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Introdu ion

Suppose Mr. Athos wishes to write a private message to Mrs. Bonacieux while keeping
its contents secret from his Eminence of Richelieu, to whom the courier is most certainly
beholden; he couldput themessage in a safe boxwhose combination is only known tohimself
and to Bonacieux, and that would be very costly to break.

Rather than physical devices, cryptography rests on computational power to ensure data
security and integrity. Athos andBonacieux are each given ablackbox: Athos’ is parametrized
by a key and transforms messages into unintelligible data called ciphertexts; with the cor-
re onding key, Bonacieux’s reverses this operation. Ciphertexts can then be transmitted
openly over any medium. Chapter  gives a brief overview of such techniques, with an em-
phasis on schemes allowingAthos’ key to be public: they are only a few decades old andmake
extensive use of mathematical stru ures.

Abelian varieties are obje s upon which such schemes can be built very efficiently and
securely; they are formally introduced inChapter , which concisely presents certain of their
theoretical a e s, focusing on computations over nite elds. Subsequent chapters, where
the original contributions of this thesis are located, are concerned with algorithmic prop-
erties related to the endomorphism ring stru ure of abelian varieties; most of the theoreti-
cal background on this topic forms what is known as complex multiplication theory, which
Chapter  covers.

An important application of endomorphism rings is the constru ion of abelian varieties
with desirable properties. For instance, many featureful cryptographic schemes have recently
been enabled by pairings; to make these schemes pra ical, abelian varieties endowed with
efficient pairings must be generated. Chapter  discusses this subje , including the work of
B. and S () and related results.

e second half of this thesis addresses the problem of computing the endomorphism
ring of a prescribed abelian variety, which can be seen as the inverse problem to variety gen-
eration. Chapter  recalls prior state-of-the-art methods, all of which have an exponential
runtime in the size of the input. It also describes the general stru ure of isogeny graphs,
which is later extensively relied on.

Our subexponential algorithms for computing endomorphism rings of ordinary abelian
varieties are rst described in Chapter  in an idealized setting. ey exploit complex mul-
tiplication theory in its relevance to the stru ure of isogeny graphs. When ecialized to the
case of dimension-one abelian varieties, this dire ly yields highly effe ive methods which
are essentially equivalent to that of B. and S (). eir complexity is rigor-
ously analyzed in Chapter , as was done in B. (); this chapter ends with a discussion
of the results of B. and S () in this context, from a different per e ive
than the original article.
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Chapter  nally explains how our methods can be adapted to be effe ive in higher
dimension, and reports on the implementation of B., C, andR () enabling
the evaluation of general maps between abelian varieties (so-called isogenies), which is an
important building block of our algorithms. We conclude by applying our technique to the
computation of several illustrative and record examples.
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anorama of ryptography

Historically, cryptographyhas prevalently been employed for secrecy, althoughover time
it has come to provide other features, such as integrity prote ion and authentication. is
chapter concisely presents standard techniques achieving such classical primitives; it serves
as both a motivation and pra ical framework for computational number theory.

. Symmetric Primitives

Early cryptography necessitated a secret, called the key, to be shared between the parties
involved. Primitives of that lineage are said to be symm ric; they are in wide read use and
development today, mostly due to their exible and fast implementations.

C

Denote by S = {0,1}(N) the set of all strings, that is, nite sequences of bits.

De nition ... Symmetric encryption schemes cons t of two families E andD of fun ions,
not necessarily everywhere de ned, om S to S such Dk ◦Ek = Iddom(Ek)

for a strings k.

Intuitively, E and D are the black boxes to provide Athos and Bonacieux: the cipher E
is parametrized by a key k, takes plaintexts m as input, and returns ciphertexts Ek(m), while
the decipher D does the converse. His Eminence should be unable to gain any insight on
the messagem from the sole knowledge of the ciphertext Ek(m); in the stri est sense, this is
formalized as perfe secrecy, which requires that, for all nite sets of strings M andM′,

Probk,m[m �M | Ek(m) �M′] = Probm[m �M].





   

Early ciphers, going back to several centuries BC, simply swapped or shi ed bytes of the
plaintext in a regular fashion derived from the key; for instance, littingstrings as sequences
of bytes that encode letters A–Z as integers –, the cipher

Ek :
�
mi
� 7¹→ �mi + kmod 26

�
is still in limited use today with k = 13. Similar schemes not obviously as weak have also
been designed using larger keys; virtually all have since been broken by the development of
frequency analysis.

S () established the existence and essential uniqueness of a cryptosystem
achieving perfe secrecy: the one-time pad — it requires a key to be drawn independently
and uniformly at random from {0,1}n for each n-bit plaintext, and returns as ciphertext the
bit-by-bit xor of the plaintext and the key. Its pra ical use is only limited by the ability to
carry suitcases full of pads around, prior to doing any encryption.

To mimic its behavior while overcoming the need for lengthy keys transmission, stream
ciphers (also known as pseudorandomnumber gener ors), on input a small key called the seed,
deterministically generate pads to be xored with the plaintext; as before, measurable statisti-
cal deviations of such pads from randomstrings should be avoided. Nowadays, block ciphers,
which encrypt xed-length blocks of bits, are the most widely used, and particularly that
of D and R () later standardized as the AES. Procedures for encrypting
sequences of blocks, known as modes of oper ions, prevent additional information leakage
when handling messages of arbitrary length.

C S

e above overview calls for a more down-to-earth discussion of security a e s: the
result of S () concerns whether the key can eor ica y be recovered from a
certain amount of ciphertext, not how resource-demanding that process is.

One of the cheapest ways of effe ively compromising the key is to peek at Athos’ note-
book, or simply to ask him about it over a nice glass of wine; such side-channel cks will
not be discussed here, as we focus on cryptosystems themselves, not their implementations.

De nition ... A cipher E compu tiona y secure if, for most keys k, it compu tiona y
infe ible to derive plaintexts m om ciphertexts Ek(m).

“Computationally infeasible” means that, with today’s state-of-the-art machines, this
computation would take more time than is available, say, billions of years.

Other conditions might be desirable as well; for instance, that the output of Ek cannot
feasibly be told apart from that of a random fun ion. However, as our interest will shi to
themathematical building blocks of cryptosystems, this distin ion will bear little relevance.
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Mostcryptosystems do not achieve perfe secrecy, and are thus susceptible to brute-force
cks, whichdecrypt given ciphertexts by trying all possible keys in turn. For “ideal ciphers,”

this is the best attack, and for “ideal keys,” which have no ecial property that reduces the
search range, it takes 2n/2 runs on average to nd an n-bit key.

With today’s technology, the total number of elementary arithmetic operations realisti-
cally achievable canbebounded fromaboveby2128; keys bearing (at least)128bits of entropy
are thus recommended. Naturally, this should be tempered by several fa ors:

– the gravity of the encrypted information;

– the desired lifetime of the cryptosystem;

– the available processing power.

For instance, a news agency broadcasting encrypted live reports to its paying subscribers with
different keys each day might only need to withstand limited-resources attacks for 24 hours.

Summing up the above, assessing the security of a cryptosystem calls for a deep under-
standing of the ways and costs to attack it. M () predi ed an exponential growth
in available computing power which has been veri ed for the past four decades; as a conse-
quence, the costs should be considered for increasing key-sizes.

Rather than relying on a rigorous computingmodel such as the multi-tape universal ma-
chines of T (), we will simply analyze algorithms by looking at both their a ual
runtime on pra ical computations, and their long-term behavior embodied in asymptotic
bit-complexity estimates. In particular, we disregard quantum-computing models.

To emphasize the need for an asymptotic analysis, denote by cE(n) the operation count
of the best method for attacking a cipher E with n-bit keys: if cE grows subexponentially,
key-sizes are required to increase more than linearly in time to provide a constant level of
security, which may eventually prove to be quite cumbersome.

H F

One-way fun ions formalize the behavior which is expe ed of ciphers parametrized by
unknown keys; they have countless applications, far beyond cryptography, such as hash ta-
bles. Like ciphers, they can be de ned in a complexity-theoretic way, as fun ions can
be evalu ed by polynomial-time algori ms, but for which no polynomial-time algori m can
successfu y nd preimages on more an an exponentia y sma a ion of e image.

Since the existence of such fun ions implies P ≠ NP, we look for amore pra ical stance.

De nition ... A fun ion h : S → S one-way if it compu tiona y infe ible to nd
preimages of most of its image. It also a hash fun ion if its image con ined in {0,1}n for
some n and it compu tiona y infe ible to nd two strings x ≠ x′ verifying h(x) = h(x′).



   

Again, additional conditions might be required for eci c applications. e random
oracle is a convenient ideal encompassing most expe ations: it is nothing but the Cartesian
power by S of the uniform distribution on n-bit strings, or, more pragmatically, a “map”
whose images are drawn uniformly at random from {0,1}n.

Since there typically are at least a few fun ions (such as constant ones) that are unsuit-
able, designs using hash fun ions h are o en analyzed by assuming that h has the uniform
distribution, and proving that the desired properties hold with overwhelming probability.

Traditionally, hash fun ions are cra ed as a mix of logic gates, but some have also been
built on top of mathematical stru ures, which allows to analyze their behavior much more
rigorously. For instance, the constru ion of C, L, and G () in-
volves isogeny graphs of supersingular elliptic curves, a stru ure that we will investigate later
(for completely independent reasons).

P S

Con dently evaluating the complexity cE of the best attack on a cryptosystemE is a diffi-
cult task. Provable cryptography aims at designing cryptosystemsonwhich successful attacks
can be reduced into di roofs of certain ideal properties of the underlying blocks. However,
since many traditional blocks feature components eci cally designed to obscure their be-
havior, assessing the veracity of these ideal properties is not always possible.

Alternatively, themachinery ofmathematics provides well-studied building blocks, bun-
dled with tools adapted to rigorous analyses, although this o en comes at the expense of
slower implementations.

As a prominent example, let us give a result of S () regarding the d cr e log-
ari m problem, which is that of inverting the fun ion expg : n � Z 7→ gn � G, where g is a
xed element of a group G.

eorem ... In prime-order groups G, no generic algori m can sol e random instances of
e d cr e logari m problem in time o(

p
#G).

Later, we will rigorously de ne generic algorithms and explain how they can invert dis-
crete logarithms in time O(

p
#G); in essence, this theorem states that no attacker using the

group as a black box (thus unable to exploit any “ ecial” property) can do better than that.
Assuming that a cryptosystem E builds upon the discrete logarithm problem on a group

where generic attacks are the best available, we can o en, a er some calibration, estimate
the value of cE at nite parameters by its asymptotic behavior: if a key k has about the same
size as the group G that Ek uses, then it must be roughly 256-bit long in order to provide an
expe ed 128 bits of symmetric security.
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Researches have built cryptographic blocks uponmathematical obje s of various kinds:
D and H () used discrete logarithms, M and H ()
relied on knapsacks, R, S, and A () suggested using integer fac-
torization, ME () made the case for error-corre ing codes, M and
I () employed certain multivariate polynomials, Z () exploited Cayley
graphs, A () proposed using lattices, etc.

is thesis is concerned with some of the underlying mathematical a e s of discrete-
logarithm-based systems. e groups G with which they are concerned will be presented in
the next chapter — for now, let us keep motivating their introdu ion.

. Asymmetric Primitives

Although ciphers can be implemented efficiently, the need for a shared key to be secretly
transmitted prior to any two-party communication is inconvenient. Most o en today, a
shared key is rst established using asymmetric techniques (which overcome this problem)
over e insecure channel, and then used to encrypt the data via a stream or block cipher.

