability simplex and Θ ⊂ Rd be a semi-algebraic
set. Let κ : Rd → Rm be a rational function (a rational function is a quotient of
two polynomials) such that κ(Θ) ⊆ ∆m. Then the image M = κ(Θ) is a parametric
algebraic statistical model.

Conversely, a parametric statistical model M = κ(Θ) ⊆ ∆m is said to be algebraic
if Θ is a semi-algebraic set and κ is a rational function. From now on we refer to
‘parametric algebraic statistical models’ as ‘algebraic statistical models’.

In this paper we consider the following special case of algebraic statistical models
(cf. Pachter and Sturmfels, 2005, p. 7). Consider a map

κ : Θ(⊆ R
d) → R

m

θ = (θ1, . . . , θd) 7→ (κ1(θ), . . . , κm(θ)) ,
(4.1)

where κi ∈ k[θ1, . . . , θd]. We assume that Θ satisfies κi(θ) ≥ 0, i = 1, . . . , m, and∑m

i=1 κi(θ) = 1 for any θ ∈ Θ. Under these conditions κ(Θ) is indeed an algebraic
statistical model (Definition 4.2) since κ(Θ) ⊂ ∆m, κ is a polynomial function and
Θ is a semi-algebraic set (F = {

∑m

i=1 κi − 1} and G = {κi : i = 1, . . . , m} in the
Definition 4.1).

Some statistical models are naturally given by a polynomial map κ (4.1) for which
the condition

∑m

i=1 κi(θ) = 1 does not hold. If this is the case, one may consider the
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following algebraic statistical model:

κ : θ = (θ1, . . . , θd) 7→
1∑m

i=1 κi(θ)
(κ1(θ), . . . , κm(θ)) , (4.2)

assuming that the remaining conditions that have been specified for the model (4.1)
are valid here too. The only difference is that instead of κ being a polynomial map,
we have it as a rational map. One can show that many statistical models are algebraic
statistical models, for reference see (Pachter and Sturmfels, 2005).

Now by setting ξi = − ln θi, i = 1, . . . , d in (2.5) one can verify that ME-models
are algebraic statistical models.

5. Embedding ME-models in Algebraic Varieties

Given a positive integer valued sufficient statistic ti, i = 1, . . . , d, we have maximum
entropy model as image of

f : kd → km − W

(θ1, . . . , θd) 7→

( Qd
i=1 θ

ti(1)
iPm

j=1

Qd
i=1 θ

ti(j)
i

, . . . ,
Qd

i=1 θ
ti(m)
iPm

j=1

Qd
i=1 θ

ti(m)
i

)
.

(5.1)

where W = V(
∑m

j=1

∏d

i=1 θ
ti(j)
i ). Note that this is bigger parametrization as we allow

negative probabilities. Also note that the image of a polynomial map (or rational
map) need not be a variety. In this case, the usual technique employed is to take the
Zariski closure (Zariski closure of a set A ⊂ kn is the smallest variety that contains
A (Adams and Loustaunau, 1994, §2.5)). By the following result, one could give an
algebraic description for the ME-model (i.e., im(f)) in (5.1).

Theorem 5.1. Let f be a polynomial function that parametrizes a maximum entropy
model with respect to sufficient statistics ti : R → Z≥0 according to (5.1). Then

im(f) ⊆ V(ker(f̃ ∗)) ∩ V(
m∑

j=1

pj − 1) (5.2)

where f̃ ∗ is a k-algebra homomorphism1

f̃ ∗ : k[p1, . . . , pm] → k[θ0, . . . , θd]

pj 7→ θ0

d∏

i=1

θ
ti(j)
i .

(5.3)

Further V(ker(f̃ ∗))∩V(
∑m

j=1 pj−1) is the smallest variety that contains the maximum
entropy model.

1k-algebra homomorphism is a ring homomorphism

ψ : k[y1, . . . , ym] −→ k[x1, . . . , xn]

which is also a k-vector space linear transformation. Such a map is uniquely determined by

ψ : yi 7→ hi

where hi ∈ k[x1, . . . , xn], i = 1, . . . ,m.
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Proof. Define an ‘unnormalized’ ME model given sufficient statistic ti, i = 1, . . . , d,
as image of k-algebra homomorphism

f̃ : kd+1 → km

(θ0, θ1, . . . , θd) 7→
(
θ0

∏d

i=1 θ
ti(1)
i , . . . , θ0

∏d

i=1 θ
ti(m)
i

)
.

