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Glitch-free Discretely Programmable Clock Generation on chip 

Abstract—In this paper we describe a solution for a 
glitch-free discretely programmable clock generation 
unit (DPGC). The scheme is compatible with a GALS 
communication scheme in the sense that clock gating 
and clock pausing are possible. Besides, the proposed 
scheme does not require waiting for a new clock as the 
frequency change is seen as almost instantaneously. A 
prototype has been designed for a 0.13µm triple-well 
CMOS process technology to also study the properties of 
the scheme with respect to voltage scaling. 

I. INTRODUCTION 

Due to shrinking technologies and increasing design 
sizes, clock distribution and synchronization in modern chips 
(being either processors or a Systems-on-a-Chip) is 
becoming a rather complex task. Furthermore, the clock 
network is also becoming a power sink in the sense that it 
demands a sensible percentage of the total power budget. In 
the past years, this trend has resulted in a new life for fully 
asynchronous design solutions. However, a paradigm shift 
from synchronous to asynchronous is unlikely to happen in 
the industry due to practical problems such as CAD 
availability as well as lack of trust from the engineering 
community. Therefore, a middle-path solution has arisen that 
tries and combine the asynchronous strategy with a more 
standard synchronous design: Globally-Asynchronous 
Locally-Synchronous or GALS [1]. In a GALS solution, a 
system is partitioned in islands. Each island is internally 
synchronous and, thus, can be realized by means of standard 
tooling. The composition of islands is done by means of 
asynchronous communication and, thus, reducing the 
complexity of clock distribution and synchronization.  

The GALS approach is lately being further studied towards 
addition controllability and programmability in order to be 
able to merge GALS with voltage scaling techniques so as to 
minimize the power budget [2]. In such a scenario, the on-
chip clock generator for each island is a critical component. 
A suitable clock generator should be programmable from 
one frequency to any other one, while the frequency change 
should be fast and free of spurious glitches. Besides, pausing 
and gating the clock must be possible. In this paper we 
describe a solution for a glitch-free discretely programmable  

clock generation unit (DPGC), which meet the above 
requirements. Besides, the proposed scheme does not require 
waiting for a new clock as the frequency change is seen as 
almost instantaneously. 

II. PREVIOUS WORK 

In our approach, we discuss a solution for changing the 
frequency anytime during the operation of the clock 
generator without spurious glitches on the clock signal itself. 
Unlike prior-art, this is a unique feature that makes the 
proposed solution suitable for cases in which the same core 
has to be operated at different frequencies (i.e. with power 
management techniques). In [3] Oetiker et al. describe 
solutions for programmable ring oscillators, where the 
frequency is finely tunable over a wide range. They discuss 
and compare most available topologies, which are based on 
one ring oscillator. Programmability is here considered only 
as a one-time event and it is not glitch-free. In [4] Taylor et 
al. present a solution for programmable ring oscillator with a 
special delay line. The purpose of programmability is here to 
calibrate the ring oscillator with respect to a reference 
frequency. Run-time frequency changes are not possible. In 
[5] Elboim et al. replace the multiple local oscillator with a 
central PLL and local frequency multipliers. In this case, 
changing the local frequency involve programming the local 
multiplier. The operation is to be performed by explicitly 
gating the clock as for standard multi-output PLL solutions. 

