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Model order reduction for multi-terminal
circuits

Roxana Ionutiu1 and Joost Rommes2

Abstract Analysis of effects due to parasitics is of vital importanceduring the de-
sign of large-scale integrated circuits, since it gives insight into how circuit perfor-
mance is affected by undesired parasitic effects. Due to theincreasing amount of
interconnect and metal layers, parasitic extraction and simulation may become very
time consuming or even unfeasible. Developments are presented, for reducing sys-
tems describingR andRC netlists resulting from parasitic extraction. The methods
exploit tools from graph theory to improve sparsity preservation especially for cir-
cuits with multi-terminals. Circuit synthesis is applied after model reduction, and
the resulting reduced netlists are tested with industrial circuit simulators. With the
novelRC reduction method SparseMA, experiments show reduction of 95% in the
number of elements and 68x speed-up in simulation time.

1 Introduction

Analysis of effects due to parasitics is of vital importanceduring the design of large-
scale integrated circuits and derived products. One way to model parasitics is by
means of parasitic extraction, which results in large linear RCL(k) networks. In
ESD analysis, for instance, the interconnect network is modeled by resistors with
resistances that are based on the metal properties. In other(RF) applications one
needsRC or evenRCLk extractions to deal accurately with higher frequencies as
well.
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2 Roxana Ionutiu and Joost Rommes

The resulting parasitic networks may contain up to millionsof resistors, capac-
itors, and inductors, and hundreds of thousands of internalnodes, and thousands
of external nodes (nodes with connections to active elements such as transistors).
Simulation of such large networks within reasonable time isoften not possible, and
including such networks in full system simulations may be even unfeasible. Hence,
there is need for much smaller networks that accurately or even exactly describe the
behavior of the original network, but allow for fast analysis.

In this chapter we describe recently developed methods for the reduction of large
R networks, and present a new approach for the reduction of largeRC networks. We
show how insights from graph theory, numerical linear algebra, and matrix reorder-
ing algorithms can be used to construct a reduced network with the same number
of external nodes, but much fewer internal nodes and circuitelements (resistors and
capacitors). The approach is illustrated by numerical results.

The chapter is organized as follows. Sect. 2 revisits recentwork on reduction
of R networks [8, 9]. It provides the basis for understanding howgraph theoretical
tools can be used to significantly improve the sparsity of thereduced models, which
are later synthesized [29] into reduced netlists. Sect. 3 deals with the reduction of
RC networks. Sect. 3.1 first reviews an existing method which employspole anal-
ysis andcongruence transformations (PACT) [1] to reduceRC netlists with multi-
terminals. In Sect. 3.2 the new methodSparse Modal Approximation (SparseMA) is
presented, where graph-theoretical tools are brought in toenhance sparsity preser-
vation for the reduced models. The numerical results for both R andRC netlist re-
duction are presented in Sect. 4. Sect. 5 concludes.

2 Reduction of R networks

In this section we review the approach for reducingR networks, as developed
in [8, 9]. Reduction ofR networks, i.e., networks that consist of resistors only, is
needed in electro-static discharge analysis (ESD) analysis, where large extractedR
networks are used to model the interconnect. Accurate modeling of interconnect is
required here, since the costs involved may vary from a few cents to millions if, due
to interconnect failures, a respin of the chip is needed. An example of a damaged
piece of interconnect that was too small to conduct the amount of current is shown
in Figure 1.

2.1 Circuit equations and matrices

Kirchhoff’s Current Law and Ohm’s Law for resistors lead to the following system
of equations for a resistor network withN resistors (resistori having resistanceri)
andn nodes (n < N):
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Fig. 1 Example of a piece of interconnect that was damaged because it was too small to conduct
the amount of current caused by a peak charge.

