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Abstract. Many systems used in process managements, like workflow
systems, are developed in a top-down fashion, when the original design
is refined at each step bringing it closer to the underlying reality. Un-
derdefined specifications cannot however be used for verification, since
both false positives and false negatives can be reported. In this paper we
introduce colored Petri nets where guards can be evaluated to true, false
and indefinite values, the last ones reflecting underspecification. This re-
sults in the semantics of Petri nets with may- and must-enableness and
firings. In this framework we introduce property-preserving refinements
that allow for verification in an early design phase. We present results
on property preservation through refinements. We also apply our frame-
work to workflow nets, introduce notions of may- and must-soundness
and show that they are preserved through refinements. We shortly de-
scribe a prototype under implementation.
Keywords: Petri nets; workflow; refinement, may-/must-soundness; prop-
erty preservation.

1 Introduction

There is much to be gained from a good understanding and a simple description
while writing formal specifications. In the refinement-based development, the
basic idea is to introduce new details to complement specifications. For example,
the engineer might be more precise about the way data should be interpreted, or
the way certain computations are to be carried out. Thus, refinements in general
result in complicating the system.

The process of specification refinement involves the removal of non-determinism
or uncertainty. An abstract specification may leave design choices unresolved
while in a refinement some of these choices are resolved. Several refinement
steps may be performed, each removing another degree of uncertainty, until the
specification reaches the required format.
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The main principle of refinement methods is that if the initial abstract spec-
ification is correct and refinement steps preserve correctness, then the resulting
specification (or even implementation) will be correct by construction. The er-
rors can therefore be discovered in the early phases of the design. Moreover, since
an abstract program is, in general, easier to prove correct than concrete one, the
refinement approach simplifies the structuring of the verification process.

In this paper we consider Coloured Petri nets [15, 16] as the modeling lan-
guage used in the refinement-based design. In Coloured Petri nets, a state of a
net, called a marking, is a multiset of tokens that reside on places and carry data
values; transition firings are conditioned by data-dependent guards, consume in-
put tokens and compute output tokens whose values depend on the values of
the input ones. Coloured Petri nets are widely used for modeling in many ap-
plication domains like manufacturing, workflow management, control systems,
etc. (see [10] for an extensive list of industrial applications of Coloured Petri
nets). Moreover, a number of industrial tools for designing coordination layers,
and in particular workflows systems, are Petri net-based [2].

Coloured Petri nets are usually developed in a top-down fashion, when the
original design is refined at each step bringing it closer to underlying reality. The
design normally starts with defining the basic control structure, and only later
data is added to the model step by step. In the current verification practice,
underdefined specifications are often verified as if no data is involved in the
making of choices [1]. This can lead to obtaining both false positives and false
negatives [23], and thus the added value of the verification effort is questionable.

In this paper we introduce a possibility to indicate underdefined pieces of a
specification by 1) allowing the use of the indefinite value ⊤ (unknown) in tran-
sition guards, and 2) supporting data-type refinements. This induces a semantics
of Petri nets with may- and must-enabledness of transitions while maintaining
the standard may Petri nets semantics. This semantics combines well with refine-
ments: a transition is may-enabled in a marking m of net N if it may be enabled
in some refinement of (N,m), and a transition is must-enabled in a marking m
of net N if it is enabled in any refinement of (N,m). We show how properties
like deadlock freeness or livelock freeness are preserved trough refinements from
abstract systems to refined systems.

We pay a particular attention to Workflow nets [3] – Petri nets modeling
workflows. A Petri net is a workflow net iff it possesses one place without in-
coming arcs (initial place), one place without outgoing arcs (final place) and all
other places and transitions lie on paths from the initial to the final place. A
process execution starts in a workflow net from the initial marking consisting of
a single token on the initial place. In a properly designed workflow net, any pro-
cess execution leads to the final marking consisting of a single token on the final
place. This property is called soundness [3, 12]. Note that soundness implies the
absence of deadlocks (the final marking excluded) and livelocks (infinite cycles
are allowed but they can be removed under the global fairness assumption [11]).
We adapt the notion of soundness to our net by introducing may-soundness and
must-soundness, where not may-soundness implies that any refinement of the
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net is unsound (proving the design wrong), and must-soundness implies that
any refinement of the net is sound (proving the design correct).