III. PRINCIPLES OF THE DPCG 

We have devised a micro-architecture for a glitch-free 
discretely programmable clock generator (DPCG) based on 
the usage of two identical mutual-exclusive ring oscillators 
(see Figure 1). The DPCG is based on the simple idea of 
using one oscillator to produce the clock at the current 
operating frequency, while the other is activated to generate 
the clock at the next frequency. When the new clock is 
stable, the two ring oscillators are synchronized on the low 
phase of the clock. The new clock is connected to the output, 
while the old one is stopped. Therefore, only one oscillator is 
actually oscillating at any given time (except from when the 
frequency is being changed). The interface to the DPCG 
consists in two four-phase channels for frequency 
programming (Req_f, Ack_f, Data_f) and clock gating 
(Req_g, Ack_g) as depicted in Figure 1. The final scheme 
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includes a test and reset interface that is not made explicit 
here. Each channel is composed by a request (Req_f, Req_g) 
and an acknowledgment signal (Ack_f, Ack_g). The 
frequency channel also includes a multi-bit data signal 
(Data_f) to specify the desired output clock frequency. The 
DPCG functions as follows. When the clock is to be gated, a 
request is raised on the gating channel (Req_g). At this point 
the switch control gates the currently running internal 
oscillator and allows the raising of the acknowledge signal 
(Ack_g). The clock gating is removed only after the 
acknowledge signal is released (not the request signal). 
When the clock frequency is to be changed, the code 
representing the new frequency is put on the data signal 
(Data_f). Once this signal is stable a request is raised on the 
frequency channel (Req_f). At this point, the event controller 
takes care that the sequence of action is correct and as 
follows. At first, the content of signal Data_f is stored (in the 
MUX flip-flop) and routed to the currently non-oscillating 
programmable ring. This also results in the raising of the 
acknowledge signal (Ack_f) followed by the retirement of the 
request (Req_f). The non-oscillating ring is then made 
oscillating at the new frequency and, within one clock cycle, 
synchronized on the low pulse with the other ring oscillator.  
At this point, the acknowledgement (Ack_f) is retired and the 
newly oscillating ring is transmitted to the output clock, 
while the other is stopped.  

 
Figure 1: Micro-architecture of the DPCG unit 

It is important to notice that even if the clock is 
transmitted after the acknowledgment is retired, the event 
controller will ensure that any other request is pending until 
the clock has not been transmitted to the output. Since there 
is not relation between the two requests, it might happen that 
they happen concurrently (or very near in time) thus 
potentially generating a conflict in determining the order in 
which the requests should be serviced. This situation is 
solved by means of a standard arbiter module as normally 
done in asynchronous systems (see Figure 1). 

IV. DESIGN OF THE CONTROL BLOCK 

The correct sequence of actions as described in the 
previous section is implemented by the control blocks (see 
Figure 1): event controller, switch control and clock switch. 
In this section we will give a description of these blocks 
together with a first logic implementation. A more detailed 
view on the control blocks is given in Figure 2. The event 

controller is a finite state machine. The switch control is 
nothing else than a multiplexer for handshake signals. The 
clock switch is basically composed by a multiplexer and 
clock-gating modules use as closing head for each of the ring 
oscillators (ring head - Figure 2). The event controller 
essentially takes care that the ring oscillator are synchronized 
on the clock low phase when frequency is being programmed 
and that only one ring oscillator is running at a given time. 
We can formally describe its operation mode with the STG 
(Signal Transition Graph) in Figure 3. We can see that 
handshaking on channels (gate0, gated0) and (gate1, gated1) 
is used to synchronize the two ring oscillators. Signal f_mux 
is instead used to select the ring oscillator, which will supply 
the next clock frequency.  

 
Figure 2: Zooming into the control blocks of the DPCG unit 

 
Figure 3: STG description of the Event Control module 

The logic implementation for the event controller has 
been obtained by means of the Petrify tool [6]. The 
transformation of the obtained logic equations into fully 
testable circuits has been trivial and done by hand (Figure 4). 
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In doing so, we have also included standard test shells for 
every Muller C-gate. The switch control is basically a 
multiplexer for four-phase handshake signals. Its function is 
to re-route the gating request to the currently oscillating ring 
and re-route back the acknowledge signal. It has been 
designed fully by hand and without support of an STG 
description so as to minimize its delay (Figure 5). The unit 
used to perform the clock switching is composed of two ring 
heads units and one standard multiplexer. Each ring head is 
used to close the ring oscillator and to implement the gating 
with handshaking. The circuit for the ring head unit is given 
in Figure 6. The signal Si is sent to the programmable delay 
element (that constitute the ring oscillator). This delay 
element provides the ring head with a delayed form of Si, 
which is signal DelSi. 

 

Figure 4: Implementation of the event controller. 

 
Fig. 1:  

Figure 5: Details of the Switch Control module 

The NAND gate on Si is used in order to stop the ring 
oscillator, when it is not used to generate the output clock. 
We can identify two cascaded standard latch+AND gating 
structures, which are used for gating the clock and 
synchronization on the low phase of the clock. The gated and 
A signals are used to signal when the gating has taken place. 
There is a timing constraint on these signals, as they have to 
signal the gating of the clock after the clock is really gated. 