[
R P

−PT 0

][
ib
v

]
=

[
0
in

]
, (1)

whereR = diag(r1, . . . ,rN) ∈ R
N×N is the resistor matrix,P ∈ {−1,0,1}N×n is the

incidence matrix,ib ∈ R
N are the resistor currents,in ∈ R

n are the injected node
currents, andv ∈ R

n are the node voltages.
The MNA (modified nodal analysis) formulation [11] can be derived from (1) by

eliminating the resistor currentsib = −R−1Pv:

Gv = in, (2)

whereG = PT R−1P ∈ R
n×n is symmetric positive semidefinite. Since currents can

only be injected in external nodes, and not in internal nodesof the network, system
(2) has the following structure:

[
G11 G12

GT
12 G22

][
ve

vi

]
=

[
B
0

]
ie, (3)

whereve ∈ R
ne and vi ∈ R

ni are the voltages at external and internal nodes, re-
spectively (n = ne + ni), ie ∈ R

n
e are the currents injected in external nodes,B ∈

{−1,0,1}ne×ne is the incidence matrix for the current injections, andG11 = GT
11 ∈

R
ne×ne , G12 ∈ R

ne×ni , andG22 = GT
22 ∈ R

ni×ni . The blockG11 is also referred to as
the terminal block.

A current source (with indexs) between terminalsa andb with current j results
in contributionsBa,s = 1, Bb,s = −1, andie(s) = j. If current is only injected in
a terminala (for instance ifa connects the network to the top-level circuit), the
contributions areBa,s = 1 andie(s) = j.

Finally, systems (1)–(3) must be made consistent by grounding a nodegnd, i.e.,
settingv(gnd) = 0 and removing the corresponding equations. In the following we
will still use the notationG for the grounded system matrix, if this does not lead to
confusion.
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2.2 Problem formulation

The problem is: given a very large resistor network described by (1), find an equiva-
lent network with (a) the same external nodes, (b) exactly the same path resistances
between external nodes, (c) ˆn ≪ n internal nodes, and (d) ˆr ≪ r resistors. Addition-
ally, (e) the reduced network must be realizable as a netlistso that it can be (re)used
in the design flow as subcircuit of large systems.

Simply eliminating all internal nodes will lead to an equivalent network that sat-
isfies conditions (a)–(c), but violates (d) and (e): for large numbersm of external
nodes, the number of resistors ˆr = (m2 −m)/2 in the dense reduced network is in
general much larger than the number of resistors in the sparse original network (r of
O(n)), leading to increased memory and CPU requirements.

2.3 Existing approaches

There are several approaches to deal with large resistor networks. In some cases the
need for an equivalent reduced network can be circumvented in some way: due to
sparsity of the original network, memory usage and computational complexity are
in principle not an issue, since solving linear systems with the related conductance
matrices is typically of complexityO(nα), where 1< α ≤ 2, instead of the tradi-
tionalO(n3) [17]. Of course,α depends on the sparsity and will rapidly increase as
sparsity decreases. This also explains why eliminating allinternal nodes does not
work in practice: the large reduction in unknowns is easily undone by the enormous
increase in number of resistors, mutually connecting all external nodes.

However, if we want to (re)use the network in full system simulations, a reduced
equivalent network is needed to limit simulation times or make simulation possible
at all. In [20] approaches based on large-scale graph partitioning packages such as
(h)METIS [21] are described, but only applied to small networks. Structure preserv-
ing projection methods for model reduction [22, 23], finally, have the disadvantage
that they lead to dense reduced-order models if the number ofterminals is large.
There is commercial software [18,19] available for the reduction of parasitic reduc-
tion networks.

2.4 Improved approach

Knowing that eliminating all internal nodes is not an optionand that projection
methods lead to dense reduced-order models, we use conceptsfrom matrix reorder-
ing algorithms such as AMD [24] and BBBD [25], usually used aspreprocessing
step for (parallel) LU- or Cholesky-factorization, to determine which nodes to elim-
inate. The fill-in reducing properties of these methods alsoguarantee sparsity of the
reduced network. Similar ideas have also been used in [20,26].
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Our main motivation for this approach is that large resistornetworks in ESD
typically are extracted networks with a structure that is related to the underlying
(interconnect) layout. Unfortunately, the extracted networks are usually produced by
extraction software of which the algorithms are unknown, and hence the structure
of the extracted network is difficult to recover. Standard tools from graph theory,
however, can be used to recover at least part of the structure.