Related questions on the preservation temporal properties through refine-
ments have been addressed in the context of 2-valued semantics (see, e.g., [18]
or [20]). The focus there is however different. Our motivation lies in the incom-
pleteness of specifications under verification, and we need to reason using the
3-valued semantics where a property/formula can be evaluated to true, false or
indefinite. Then, when the value of the formula in the abstract model is indefi-
nite, the refinement may bring new details and the formula value in the concrete
model may become true or false, or may remain indefinite.

The rest of the paper is organised as follows. In Section 2 we give a motivating
example illustrating the intuition behind our approach. Section 3 sketches the
basic definitions needed. Section 4 introduces the definitions related to colored
Petri nets and colored Workflow nets, and the notion of refinement. In Section 5 a
link between our refinement notion and data refinements is established. Section 6
briefly reports on a prototype. Section 7 concludes the paper with an assessment
of achievements and a discussion of future work.

2 Motivating Example

To illustrate specification refinement we consider a simplified description of a
business process at an apartment letting agency. 1

A client contacts the agency to rent an apartment he/she liked. The agency
asks him/her to bring the salary slips. If the salary is considered to be high
enough to rent this apartment, the agency draws up the tenancy agreement.
Otherwise the client has to find a guarantor with a regular income, whose credit
history and income is checked then by an independent agency. Should the guar-
antor fail the checks, the client can ask someone else to be a guarantor. If the
guarantor is found to be reliable, the agency draws up a tenancy agreement.

A model (here a Coloured Petri net) is usually created as a graphical drawing
as shown in Fig. 1. The model contains six places (drawn as ellipse or circles),
eight transitions (drawn as rectangular boxes), a number of directed arcs con-
necting places and transitions and finally some textual inscriptions next to the
places, transitions and arcs. The two left most places and a transition model the
system to take the rent and salary information. By convention, the names of the
places are written inside the ellipses. The inscriptions are written in the Coloured
Petri net ML language which is an extension of the Standard ML language.

Transitions insufficient salary and sufficient salary have ⊤ as a guard, mean-
ing that the condition for taking one or the other is to be specified later. Similar
thing holds for the other data-dependant choices. The other transitions do not
have guards, meaning that their guards are always true. Note that this workflow
can be considered fully abstract, both in terms of data types (only the simple
UNIT type is used) and guards (all important guards are ⊤).

1 http://www.your-move.co.uk/lettings/tenants/student information.htm
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Fig. 1. Example of an abstract model
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Fig. 2. Example of a refined model

Refinement We now incorporate some additional information into our first model
to obtain the actual executable workflow. The client’s monthly salary (randomly
generated number between 1 and 100 and stored in variable y) is considered
to be sufficient if it is greater than three times the rent (x - initialized to 20
in the initial marking). The agency restricts the number of attempts to find
a guarantor by three attempts (counter c). Moreover, the tenancy agreement
includes a clause obliging to put a one-month rent to a blocked bank account as
security deposit for clients with sufficient income and two-month rent for clients
who have a guarantor. Figure 2 displays the refined workflow net.

3 Basic Notions

Let P be a set. A bag (multiset) m over P is a mapping m : P → ℕ where ℕ
is the set of natural numbers. We denote the set of all bags over P by ¹P . We
use + and − for the sum and the difference of two bags and =, <,>,≤,≥ for
comparison of bags, which are defined in a standard way. For example, we write
m = 2[p]+[q] for a bag m with m(p) = 2, m(q) = 1, and m(x) = 0 for x ∕∈ {p, q}.
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We overload the set notation, writing ∅ for the empty bag and ∈ for the element
inclusion. As usual, ∣m∣ stands for the number of elements in bag m.

