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ADVANCED SPINDLE RUNOUT-ROUNDNESS SEPARATION METHOD 

 
M.J.JANSEN, P.H.J. SCHELLEKENS, B. DE VEER* 

Eindhoven University of Technology, Precision Engineering Section, Den Dolech 2, 5600 
MB Eindhoven, The Netherlands, E-mail m.j.jansen@tue.nl, *Philips CFT 

Abstract:  a flexible and accurate method for separating spindle error motion and workpiece 
roundness is presented. The method makes use of three or more displacement probes. Angle 
measuring  probes can also be used. The angular positions of the probes as well as errors in 
sensor amplification are determined directly from the measurement data and require no extra 
measurements. The method can be used for real-time runout measurements with nanometer 
accuracy. 

1 Introduction 

Philips CFT Mechatronics Eindhoven produces among many other things high 
precision turning lathes that are equipped with hydrostatic bearings. The roundness 
of turned products is in a large degree determined by the spindle runout at the chisel 
position. For measuring the performance of the lathe the spindle runout and the 
achieved workpiece roundness had to be measured at high rotational speed with 
nanometer accuracy. Traditional measuring techniques only allow cumulative 
measurement of the spindle runout and of the workpiece geometry. To overcome 
this problem a new multipoint separation method has been developed. 

2 Method 

There are three unknown parameters: the x-displacement x(φ), y-displacement y(φ) 
and the workpiece roundness deviation r(φ). Therefore a minimum of three probes is 
required. The use of an extra sensor will show to provide some significant benefits. 
First we will deduce how spindle displacement and roundness affect the probe 
reading. 



The probe signal to expect can be constructed from the workpiece displacement and 
the workpiece radius. For the workpiece rotated over angle φ the following relation 
can be derived for a position probe at angle φ k: 

Eq. 2.1 can be expanded into a Fourier series: 

The nth complex Fourier coefficient skn of the position probe signal can be written as 
a linear function of the complex Fourier coefficients of the spindle runout xn, yn and 
of the workpiece radius rn: 

In our experiments four identical capacitive position probes were used. However, 
any type of probe can be used. For a sensitive angle probe for instance we can write: 

After expanding into a Fourier series (eq. 2.2) the nth complex Fourier coefficient  of 
the angle probe signal can be derived: 

(eq. 2.1) 

(eq. 2.3) 

(eq. 2.5) 

(eq. 2.2) 

Fig 1: In our experimental setup four capacitive displacement probes were used. Probes  s1, s2, s3

and s4, are positioned at the angular positions 1φ , 2φ , 3φ and 4φ . 
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Νk = angular position of the probe k (defined in the direction of rotation) 
Ν = angle of rotation of the workpiece 
sk  = distance from the kth probe to the workpiece 
r = workpiece radius 
r0  = nominal radius of the workpiece 
x =  x-position of the workpiece 
y =  y-position of the workpiece 
skn =  nth complex Fourier-coefficient of the kth sensor data 
rn  =  nth complex Fourier-coefficient of the workpiece radius 
xn  =  nth complex Fourier-coefficient of the spindle displacement in x-direction 
yn  =  nth complex Fourier-coefficient of the spindle displacement in y-direction 
n =  harmonic number 
i  =  complex operator 
 
In order to determine the Fourier components xn, yn and rn a solution matrix 
containing the equations for all probes (eq. 2.3 and eq. 2.5) can be formulated for 
every harmonic. The equation to be solved can be written in the form s = H·x: 

In the example above (eq. 2.6) the upper half of matrix H represents position 
probes, while the lower half represents angle probes. The solution matrix H can be 
extended for any number of probes. 
H : matrix containing information about positions and characteristics of the 

probes. 
x : vector containing the unknown complex Fourier coefficients of the runout 

error in  x- and y-direction and of the workpiece radius. 
s : vector containing the complex Fourier coefficients of the probedata. 
In case four or more probes are used a least-square-estimate x̂  can be made for 
every harmonic: 

x̂ : vector containing the estimated complex Fourier-coefficients of the spindle 
runout in x- and y-direction and of the workpiece radius. 

e : error residue 

(eq. 2.7) 

(eq. 2.6) 
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After solving equation 2.7 for all relevant harmonics, a complete solution of x(φ), 
y(φ) and r(φ) can be found through inverse Fourier transformation.  

3 Selecting probe angles 

The probe positions cannot be chosen arbitrarily. To avoid harmonic suppression 
the matrix H must be well conditioned: the condition number κ(H) should be 
sufficiently small.  

A large condition number (e.g. κ(H) = 10) means that relatively small errors of H 
(probe angle estimation) or s (probe reading) may result in a large error of x. In the 
example of figure 3.1 a small condition number (e.g. κ(H) = 3) is obtained when 
probe 1 and probe 2 are not separated close to a multiple of one wavelength. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*When over 3 probes are used, κ(H) should be replaced by κ(HTH). 