P-K P

D andH() introduced thekey exchangebelow,which solves precisely
this problem: making two individuals agree, over an open channel, on a shared secret key (to
be subsequently used for encryption); it proceeds as follows:

. Athos chooses an element g of some group G and sends it to Bonacieux.

. Athos picks an integer a and sends ga to Bonacieux.

. Bonacieux picks an integer b and sends gb to Athos.

. Athos and Bonacieux compute the shared secr gab as (ga)b and (gb)a re e ively.

When a passive observer breaks this scheme, they have solved the following.

De nition ... eDiffie–Hellman problem of computing gab om g, ga, and gb.

It is obviously no harder than the discrete logarithm problem, and is believed to neither
be weaker. is key-exchange is hence considered secure in well-chosen groups of order 2256.

e problem of authentication remains, since Milady deWinter could bribe the courier
so as to intercept and forge messages: she would pick her own integer c and impersonate
Bonacieux to Athos (with secret gac) and Athos to Bonacieux (with secret gbc), thus ying
on (and a ively interfering with) the whole communication.



   

De nition ... Asymmetric encryption schemes cons t of two familiesE andD of fun ions,
not necessarily everywhere de ned, omS toS and a one-way fun ion w such Dk ◦Ew(k) =
IddomEw(k)

for a strings k. It a signing scheme pro ided Ew(k) ◦Dk = IddomDk
also holds.

e map w is the key-gener ion fun ion: it takes a priv e key k as input and returns the
corre onding public key w(k), to be publicly distributed along with E, making anybody able
to encrypt messages that only the holder of k can decrypt. Conversely, if the key holder of a
signing scheme broadcasts Dk(m) for some messagem, everyone can evaluate Ew(k)(Dk(m))
and be assured that the sign ureDk(m) originates from the holder of k.

In pra ice, signing schemes are designed independently from encryption schemes; how-
ever, for our brief presentation, this naïve framework encompassing both will suffice.

Asymmetric schemes rarely deal with large amounts of data: for encryption, ciphers are
used and only their keys are encrypted asymmetrically; for authentication, it suffices to sign
a hash of the message. Without loss of generality, we will therefore now describe primitives
dealing with subsets of S whose coding as bits will be understood.

E C

De nition ... In a group G noted multiplic ively, e short produ problem of
nding a subsequence of a given sequence S �G(N) whose produ a prescribed element z.

Produ s of subsequences of S are ca ed short produ s; in addition, when S h no repe ed
elements, problem known e subset sum problem in additive groups and e knap-
sack problem forG=Z.

Some of its instances are equivalent to discrete logarithmproblems: if S′ is a subsequence
of S = (g20 , g21 ,… , g2⌊log2 #G⌋) with produ z, then z = gn where the ith bit of n is one if g2i � S′
and zero otherwise. From a cryptographic standpoint, this means that the map

ES : (xi) � {0,1}⌊log2 #G⌋ 7→ ⌊log2 #G⌋∏
i=1

sxii �G
is a tentative one-way fun ion for certain groupsG and sequences S of length about log2 #G.

M and H () proposed an asymmetric scheme which scrambles easy
knapsacks (the private keys) into seemingly harder ones (the public keys): let (si) � Nn be a
sequence such that

∑
i<j si < sj for j � {1,… ,n}, put v =∑ si, and de ne S as the proje ion

of (si) to Z/v; the map ES can then be inverted in polynomial time by a greedy algorithm.
Now, choose an integer u coprime to v, and publish the sequence T = (ti) = (usi mod v). In
the formalism above, we have k = (S,u,v) as the private key, w : k 7→ T as the key-generation
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map, and Ew(k) : (mi) � {0,1}n 7→∑mi · ti as the encryption fun ion; the greedy algorithm
decrypts a ciphertext m′ by nding a subsequence of S with sum u−1m′ mod v. S
() later broke this scheme due to the simplicity of its scrambling process.

M () constru ed a much more conservative signature scheme, built entirely
from a hash fun ion h, and certi ed its security assuming that of h. is was achieved by
developing an original idea of L (): if one sele s private strings x and y and
publishes their images h(x) and h(y) by a hash fun ion, he may later sign a bit of data by
releasing either x (if the bit is zero) or y (if it is one).

M C

eRSAcryptosystemofR, S, andA () rests on the problem
of integer fa oring, although subexponential fa oring algorithmswere alreadyknownat the
time. Nevertheless, it has becomewidely used de ite the large keys and a fortiori computing
resources required by reasonable levels of security.

Let n = pq be a produ of two primes, and pick an integer r coprime to (p− 1)(q− 1);
this ensures that the map m 7→ mr is an automorphism of (Z/n)×. Let the private key be
(p,q, r), and publish (n, r) as the public key and E(n,r) : m 7→ mr mod n as the encryption
fun ion; decrypting then consists in applying the inverse automorphismD :m 7→ms where
s can be computed from p and q (and conversely) since s = r−1 mod (p− 1)(q− 1).

e key-length of an RSA cryptosystem is the bit-size of n. e following table shows,
at various levels of security, the key-lengths recommended by ECRYPT II () for RSA,
ElGamal (see below), and equivalently secure symmetric schemes in e best c e, that is, as-
suming well-chosen parameters. e superlinear growth of RSA keys is due to the aforemen-
tioned subexponential fa oring techniques.

 RSA ElGamal
  
  
  

EG () designed a cryptosystem based on the Diffie–Hellman problem: let
g be a generator of some group G, and pick an integer x. e public key is (g,h) where h =
gx, and x is the secret key. e ciphertext of a message m (encoded as an element of G) is
(gy,m ·hy) where y is a random integer; to decrypt it, simply put gy to the power x and divide
it out fromm · hy.

Compared tomany other cryptosystems, the ElGamal schemestands out for its elegance
and exibility: since the groupG it uses is not restri ed to a certain class (such as RSAwhich



   

uses G = (Z/n)×), it has more latitude to nd one that has both an effe ive group law, and
in which no attack is faster than generic ones.

A P

Beyond encrypting and signing, many advanced and/or exotic cryptographic schemes
exist, most of which are enabled by the computability of certain mathematical obje s.

Zero-knowledge proofs are protocols whereAthos is to convince Bonacieux that he knows
some secret without revealing anything about it. For instance, the secret could be a (dedi-
cated) private key; to be convinced of his knowledge of the private key, Bonacieux could send
Athos a randommessage encryptedwith the associate public key and challenge him to reveal
the plaintext — she would learn nothing regarding the private key but that Athos knows it.
Many other constru ions exist, notably that of G, M, and W
() which demonstrated the power of a graph-based approach.

Homomorphic encryption aims at performing operations on plaintexts seamlessly via ci-
phertexts. For instance, in the ElGamal scheme, the term-by-term produ of ciphertexts for
m andm′ is a valid ciphertext formm′ since�

gy,mhy
�
·
�
gy′ ,m′hy′

�
=
�
gy+y′ ,mm′hy+y′

�
.

Fully homomorphic systems feature two such algebraic operations; they are far more pow-
erful as they enable the encrypted evaluation of any circuit. G () described such
a scheme using lattices but its pra icality is still a topic of a ive research.

e past decade also saw a plethora of novel cryptographic schemes exploiting the rich-
ness of pairings, that is, non-degenerate bilinear maps Ψ : G1 ×G2 → H where the groups
Gi are noted additively, and H is noted multiplicatively. e rst was a one-round tripar-
tite Diffie–Hellman key-exchange: assume Athos, Bonacieux, and Chevreuse are to derive a
shared secret key over an insecure channel; the protocol of J () goes as follows:

. Athos chooses and broadcasts a pairing Ψ and a pair (x, y) �G1 ×G2.

. Athos picks an integer a and broadcasts ax and ay.

. Bonacieux picks an integer b and broadcasts bx and by.

. Chevreuse picks an integer c and broadcasts cx and cy.

. Everybody computes Ψ(ax,by)c =Ψ(bx, cy)a =Ψ(cx,ay)b.
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. Generic Methods

e security of a cryptographic scheme based on a group does not depend on its isomor-
phism type alone, since an explicit isomorphismmight be very costly to compute; it depends
on how the group problem is encoded by the fun ion E. For instance, discrete logarithm
problems are much easier to solve in Z/(p− 1) than in (Z/p)× although their underlying
groups are isomorphic.

is se ion considers algorithms which apply to any group G regardless of its coding;
later, we will come back to which eci c codings make which problems easier.

G A

e framework of generic algorithms abstra s groupproblems (such as the discrete loga-
rithm problem) from eci c codings whichmight render it “arti cially” easier. Beware that
our de nition is not stri ly- eaking the most classical one, as we assume that elements are
uniquely identi ed and can be drawn uniformly at random.

De nition ... A coding of a groupG an inje ive map γ : G→ S.
A generic group a black-box interface to a groupGwhich can output γ(z) for a random z

and evalu e (x, y) 7→ γ(γ−1(x) ·γ−1(y)) and x 7→ γ(1/γ−1(x)), where e coding γ unknown.
A generic algorithm kes input a sequence of encoded group elements γ(xi) and a owed

ca s to e black box; its complexity me ured by e number of such ca s.

Intuitively, a generic group is a group with shuffled elements, so that nothing is le to
exploit in their representation: generic algorithms can only compute the group law.

Wewill see thatmanyhardproblems canbe solvedby generic algorithms in timeO(
p
#G)

but not less. However, determining the order of an element (a ecial case of discrete loga-
rithm) and, as a consequence, computing the groupstru ure of abelian groups were recently
proved by S () to require far fewer operations. Nevertheless, for the e-
ci c problems we are concerned with, namely the discrete logarithm problem and the short
produ problem, the generic algorithms described below are believed to be the best known
to date.

R  P G

emethod of P andH () was originally dire ed at computing dis-
crete logarithms in (Z/p)× but, more generally, it reduces many problems on abelian groups
G into smaller prime groups. It combines two ingredients, the rst of which is the following
consequence of the Chinese remainder theorem.



   

eorem ... L G be an abelian group of order n =
∏

pαp for some primes p and positive
integers αp. e map

x �G 7¹→ �xn/pαp�
p
�∏

p|n
G[p∞]

an omorph mwhere e p-Sylow subgroupG[p∞]denotes e subgroup of a elementswhose
order a power of p. Its in erse effe ively given by e Chinese remainder eorem.

Once the order of G is fa ored, this reduces any instance of a problem compatible with
the group law to several instances, one in each group G[p∞] of prime-power order.

To get down to prime-order groups, the second ingredient is a li ing approach: assuming
that G has order pα, a subgroup series G = G0→ G1→ ·· · → Gα = {1} where each arrow
has index p is used to reduce problems into the quotient groups Gi/Gi−1. is technique
applies to many problems, such as computing square roots modulo n as T ()
showed, but its eci cs depend on the particular problem considered.

For instance, suppose that g �Ghas order pα, andwrite the discrete logarithmof a certain
h = gx as x =

∑α−1
i=0 xipi for some xi � {0,… ,p−1}; the integers xi canbe recursively computed

by

xi = logg(pα−1)
�
g−
∑i−1

j=0 xjp
j
h(pα−1−i)

�
which amounts to proje ing discrete logarithms from Gi/Gi−1 to Gα−1.