Data types and operations Let § be a non-empty set of data-types, where
each data type is a set of data-values. Let Var be a set of variables, and let
type : Var→ § be a function assigning a type to every variable. We assume a set
Expr of (well-typed) expressions built over values and variables, and we assume
that type has been lifted to expressions in the standard way. For e ∈ Expr,
Var(e) denotes the set of (free) variables appearing in e.

We define a type 3Bool ⊆ § as a set {true, false,⊤} together with the truth
non-strict ordering relation ≪ satisfying false ≪ ⊤≪ true. On 3Bool we define
the unary operation ¬ as ¬false = true, ¬true = false and ¬⊤ = ⊤, and
we define two binary operations ∧ and ∨ as the minimum, resp. the maximum,
interpreted with respect to≪. The set of expressions built over 3Bool is denoted
Expr3Bool .

4 Colored Petri Nets with 3-valued Guards

We take a slight modification of the classical definition of Coloured Petri nets
from [14] and the definition from [19]. The main difference is that the guards are
interpreted w.r.t. the 3-valued semantics, i.e., they evaluate to either true, false
or ⊤. We, moreover, do not allow for expressions on incoming arcs.

Definition 1 (Coloured Petri Net). A Coloured Petri Net (CPN) is a tuple
N = ⟨P, T,A, C, ℰ , G⟩ where:

– P is a set of places;
– T is a set of transitions, with P ∩ T = ∅;
– A is a set of arcs, with A ⊆ P × T ∪ T × P ;
– C are colors of places, i.e. C : P → §;
– ℰ : A → Expr is the set of arc inscriptions such that

1. if (p, t) ∈ A, then ℰ(p, t) ∈ V ar and type(ℰ(p, t)) = C(p); and
2. if (t, p) ∈ A, then type(ℰ(t, p)) = C(p) and Var(ℰ(t, p)) ⊆ ∪

(p,t)∈AVar(p, t).

– G : T → Expr3Bool is a guard function satisfying Var(G(t)) ⊆ ∪
(p,t)∈AVar(p, t).

Note that there is at most one arc in each direction for any element in P ×T .
Note also that, without loss of expressivity, we disallow the same variable name
to appear on arcs having different types of their input places.

Given a node x ∈ P ∪ T , the preset ∙x of x is defined as {y ∣ (y, x) ∈ A} and
the postset x∙ is {y ∣ (x, y) ∈ A}. We will say that a node n is a source node iff
∙n = ∅ and n is a sink node iff n∙ = ∅.

The state of a CPN is defined by its marking which is a bag over the set
{(p, c)∣p ∈ P, c ∈ C(p)}. The set M of all possible markings is thus ¹{(p, c) ∣ p ∈
P, c ∈ C(p)}. A pair (N,m) is called a marked CPN. The set of colors of tokens

on place p in marking m is denoted by m(p), i.e. m(p)
def
= {c ∣ (p, c) ∈ m}.
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A binding is a mapping b : Var → ∪
¾∈§ ¾ such that b(v) ∈ type(v). We

denote the set of all bindings by ℬ. A pair (t, b), where t ∈ T and b ∈ ℬ is called
a binding element. For an expression e, b(e) denotes the value of e when every
v ∈ Var(e) is replaced by b(v). A binding b ∈ ℬ is relevant with respect to a
marking m and a transition t ∈ T if for all p ∈ ∙t and v ∈ Var(ℰ(p, t)) we have
b(v) ⊆ m(p), which means that m contains tokens needed for the binding. The
set of all bindings relevant with respect to m, t is denoted by ℬ(m, t).

Working with the three-valued logic we introduce a may-must semantics [21]
for Petri nets, i.e. consider two kinds of transitions: may-transitions, that are
possibly present, and must-transitions that for sure exist.