Our approach can be summarized as follows:

1. The first step is to compute the strongly connected components [12] of the net-
work. The presence of strongly connected components is verynatural in extracted
networks: a piece of interconnect connecting two other elements such as diodes
or transistors, for instance, results in an extracted network with two terminals,
disconnected from the rest of the extracted circuit. By splitting the network in to
connected components, we have simplified the problem of reduction because we
can deal with the connected components one by one.

2. The second step is to selectively eliminate internal nodes in the individual con-
nected components. For resistor networks, this can be done using the Schur
complement [28], and no approximation error is made. The keyhere is that
those internal nodes are eliminated that give the least fill-in. First, (Constrained)
AMD [13] is used to reorder the unknowns such that the terminal nodes will
be among the last to eliminate. To find the optimal reduction,internal nodes are
eliminated one-by-one in the order computed by AMD, while keeping track of
the reduced system with fewest resistors.
Since the ordering is chosen to minimize fill-in, the resulting reduced matrix is
sparse. Note that all operations are exact, i.e., we do not make any approxima-
tions. As a result, the path resistances between external nodes remain equal to
the path resistances in the original network.

3. Finally, the reduced conductance matrix can be realized as a reduced resistor
network that is equivalent to the original network. This is done easily by un-
stampig the values in theG matrix intro the corresponding resistor values and
their node connections in the netlist [5]. Since the number of resistors (and num-
ber of nodes) is smaller than in the original network, also the resulting netlist is
smaller in size.

An additional reduction could be obtained by removing relatively large resistors
from the resulting reduced network. However, this will introduce an approximation
error that might be hard to control a priori, since no sharp upper bounds on the error
are available [7]. Another issue that is subject to further research is that the optimal
ratio of number of (internal) nodes to resistors (sparsity)may also depend on the
ratio of number of external to internal nodes, and on the typeof simulation that will
be done with the network.

In the following sections we will describe how strongly connected components
and fill-in minimizing reorderings can be used for the reduction of RC networks as
well.
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3 Reduction of RC networks

This section presents the developments forRC netlist reduction, first by reviewing
an existing approach called PACT (Pole Analysis via Congruence Transformations).
Then, graph-based tools are brought in to enhance sparsity preservation with the
novel reduction method, SparseMA (Sparse Modal Approximation).

Following the problem description in [1], consider the modified nodal analysis
(MNA) description of an inputimpedance typeRC circuit, driven by input currents:

(G + sC)x(s) = Bu(s), (4)

wherex denote the node voltages, andu represent the currents injected into the
terminals (also called ports or external nodes). The numberof internal nodes isn,
and the number of terminals isp, thusG ∈ R

(p+n)×(p+n), C ∈ R
(p+n)×(p+n) and

B ∈ R
(p+n)×p. A natural choice for the system outputs are the voltage drops at the

terminal nodes, i. e.,y(s) = BT x(s). Thus the transfer function of (4) is the input
impedance:

Z(s) =
y(s)
u(s)

= BT (G + sC)−1B. (5)

Modal approximation is a method to reduce (4), by preserving its most dominant
eigenmodes. The dominant eigenmodes are a subset of the poles ofZ(s) [i. e. of the
generalized eigenvaluesΛ(−G,C)] and can be computed using specialized eigen-
value solvers (SADPA [4] or SAMDP [2,10]). For the complete discussion on modal
approximation and its implementation we refer to [3,4,10].Here, we emphasize that
applying modal approximation to reduce (4) directly is unsuitable especially if the
underlyingRC circuit has many terminals (inputs). This is because modal approx-
imation does not preserve the structure ofB andBT during reduction (for ease of
understanding we denote the input-output structure loss asnon-preservation of ter-
minals) [5]. Modeling the input-output connectivity of the reduced model would
require synthesis via controlled sources at the circuit terminals, and furthermore
would connect all terminals with one-another [5]. In this chapter we present several
alternatives for reducingRC netlists where not only the terminals are preserved, but
also the sparsity of the reduced models.