Here, we have assumed that the group order was known; inmany cryptographic settings,
this is a ually the case. Although generic algorithms require exponential time to compute
the group stru ure, we believe that it is questionable to base the security of a scheme on
hiding the stru ure of a group (as RSA does), and that almost exclusively groups of prime
(or near-prime) orders should be used in cryptography.

B-S G-S

S () developed the baby-step giant-step m hod for computing discrete log-
arithms, although it applies to a broad range of problems. Our presentation here uses the
formalism of B. and S (), the generality of which we will later exploit.

e general idea is to design sets A and B so that co ions, that is, common elements to
A and B, yield solutions to the problem. Speci cally, we constru A and B as the re e ive
images of two maps φ and ψ with values in G and seek collisions of the form φ(x) = ψ(y).

For instance, to compute the logarithm of h in base g, put φ : i 7→ gi and ψ : j 7→ hg−Nj

for i, j � {0,… ,N}where N = ⌈p#G⌉; collisions of the form φ(i) = ψ(j) yield logg h = i+Nj,
and there must exist at least one such collision due to the existence of the discrete logarithm.
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Toquickly search for elements ofA∩B, a datastru ure allowing fast lookups is required;
fast insertions are also a must. We therefore typically use hash tables or red black trees. e
cost of computing A∩B is then (#A+#B)O(logn) for n = #G, where the last term denotes
the complexity of the searching and inserting.

WhenA andB are not as explicit as above, itmight not be possible to prove the existence
of a collision. e algorithm can then be randomized to rely on the bir day paradox:

Proposition ... L A and B be uniformly d tributed subs s of cardinality a
p
n and b

p
n

in a s G of cardinality n; en

Prob[A∩B =Ø] ¹→
n→∞

e−ab.

Assuming φ and ψ are random,
p
n images of each thus suffice to have a 1− 1/e chance

of nding a collision. In the unlucky event there is none, we can repeat this processm times,
addingmore images to our red-black tree; this increases the likelihoodof success to 1−1/em2

.
Fromnowon, we say that a probabil tic algori mhas complexityX, or that an algorithm

has probabil tic complexityX, tomean that it always returns the corre answer (this is known
as aL Veg algori m) and that, with probability at least 1/2, its runtime is bounded byX.
By the discussion above, up to a constant, it is equivalent to the notion of average complexity.

P’ R

e baby-step giant-step method requires storing O(
p
n) elements; an algorithm emu-

lating its behaviorwithminimal ace storagewas developed by P () for integer
fa oring, and later applied to discrete logarithms by P ().

Let us rstunify things in amapπ :C →Gequal to φ andψon their re e ive domains,
where C denotes their disjoint union. e rho method involves a pseudorandom fun ion
ρ :C →C , that is, an effe ive map for which the distribution of ρ(i)(w) (the composition
of i copies of ρ) is seemingly uniform as w �C is xed and the integer i varies. It is required
to preserves collisions, that is, π(x) = π(y)⇒ π(ρ(x)) = π(ρ(y)).

e map ρ is thought of as generating A and B under π, and the crucial step is to nd
collisions πρ(i)(w) = πρ(j)(w) without storing many values; when ρ(i)(w) ≠ ρ(j)(w) collide
through π, we expe that one is an image of φ and the other is one of ψ, which gives a proper
co ion—when their sizes are equal, this happens with probability a half.

Avoiding storage requires a cycle-d e ionmethod on the graph of iterates of ρ evaluated
at w. e simplest such method is due to F who observed that, whenever ρ(i)(w) and
ρ(j)(w) collide for some integers i and j satisfying i > 2j, then ρ(2(i−j))(w) and ρ(i−j)(w) also



   

collide. us, it suffices to compute ρ(2i)(w) alongside ρ(i)(w) for increasing i’s and wait for
them to collide; then, ρmaps are unstacked until the original collision is found. Better cycle-
dete ion methods improve the runtime by a constant fa or using more memory.

e difficulty lies in designing a fun ion ρ suited to a given problem; more details will
be given on that later, e ecially for the short produ problem. To fa or an integer n,
P () put C = Z/n and chose ρ to be a polynomial fun ion; the map π can
then be the proje ion to any subgroup of Z/n which need not be known: by computing
gcd
�
ρ(i)(w)− ρ(j)(w),n

�
, we can dete when a collision occurs and hopefully nd a fa or

of n. is method is nowadays mostly used for small integers n, as asymptotically faster fac-
toring algorithms have since been developed.

A current international effort () aims at solving a discrete logarithm problem chal-
lenge in a group of 129-bit order (this group is an elliptic curve where generic algorithms are
the best available); when completed, it will likely be the record rho algorithm run.

. Cryptographic Groups

Let us now review the cryptographic security of various groups, mostly focusing on the
discrete logarithm problem.

F P

We advocated for prime-order groups; now let us mention how prime numbers can be
found. e bestmethod for this is simply to draw numbers at randomuntil a prime is found;
for numbers of n bits, this requires an expe ed O(n) operations by the theorem below.

Assuming the generalizedRiemannhypothesis,M () rst derived a fast (poly-
nomial time) deterministic primality test, later turned into an unconditional but probabilis-
tic method by R (). Although A, K, and S () have since
proved that deterministic primality proving need not rely on unproven assumptions, the de-
pendency on the generalized Riemann hypothesis is interesting: this conje ure predi s the
behavior of primes in various elds. First recall the celebrated prime number theorem of
H () and   V-P ().

eorem ... e number of prime integers less an x ymptotica y equivalent to∫ x

2

dt
log t

~
x

logx
.
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Proofs of this theorem involve establishing certain properties of analytic fun ions re-
lated to integers; more generally, if K is any number eld, de ne, for s �C withℜ(s) > 1,

ζK(s) =
∑
a�IN(a)−s

where I is the set of ideals of the ring of integers of K, and extend ζK to C by analytic con-
tinuation. is fun ion encodes the behavior of prime ideals of K; to obtain precise results
on their distribution, one o en assumes the extended Riemann hypo es which states that
all zeroes s of ζK in the strip 0 < ℜs < 1 lie on the lineℜ(s) = 1/2. e extended Riemann
hypothesis follows from the stronger generalized Riemann hypo es , and we o en assume
the latter when only the former is needed.

M () a ually exploited the following result of A (), where the
label “(GRH)” denotes that the statement holds under the generalized Riemann hypothesis.

eorem .. (GRH). L p and q be integers such q divides p− 1. e le t integer x
which cannot be written yq mod p for some y �N ymptotica yO(log2 p).

We conclude with a conje ure of B and H () generalizing the prime
number theorem; it is useful for generating elliptic curves as we will see later. Essentially,
it asserts that distin irreducible polynomials take prime values almost independently, and
that this “almost” is quanti ed by their values modulo primes p.

Conje ure ... L F be a s of d tin irreducible non-constant polynomials ofZ[X]. e
number of integers less an x which a its polynomials simul neo ly ke prime values
ymptotica y equivalent to

C∏
f�F deg f

∫ x

2

dt
(log t)#F

where C=
∏
p

�
1− 1

p
#
¨
z � Fp :∏

f�F f(z) = 0
«�,�

1− 1

p

�#F

.

I C

Since the baby-step giant-step or rho method use O(pp) operations to nd a fa or p of
an integer n, fa ors of n can always be found in O(n1/4) time. By iterating this search for
fa ors and testing the primality of the fa ors obtained, an integer n can be fa ored in prob-
abilistic time O(n1/4). When the RSA cryptosystem was proposed, much faster algorithms
already existed and they were substantively improved subsequently.



   

e simplest such method is due to K (). To lit an integer n, it cra s a
nontrivial relation x2 = y2 mod n by combining many easier relations so as to eliminate non-
square fa ors; the easier relations are of the form z2 mod n =

∏
pαp for primes p less than

some bound L(n). To bound the probability that such a fa orization exists, we rely on this
result of C, E, and P ().

eorem ... For any c > 0, e probability for a random number of {1,… ,x} to have no
prime fa or larger an L(x)c equivalent to L(x)−1/2c+o(1) x→∞, where we ed e func-
tion

Lα(x) = exp
��
logx

�α �log logx�1−α�
wi e con ention omitting e param er α � (0, 1)means α = 1/2.

Assuming Gaussian elimination takes cubic time in the number of variables, we set c =
1/2 and obtain a nontrivial litting of n in time L(n)3/2+o(1).

e broad family of combining congruences algori ms encompasses methods using fa or
b es (as the primes up to L(n)); they apply to many integer-based problems such as discrete
logarithms in nite elds and integer fa oring. Under unproven assumptions, the asymptot-
ically fastest suchmethod is thenumber eld sieve ofC (), which builds up
on the work of many including L and L (), with heuristic complexity

LcNFS

1/3
(n) where cNFS = 2

3

s
46+ 13

p
13

108
≈ 1.902

Recently, K alii () used a similar method to fa or a 768-bit RSA mod-
ulus, thereby deprecating smaller RSA keys; the effe iveness of this attack is blatant when
compared to elliptic curves whose discrete logarithms can only be attacked up to 130 bits.

Unconditionally proven fa oring algorithms are slightly slower, with the state-of-the-
art method of L and P () using an expe ed L(n)1+o(1) operations;
it exploits a similar fa or base paradigm in certain class groups. Since these obje s are built
from ideals it is not surprising that subexponentialmethods should apply to themaswell, and
wewill elaborate on that later as class groups become a building block of our own algorithms.

A V

Cryptosystems based on the discrete logarithm problem in nite elds have been pro-
posed as alternatives toRSA; however, up to certainmodi cations, modern integer fa oring
algorithms also apply to this problem, so it provides no additional security.
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Shortly a er L () introduced a novel fa oring algorithm based on elliptic
curves, M () and K () suggested their use in cryptography; subse-
quently, K () further proposed using the broader class of abelian varieties. is
has motivated tremendous developments in computational number theory, and has enabled
a wide e rum of possibilities in cryptography.

ese applications are motivated by two fa s: rst, that the group law of abelian vari-
eties can be computed efficiently, and second, that no algorithm better than generic ones is
currently known to attack the discrete logarithmproblemonmostabelian varieties of dimen-
sion one and two. Before formally de ning abelian varieties, we brie y give loose statements
highlighting their applicability to cryptography.

Abelian vari ies are obje s endowed with two compatible stru ures:
– a geom ric stru ure: it is the zero locus of multivariate polynomials over a eld k;
– a group stru ure: it admits a group law given by rational fun ions.

When the de ning polynomials have certain forms, the group law can be evaluated efficiently
using short rational fun ions. is can be done for all varieties of dimension one and two
(the dimension is roughly the number of variables minus the number of polynomials).

Cryptography uses nite elds k and such forms, allowing fast arithmetic; for instance,
B and L () suggested de ningG as the set of points (x, y) � k2 verifying

x2 + y2 = 1+ dx2y2

for some non-square parameter d � k, endowed with the addition law de ned by

(x, y) + (x′, y′) =
�

xy′ + x′y
1+ dxx′yy′

,
yy′− xx′

1− dxx′yy′

�
.

Since the number of points of an abelian variety of dimension g de ned over k (that is,
the order of the underlying group) is roughly (#k)g and otherwise behaves quite randomly, a
prime-order one can be sought by drawing varieties at randomwhile their orders are compos-
ite. Alternatively, we will later discuss the theory of complex multiplication which provides
means to generate abelian varieties with a prescribed order.

S A

We stated that attacks on the discrete logarithm problem of most elliptic curves are not
known to be faster than generic ones. To conclude this chapter, we give an exhaustive list
of classes of abelian varieties for which this does not hold, so remaining ones can a priori
be considered secure. Details on these attacks can be found in A, C, D,
F, L, N, and V ().



