

Glitch-free discretely programmable clock generation on chip

Citation for published version (APA):
Meijer, M., Pessolano, F., & Pineda de Gyvez, J. (2005). Glitch-free discretely programmable clock generation
on chip. In IEEE International Symposium on Circuits and Systems, 2005. ISCAS 2005, May 23-26 Kobe, Japan
(pp. 1839-1842). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ISCAS.2005.1464968

DOI:
10.1109/ISCAS.2005.1464968

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.1109/ISCAS.2005.1464968
https://doi.org/10.1109/ISCAS.2005.1464968
https://research.tue.nl/en/publications/8c2f6d97-22a3-4b9b-9145-6e3ef59f49a8

Glitch-free Discretely Programmable Clock Generation on chip

Abstract—In this paper we describe a solution for a
glitch-free discretely programmable clock generation
unit (DPGC). The scheme is compatible with a GALS
communication scheme in the sense that clock gating
and clock pausing are possible. Besides, the proposed
scheme does not require waiting for a new clock as the
frequency change is seen as almost instantaneously. A
prototype has been designed for a 0.13µm triple-well
CMOS process technology to also study the properties of
the scheme with respect to voltage scaling.

I. INTRODUCTION

Due to shrinking technologies and increasing design
sizes, clock distribution and synchronization in modern chips
(being either processors or a Systems-on-a-Chip) is
becoming a rather complex task. Furthermore, the clock
network is also becoming a power sink in the sense that it
demands a sensible percentage of the total power budget. In
the past years, this trend has resulted in a new life for fully
asynchronous design solutions. However, a paradigm shift
from synchronous to asynchronous is unlikely to happen in
the industry due to practical problems such as CAD
availability as well as lack of trust from the engineering
community. Therefore, a middle-path solution has arisen that
tries and combine the asynchronous strategy with a more
standard synchronous design: Globally-Asynchronous
Locally-Synchronous or GALS [1]. In a GALS solution, a
system is partitioned in islands. Each island is internally
synchronous and, thus, can be realized by means of standard
tooling. The composition of islands is done by means of
asynchronous communication and, thus, reducing the
complexity of clock distribution and synchronization.

The GALS approach is lately being further studied towards
addition controllability and programmability in order to be
able to merge GALS with voltage scaling techniques so as to
minimize the power budget [2]. In such a scenario, the on-
chip clock generator for each island is a critical component.
A suitable clock generator should be programmable from
one frequency to any other one, while the frequency change
should be fast and free of spurious glitches. Besides, pausing
and gating the clock must be possible. In this paper we
describe a solution for a glitch-free discretely programmable

clock generation unit (DPGC), which meet the above
requirements. Besides, the proposed scheme does not require
waiting for a new clock as the frequency change is seen as
almost instantaneously.

II. PREVIOUS WORK

In our approach, we discuss a solution for changing the
frequency anytime during the operation of the clock
generator without spurious glitches on the clock signal itself.
Unlike prior-art, this is a unique feature that makes the
proposed solution suitable for cases in which the same core
has to be operated at different frequencies (i.e. with power
management techniques). In [3] Oetiker et al. describe
solutions for programmable ring oscillators, where the
frequency is finely tunable over a wide range. They discuss
and compare most available topologies, which are based on
one ring oscillator. Programmability is here considered only
as a one-time event and it is not glitch-free. In [4] Taylor et
al. present a solution for programmable ring oscillator with a
special delay line. The purpose of programmability is here to
calibrate the ring oscillator with respect to a reference
frequency. Run-time frequency changes are not possible. In
[5] Elboim et al. replace the multiple local oscillator with a
central PLL and local frequency multipliers. In this case,
changing the local frequency involve programming the local
multiplier. The operation is to be performed by explicitly
gating the clock as for standard multi-output PLL solutions.

III. PRINCIPLES OF THE DPCG

We have devised a micro-architecture for a glitch-free
discretely programmable clock generator (DPCG) based on
the usage of two identical mutual-exclusive ring oscillators
(see Figure 1). The DPCG is based on the simple idea of
using one oscillator to produce the clock at the current
operating frequency, while the other is activated to generate
the clock at the next frequency. When the new clock is
stable, the two ring oscillators are synchronized on the low
phase of the clock. The new clock is connected to the output,
while the old one is stopped. Therefore, only one oscillator is
actually oscillating at any given time (except from when the
frequency is being changed). The interface to the DPCG
consists in two four-phase channels for frequency
programming (Req_f, Ack_f, Data_f) and clock gating
(Req_g, Ack_g) as depicted in Figure 1. The final scheme

M. Meijer*, F. Pessolano^ and J. Pineda de Gyvez*
*Philips Research Labs.
^Philips Semiconductors

Eindhoven, The Netherlands

18390-7803-8834-8/05/$20.00 ©2005 IEEE.