A binding element is may-enabled in m if b ∈ ℬ(m, t) and false ∕= b(G(t)).
This means that there are enough input tokens of the right type and that the
guard might be true. Similarly, (t, b) , is must-enabled in m if b ∈ ℬ(m, t) and
b(G(t)) = true, i.e. the guard is true. An enabled (t, b) (may or must) can
fire leading to the marking m′ defined by: m′ = m − ∑

p∈∙t(p, b(ℰ(p, t))) +∑
p∈t∙(p, b(ℰ(t, p))). Depending whether t is may- or must-enabled we denote this

firing by m
(t,b)−→may m

′ or m
(t,b)−→must m

′. We write m
t−→may m

′, resp. m
t−→must

m′, when there is a b ∈ ℬ(m, t) such that m
(t,b)−→may m

′, resp. m
(t,b)−→must m

′.
We write m −→may m

′, resp. m −→must m
′ when there is a t ∈ T such that

m
t−→may m

′, resp. m
t−→must m

′. We use
∗−→may and

∗−→must to denote the
reflexive-transitive closure of −→may and −→must respectively.

The following definition introduces a notion of (behavioral) refinement for
Coloured petri nets; it is inspired by the refinement notion of [21] and adapted
to our framework.

Definition 2 (Refinement). Let N1 and N2 be two CPNs. A relation R ⊆
M(N1)×M(N2) is called a refinement if, for every (m1,m2) ∈ R, the following
holds:

1. if m1
t−→must m

′
1 for some m′1 ∈ M(N1), then there exist an m′2 ∈ M(N2)

such that m2
t−→must m

′
2 and (m′1,m

′
2) ∈ R; and

2. if m2
t−→may m

′
2 for some m′2 ∈ M(N2), then there exist an m′1 ∈ M(N1)

such that m1
t−→may m

′
1 and (m′1,m

′
2) ∈ R.

For two marked CPNs (N1,m1) and (N2,m2) we write (N2,m2) ≼ (N1,m1) if
there is a refinement R such that (m1,m2) ∈ R.

Coloured Workflow nets In this paper we particularly focus on the Work-
flow nets (WF-nets) [3]. As the name suggests, WF-nets are used to model the
processing of tasks in workflow processes. The initial and final nodes indicate
respectively the initial and final states of processed cases. We add colors to
WF-nets and obtain Coloured WF-nets (CWF-nets).

Definition 3 (Coloured Workflow nets). A Coloured Petri net N is a Coloured
Workflow net (CWF-net) iff:
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1. It has two special places: i and f . The initial place i is a source place, i.e.
∙i = ∅, and the final place f is a sink place, i.e. f∙ = ∅.

2. For any node n ∈ (P ∪ T ) there exists a path from i to n and a path from n
to f along the arcs of the net.

One natural correctness requirement for WF-nets is soundness [3] which re-
quires proper termination for every marking reachable from the initial marking
and the absence of dead transitions. We adapt this notion for the coloured case
by requiring that an arbitrarily colored initial marking terminates properly and
that for any transition t there is a (colored) initial marking [(i, c)] such that t is
not dead in m.

Definition 4 (May/Must Soundness for CWF-nets). A WF-net N is
may-sound iff the following two conditions hold:

– for all c ∈ C(i) and m ∈ M(N) such that [(i, c)]
∗−→must m, we have

m
∗−→may [(f, c1)] for some c1 ∈ C(f), and

– for every t ∈ T there exists a color c ∈ C(i) and two markings m,m′ such

that [(i, c)]
∗−→may m and m

t−→may m
′.

Similarly, N is must-sound iff

– for all c ∈ C(i) and m ∈ M(N) such that [(i, c)]
∗−→may m, we have

m
∗−→must [(f, c1)] for some c1 ∈ C(f), and

– for every t ∈ T there exists a color c ∈ C(i) and two markings m,m′ ∈M(N)

such that [(i, c)]
∗−→must m and m

t−→must m
′.

We now lift the notion of refinement to CWF-nets and show that it pre-
serves/reflects soundness. As termination plays the central role in the definition
of soundness, we extend Definition 2 with a requirement that final marking are
only bisimilar to final markings.

Definition 5 (Termination-preserving refinement). Let N1 and N2 be two
CWF-nets. A refinement R ⊆M(N1)×M(N2) is termination-preserving if, for
every (m1,m2) ∈ R, m1 = [(f1, c1)] for some c1 ∈ C(f1) iff m2 = [(f2, c2)] for
some c2 ∈ C(f2). We write N2 ≼term N1 if there is a termination-preserving
refinement R such that ([(i1, c1)], [(i2, c2)]) ∈ R for every c1 ∈ C(i1) and c2 ∈
C(i2).