   

Index-calculus with sub ace as fa or base. Gröbner basis algorithms can decompose
points of abelian varieties into sums of points in certain sub aces (such as having certain
coordinates equal to zero, or de ned over some stri sub eld); this enables index-calculus
attacks effe ive on varieties of dimension g > 2 or de ned over non-prime base elds.

Redu ion to nite elds via pairings. e Weil pairing maps pairs of points of order ℓ
from an abelian variety to the multiplicative group of an extension of degree e(ℓ) of the base
eld k. It tran orts the discrete logarithmproblem, so the value of e(ℓ)mustbe large enough

to prevent attacks in the extension eld from being feasible.

Li to chara eristic zero. Certain abelian varieties with ecial properties (such as the
infamous anomalo curves, whose cardinality is that of their base eld) can be li ed to p-
adic elds, from where discrete logarithm problems can be transferred toZ/p.

Isogenies. Isogenies are morphisms between abelian varieties; they can tran ort the dis-
crete logarithm from a varietyA to about ℓg other varieties in time ℓO(g2) for most primes ℓ;
if any of those varieties have one of the above weaknesses, then so doesA .

Sinceno attack faster thangeneric algorithms is known to affe randomly chosen, prime-
order abelian varieties of dimension one or twode ned over nite eldswith p or 2p elements
where p is a prime, we conclude that these are currently the best choice for public-key cryp-
tography in a cryptosystem of ElGamal type.
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belian ari ies

Having established the important role of abelian varieties in modern cryptography, we
turn to formally de ning their properties from a mathematical standpoint.

Wewill present this theory concisely, in a conceptually elementary way which we believe
highlights its effe iveness. For details, we refer toA,C,D, F, L,
N, and V (), S (), C and S
(), S (), M (), and M (), in increasing levels of
abstra ion.

. General eory

A V

Fix a perfe eld k, referred to as the b e eld, and a sufficiently large integer n =
DIMN MAX. For any ideal I of the ring k[x] = k[x1,… ,xn] of polynomials in n variables
with coefficients in k, de ne the affine vari yVI as consisting, over any extension eld K/k,
of the set VI(K) of common zeroes of I in Kn called points of the variety. H ()
proved the famous Nullstellensatz:

eorem ... When k algebraica y closed, e largest ideal of k[x] van hing on VI(k)
e radical ideal

p
I formed by polynomials of which a power lies in I.

is puts in bije ion radical ideals with affine varieties over algebraically closed elds;
computationally, one might therefore use generating sets of

p
I to representVI.

We nd it amusingly convenient to x an integer DIMN MAX large enough so that all varieties we consider are
embedded in the proje ive ace with that large a dimension.





  

Such varieties are endowed with the Zar ki topology whose closed sets are subvarieties.
Via the Nullstellensatz, the topological notion of irreducibility corre onds to its algebraic
counterpart. To avoid unnecessary technical contortions, we shall exclusively consider abso-
lutely irreducible vari ies, that is, varieties irreducible over an algebraic closure.

Affine varieties lie in the affine aceA(K) = V0(K), also written asAn(K) when dimen-
sion n needs to be made explicit. In many contexts, it instead proves advantageous to:

– work with proje ive varieties;
– use Galois a ion to de ne obje s over extension elds.

Over an algebraically closed eld K, de ne the proje ive ace P(K) (of dimension n− 1) as
the set of lines passing through the origin ofA(K), and over any eld K as the xed subset

P(K) = P(K)Gal(K/K)

under its absolute Galois group. Pragmatically, the proje ive ace P(K) can be seen as
formed by equivalence classes of collinear (non-zero) ve ors, which gives the proje ion

x �A(K)∖ {0} 7¹→ ¦λx : λ �K×© � P(K)
Working in affine coordin esmeans representing proje ive points by distinguished elements
of A (typically, by enforcing x0 = 1; this covers almost all of P but requires inversions to
compute the distinguished element); on the other hand, working in proje ive coordin es
means representing proje ive points as non-unique n-tuples.

Similarly, proje ive vari ies are proje ions of affine varieties invariant under coordinate-
wise scalar multiplication: if I is a homogeneo ideal of k[x], that is, generated by sums of
monomials of the same degree, the proje ive variety VI ⊂ P consists of equivalence classes
(under scalar multiplication) of the affine variety VI ⊂ A endowed with the (quotient)
Zariski topology.

From now on, we will exclusively consider absolutely irreducible open subsets of projec-
tive varieties, and refer to them simply as vari ies (they are known to part of the literature
as qu iproje ive vari ies); we will always implicitly assume that they are de ned over alge-
braically closed elds, but say that they are de ned over smaller elds when invariant under
their absolute Galois group.

M

Consistent with the topology, morph ms are algebraic maps. For the affine ace, they
form the ring Hom(A,A) of n-tuples of n-variate polynomials. If V andW are two affine
varieties, Hom(V ,W ) consists of those morphisms of Hom(A,A) mappingV toW .
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Morphisms of proje ive varieties can be seen either conceptually, looking down omA,
as equivalence classes of tuples P of polynomials of k[x] of homogeneous polynomials with
the same degree for the relation P ~ P′⇔ {PiP′j − PjP

′
i} ⊂ I, or visually, looking up om

eci c hyperplanes ofA, as compatible colle ions of affine morphisms.
Two cases are of particular interest:

– the coordin e ring Hom(VI,K) AK[x]/I, with addition and scalar multiplication.
– the endomorph mmonoidHom(V ,V ) = End(V ), endowedwith composition; later,

when we giveV a group law, it will become a ring.

R ional maps are de ned similarly to above from tuples of rational fun ions. Most im-
portant are rational maps from a varietyV to a eld of de nition K, which form its fun ion
eld, denoted K(V ). For proje ive varieties V = VI, it can be explicitly de ned as the set
of fra ions P/Q of homogeneous polynomials in K[x] of the same degree, with Q � I, up
to the relation P/Q~ P′/Q′⇔ PQ′−P′Q � I.

Various properties can be read off dire ly from fun ion elds, such as:

Proposition ... e Kru dimension of an ideal equal to e transcendence degree of e
fun ion eld soci ed to its vari y; it ca ed e dimension of e vari y.

Algebraic extensions have ner indicators: a morphism φ � Hom(V ,W ) induces (by
composition on the right) an embedding φ⋆ : K(W )→ K(V ); the degree of φ is the dimen-
sion [K(V ) : φ⋆K(W )] which is nite when φ(V ) has the same dimension asW .

A G

Combining algebraic varieties with group stru ures yields algebraic groups:

De nition ... An algebraic group an (absolutely irreducible) non-empty algebraic vari-
y endowedwi a group law (noted additively) for which emap (x, y) 7→ x−y amorph m.

By non-empty, we mean that it must admit one rational point over its base eld, so that
it contains the neutral element for the group law. An important property of algebraic groups
is given by the following algebraic equivalent to the analytic notion of differentiability.

De nition ... An irreducible algebraic vari y V nonsingular if e quotient of {f �
k[V ] : f(P) = 0} by its square h e same dimension (namely g = dimV ) for a P � V (k).

Algebraic groups are nonsingular varieties; indeed, translation maps τP : Q 7→ P + Q
induce isomorphisms of tangent aces, whose dimensions are that of the quotients above.



  

One simply de nes morph ms of algebraic groups as morphisms of algebraic varieties
preserving the group law, and subgroups of algebraic groups as subgroups that are closed.
From now on, we shall work with categories as a whole: when we consider algebraic groups,
morphisms and subgroups will be implicitly understood to be of algebraic groups (not just of
algebraic varieties).

e proposition below argues that this behaves as expe ed.

Proposition ... L H be an (algebraic) normal subgroup of an algebraic group G . e
quotientG/H h a unique stru ure of algebraic group such :

– e proje ion mapG →G/H a morph m;
– a morph ms omG wi kernel con iningH fa or roughG/H .

For instance, the group GLn(K) of invertible n-by-nmatrices over K is a quasiproje ive
variety, a closed subvariety of which is SLn(K) comprising of matrices with determinant one.
In fa , all affine algebraic groups are isomorphic to subgroups of GLn(K), and a result of
C () states that the remaining ones are of the type we shall next discuss.

Proposition ... Every algebraic groupG h a unique normal subgroupH omorphic to
an affine vari y such G/H proje ive and irreducible.

A V

De nition ... Abelian varieties are irreducible proje ive algebraic groups.

Most of the rich stru ure of abelian varieties stems from the proje iveness condition
(completeness, an algebraic equivalent to compa ness, could equivalently be required).

Proposition ... Any algebraic map om an abelian vari y to ano er a morph m (of
algebraic groups) composed wi a transl ion.

In other words, morphisms of algebraic varieties are essentially morphisms of abelian
varieties; this means that abelian varieties are entirely chara erized by their geometry. is
is a crucial fa with the notable consequence that abelian vari ies are commu tive groups;
indeed, since the algebraic map x 7→ −x xes the neutral element, it is a morphism, which
implies the commutativity.

Since abelian varieties A are commutative, they admit quotients by any closed sub-
groupsH . Wewill later be interested in the case of nite subgroupsH , which are evidently
closed: in that case, the dimension of the quotientA /H is the same as that of the variety
A , and as we will see later, many other invariants are preserved.
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As a further restri ion toprevent unnecessary contortions, wehenceforth assume, unless
otherwise stated, that all abelian varieties we consider are absolutely simple, that is, do not
contain any proper nontrivial abelian subvariety over an algebraic closure.

. Pra ical Settings

Let us now focus on two types of base eld: nite elds, over which abelian varieties
admit efficient representations, and the complex numbers, over which their relationship to
tori yields a rich theory, part of which descends to nite elds.

F F

LetA be an abelian variety de ned over a nite eld k = Fq; its z a fun ion

ZA (t) = exp
∞∑
n=1

#A �
Fqn
� tn
n

encodes its number of points, on whichW () proved the following.

eorem ... e z a fun ion of a dimension-g abelian vari yA of e form

ZA (t) =
2g∏
n=0

Pn(t)
(−1)n+1

for some polynomials Pn �Z[t] whose complex zeroes have absolute value q−n/2.
is constrains cardinalities of abelian varieties. Tobetter see this, consider theFrobeni

endomorph m π, which a s over any eld extension K/Fq by raising coordinates of points
ofA (K) to the qth power; it xes justA (Fq), so we have #A (Fq) = deg(1− π).

Any endomorphism φ of an abelian variety of dimension g has a monic chara eristic
polynomial P � Z[t] of degree 2g such that degQ(φ) = Res(P,Q) for all polynomials Q �
Z[t]. For the particular Frobenius endomorphism, denoting by χπ its chara eristic polyno-
mial, we obtain

#A (Fqn) = Resu
�
χπ(u),u

n− 1
�

which makes computing χπ equivalent to counting points onA over g distin eld exten-
sions of the base eld. Transcribing the theorem above to χπ yields the following.

Corollary ... e complex roots of χπ a have absolute valuepq, and e polynomialP2g(t)
in e z a fun ion

∏�
1− αt

�
where α ranges over produ s of 2g d tin such roots.