includes a test and reset interface that is not made explicit
here. Each channel is composed by a request (Req_f, Req_g)
and an acknowledgment signal (Ack_f, Ack_g). The
frequency channel also includes a multi-bit data signal
(Data_f) to specify the desired output clock frequency. The
DPCG functions as follows. When the clock is to be gated, a
request is raised on the gating channel (Req_g). At this point
the switch control gates the currently running internal
oscillator and allows the raising of the acknowledge signal
(Ack_g). The clock gating is removed only after the
acknowledge signal is released (not the request signal).
When the clock frequency is to be changed, the code
representing the new frequency is put on the data signal
(Data_f). Once this signal is stable a request is raised on the
frequency channel (Req_f). At this point, the event controller
takes care that the sequence of action is correct and as
follows. At first, the content of signal Data_f is stored (in the
MUX flip-flop) and routed to the currently non-oscillating
programmable ring. This also results in the raising of the
acknowledge signal (Ack_f) followed by the retirement of the
request (Req_f). The non-oscillating ring is then made
oscillating at the new frequency and, within one clock cycle,
synchronized on the low pulse with the other ring oscillator.
At this point, the acknowledgement (Ack_f) is retired and the
newly oscillating ring is transmitted to the output clock,
while the other is stopped.

Figure 1: Micro-architecture of the DPCG unit

It is important to notice that even if the clock is
transmitted after the acknowledgment is retired, the event
controller will ensure that any other request is pending until
the clock has not been transmitted to the output. Since there
is not relation between the two requests, it might happen that
they happen concurrently (or very near in time) thus
potentially generating a conflict in determining the order in
which the requests should be serviced. This situation is
solved by means of a standard arbiter module as normally
done in asynchronous systems (see Figure 1).

IV. DESIGN OF THE CONTROL BLOCK

The correct sequence of actions as described in the
previous section is implemented by the control blocks (see
Figure 1): event controller, switch control and clock switch.
In this section we will give a description of these blocks
together with a first logic implementation. A more detailed
view on the control blocks is given in Figure 2. The event

controller is a finite state machine. The switch control is
nothing else than a multiplexer for handshake signals. The
clock switch is basically composed by a multiplexer and
clock-gating modules use as closing head for each of the ring
oscillators (ring head - Figure 2). The event controller
essentially takes care that the ring oscillator are synchronized
on the clock low phase when frequency is being programmed
and that only one ring oscillator is running at a given time.
We can formally describe its operation mode with the STG
(Signal Transition Graph) in Figure 3. We can see that
handshaking on channels (gate0, gated0) and (gate1, gated1)
is used to synchronize the two ring oscillators. Signal f_mux
is instead used to select the ring oscillator, which will supply
the next clock frequency.

Figure 2: Zooming into the control blocks of the DPCG unit

Figure 3: STG description of the Event Control module

The logic implementation for the event controller has
been obtained by means of the Petrify tool [6]. The
transformation of the obtained logic equations into fully
testable circuits has been trivial and done by hand (Figure 4).

1840

In doing so, we have also included standard test shells for
every Muller C-gate. The switch control is basically a
multiplexer for four-phase handshake signals. Its function is
to re-route the gating request to the currently oscillating ring
and re-route back the acknowledge signal. It has been
designed fully by hand and without support of an STG
description so as to minimize its delay (Figure 5). The unit
used to perform the clock switching is composed of two ring
heads units and one standard multiplexer. Each ring head is
used to close the ring oscillator and to implement the gating
with handshaking. The circuit for the ring head unit is given
in Figure 6. The signal Si is sent to the programmable delay
element (that constitute the ring oscillator). This delay
element provides the ring head with a delayed form of Si,
which is signal DelSi.

Figure 4: Implementation of the event controller.

Fig. 1:

Figure 5: Details of the Switch Control module

The NAND gate on Si is used in order to stop the ring
oscillator, when it is not used to generate the output clock.
We can identify two cascaded standard latch+AND gating
structures, which are used for gating the clock and
synchronization on the low phase of the clock. The gated and
A signals are used to signal when the gating has taken place.
There is a timing constraint on these signals, as they have to
signal the gating of the clock after the clock is really gated.

Obviously the inverter gate is not enough of a delay;
however, systematic delays in the event controller make sure
that this timing constraint are always met (as long as the
latch and the AND gate are kept close to each other).