(eq. 3.1) 

Fig 3.1: Left: Maximum error sensitivity, Right: Harmonic suppression 

Fig 3.1: Condition number for the 2nd until the 100th harmonic. Probe angles: 0°, (180/20)°, 90° 
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The workpiece roundness and the spindle runout can of course contain a broad 
range of harmonics. By checking the condition numbers for relevant harmonics the 
probe angles can be selected to closely match our region of interest.  
When using three probes, the probe angles can only be optimized for a very limited 
range of harmonics. Carefully positioning an extra probe allows us to optimize the 
condition numbers for a wider range of harmonics. This has the added advantage of 
the possibility of automatic probe angle detection (see section 4). In our test-setup 
the probes were estimated to be 0°, 35.5°, 121.3° and 229.6°. 

4 Estimating the probe angles and probe amplification factors 

The angular position of the probes as well as differences in sensor amplification can 
be determined automatically without the need for extra measurements, provided that 
four or more probes are used. For reliable processing of the sensor data the probe 
positions need to be known accurately. This is especially important for the 
processing of high harmonics, because for the nth harmonic an angle error of dΘ 
results in a phase error of n·dΘ. 
The probe amplification factors can be estimated by minimizing the error residues 
for preferably low harmonics that have large amplitude. The first harmonic will do 
perfectly when the workpiece is positioned slightly eccentric to the axis of rotation. 
Wrongly estimated probe angles have only little effect on the calculated 
amplification factors when using lower harmonic range. 
Next, the error residues have to be minimized for optimum probe position estimates. 
This could be done for a single harmonic, however extra accuracy can be obtained 
when minimizing the error residues of several harmonics simultaneously. In every 
optimization step the optimum amplification factors are determined. 
Because of the complexity of this optimization problem, the calculation is best 
performed numerically. To minimize the influence of sensor noise or non-repetitive 
runout it is recommended to average data over several revolutions for estimating the 
probe angles. 

5 Evaluating the results 

Because we make use of more than three probes while we have only three unknown 
parameters we can use the error residue as a suitable check. A small error residue 
accompanied with a small condition number guarantees an accurate calculation of 
xn, yn and rn. Phase- and amplitude should be consistent among all probes, provided 
that a certain harmonic has a sufficiently high signal to noise ratio. This can be 
observed by comparing the real measurements to simulated measurement data. 
Checking ( ) sxH ∠⋅∠ -ˆ  and sxH -ˆ⋅  for all evaluated harmonics. 
 



In our measurements we used an optical flat diamond turned brass workpiece with a 
nominal radius r0 of 25 mm. It was turned and measured on the same lathe. 
Measurements were performed using four ADE Model 2102/2036K non-contact 
capacitive probes. The data acquisition board was equipped with a sample-and-hold 
accessory to guarantee a simultaneous readout of all probes.  
At low speeds measurements were performed with up to 2500 samples per 
revolution. This way a total error residue for the 1st until 100th harmonic in the order 
of only 1 nm has been obtained. At a rotational speed of 2200 rpm the sample rate 
was limited by the acquisition board at 250 samples per revolution. 
Because the workpiece geometry is fixed, we should expect the calculated 
workpiece geometry not to change for measurements performed at different 
rotational speed. At the same time the spindle runout is expected to change due to 
dynamic lubricating effects in the hydrostatic bearing.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5.2: Runout in x- direction from -2200 to 2200 rpm (2nd till 50th harmonic) 

Fig 5.1 Workpiece roundness, measured from -2200 to 2200 rpm, all measurements overlapping 



As figure 5.1 and 5.2 show, the calculated roundness and runout fully correspond to 
our expected results. 

6 Measuring face error motion and surface flatness using 5 probes 

Measuring surface flatness and face error motion took no part in our investigation. 
However, for determining the axial runout z, the x,y-tilt motion and the surface 

flatness h of the spindle the same approach can be applied. The set of linear 
equations to be solved for the nth harmonic can again be written in the form s = H·x:  

A least-square-estimate of the unknown Fourier components of the tilt, shape and z-
position can be calculated with eq. 2.7. The tilt, flatness and z-translation can be 
obtained though inverse Fourier-transformation. The fifth probe does not need to be 
positioned in the centre, but it can also be positioned at the same radius as the other 
probes (r0). Optimization and determination of the probe positions and amplification 
factors can be done in the same way as described in section 4. 

(eq. 6.1) 

Fig 6.1: Possible probe arrangement for measuring face error motion and surface flatness. 
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7 Method evaluation and recommendations 

 
The presented method proves to be a flexible and accurate method for determining 
the spindle runout and the workpiece roundness. There are a few conditions that 
have to be taken into account. The quality of the workpiece is important and may be 
the limiting factor if one wants to measure up to nanometers. The workpiece must 
be as smooth as possible, because low harmonics in general offer the least 
difficulties. 
An appropriate set of angle probes has to be selected to prevent harmonic 
suppression. The condition number of the condition number can be taken as an 
important guidance. 
In case one is mainly interested in the workpiece geometry or in the repetitive part 
of the runout error it is recommendable to average the probe data. The effect of 
sensor noise can by reduced by a factor q when averaging over q revolutions, or 
by increasing the number of data points by a factor q. 
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