  

Generalizing an algorithm of S (), P () proved that for any xed
dimension g all the above can be computed in polynomial time in the size of the base eld.

eorem ... e z a fun ion of an abelian vari y de ned over Fq can be computed in
polynomial time in log(q)where e implied exponent depends on e dimension of e proje ive
ace where it embedded, and on e degrees of its de ning equ ions and group law equ ions.

is result is mostly of theoretical interest. Improvements on the algorithm of S
() by A and E have made it possible to count points on abelian varieties of
dimension g = 1 far beyond cryptographic range; for g = 2, the pra icality of point counting
methods on varieties of cryptographic size was only recently demonstrated by G and
S () who used an extension of the algorithm of S ().

Fromnowon, we shall regard the dimension g as being xed in complexity statements, so
asymptotic analyses focus on behavior with re e to the base eld; this is partly motivated
by the fa that only g = 1 and g = 2 are cases of cryptographic interest.

C N

Wehave noted that abelian varieties are nonsingular. OverC, abelian varieties are there-
fore conne ed compa Lie groups, which are well-understood obje s; such a varietyA
has the analytic stru ure of a complex torus: since the exponential map folds its tangent
ace ontoA , there is an isomorphism of Lie groupsA ACg/Λwhere Λ = ker(expA ) is a

l tice ofCg, that is, a discrete subgroup of full rank.
Similarly to the algebraic case, holomorphic maps between complex tori are just group

morphisms composed by translations. Holomorphic morphisms φ from a complex torus
T = Cg/Λ to another T′ = Cg′/Λ′ are induced by C-linear maps, denoted φ as well, from
Cg to Cg′ satisfying φ(Λ) ⊂ Λ′. Hence, as Z-module, Hom(T,T′) has rank at most 4gg′;
this implies that End(A ) is a torsion-freeZ-algebra of dimension at most (2g)2.

Even if complex abelian varieties have the analytic stru ure of tori, conversely, not all
complex tori corre ond to abelian varieties, although those that do are precisely known:

Proposition ... De ne e Siegel upper half- aceHg e s of g-by-g symm ricm ri-
ces wi positive de nite imaginary part. Complex toriCg/Λ corre onding to abelian vari ies
are exa ly ose whose l ticeΛ can be put under e formZg +ΩZg for some m rixΩ �Hg.

P

Many results on abelian varieties over nite elds exploit redu ion from chara eristic
zero elds k, that is, consider varieties arising through maps k→ k/p for prime ideals p of k.
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For instance, the boundofH ()whichstates that one-dimensional abelian varieties
A de ned over Fq satisfy ���q+1− #A (Fq)

��� B 2
pq

can be extended, for varieties arising as redu ions from chara eristic zero, into a precise
description of the distribution of cardinalities: the Sato–Tate conje ure. Note that recent
work of T () comes close to proving it.

Conje ure ... L A be a non-empty abelian vari y of dimension one de ned over e
r ionals wi End(A ) AZ. e ymptotic d tribution, e prime p goes to in nity, of

arccos

 
p+1− #A(Fp)

2pp
!

uniform on [0;π] where #A (Fp) denotes e number of points of e redu ion ofA p.

When g > 1, abelian varieties have in nite automorphism groups over algebraically
closed elds. For more rigidity, we bundle them with a proje ive embedding or, rather,
the following (simpler) analytic analog.

De nition ... L A A Cg/Λ be a complex tor . A polarization ofA a positive
de nite Hermitian formP onCg s fyingP (Λ,Λ)⊂Z. It principal if its d erminant
in ertible, or equivalently if ere no x �Λ s fyingP (Λ,x)⊂Z.

Principa y polarized abelian vari ies are pairs (A ,P )whosemorphismsφ : (A ,P )→
(A ′,P ′) are required to preserve polarizations in the sense that φ⋆P ′ = λP for some pos-
itive λ �Q. W () showed that this has the intended effe :

Proposition ... Polarized abelian vari ies have a nite automorph m group.

For instance, on the torus Cg/(Zg +ΩZg) for Ω � Hg, there is a natural polarization
P (u,v) = E(iu,v) + iE(u,v) where the Riemann form E is expressed, on the block basis
(ei)(Ωei), by the block matrix �

0 Id
− Id 0

�
Proposition ... Twom ricesΩ andΩ′ of e Siegel upper half- aceHg yield omorphic
principa y polarized abelian vari ies if and only if ey are conjug e under e a ion�

A B
C D

� � Sp2g(Z) : Ω 7¹→ �AΩ+B
��

CΩ+D
�−1 .



  

Polarizations are needed in a ual computations, as efficient arithmetic (via theta func-
tions or Jacobian varieties) relies on them. Worse, it is nontrivial to determine whether the
varieties corre onding to two theta coordinates are isomorphic, disregarding polarizations.

Before moving on, we emphasize once more that, in dimension one, all varieties admit a
unique principal polarization— so they can hopefully be forgotten altogether.

J V

eorem ... Up to omorph m, ere a unique abelian vari y rough which anymor-
ph m om a given algebraic vari y V to an abelian vari y fa ors. It e Albanese variety
ofV .

General Albanese varieties are hardly pra ical: they have no effe ive group law, and are
not naturally endowedwith a principal polarization, so there is no simplemanner to identify
them such as invariants (as we will see below). Cryptography is only concerned with the
following subclass, on which our exposition shall now focus.

Proposition ... Abelian vari ies of dimension one or two are Jacobian vari ies of hyper-
e iptic curves.

Before de ning hyperelliptic curves, let us brie y discuss Jacobian vari ies: these are
just Albanese varieties of algebraic curves, that is, one-dimensional algebraic varieties. e
Jacobian variety Jac(C ) of a curve C has an explicit group stru ure: denote by Div0 the
submodule of degree-zero divisors of the free Z-module generated by points of C , that is,
formal sums of points whose coefficients add up to zero; it contains Princ, the set of sums of
zeroes and poles (counted with multiplicities) of non-zero elements of the fun ion eld.

Proposition ... Jac(C ) h e group stru ure of e quotientDiv0 /Princ.

We can say much more for hyperelliptic curves; for this, we assume chark ≠ 2.

De nition ... CurvesC of e form y2 = f(x), for some square ee polynomial f of degree
2g+1 or 2g+2, are ca ed hyperelliptic, and g known e genus ofC .

By e eorem of R () and R (), g also e dimension of Jac(C ).
In e c e g = 1, ey are known elliptic curves, and verify Jac(C ) AC .

When deg(f) is odd, there is a unique proje ive, non-affine point (with coordinate z =
0); this point in nity ∞ is o en used as a distinguished proje ive point. By R
() and R () each divisor class then has a unique reduced representative of the
form

∑
(Pi −∞) for at most g affine points Pi � C , none of which is conjugate to another

under the hypere iptic in olution (x, y) 7→ (x,−y).
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Assume, for simplicity, that the points Pi = (xi, yi) are distin . e divisor
∑

(Pi −∞)
can be represented by a pair of polynomials (u,v) satisfying

u(x) =
∏

(x− xi), v(xi) = yi.

It can be checked that the Pi lie onC by verifying that u|v2 − f. In this representation, the
group law is given by (assuming u0 and u1 have no common root)

(u0,v0) + (u1,v1) =
�
u0u1, (u

−1
2 mod v2)u2v1 + (u−11 mod u2)u1v2

�
.

To reduce the output to a unique representative, C () iterates the transformation

(u,v) 7→ (u′,v′) with u′ =
1

lc(f− v2)
f− v2

u
and v′ =−vmod u′

while deg(u) B g, where lc(·) denotes the leading coefficient. is gives Jac(C ) an efficient
group law, and an algebraic stru ure. Additionally, the image of the map (Pi) � C g−1 7¹→∑

(Pi−∞) is a subvariety of dimension g−1 that is the zero-locus of certain theta fun ions
which naturally endow the Jacobian variety with a principal polarizationP .

T () showed that this comprises all the information from the original curve:

eorem ... Up to omorph m, e polarized abelian vari y (JacC ,P ) d ermines
e curveC .

Moduli aces are varieties whose points represent isomorphism classes of a given type of
variety (we will soon discuss invariants); complementing the proposition above, we have:

e moduli dimension of genus-g hyperelliptic curves 2g− 1
” genus-g curves ” 3(g− 1), or 1 if g = 1
” abelian varieties of dimension g ” g(g+1)/2

e moduli ace dimension is the same for Jacobian varieties and their underlying curves.
For g = 3, abelian varieties are Jacobian varieties, but not all of hyperelliptic curves.

. Pairings

T S

e center of the endomorphism ring End(A ) of an abelian varietyA of dimension g
always contains a subring isomorphic toZ formed by scalar multiplic ion maps:

[n] : P �A 7¹→ nP = P+ · · ·+P︸ ︷︷ ︸
n times



  

for every integer n. Over an algebraic closure, the kernel of [n] is the fu n-torsion subgroup
A [n]; its stru ure is well understood:

eorem ... e degree of [n] n2g. It separable when n coprime to p = chark; en
A [n] A (Z/n)2g. When n a power of p, enA [n] AZ/nr where r B g ca ed e p-rank
ofA .

e generic case is that of ordinary abelian varieties which have p-rank g: the moduli
dimension of non-ordinary varieties is stri ly smaller. Unless explicitly stated, all abelian
varieties will now be assumed ordinary (this is crucial for the next chapter).

We will later compute ℓ-torsion subgroups (for primes ℓ) of abelian varietiesA de ned
over nite eldsFq. e embedding degree eA (ℓ), which is the extension degree of the small-
est eld over which the points ofA [ℓ] are de ned, is the primary cost fa or of this process.

If χ is the chara eristic polynomial of the Frobenius endomorphism π ofA , the mor-
phism χ(π) obviously vanishes onA [ℓ]; as this only depends on the class of χ in (Z/ℓ)[x],
the embedding degree e(ℓ) must divide the multiplicative order of x � (Z/ℓ)[x]/(χ). Conse-
quently, it is bounded by ℓ2g.

When points can be drawn uniformly at random fromA (ke(ℓ)), a basis forA [ℓ] can be
found by taking random points, multiplying them by the cofa or of ℓ∞ in #A (ke(ℓ)), and
iteratively applying [ℓ] until a point of ℓ-torsion is found, possibly li ing points already found
along their preimage under [ℓ]. e li ing process can either use simple baby-step giant-step
computations inA [ℓ], or faster discrete logarithm methods in ke(ℓ) via the pairing. For a
xed g, the whole method uses polynomially many operations in ℓ; it will be described in

detail in the second half of this thesis.

G P

De nition ... A pairing a non-degener e bilinear mapΨ : G2→H, whereG andH
are abelian groups.

Stri ly eaking, pairings can be de ned on modules over any ring; but from a crypto-
graphic standpoint, nothing of value is lost by restri ing toZ-modules. On the other hand,
cryptographic use requires additional properties:

 : Given (x, y) �G2, the pairing Ψ(x, y) is easily evaluated.
 : Given z �H, a preimage (x, y) �Ψ−1(z) is hard to nd.

ese terms could be given a rigorous meaning by considering a sequence of pairings Ψi :
G2

i → Hi, and requesting that there exists an algorithm for evaluating Ψi in polynomial
time in log(#Gi) and that no algorithm nds preimages of Ψi in subexponential time on a
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positive fra ion of Hi; however, we prefer to use the simpler and down-to-earth notion of
computational infeasibility.

Similarly to the discrete logarithm problem, the pairing inversion problem has many
variants, such as bilinear analogs to the computational and decisional Diffie–Hellman prob-
lems, or inversion problems where one of the parameters is xed, not all of which are stri ly
equivalent to the pairing inversion problem itself. We refer toG,H , andV-
 () for a discussion of these problems.