Obviously the inverter gate is not enough of a delay; 
however, systematic delays in the event controller make sure 
that this timing constraint are always met (as long as the 
latch and the AND gate are kept close to each other). 

 
Figure 6: Details of the Ring Head module 

 
Figure 7: Layout of the complete DPCG unit 

V. REALIZATION OF A COMPLETE DPCG 

The physical implementation of the DPCG has been 
completed in a 0.13µm triple-well CMOS technology with a 
nominal supply voltage of 1.2 volts. A semi-custom design 
methodology has been applied, implementing the DPCG 
unit with standard cells only. Standard cells of a mutual-
exclusive and Muller-C element have been designed 
manually. The DPCG  supports adaptive control of power 
supply voltage, and independent bias control of N-well and 
P-well respectively. Such adaptive control techniques enable 
frequency tuning, compensation of inter-die process 
parameter spread and temperature effects. The design was 
laid out using a commercial place-and-route tool and a row 
utilization of 0.8. The DPCG consumes about 70x70 µm2 
excluding the power rings, and 100x100 µm2 including the 
power rings. The layout of the complete DPCG is shown in 
Figure 7. The programmable ring elements are built up out 
of AND gates, multiplexers, and an inverting ring head. The 
AND gates are concatenated and serve as delay elements. 
Multiplexers support the selection of three discrete 
frequencies by programming the length of the ring oscillator 
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to contain 7, 15, or 30 AND gates respectively. The ring 
head closes the ring oscillator chain. Each programmable 
ring element consumes a chip area of 25x25 µm2. Both 
programmable ring elements consume about 25 percent of 
the DPCG core area, while the rest is consumed by the 
hardware required for the clock control, handshaking, and 
test support. 
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Figure 8: Oscillation frequency versus supply voltage for the 

programmable ring element. 

 
Figure 9: Example simulation trace of frequency change 

 

Figure 10:  Example simulation trace of clock gating 

VI. CIRCUIT SIMULATION RESULTS 

The layout of the complete DPCG has been extracted by a 
commercial layout extraction tool, and simulated using an 
in-house circuit simulator. The nominal supply voltage of 

the 0.13µm CMOS technology equals 1.2 volts. Simulations 
have been performed for a temperature of 25 degrees 
Celsius, and nominal bias of N-well and P-well respectively.  
At nominal process conditions and at 1.2 volts supply, the 
implemented DPCG is able to generate a discrete oscillation 
frequency of 491MHz, 317MHz, and 194MHz respectively 
depending on the programmed length of the ring oscillator. 
Figure 8 shows the oscillation frequency as function of 
supply voltage for three programmed chain length. From 
this figure, one can observe that the frequency is reduced by 
a factor of 2.2 when the supply voltage is lowered to 0.8 
volts. On one hand, one can do a coarse grained selection of 
oscillation frequency by programming the ring oscillator 
chain length. On the other hand one can do a fine-grained 
tuning of this oscillation frequency by properly adjusting the 
power supply voltage value. Next to that, one could also use 
a proper well bias for the fine-grained frequency control. 
Figure 9 shows an example simulation trace of the 
implemented DPCG in the frequency-programming mode. 
As it can be noted, the trace follows the mode of operation 
as described earlier in section 2. No glitch at the output 
clock is produced when changing the frequency. The change 
in frequency is only seen as an additional delay on the low 
phase of the output clock. An example simulation trace in 
case of clock gating is shown in Figure 10. It can be noticed 
that the ring oscillator is gated after the gating request 
(Req_g), which is confirmed by raising the Ack_g signal. By 
releasing the Req_g signal, the clock gating is removed after 
the Ack_g signal is released. 

VII. CONCLUSIONS 

In this paper we have described a solution for building a 
programmable on-chip clock generator, which allows 
discrete changes in the operating frequency without spurious 
glitches. A prototype design has been completed for a 0.13 
µm triple-well CMOS process technology. Circuit 
simulations confirm that this scheme delivers fast frequency 
transitions without spurious glitches. Besides, the clock 
generator showed to correctly work with supply voltage 
scaling.  
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