(5.4)

Now we claim that

im(f) = im(f̃) ∩ ∆m . (5.5)

Clearly we have im(f) ⊆ im(f̃) ∩ ∆m. Let a = (a1, . . . , am) ∈ im(f̃) ∩ ∆m. Then
∃(b0, b1, . . . , bd) ∈ kd+1 such that

aj = b0

d∏

i=1

b
ti(j)
i , j = 1, . . . , m.

Since a ∈ ∆m,
∑m

j=1 aj = 1 implies

b0
−1 =

m∑

j=1

d∏

i=1

b
ti(j)
i .

Hence a ∈ im(f) and im(f) ⊇ im(f̃) ∩ ∆m.

Now we only have to show that im(f̃) ⊆ V(ker(f̃ ∗)).

By the theorem of polynomial implicitization (Cox et al., 1991, p. 126) we have

im(f̃) ⊆ V(a ∩ k[p1, . . . , pm]) , (5.6)

where

a =

〈
pj − θ0

d∏

i=1

θ
ti(j)
i : j = 1, . . . , m

〉
.

a∩k[p1, . . . , pm] is nothing but the kernel of k-algebra homomorphism defined by (5.3) (Adams
and Loustaunau, 1994, Theorem 2.42, p. 81). Hence the result. �

The following corollary is part of the above proof.

Corollary 5.2.

im(f) ⊆ V(a ∩ k[p1, . . . , pm]) ∩ V(
m∑

j=1

pj − 1) , (5.7)

where

a =

〈
pj − θ0

d∏

i=1

θ
ti(j)
i : j = 1, . . . , m

〉

By the elimination theorem (Theorem 3.6) we can find the generators for ideal

ker(f̃ ∗) easily by first computing the Gröbner bases for a and removing all the poly-
nomials involving indeterminates θ1, . . . , θd.
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Corollary 5.3. (By Elimination theorem)

im(f) ⊆ V(G ∩ k[p1, . . . , pm]) ∩ V(

m∑

j=1

pj − 1) , (5.8)

where G is the Gröbner basis of

a =

〈
pj − θ0

d∏

i=1

θ
ti(j)
i : j = 1, . . . , m

〉

with respect to a term order satisfying {p1, . . . , pm} ≺ {θ1, . . . , θd}.

The following comments are in place. Here, we compute an implicitly defined
nonnormalized ME model and then intersect with the linear variety V(

∑1
k=1 pk − 1)

to give an implicit representation for the ME-model. This gives rise to an implicit
representation of the ME-model, which contains only binomials. These ideals of the
form ker(f̃ ∗) are known as toric ideals and they are very well studied in the literature.
Also by using toric ideal theory (see Sturmfels, 1996) one could extend the above
results to situations where our sufficient statistic could be negative.

On the other hand, the ME model (5.1) can be viewed as rational mapping and
one can apply the implicitization theorem for rational functions (Cox et al., 1991, p.
130) to get another implicit representation. But in this case generators of the implicit
representation need not be binomials.

Now we demonstrate the implicit ME models with an example. Consider the fol-
lowing sufficient statistic

[ti(j)]((i=1,2)×(j=1,...,7)) =

(
2 1 3 1 5 2 1
1 2 1 4 3 3 1

)
. (5.9)

The corresponding ME model can be written as

(p1, p2, p3, p4, p5, p6, p7) =

(
θ2
1θ2

Z
,
θ1θ

2
2

Z
,
θ3
1θ2

Z
,
θ1θ

4
2

Z
,
θ5
1θ

3
2

Z
,
θ2
1θ

3
2

Z
,
θ1θ2

Z

)
,

where Z = θ2
1θ2 + θ1θ

2
2 + θ3

1θ2 + θ1θ
4
2 + θ5

1θ
3
2 + θ2

1θ
3
2 + θ1θ2.

The corresponding unnormalized ME model is

(p1, p2, p3, p4, p5, p6, p7) =
(
θ0θ

2
1θ2, θ0θ1θ

2
2, θ0θ

3
1θ2, θ0θ1θ

4
2, θ0θ

5
1θ

3
2, θ0θ

2
1θ

3
2, θ0θ1θ2

)
.