Grouping the node voltages so thatxP ∈ R
p are the voltages measured at the

terminal nodes, andxI ∈ R
n are the voltages at the internal nodes, we can partition

(4) as follows:
([

GP GT
C

GC GI

]
+ s

[
CP CT

C
CC CI

])[
xP

xI

]
=

[
BP

0

]
u. (6)

Since no current is injected into internal nodes, the non-zero contribution from the
input isBP ∈ R

(p×p). EliminatingxI , system (6) is equivalent to:
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[(GP + sCP)︸ ︷︷ ︸
YP(s)

− (GC + sCC)T (GI + sCI)
−1(GC + sCC)]︸ ︷︷ ︸

YI(s)

xP = BPu (7)

Y(s) = YP(s)−YI(s) (8)

In (7) the matrix blocks(GP + sCP) corresponding to the circuit terminals are iso-
lated. Applying modal approximation onYI(s) would reduce the system and pre-
serve the location of the terminals. This would involve for instance computing the
dominant eigenmodes of(−GI,CI) via a variant of SAMDP [called herefrequency
dependent SAMDP, because the input-output matrices(GC + sCC) depend on the
frequencys]. We have implemented this approach, but it turns out that a large num-
ber of dominant eigenmodes of(−GI,CI) would be needed to capture the DC and
offset of the full systemY(s). Instead, two alternatives are presented that improve
the quality of the approximation: an existing method calledPACT (Pole Analy-
sis via Congruence Transformations) [1] and a novel graph-based reduction called
SparseMA (Sparse Modal Approximation).

3.1 Existing method: PACT

In [1] the authors propose to capture the DC and offset ofY(s) via a congruence
transformation which reveals the first two moments ofY(s) as follows. SinceGI is
symmetric positive definite, the Cholesky factorizationLLT = GI exists. Using the
following congruence transformation:

X =

[
I 0

−G−1
I GC L−T

]
, G

′
= XT GX =

[
G

′

P 0
0 I

]
, C

′
= XT CX =

[
C

′

P C
′T
C

C
′

C C
′

I

]
(9)

equations (7), (8) are rewritten as:

[(G
′

P + sC
′

P)︸ ︷︷ ︸
Y′

P(s)

− s2C
′T
C(I+ sC

′

I)
−1C

′

C]︸ ︷︷ ︸
Y′

I(s)

x
′

P = BPu (10)

Y
′
(s) = Y

′

P(s)−Y
′

I(s), (11)

where:

G
′

P = GP −GT
CM, M = G−1

I GC (12)

C
′

P = CP −NT M−MT CC, N = CC −CIM (13)

C
′

C = L−1N, C
′

I = L−1CIL−T . (14)

In (10), the termY
′

P(s) captures the first two moments ofY′(s) and is preserved in
the reduced model. The reduction is performed onY

′

I(s) only. In [1] this is done via
modal approximation as described next. Using the symmetriceigendecomposition
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C
′

I = UΛ ′

I UT , UT U = I, the system matrices (9) are block diagonalized as follows:

X
′
=

[
I 0
0 U

]
, G

′′
= X

′T
G

′
X

′
=

[
G

′

P 0
0 I

]
= G

′
(15)

C
′′

= X
′T

C
′
X

′
=

[
C

′

P C
′T
CU

UT C
′

C UT C
′

IU

]
=

[
C

′

P C
′′T

C

C
′′

C Λ ′

I

]
(16)

Y
′′
(s) = Y

′

P(s)− s2[C
′′T

C(I+ sΛ
′

I )
−1C

′′

C] (17)

The reduced model is obtained by selecting onlyk of then eigenvalues fromΛ ′

I :

Y
′′

k(s) = Y
′

P(s)− s2
k

∑
i=1

rT
i ri

1+ sλ ′

i

, rT
i = C

′

C
T
U[:,1:k], λ

′

i = Λ
′

I [i,i]. (18)

In [1], a selection criterion forλ ′

i , i = 1. . .k is proposed, based on a user-specified
error and a maximum frequency. These eigenmodes are computed in [1] via the
Lanczos algorithm. The criterion proposed in [3, 10] can also be used to compute
the dominant eigenmodesλ ′

i via SAMDP.
The advantage of the PACT reduction method is the preservation of the first two

moments ofY(s) in Y
′

P(s). This ensures that the DC and offset of the response is
approximated well in the reduced model. The main costs of such an approach are:
(1) performing a Cholesky factorization ofCI (which becomes expensive whenn is
very large, (2) solving an eigenvalue problem from a denseC