Theorem 6. Let N1 and N2 be two CWF-nets. If N2 ≼term N1, then

– if N1 is must-sound, then so is N2; and
– if N2 is may-sound, then so is N1.

Proof. Let N2 ≼term N1 be witnessed by a refinement R such that ([(i1, c1)],
[(i2, c2)]) ∈ R. Suppose N1 is must-sound and let m2 ∈ M(N2) be such that

[(i2, c2)]
∗−→may m2. From the definition of refinement it follows (by a simple

induction) that there is an m1 ∈ M(N1) be such that [(i1, c1)]
∗−→may m1 and
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Fig. 4. A CWF-net that is not may-sound

(m1,m2) ∈ R. Since N1 is must-sound, m1
∗−→must [(f1, c

′
1)]. Again, by induc-

tion we have m2
∗−→must m

′
2 and ([(f1, c

′
1)],m′2) ∈ R. Since R is termination-

preserving, m′2 = [(f2, c
′
2)]. As every must transition in N1 must be simulated by

a must transition in N2, we also conclude that N2 must have no dead transitions.
From this we conclude that N2 is must sound. The proof for the other case is
analogue. ⊓⊔

We give two examples to illustrate the advantages of our approach compared
to the currently used methods for checking workflow soundness. Consider the
CWF-net in Fig. 3. This workflow is underspecified as the choice whether to
take t2 or t3 (resp. t4 or t5) depends on the guard, which is ⊤. The standard
soundness check on underdefined specifications ignores all data aspects and it
would treat every guard as true. Therefore, a deadlock would be reported, e.g. in
the marking [p3, p6]. Our approach, however, would report may-soundness (the
workflow terminates if in the refinement both choices are made in the same way)
but not must-soundness, resulting thus in the honest answer “I do not know, in
some refinements it may be sound, and in others not”. Indeed, if both the guard
of t2 and t4, and the guard of t3 and t5, coincide, then the markings actually
[p3, p6] and [p4, p5] are unreachable and the net is sound.

Consider now the simple CWF-net in Fig. 4. This workflow is reported un-
sound by the standard technique (due to deadlocks in [p1] and [p2]). As the pre-
vious example suggests this still does not tell us anything about the behavior of
this net in some refinement. However, our approach reports not may-soundness,
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meaning that the workflow will be unsound in any possible refinement, directly
implying that the deadlock error cannot be repaired by guard refinements only.

5 Data Refinement

The previous section introduced the notion of a refinement on the behavior of
Coloured Petri nets. In this section we consider special types of structural re-
finements, called data refinements, and we prove them to be in agreement with
behavioral ones. Figure 2 displays one example of a data refinement. Unlike struc-
tural refinements (e.g. place/transition refinements, subnet refinements [19, 12,
13]), the proposed refinement retains the structure of the net without modifica-
tion but replaces data types (colours), guards and data computations by finer
ones.

Definition 7 (Data refinement/abstraction). Let N1 = ⟨P, T,A, C1, ℰ1, G1⟩
and N2 = ⟨P, T,A, C2, ℰ2, G2⟩ be two CPNs with identical sets of places, transi-
tions and arcs. Let ®p : C2(p)→ C1(p), for p ∈ P , be some functions called the
abstraction functions. A data abstraction is ® = {®p ∣ p ∈ P}.

Functions °p : C1(p) → 2C2(p), for p ∈ P , such that °p(a) = {c ∣ ®p(c) = a}
are called refinement functions. A data refinement is ° = {°p ∣ p ∈ P}.
We lift ® for bindings by mapping the variable values to their abstract counter-
parts w.r.t. ®. Intuitively, at the abstract level, we want to work with abstract
data types and have “non-deterministic” operations on them. Consider for exam-
ple the data type Sign = {neg, 0, pos, unknown} (with intuitive meanings nega-
tive number, zero and positive number resp. and a possible refinement function
mapping pos to (0,+∞), neg to (−∞, 0), 0 to {0} and unknown to (∞; +∞))
where the + operation is defined as pos+ pos = pos; pos+ 0 = pos; pos+ neg =
unknown, etc. Another simple example is a client income abstraction for a bank
business process: Income-category = {high-income, middle-income, low-income}.
Data refinements allow refining them when there is a need.