Out of all known effe ive pairings, only those that arise from abelian varieties satisfy the
conditions above. In fa , the problem of pairing in ersion, that is, of inverting the map Ψ,
appears to be extremely difficult for such pairings. eir cryptographic use therefore involves
relying on a new hypothesis (alongside the hardness of the discrete logarithm problem) but
they provide elliptic and hyperelliptic cryptography with a unique stru ure, which has led
to the development of many novel features.

E P

Instru ional pairing examples include scalar produ s of ve or aces, and, if (R,+,×)
is a ring, the multiplication map from (R,+)2 to (R,×). A more interesting example is�

xy,x′y′
� � �(Z/n)2g�2 7¹→ exp

�
2iπ
n
�bxy′−byx′��

where xy denotes the concatenation of the row ve ors x, y � (Z/n)g, andbx denotes the trans-
pose of x. is a ually is the general form of theWeil pairing expressed on a symple ic basis
of the n-torsion subgroup of a complex torus.

None is suitable for cryptographic use, as they are typically easy to invert; currently, the
only known cryptographic pairings arise from abelian varieties:

LetA be the Jacobian variety Jac(C ) of a curveC of genus g, which we further assume
to be a hyperelliptic curve de ned over a nite eld. Recall that the full n-torsion subgroup
A [n] is isomorphic to (Z/n)2g when n is coprime to the ambient chara eristic. For cryp-
tographic reasons we choose n to be prime, and de ne the map

ΨWeil :
¨ A [n] × cA [n] ¹→ μn ⊂ k

×

(P,Q) 7¹→ fP(Q)/fQ(P)

where μn is the group of nth roots of unity, and fP and fQ are fun ions of k(A ) with disjoint
support whose sum of zeroes and poles are the principal divisors nP and nQ, re e ively. Its
evaluation at a divisor Q =

∑
Qi is explicitly

∏
f(Qi).

eorem ... ΨWeil a Galo -in ariant ant ymm ric pairing ca ed eWeil pairing.



  

Most of the proof relies on the reciprocity ofW ().

WhenA is principally polarized, the polarization gives an isomorphismA A
cA , and

the pairing can therefore be de ned onA [n] ×A [n].

In the case of elliptic curves, points P of the variety are of the form R−∞ where R is a
point of the curve or the point at in nity itself. M () noted that the fun ion fi
whose sum of zeroes is the principal divisor iR−[i]R−(i−1)∞ can be computed iteratively
by setting fi+j = fi · fj · u/v, where u is the line containing [i]R and [j]R (it vanishes at [i]R,
[j]R, and −[i + j]R, and has a pole of order 3 at ∞) and v the vertical line passing through
[i+ j]R (it vanishes at [i+ j]R and−[i+ j]R, and has a pole of order 2 at ∞).

is yields an algorithm for evaluating theWeil pairing of elliptic curves which can also
be extended to Jacobian varieties of hyperelliptic curves following Cantor’s algorithm for
evaluating the group law. Pairings of general abelian varietieswere recently shownbyL
and R () to be effe ively computable as well.

C A

Before novel cryptographic primitives exploited their stru ure, pairings were mainly
used as a cryptanalysis tool. Indeed, if P and Q are two points in a subgroup of prime or-
der ℓ of a varietyA , the bilinearity of pairings implies

Ψ(P,Q) = Ψ(P,P)logPQ

which shows that logPQ is also the discrete logarithm problem of Ψ(P,Q) in base Ψ(P,P)
in an extension K/k of degree e(ℓ). Since discrete logarithm problems are much easier over
nite elds, e(ℓ) must be big enough to compensate for this weakness.

e last ten years have, on the other hand, seen pairings enabling innovative crypto-
graphic constru ions, so that the extra stru ure they give to abelian varieties is now seen
as a feature. To exploit them, the value of e(ℓ) is sele ed large enough to make attacks im-
pra icable on the discrete logarithm of the eld K, but still low enough so as to permit the
efficient evaluation of the pairing.

As an example of the new features enabled by abelian varieties and their pairings, we can
for instance recall the one-round tripartite Diffie–Hellman key-exchange of J ()
that we presented in the previous chapter.
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. Isogenies

A I

De nition ... An isogeny a surje ive morph m of abelian vari ies φ :A →B wi
nite kernel. It separable if e corre onding fun ion eld extension k(A )/φ⋆(k(B)) .

When φ :A →B is an isogeny, the abelian varietiesA andB are said to be ogeno ;
this is an equivalence relation since there then exists a dual ogeny φ :B →A , of the same
degree n, which is simply the multiplication-by-nmap ofA fa ored through φ.

Adegφ 88

φ
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φ
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Proposition ... If H e kernel of a separable ogeny φ : A → B , en φ e
proje ion map under e omorph mB AA /H ; in particular, we have deg(φ) = #H .

e group stru ure ofH ca ed e type of φ.

From now on, the word “isogeny” should implicitly mean “separable isogeny;” this is the
case for all isogenies whose degree is coprime to the chara eristic of the base eld.

Since composition of isogenies corre onds to inclusion of subgroups, and the latter are
abelian, we deduce that all isogenies can be written as the composition of isogenies of prime
degree. In dimension g > 1, although there is currently no known method for computing
general isogenies of typeZ/ℓ where ℓ is a prime, there are algorithms for evaluating isogenies
of type (Z/ℓ)g which we call ℓ- ogenies.

Recall that we assume isogenies between principally polarized abelian varietiesA to
preserve polarizations. e induced polarization onA /H for a nite subgroupH is prin-
cipal if andonly ifH is amaximal isotropic subgroup for theWeil pairing; whenwe compute
isogenies from their kernel, we will rst start by enumerating all such subgroups.

H–T T

Over nite elds, there is a bije ion between isogeny classes of abelian varieties and their
zeta fun ions. We have already explained the relationship between the zeta fun ion of an
abelian variety and the chara eristic polynomial of its Frobenius endomorphism, and the
following description of isogeny classes is due to T ().

eorem ... Two vari ies are ogeno if and only if eir re e ive Frobeni endomor-
ph ms have e same chara er tic polynomial.



  

A monic polynomial with integer coefficients and 2g complex roots, each of absolute
valuepq, is called a q-Weil polynomial . Recall that this is the case of the chara eristic poly-
nomial of the Frobenius endomorphism. As a reciprocal to that statement, H ()
proved:

eorem ... Each q-Weil polynomial e chara er tic polynomial of e Frobeni en-
domorph m of a cer in simple ordinary abelian vari y of dimension g de ned over Fq.

T () presented these two theorems in a combined way, and this has become
known as Honda–Tate theory.

e next chapterwill be concernedwith an explicit formof this theorywhich aims at con-
stru ing explicit abelian varieties whose Frobenius endomorphisms have prescribed char-
a eristic polynomials. is enforces certain properties on the abelian variety, such as the
cardinality.

E I

For elliptic curves E , V () gave explicit formulas for computing an isogeny φ :
E → E ′ de ned by its kernel ker(φ)⊂ E : if x, y are coordinates in which an affine equation
for E is y2 = f(x), then there exist coordinates X,Y in which an equation for E ′ has the form
Y2 = g(X) and the isogeny can be written as

φ : P � E 7¹→� Xφ(P) =
∑

xP+Q− xQ
Yφ(P) =

∑
yP+Q− yQ

�
where the sums range over all points Q of ker(φ), with the convention that x∞ = y∞ = 0.

is relies heavily on properties of the Weierstrass coordinates for elliptic curves, and
a higher-dimensional analog was only found recently by L and R (), and
later made pra ical by C and R (); it relies on the stru ure of theta func-
tions, which we now brie y describe.

Geometric invariants identify isomorphism classes of abelian varieties. For instance, iso-
morphism classes of elliptic curves are identi ed, over an algebraic closure, by the canonical
j-in ariant. It is effe ive as j(E ) is a rational fun ion in the coefficients of a Weierstrass
equation for E , and conversely the coefficients of such an equation are rational fun ions in
j(E ).

In arbitrary dimension, a system of invariants for principally polarized abelian varieties
is given by a constants, which not only identify the isomorphism class of a variety but also
part of its torsion. eta constants are the constant terms of a fun ions which yields a
convenient coordin e system for points on the variety it identi es.
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In the particular case of abelian varieties of dimension g < 4, which are all, up to iso-
morphism, Jacobian varieties of algebraic curves, invariants can be expressed, via Torelli’s
theorem, on the curves themselves, as fun ions of the coefficients of their equations. For
g = 2, a popular set of invariants are the Ig a in ariants, which consists of 10 coordinates
(this bears some redundancy since the dimension of the moduli ace is 3); they can be effi-
ciently computed from the equation of a curve, but conversely, to retrieve such an equation
from the invariants themselves, a eci c method of M () is required.

e relationship between the invariants of a curve and the theta constants of its Jacobian
variety are given by formulas of T ().

LetA ACg/(Zg +ΩZg) be a complex torus with Ω �Hg. De ne the a fun ions

ΘAa,b : z �Cg 7¹→ ∑
(u+a)�Zg

exp iπ
�
1
nbuΩu+2bu(z+ b)

�
where a and b are ve ors ofQg andbu denotes the tran ose of u. I () proved:

eorem ... Fix an integer n > 2. e theta constants ΘAa,b(0) for a,b � { 1n ,… , nn}g
uniquely d ermine e omorph m cl s ofA a principa y polarized abelian vari y.

Details on implementing and pra ically computing isogenies between abelian varieties
of dimension two will be found in the last chapter.

M C

Some applications do not require to explicitly evaluate isogenies, that is, to effe ively
evaluate the map: it is sometimes sufficient to enumerate abelian varieties which are (ratio-
nally) ℓ-isogenous to a prescribed abelian varietyA , for a given prime ℓ, and there could
exist a faster way than enumerating all subgroups of type (Z/ℓ)g and then evaluating the
associated isogenies.

Ideally, this information could be encoded in polynomials via invariants I(A ) � kn: we
would have n polynomials Φi

ℓ(X1,… ,Xn,Y1,… ,Yn) for i � {1,… ,n} such that

A is ℓ-isogenous toB ⇐⇒


Φ1

ℓ (I1(A ),… , In(A ), I1(B),… , In(B)) = 0,
Φ2

ℓ (I1(A ),… , In(A ), I1(B),… , In(B)) = 0,
...

Φn
ℓ (I1(A ),… , In(A ), I1(B),… , In(B)) = 0,

For elliptic curves, this is achieved by the classicalmodular polynomialsΦℓ(X,Y). E
() computed them via the oating point method which consists in evaluating Φ over



  

the complex number with just enough precision so as to identify its integer coefficients. Re-
cently, B, L, and S () demonstrated the competitiveness of
a method based on the Chinese remainder theorem which exploits the stru ure of isogeny
volcanoes that we will study later.

e higher-dimensional case is not as straightforward: G () described an
analog constru ion for g = 2, and the computation of explicit polynomials was later done
byD () and improved by B and L ().However, the height of
the polynomials (Φi

ℓ) makes their use prohibitive; currently, state-of-the-art algorithms for
explicitly evaluating isogenies remain a faster alternative.

We note that this difference between elliptic curves and higher-dimensional abelian va-
rieties is the main reason why point counting algorithms are much faster for the former than
for the latter.
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omplex ultiplic ion

e theory of complexmultiplicationdescribes endomorphism rings of abelian varieties;
this thesis will investigate two of its applications, inverse of each other:

– constru ing abelian varieties equipped with efficiently computable pairings;

– computing the endomorphism ring of prescribed abelian varieties.

ere are many facets to complex multiplication theory; here, while trying to be some-
what general, we will focus on effe ive a e s in the case of dimension g = 1,2, which are of
primary interest to cryptography. For details, we refer to C () for g = 1, to S
() for g = 2, and otherwise to S (), C and S (),
andM ().