′

I matrix and, most im-
portantly, (3) the fill-in in the port block matricesG

′

P, C
′

P and inC
′

C. It turns out that
(2) can be solved more efficiently by keepingC

′

I as a product of sparse matrices dur-
ing computation, and will be addressed elsewhere. Avoidingproblems (1) and (3)
however require new strategies to improve sparsity, and arepresented in Sect. 3.2.
The fill-in introduced inG

′

P, C
′

P becomes especially important for RC netlists with
many terminals [p∼O(103)]. Compared to the original model where the port blocks
GP andCP were sparse, the denseG

′

P, C
′

P will yield many R andC components
during synthesis, resulting in a reduced netlist where almost all the nodes are in-
terconnected. Simulating such netlists might require longer time measures than the
original circuit simulation, hence sparser reduced models(and netlists) are desired.
Next, we present several ideas for improving the sparsity ofRC reduced models via
a combination of tools including: netlist partitioning, graph-based node reordering
strategies, and efficient algorithms for modal approximation.

3.2 Improved graph-based method: SparseMA

In this section we present an improved model reduction method for RC circuits,
which overcomes the disadvantages of PACT: it requires no matrix factorizations
prior to reduction, performs all numerical computations onsparse matrices, and
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most importantly, preserves the sparsity of the matrix blocks corresponding to the
external nodes. The method is calledsparse modal approximation (SparseMA) and
uses tools from graph theory to identify a partitioning and reordering of nodes that,
when applied prior to the model reduction step, can significantly improve the spar-
sity of the reduced model.

The idea is to reorder the nodes in theRC netlist so that some of the internal
nodes (m) are promoted as external nodes, together with the circuit terminals (p).
We will denote asselected nodes the collection ofp + m terminals and promoted
internal nodes. Then−m internal nodes are theremaining nodes. Supposing one has
already identified such a partitioning of nodes, the following structure is revealed,
where without loss of generality we assume the selected nodes appear in the border
of theG andC matrices:

([
GR GK

GT
K GS

]
+ s

[
CR CK

CT
K CS

])[
xR

xS

]
=

[
0

BS

]
u. (19)

Note that inBS the rows corresponding to the promotedm internal nodes are still
zero. Similarly to (7), the admittance is expressed as:

[(GS + sCS)︸ ︷︷ ︸
YS(s)

− (GK + sCK)T (GR + sCR)−1(GK + sCK)]︸ ︷︷ ︸
YR(s)

xS = BSu (20)

Y(s) = YS(s)−YR(s). (21)

Recall that reducingYI(s) directly from the simple partitioning (6) and (7) is not
a method of choice, because by preservingYP(s) only, the DC and offset ofY(s)
would not be accurately matched. Using instead the improvedpartitioning (19) and
(20), one aims at better approximating the DC and offset ofY(s) by preserving
YS(s) (which now encaptures not only the external nodes but also a subset of the in-
ternal nodes). Finding the partitioning (19) only requiresa reordering of nodes, thus
no Cholesky factorization or fill-introducing congruence transformation is needed
prior to the MOR step. One can reduceYR(s) directly with modal approximation
(via frequency dependent SAMDP), and preserve the sparsityof the extended port
blocks fromYS(s).

By interpolatingk dominant eigenmodes from the symmetric eigendecoposition
[ΛR,V] = eig(−GR,CR), the reduced model is obtained:

Yk(s) = YS(s)−
k

∑
i=1

qT
i qi

1+ sλi
, qT

i = (GK + sCK)TV[:,1:k], λi = ΛR[i,i]. (22)

In matrix terms, the reduced model is easily constructed by re-connecting the pre-
served selected matrix blocks to the reduced blocks:

([
ĜR ĜK

ĜT
K GS

]
+ s

[
ĈR ĈK

ĈT
K CS

])[
x̂R

xS

]
=

[
0

BS

]
u, (23)
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where:

ĜR = VT
[:,1:k]GRV[:,1:k] → diagonal, ĜK = VT

[:,1:k]GK , GS → sparse (24)

ĈR = VT
[:,1:k]CRV[:,1:k] → diagonal, ĈK = VT

[:,1:k]CK , CS → sparse. (25)

The remaining problem is how to determine the selected nodesand the partition-
ing (19). Inspired from the results obtained forR networks, we propose to first find
the permutationP which identifies the strongly connected components (sccs) of G.
Both G andC are reordered according toP, revealing the structure (19). With this
permutation, the circuit terminals are redistributed according to the sccs ofG, and
several clusters of nodes can be identified: a large component consisting of internal
nodes and very few (or no) terminals, and clusters formed each by internal nodes
plus some terminals. We propose to leave all clusters consisting of internal nodes
and terminals intact, and denote these nodes as theselected nodes mentioned above.
If there are still terminals outside these clusters, they are added to these selected
nodes and complete the blocksGS, CS. The remaining cluster of internal nodes
formsGR andCR. The model reduction step is performed onGR andCR (and im-
plicitly on GK andCK). We also note that matricesGK andCk resulting from this
partitioning usually have many zero columns, thusĜK andĈK will preserve these
zero columns.

The procedure is illustrated in Sect. 4 through a medium-sized example. Larger
netlists can be treated via a similar reordering and partitioning strategy, possibly in
a recursive manner (for instance when after an initial reordering the number of se-
lected nodes is too large, the same partitioning strategy could be re-applied toGS

andCS and further reduce these blocks). Certainly, other reorderings of G andC
could be exploited, for instance according to a permutationwhich identifies the sccs
of C instead ofG. The choice for either usingG or C to determine the permuta-
tion P is made according to the structure of the underlying system and may depend
on the application. We also emphasize that the reduced models for both PACT and
SparseMA are passive and therefore also stable. Passivity is ensured by the fact that
all transformations applied throughout are congruence transformations on symmet-
ric positive definite matrices, thus the reduced system matrices remain symmetric
positive definite.

4 Numerical results

The graph-based reduction procedures were applied on several networks resulting
from parasitic extraction. We present results for bothR andRC networks.
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4.1 R network reduction

Table 1 shows results for three resistor networks of realistic interconnect layouts.
The number of nodes is reduced by a factor> 10 and the number of resistors by a
factor> 3. As a result, the computing time for calculating path resistances in the
original network (including nonlinear elements such as diodes) is 10 times smaller.

Table 1 Results of reduction algorithm

Network I Network II Network III
Original ReducedOriginal ReducedOriginal Reduced

#external nodes 274 3399 1978
#internal nodes 5558 516 99112 6012 101571 1902

#resistors 8997 1505 161183 62685 164213 39011
CPU time 10 s 1 s 67 hrs 7 hrs 20 hrs 2 hrs
Speed up 10x 9.5x 10x

4.2 RC network reduction

We reduce anRC netlist withn = 3231 internal nodes andp = 22 terminals (external
nodes). The structure of the originalG andC matrices is shown in Figures 2 and
3, where thep = 22 terminals correspond to their first 22 rows and columns.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

nz = 15036

Original G

Fig. 2 Original G matrix

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

nz = 7695

Original C

Fig. 3 Original C matrix

The permutation revealing the strongly connected components of G reorders the
matrices as shown in Figures 4 and 5. The reordering is especially visible in the
“arrow-form” capacitance matrix. There, thep = 22 terminal nodes together with
m = 40 internal nodes are promoted to the border, revealing the 62 selected nodes
that will be preserved in the reduced model [i. e. theGS andCS blocks in (19)]. The
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first n−m = 3191 nodes are the remaining internal nodes and form theGR andCR

blocks in (19). TheGK block has only 1 non-zero column, and also inCK many
zero columns can be identified.
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Fig. 4 PermutedG according to scc(G)
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Fig. 5 PermutedC according to scc(G)