Now let a be the ideal generated by the polynomials

p1 − θ0θ
2
1θ2, p2 − θ0θ1θ

2
2,

p3 − θ0θ
3
1θ2, p4 − θ0θ1θ

4
2,

p5 − θ0θ
5
1θ

3
2, p6 − θ0θ

2
1θ

3
2,

p7 − θ0θ1θ2

in k[p1, p2, p3, p4, p5, p6, p7, θ0, θ1, θ2]. By using Mathematica software, the Gröbner
basis for the above ideal a with the term order

p1 ≺ p2 ≺ p3 ≺ p4 ≺ p5 ≺ p6 ≺ p7 ≺ θ1 ≺ θ2
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can be found as

−p7 + θ0θ1, p1θ1 − p3,

p1θ2 − p2θ1, p2θ2 − p4θ1,

p1p7 − p3θ0, p1p2 − p6p7,

p2p6 − p4p1, p2 − p4p7,

p2θ1 − p3θ2, p7θ2θ1 − p1,

p2θ2θ1 − p6, p6p7θ1 − p2p3,

p2p3θ1 − p5θ0, p7θ
2
2 − p2,

p3θ
2
2 − p6θ1, p2θ

2
2 − p4,

p5θ0θ2 − p6p3, p3θ0θ2 − p2,

p2
7θ2 − p1θ0, p5p7θ2 − p6p3θ1,

p3p7θ2 − p2
1, p2p7θ2 − p6θ0,

p2
3θ2 − p5p7, p4p3θ2 − p2

6,

p2p3θ2 − p6p1, p6p
2
7 − p2p3θ0,

p2p3p7 − p2θ
2
0, p3

1 − p5p7θ0,

p3p
2
1 − p5p

2
7, p6p

2
1 − p2p5θ0,

p4p
2
1 − p2

6p7, p6p3p1 − p2p5p7,

p2
6p1 − p4p5θ0, p4p

2
3 − p6p5θ0,

p2p
2
3 − p1p5θ0, p2

6p3 − p4p5p7,

p6θ
3
1 − p5, p4p7θ

2
1 − p6p1,

p6p3θ
2
1 − p1p5, p4p3θ

2
1 − p2p5,

p2
6θ

2
1 − p2p5θ2, p5p

2
7θ1 − p1p

2
3,

p4p
2
7θ1 − p6p1θ0, p2p

2
7θ1 − p2

1θ0,

p2p5p7θ1 − p6p
2
3, p4p3p7θ1 − p2p5θ0,

p2p4p7θ1p
2
6θ0, p6p

2
3θ1 − p2

1p5,

p2
4p3θ1 − p3

6, p3
6θ1 − p2p4p5,

p5p
3
7 − p2

3p1θ0, p4p
3
7 − p6p1θ

2
0,

p2p
3
7 − p2

1θ
2
0, p2p5p

2
7 − p6p

2
3θ0,

p4p3p
2
7 − p2p5θ

2
0, p2p4p

2
7 − p2

6θ
2
0,

p2p
2
3p7 − p2

1p5θ0, p2
4p3p7 − p3

6θ0,

p3
6p7 − p2p4p5θ0, p6p

3
3 − p2

5p7θ0,

p4θ
4
1 − p5θ2, p3

4p5p7θ1 − p5
6,

p3
4p5p

2
7 − p5

6θ0, p6
6 − p2p

3
4p3p5.

From Corollary 5.3 the maximum entropy model is contained in the variety defined
by the polynomials

p1p2 − p6p7, p2p6 − p4p1,

p2 − p4p7, p3p
2
1 − p5p

2
7,

p4p
2
1 − p2

6p7, p6p3p1 − p2p5p7,

p2
6p3 − p4p5p7, p6

6 − p2p
3
4p3p5,

7∑

i=1

pi − 1.

We denote this collection of polynomials by M ⊂ k[p1, . . . , p7] and denote polynomials
that captures the data in the form of constraints (2.2) by

D = {

m∑

j=1

ti(j)pj − Ti : i = 1, 2} ⊂ k[p1, . . . , p7] .
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Now, we can say that the maximum entropy model given by the sufficient statistic
(5.9) is contained in the algebraic variety V(M) and given the values of T1 and T2 the
maximum entropy distribution is contained in the variety V(M) ∩ V(D).

Finally, one could conclude that in the case of maximum entropy both the model
and the data can be embedded in algebraic varieties and the maximum entropy dis-
tribution itself is contained in the intersection of these varieties.

6. Closing Remarks

In this paper we attempted to give an algebraic descriptions of ME-models in the
finitely discrete case. It might seem that this paper studied a particular case, but the
reader should be aware of the fact that any distribution, be it one- or multidimen-
sional, may be approximated by a discrete distribution, arbitrarily closely.

We showed that estimation of ME-models can be transformed to solving a sys-
tem of polynomial equations and we discussed various cases, viz., Primal, Dual and
Kullback-Csisźar iteration, in this respect. We also showed that the ME-model can
be treated with Toric ideals and can be embedded in algebraic varieties by Gröbner
bases methods. By this we demonstrated that in the case of ME, both model and
data can be represented by algebraic varieties, implicitly, and we hope that this result
paves a way to work on algebraic geometry of information theoretic statistics.
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