Figure 6: Details of the Ring Head module

Figure 7: Layout of the complete DPCG unit

V. REALIZATION OF A COMPLETE DPCG

The physical implementation of the DPCG has been
completed in a 0.13µm triple-well CMOS technology with a
nominal supply voltage of 1.2 volts. A semi-custom design
methodology has been applied, implementing the DPCG
unit with standard cells only. Standard cells of a mutual-
exclusive and Muller-C element have been designed
manually. The DPCG supports adaptive control of power
supply voltage, and independent bias control of N-well and
P-well respectively. Such adaptive control techniques enable
frequency tuning, compensation of inter-die process
parameter spread and temperature effects. The design was
laid out using a commercial place-and-route tool and a row
utilization of 0.8. The DPCG consumes about 70x70 µm2
excluding the power rings, and 100x100 µm2 including the
power rings. The layout of the complete DPCG is shown in
Figure 7. The programmable ring elements are built up out
of AND gates, multiplexers, and an inverting ring head. The
AND gates are concatenated and serve as delay elements.
Multiplexers support the selection of three discrete
frequencies by programming the length of the ring oscillator

1841

to contain 7, 15, or 30 AND gates respectively. The ring
head closes the ring oscillator chain. Each programmable
ring element consumes a chip area of 25x25 µm2. Both
programmable ring elements consume about 25 percent of
the DPCG core area, while the rest is consumed by the
hardware required for the clock control, handshaking, and
test support.

0

100

200

300

400

500

600

0.7 0.8 0.9 1 1.1 1.2 1.3

Supply voltage [V]

O
s

c
il

la
ti

o
n

 f
re

q
u

e
n

c
y

 [
M

H
z
]

Freq1 Freq2 Freq3

Figure 8: Oscillation frequency versus supply voltage for the

programmable ring element.

Figure 9: Example simulation trace of frequency change

Figure 10: Example simulation trace of clock gating

VI. CIRCUIT SIMULATION RESULTS

The layout of the complete DPCG has been extracted by a
commercial layout extraction tool, and simulated using an
in-house circuit simulator. The nominal supply voltage of

the 0.13µm CMOS technology equals 1.2 volts. Simulations
have been performed for a temperature of 25 degrees
Celsius, and nominal bias of N-well and P-well respectively.
At nominal process conditions and at 1.2 volts supply, the
implemented DPCG is able to generate a discrete oscillation
frequency of 491MHz, 317MHz, and 194MHz respectively
depending on the programmed length of the ring oscillator.
Figure 8 shows the oscillation frequency as function of
supply voltage for three programmed chain length. From
this figure, one can observe that the frequency is reduced by
a factor of 2.2 when the supply voltage is lowered to 0.8
volts. On one hand, one can do a coarse grained selection of
oscillation frequency by programming the ring oscillator
chain length. On the other hand one can do a fine-grained
tuning of this oscillation frequency by properly adjusting the
power supply voltage value. Next to that, one could also use
a proper well bias for the fine-grained frequency control.
Figure 9 shows an example simulation trace of the
implemented DPCG in the frequency-programming mode.
As it can be noted, the trace follows the mode of operation
as described earlier in section 2. No glitch at the output
clock is produced when changing the frequency. The change
in frequency is only seen as an additional delay on the low
phase of the output clock. An example simulation trace in
case of clock gating is shown in Figure 10. It can be noticed
that the ring oscillator is gated after the gating request
(Req_g), which is confirmed by raising the Ack_g signal. By
releasing the Req_g signal, the clock gating is removed after
the Ack_g signal is released.

VII. CONCLUSIONS

In this paper we have described a solution for building a
programmable on-chip clock generator, which allows
discrete changes in the operating frequency without spurious
glitches. A prototype design has been completed for a 0.13
µm triple-well CMOS process technology. Circuit
simulations confirm that this scheme delivers fast frequency
transitions without spurious glitches. Besides, the clock
generator showed to correctly work with supply voltage
scaling.

REFERENCES
[1] D. Chapiro, “Globally-Asynchronous Locally-Synchronous

Systems”, Ph. D. Thesis, Stanford University, 1984

[2] Iyer, D. Marculescu, “Power and performance evaluation of globally
asynchronous locally synchronous processors”, Proc, of the 29th Intl.
Symposium on Computer architecture, ISCA2002

[3] S. Oetiker et al, “High Resolution Clock Generators for Globally-
Asynchronous Locally-Synchronous Designs", Handouts of the ACiD
2002 workshop, Munich, Germany, Jan. 2002.

[4] G.S. Taylor, S.W. Moore, P. Robinson, “An on-chip dynamically
recalibrated delay line for embedded self-timed systems”, Proc. of
ASYNC 2000, Eilat, Israel, Apr. 2000

[5] Y. Elboim, R. Ginosar and A. Kolodny, “A Clock Tuning Circuit for
System on Chip,” IEEE Transactions on VLSI, 11(4), pp. 616 –626,
2003.

[6] www.lsi.upc.es/~jordic/petrify/petrify.htm

1842