The reduced SparseMA model is obtained according to (22) and(23) and is
shown in Figures 6 and 7. The internal blocksGR andCR were reduced from dimen-
sion 3191 toĜR andĈR of dimensionk = 7, by interpolating the 7 most dominant
eigenmodes of[ΛR,V] = eig(−GR,CR). Note thatĜR and ĈR are diagonal. The
selected 62 nodes corresponding to theGS andCS blocks are preserved, evidently
preserving sparsity. The only fill-in introduced by the proposed reduction procedure
is in the non-zero columns of̂GK andĈK . It is worth noticing that̂GK only has 1
non-zero column, thus remains sparse.
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Fig. 6 ReducedG matrix with Sparse MA
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Fig. 7 ReducedC matrix with Sparse MA
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The sparsity structure of the PACT reduced model (18) is shown in Figures 13
and 9. The blocks corresponding to the first 22 nodes (the preserved external nodes)
are full, as are the capacitive connection blocks to the reduced internal part. Only
the reduced internal blocks remain sparse (diagonal).
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Fig. 8 ReducedG matrix with PACT
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Fig. 9 ReducedC matrix with PACT

Aside from sparsity preservation, one is interested in the quality of the approxi-
mation for the reduced model. In Fig. 10, we show that the SparseMA model accu-
rately matches the original response for a wide frequency range (1Hz → 10 THz).
The Pstar [6] simulations of the synthesized model are identical to the Matlab sim-
ulations (the synthesized model was obtained via the RLCSYNunstamping proce-
dure [7, 30]). In Fig. 11, the relative errors between the original model and three
reduced models are presented: SparseMA, PACT and the commercial software Ji-
varo [18]. The SparseMA model is the most accurate for the entire frequency range.
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Fig. 10 AC Simulation 1: Original, reduced
(Sparse MA) and synthesized model
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Fig. 12 shows a different AC circuit simulation, where the SparseMA model
performs comparably to the reduced model obtained with the commercial software
Jivaro [18]. Finally, the transient simulation in Fig. 13 confirms that the SparseMA
model is both accurate and stable.
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Fig. 12 AC Simulation 2: Original, reduced
(Sparse MA) and reduced (Jivaro)
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Fig. 13 Transient simulation 1: all external
nodes grounded and voltage measured at node
2. Original and reduced (Sparse MA - synthe-
sized)

Table 2 shows the reduction results for theRC network. For the 3 reduced mod-
els: SparseMA, PACT and Jivaro we assess the effect of the reduction by means
of several factors. With all methods, both the number of nodes and the number of
circuit elements was reduced significantly, resulting in atleast 68x speed-up in AC
simulation time. It should be noted that the SparseMA model and the Jivaro model
have lower ratios of#elements

#unknowns and #elements
#int.nodes than the PACT model. Even though the

Jivaro and the PACT model are faster to simulate for this network, the SparseMA
model gives a good trade-off between approximation quality, sparsity preservation
and CPU speed-up. Recall that the matrix blocks corresponding to the circuit termi-
nals become dense with PACT, but remain sparse with SparseMA. As for circuits
with more terminals∼ O(103) the corresponding matrix blocks become larger, pre-
serving their sparsity via SparseMA is an additional advantage. Hence, the improve-
ment on simulation time could be greater with SparseMA when applied on larger
models with many terminals.

5 Concluding remarks

New approaches were presented for reducingR andRC circuits with multi-terminals,
using tools from graph theory. It was shown how netlist partitioning and node re-
ordering strategies can be combined with existing model reduction techniques, to
improve the sparsity of the reducedRC models and implicitly their simulation time.
The proposed sparsity preserving method, SparseMA, performs comparably to the
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Table 2 Results with SparseMA reduction onRC netlist

Original Red. SparseMARed. PACTRed. Jivaro
#external nodes 22
#internal nodes 3231 47 7 12

#unknowns 3253 69 29 34
#resistors 7944 78 68 28

#capacitors 3466 383 414 97
#elements
#int. nodes

3.53 9.8 68.8 10.4
#elements
#unknowns

3.5 6.7 16.6 3.67

CPU time 6.8 s 0.1 s 0.06 0.02 s
Speed up 68x 113x 340x

commercial tool Jivaro. Future work will investigate how similar strategies can be
applied toRC models with many more terminals [∼ O(103)] and toRLCk netlists.
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