. Endomorphism Rings

A V  CM

Let us rst consider the endomorphism ring stru ure of abelian varieties; via the follow-
ing theorem of P andW (), it suffices to consider simple varieties.

eorem ... Every abelian vari y ogeno to a produ of powers of non- ogeno
simple ones.

e endomorphism ring of a perfe powerA m is naturally thematrix algebra of dimen-
sionm2 over the endomorphism ring ofA ; therefore, the endomorphism ring of a produ∏A mi

i of non-isogenous simple abelian varietiesAi is
∏

Matmi
(EndAi).

Since isogenies need not preserve endomorphism rings, the above does not completely
rule out the case of non-simple varieties. Nevertheless, wewill now assume thatA is a simple





  

abelian variety of dimension g. Its endomorphism ring End(A ) contains at least the scalar
multiplicationmaps, which form a subring isomorphic toZ. To better comprehend the ring
End(A ), rst consider the algebraQ⊗ End(A ): if it contains a eld K of degree 2g, the
varietyA is said to have complex multiplic ion by the number eld K or, more precisely, by
the order K∩End(A ). Over number elds, this is a rare situation; but over nite elds, all
ordinary abelian varieties have complex multiplication.

Recall that, over nite elds, the Frobenius endomorphism π of a dimension-g abelian
varietyA admits amonic chara eristic polynomial χφ of degree 2g, and that this polynomial
uniquely identi es the isogeny class ofA . T () further established the following,
of which a proof can be found inW andM ().

eorem... IfA a simple abelian vari y, e chara er tic polynomial of its Frobeni
endomorph mπ some powerme of itsminimal polynomial, whenceQ⊗End(A ) a div ion
algebra of dimension 2eg, and its centerK e eldQ(π) AQ[x]/(m(x)) of degree 2g/e.

e number eld K is known as the complex multiplic ion eld ofA . e stru ure of
such elds can easily be investigated since they are quotients ofQ[x] by q-Weil polynomials
χπ(x): under the embedding toQ⊗End(A ), the eld K is an extension by the polynomial
X2− (π+π)X+q of the totally real eld K+ =Q(π+π). erefore, complex multiplication
elds are totally imaginary quadratic extensions of totally real number elds K+ of degree g.

So far, we have not been too concerned about elds of de nition; we will continue not
to be, due to the following proposition.

Proposition ... Endomorph m rings of simple ordinary abelian vari ies de ned over
nite b e elds are unaffe ed by b e eld extensions.

C T  CM

Complexmultiplication also concerns complex tori, and due to their simpler stru ure it
yields a rich theory; many results concerning abelian varieties over nite elds are redu ions
of results on complex tori. For now, we assume that the base eld is k =C.

Let us rst x a particular embedding ι of the complex multiplication eld K in Q⊗
End(A ). e exponential map sendsA to a complex torusCg/Λ, and ι to an embedding
ι′ : K→ End(Cg). Using representation theory, one can prove that, up to isomorphisms of
Cg, the map ι′ is of the form

ιΦ :
¨

K ¹→ Cg
x 7¹→ �

φ(x)
�
φ�Φ
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for a certain set Φ of g distin embeddings of K inC, no two of which are complex conju-
gate of each other, so that all 2g embeddings are in Φ⊔Φ. is set Φ is called the complex
multiplic ion type of the abelian varietyA .

Isogenies tran ort the embedding ι and type Φ from one variety to the next; by the fol-
lowing result, found for instance as Proposition . of M (), xing one is equiva-
lent to xing the other.

Proposition ... ere a b e ion b ween e s of ogeny cl ses of simple ordinary
pairs (A , ι) and e s of omorph m cl ses of primitive types (K,Φ).

Wewill now consider abelian varietiesA endowedwith an embedding ι or, equivalently,
a complex multiplication type Φ.

Conversely, a complex torus with complex multiplication by a prescribed complex mul-
tiplication eld K and type Φ can be constru ed as follows. Let a be an integral ideal of K;
the g-tuple of embeddings Φmaps it to a certain lattice ofCg and wemay consider the com-
plex torus Cg/Φ(a). To obtain a polarization as a Riemann form E on it, take an algebraic
integer ξ that generates K/K+, whose imaginary part is totally positive, and whose square is
a totally negative element of K+, then de ne E by

EξΦ
�
Φ(x),Φ(y)

�
= tr

�
ξ · x · y

�
which takes integral values on Φ(a)2 and thus induces a polarization on the complex torus
Cg/Φ(a); it is obviously principal since ξ is invertible. Integral elements x of K can be seen
a ing as endomorphisms of the torus by

(zi) �Cg 7¹→ �ziφi(x)�
where an ordering on the embeddings φ ofΦhas been xed by indexing themby i � {1,… , g}.
Since distin orderings yield isomorphic complex tori, Φ can be simply thought of as a set.

Other transformations of the type yield isomorphic varieties as well. In the case (where
we assume to be) of simple varieties, we have:

eorem ... A principa y polarized complex tori wi complex multiplic ion by a ring
of integers OK ar e, via e constru ion abo e, om a triple (Φ,a, ξ).

Two triples (Φ,a, ξ) and (Φ′,a′, ξ′) yield omorphic polarized tori if and only if ere ex ts
an automorph m σ and an element γ ofK such Φ′ =Φσ, a′ = γa, and ξ′ = (γγ)−1ξ.



  

CMO

e complexmultiplication eldKembedded inQ⊗End(A ) is an important invariant;
however, it fails to capture the exa isomorphism type of End(A ), which is precisely what
the order O = K∩End(A ) does.

Generally- eaking, an order O in a number eld K is a lattice that is also a subring of
the ring of integers OK — the latter is therefore commonly called themaximal order. In our
context, there is also aminimal order due to the following result ofW ().

Proposition ... L K be e complex multiplic ion eld of some ordinary abelian va-
ri y de ned over a nite eld k wi Frobeni endomorph m π. e orders of K con ining
Z[π,π] are exa ly ose ar e endomorph m rings of abelian vari ies de ned over k
wi complex multiplic ion byK.

eVerschiebung endomorph m π can also be written as qπ−1, since eorem .. will
show that the degree of an endomorphism is the norm of the corre onding number eld
element.

Now consider an abelian varietyA de ned over a number eld k. If p is a discrete place
of k, its residue eld k/p is nite, andwemight obtain an abelian varietyAp over k/p, of the
same dimension asA , by pushingA forward through the quotient map k→ k/p; when
we do, we say thatA has good redu ion at the prime p. Most things independent from p
reduce nicely:

Proposition ... L A andB be two abelian vari ies of e samedimensionde ned over
a number eld wi good redu ion some d cr e place p. e n ural mapHom(A ,B)→
Hom(Ap,Bp) inje ive and preserves e degree of ogenies.

Specialized to an abelian varietyA =B with complex multiplication, this states that
redu ion leaves the complex multiplication eld unchanged and can only make the endo-
morphism ring larger.

When the redu ion φp of an isogeny φ � End(A ) is separable, that is, whenever its
degree is coprime to p, then the redu ion map ker(φ)→ ker(φp) is a bije ion.

N-O V

For completeness, we brie y address the case of non-ordinary abelian varietiesA over
a nite eld Fq; the chara eristic polynomial of the Frobenius endomorphism is then some
proper powerme with e > 1 of its minimal polynomial.

Contrary to the ordinary case, the endomorphism ring of non-ordinary abelian varieties
might be smaller over the base eld than it is over an algebraic closure.
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For an elliptic curve, not being ordinary coincideswith being supersingular, and alsowith
the chara eristic of the base eld dividing the integer π + π. en, all endomorphisms are
de ned over Fq if and only if q is a square and π = ±pq.

Over elds with square cardinalities, there are thus two isogeny classes of supersingular
curves with all endomorphisms de ned, corre onding to the two q-Weil numbers ±pq.
Over a quadratic extension, those two become isogenous, but another isogeny class appears.
Supersingular curveswith not all endomorphisms de ned can formup to threemore isogeny
classes. is has been rigorously studied byW (), and to conclude we sum-
marize his result concerning endomorphism rings of supersingular curves.

Proposition ... Endomorph m rings of supersingular e iptic curves are
– if a endomorph ms are de ned: e maximal orders;
– o erw e: e p-maximal orders con ining π;

in e qu ernionQ-algebra rami ed in nity and p ( e chara er tic of e b e eld).

. Orders and Ideals

For a moment, let us turn to topics of algebraic number theory with a computational
avor; they will later be put to use when we need to apply complex multiplication theory.

A O

Orders of a number eld K are lattices (that is, discrete subgroups of full rank) with an
induced ring stru ure; inclusion therefore yields a partial order on orders of K, where the
italicized word is meant in the set-theoretic sense. From now on, we consider orders of a
xed complexmultiplication eld K, and refer to them just as “orders”; they are contained in

the maximal orderM = OK, and we are particularly interested in those containing a certain
minimal orderm of the formZ[π,π]. Since K =Q(π), there are nitely many such orders.

is induces a nite l ticestru ure (again, in the in the set-theoretic sense) and we will
o en be eaking about orders located above or below fromothers, meaning re e ively that
they contain or are contained in others. is stru ure extends to ideals: assuming O ⊂ O ′
are two orders, we have natural maps

I(O ′) I(O )
a 7¹→ a∩O

bO ′ 7¹→ b

and while the latter is a right inverse to the former, the converse is not true in general.



  

A more satisfying setting arises when we restri to in ertible ideals of an order O , that
is, fra ional ideals a for which there exists another fra ional ideal b satisfying ab = O . All
non-zero fra ional ideals of the maximal order are invertible, but as we go down the lattice
of orders, fewer and fewer are. Tomeasure this notion of depth, we introduce the condu or,
which measures how far O is from its integral closureM.

De nition ... e condu or of an order O e ideal fO = {x �M : xM⊂O }.
e condu or gives a sufficient condition for invertibility: prime ideals that are coprime

to fO are invertible inO . Conversely, up to principal ideals, all invertible ideals are equivalent
to one coprime to the condu or. As a result, invertible ideals coprime to the condu or
always have a unique decomposition into invertible prime ideals.

I C G

Similarly to class groups of ring of integers, ideal class groups can be constru ed from
general orders. is constru ion resembles that of Jacobian varieties in terms of divisors, but
the resulting group differs in various subtle a e s.

De nition ... e Picard group of an order O , denoted by Pic(O ), e quotient group
I(O )/Princ(O ) of in ertible ideals by principal ideals; it nite and abelian.

e Picard group of an orderO with condu or f is related to that of the maximal order
M = OK via the exa sequence

1 ¹→O × ¹→M× ¹→ (M/f)×/(O /f)× ¹→ Pic(O ) ¹→ Pic(M) ¹→ 1

which shows that Picard groups grow roughly linearly in the norm of the condu or f; more
precisely, the sequence yields the following formula (which generalizes the well-known ex-
plicit formula for imaginary quadratic orders) for the cl s number:

#Pic(O ) = #Pic(M)

[M× : O ×]

#(M/f)×

#(O /f)×
e asymptotic growth of the class number of the maximal order h = #Pic(M) obeys the

following conje ure of S () proved by B ().

eorem ... For any sequence of number eldsK whose cl s number, regul or, and d -
criminant we re e ively denote by h, R, and Δ, we have:

logh+ logR

log
p|Δ| ¹→ 1

[K :Q]
log |Δ| ¹→ 0.
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Andwenote that, for the eldsKwe aremost interested in, namely quadratic and quartic
complex multiplication elds, the regulator is re e ively R = 1 and R =O(log |Δ|).