We call a data refinement safe if it can only restrict the behaviour of the
system by (possibly) turning some guards evaluated to ⊤ into true or false.

Definition 8 (Safe data refinement). We say that N2 is a safe data re-
finement of N1 with respect to °, denoted N2 ⊴° N1, if the following holds:
∀p1 ∈ P1, t1 ∈ T1,m1 ∈M(N1), b1 ∈ ℬ(m1, t1) : b2 ∈ °(b1) ⇒
b(G(t1)) = b2(G2(t2)) ∨ b(G(t1)) = ⊤.
Moreover, it is easy to see that the following holds.

Theorem 9. If N2 ⊴°1
N1 and N3 ⊴°2

N2, then N3 ⊴{(°1∘°2)(p)∣p∈P} N1.

Theorem 10. Let N2 ⊴° N1 and m ∈ M(N1). Then for any m2 ∈ °(m) we
have (N2,m2) ≼ (N1,m).

The way the present work on CWF-net may/must features preservation be-
comes close to the concept of safe abstraction within the Abstract Interpretation
framework [5, 6, 22].
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Fig. 5. Prototype sample run

6 Implementation

This section briefly reports on a prototype we have been developping to experi-
ment with our refinement approach. This prototype, called Comparator, allows
us to compare Petri nets structures through data refinements, to ensure must-
deadlock freeness and must-livelock freeness under some conditions on data.

The prototype functioning is as follows. First of all, the examples of Petri
nets are designed using CPNTools [17]. Using CPNTools allows storing all the
information about a considered net in the .cpn file which is an XML file. Sec-
ondly, we require the .cpn files loaded into the prototype environment. Once the
.cpn files of an abstract and a corresponding refined nets are loaded, our pro-
totype parses them to extract usefull data. Thirdly, the prototype user verifies
properties of interest. The algorithms implemented in Java are then executed,
and meaningful and comprehensive messages about the property verification are
displayed in the GUI, like in Fig. 5.

7 Conclusion

To cope with the complexity of concurrent systems, it is crucial to provide meth-
ods that enable debugging of a system specification in the early design phases.
In this paper we introduced a framework for the verification of underdefined
specifications based on Coloured Petri nets with the 3-valued logic for transition
guards inducing may- and must-firings. We showed that our refinement notion is
linked with data refinement and compatible with data refinement composition.

We formulated the requirements of may- and must-soundness for workflow
nets and showed how they are preserved through refinements.
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Future work. We plan to investigate refinements introduced in the present
paper for particular classes of Petri nets, e.g. Free choice nets [9], for which we
hope to obtain more efficient verification algorithms due to the net structure.
We also intend to go further by investigating structural – e.g., place, transition,
subnet, – refinements [19, 12, 13] w.r.t. may-/must-enabledness and soundness.

Related work. The use of abstractions/refinements in the verification is well-
studied for many formalisms (see e.g. [18, 20]). Refinement design frameworks
preserving (P)LTL formulas were studied for B refinement [7] and Z refine-
ment [8]. Our approach allows the preservation of a broader class of proper-
ties. The refinement we introduce is in fact an adaptation of the termination-
preserving refinement from [21] to the CWF-nets framework, implying that it
preserves ¹-calculus properties. When fixing a framework for operation types,
the present work on refinement becomes closely related to the concept of safe ab-
stractions, which is well-developed within the Abstract Interpretation framework
[5, 6, 22]. The verification of incomplete state spaces as partial Kripke structures
and a 3-valued interpretation to modal logic formulas on these structures were
investigated in [4]. Our work uses similar ideas in a different context.
Acknowledgement. We thank C. Bassetti, Ch. Bon and M.N. Irfan for their
help in implementing algorithms.
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