Picard groups are compatible with the lattice-of-orders stru ure:

Proposition ... L O ⊂ O ′ be two orders. e map a 7→ aO ′, for in ertible ideals a of
O coprime to fO , induces a surje ive morph m of Picard groups.

erefore, if some setB of ideals of the minimal orderm generates its Picard group, it
can be mapped into generating sets for each order abovem. We form the free abelian group
ZB, and let ΛO denote the l tice of rel ions of O , consisting of tuples (λ)B for which the
produ

∏
B(bO )λ is a principal ideal of O . is gives a description of the Picard group as

Pic(O ) AZB/ΛO
and when one order is contained in another, their lattices of relations are too.

CO

To list all possible endomorphism rings, that is, all orders containingm = Z[π,π], one
could simply focus on the lattice stru ure: subgroups of the quotient groupM/m can easily
be enumerated, and each yields a lattice that containsm; elementary techniques can then test
whether such a lattice is closed under multiplication.

is approach is inefficient asmost lattices are not orders, but also inadequate since there
might be exponentially many orders abovem. We can bound the condu or gap as follows:

Lemma ... e index [M :m] bounded om abo e by 2g(g−1)qg2/2, where q e norm
of π and 2g its degree.

Proof. Recall that [M :m] is the square root of disc(m)/disc(M). e discriminant of the
maximal orderM can be small so we simply bound that of the minimal orderm using

|disc(m)| = |disc(Z[π])|À�Z[π,π] :Z[π]�2 .
e numerator can be bounded by

�
2pq�2g(2g−1) since χπ is a q-Weil polynomial of degree 2g.

For the denominator, we have
�Z[π,π] :Z[π]� = q

g(g−1)
2 from which the result follows.

Instead of enumerating all orders, we will navigate the lattice of orders and locate the en-
domorphism ring using complex multiplication theory. e proposition below shows that
it suffices to go up or down by small powers of primes. Due to the lemma above, only poly-
nomially many descending steps in g and log(q) are needed to reachm fromM.



  

Proposition ... Consider two orders O ′ ⊂ O of rel ive index div ible by a prime ℓ.
ere ex ts an order O ′′ in b ween whose index in O in {ℓ, ℓ2,… , ℓ2g−1} where 2g = degK.

To prove this, let O ′′ be the order generated by ℓO and O ′: since ℓO has index ℓ2g in O
and both containZ, its index in O , and therefore also that of O ′′, must divide ℓ2g−1.

Consider now the problem of going down, that is, enumerating all orders contained in a
prescribed order O with index n (to go up the process would be entirely equivalent).

In discussionswith E, we devised a simplemethod to enumerate all orders contained
in a prescribed orderO with index n. e integer n should preferably be a small prime power
to limit the size of the output; this amounts to considering the lattice of orders locally at
this prime. When we only consider endomorphism rings of principally polarized abelian
varieties, we can further restri to those orders that are closed under complex conjugation.

Fix a Z-module basis (ωi) of O so that each sublattice is uniquely identi ed by a basis
(αj =

∑
aijωi) inHermite normal form, meaning that the integral matrix (aij) is upper trian-

gular, has non-zero coefficients on the diagonal, and satis es aij < aii for i ≠ j; seeChapter .
of C () for details. Such a sublattice is an order if it contains all produ s

αjαj′ =
∑
i,i′

aijai′j′ωiωi′ =
∑
k

∑
i,i′

aijai′j′m
ii′
k

︸ ︷︷ ︸
bjj
′
k (a)

ωk

where the ve ormii′ expresses ωiωi′ on the basis (ωk); this ve or and the polynomial bjj
′
k only

depend onO . erefore, a is an order if and only if, for all j and j′, the preimage of the ve or
bjj′ by the matrix a has integral coordinates; for sublattices of index det(a) = n, this gives:

Proposition ... A orders con ined inO wi index n corre ond to solutions of e poly-
nomial system (n · a)−1bjj′ = 0 mod n2gZ2g in e coefficients of e m rix a.

Unless there are 0 or Ω(n) such orders, this system is nonsingular and its solutions can
be listed by a Gröbner basis algorithm in time polynomial in logn albeit exponential in g.

C C G

Fix an order O and consider computing its Picard group; this requires a generating set
of ideals for Pic(O ), an efficient ideal multiplication algorithm, and a way of nding a dis-
tinguished representative of the class of a prescribed ideal, which we call reducing an ideal.
Under the generalized Riemann hypothesis (GRH), B () solved the rst problem:
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eorem ... Assume e GRH and l O be e ring of integers of a number eld of d -
criminantΔ. e cl s group Pic(O ) gener ed by prime ideals of norm most 12 log2 |Δ|.

Note that a less explicit, but more precise result of J, M, and V
(), which also assumes the GRH, implies that, for any ε > 0, the class group of any
order O is generated by prime ideals of norm less than O(log2+ε |Δ|), where Δ = disc(O ).

LetB be the set of prime ideals with norm less than some bound B, and de ne

σO :
� ZB ¹→ Pic(O )

n 7¹→ ∏
p�B pnp

By the results above, when B is big enough, the map σO is surje ive and therefore we have

Pic(O ) AZB/ΛO
where the lattice ΛO is the kernel of σO . Later, we will see how to compute the Picard group,
that is, nd a generating set of ve ors for ΛO .

When the order O lies in an imaginary quadratic eld, its ideals can be represented as
binary quadratic forms via the map

ax2 + bxy+ cy2 7¹→ aZ+ −b+
p
b2− 4ac
2

Z
where the right-hand side is a proper ideal ofO as soon as the integers a, b, and c are coprime
and satisfy b2−4ac = disc(O ). S () gave algorithms with qu i-linear run-
time (that is, linear up to logarithmic fa ors) in log |disc(O )| for performing on such forms
the operationswhich corre ond tomultiplying two ideals, and to reducing one into a canon-
ical representative of its class.

When O is an order of a general number eld K, no such nice stru ure exists and a
simpler approach must be used. Given a primitive element α, the eld K can be represented
asQ[x]/(χα(x)), and its elements as rational ve ors over the basis (1,x,x2,… ,xdegK−1). Ideals
a can then be expressed asZ-modules, of which a generating set of cardinality deg(K) can be
written as a matrix over a basis of the order to which they belong. As mentioned before, this
matrix can be put in Hermite normal form to uniquely identify ideals.

Since there is no canonical set of ideal representatives for classes of the Picard group, it
is difficult to identify ideal classes precisely. C, D  D, and O ()
demonstrated that this can nevertheless be done to some extent: thematrix that represents an
ideal a can be reduced via the so-called LLL algorithm of L, L, and L
(), and the resulting matrix represents an ideal of the same class, but which is smaller.
Such small ideals can be used as non-unique representatives of their class, and this permits
one to performmost computations, notwithstanding some overhead.



  

. Plain Complex Multiplication

We have seen that endomorphism rings of ordinary abelian varieties are isomorphic to
orders in number elds, and have then considered their ideals from a computational stand-
point. Let us now explain how these ideals can be seen as a ing as isogenies.

is a e of complex multiplication theory will be referred to as the plain a ion, as
opposed to the polarized a ion to be discussed later. is se ion, does not assume that iso-
genies preserve any polarization stru ure of abelian varieties, and borrows many results of
W ().

F F S

LetO be an order isomorphic to the endomorphism ring of a simple ordinary abelian va-
rietyA of dimension gde ned over a nite eldFq. We additionally consider an embedding
ι : K→Q⊗End(A ) of the number eld ofO ; its elements are then seen as endomorphisms
ofA . An isogeny φ sends the varietyA to the varietyB = φ(A ), and also maps an em-
bedding ι forA to an embedding forB given as φ(ι) = 1

degφφ ◦ ι ◦bφ where bφ denotes the
dual isogeny. In fa , we have:

Proposition ... If ι an embedding of K intoQ⊗ End(A ), a o er embeddings ι′are
of e form φ(ι) for some endomorph m φ ofA .

LetA be such an abelian variety endowed with an embedding ι ofO into its endomor-
phism ring, letabe an invertible ideal ofO , and consider the isogeny φa :A →A /ker(φa)
with kernel

ker
�
φa
�
=
∩
α�a

ker
�
ι(α)
�
.

For instance, if a is a principal ideal (α), then the kernel of φa is simply that of α; therefore, φa
is nothing but an endomorphism whose separable part coincides with that of α (recall that
the totally inseparable part of an isogeny is not chara erized by its kernel).

Now consider the composition of two such isogenies: letA be an abelian variety, a be
an invertible ideal ofO = ι−1(EndA ), and denote the corre onding isogeny by φa :A →B ; then, let b be an invertible element of φ(ι)−1(EndB), and denote the corre onding
isogeny by φb :B →C ; in that situation, the isogeny φb ◦ φa corre onds canonically to
φab :A →C . In simple terms, composing isogenies corre onds to multiplying ideals.

As a consequence, there is a well-de ned map

a � Pic(O ) :A �AVO (k) 7¹→ φa(A ) �AV(k)
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where AV(k) denotes the set of isomorphism classes of abelian varieties de ned over k, and
AVO (k) the subset of such classes with endomorphism ringO . Since the above is an isogeny,
the complex multiplication is unchanged and we haveQ⊗ End(A ) =Q⊗ End(φa(A ));
note that, for elliptic curves, End(φa(A )) is a ually always equal to End(A ) as Proposi-
tion .. will show, but in general we might only have EndA ⊂ End(φa(A )).

C E T

For elliptic curves, W () proved that the image of the map above is
a ually AVO (k), and that the a ion of Pic(O ) on AVO (k) this de nes is transitive, which
means that for any elliptic curve A with endomorphism ring O , the map a 7→ φa(A )
induces a bije ion between Pic(O ) and AVO (k). e eci c approach that he used then
enabled him to establish a similar result for (non-polarized) abelian varieties. Here, let us
describe a more standard way of seeing this on elliptic curves, using complex tori.

In the elliptic case, the use of complex tori to obtain results over nite elds greatly ex-
ploits the following li ing theorem of D ().

eorem ... L α be an endomorph m of an e iptic curveA de ned over a nite eld
Fp. ere ex ts an endomorph m β of some abelian vari yB de ned over a cer in number
eld which, modulo some prime p abo e p of good redu ion, reduces prec ely to α � End(A ).

In the case where End(A ) = Z[α], the varietyB of the above theorem hasZ[β] as en-
domorphism ring and redu ion induces an isomorphismEnd(B) A End(A ), sincewe saw
earlier that endomorphism rings of abelian varieties de ned over number elds are mapped
inje ively into that of their good redu ions at prime ideals. Endomorphism rings of ordi-
nary elliptic curves are always of the formZ[α], so in this case there always exist li s with the
same endomorphism ring.

Conversely, for the ordinary case, we need to reduce modulo primes totally lit in O :
Proposition ... L A be an e iptic curve wi endomorph m ring O de ned over a
number eld. Take an unrami ed prime p, and l p = p∩Z. en:

– if p lits compl ely in O , en e redu ionAp ordinary and de ned over Fp.
– if p inert in O , en e redu ionAp supersingular and de ned over Fp2 .

Now, over the complex numbers, an elliptic curve with endomorphism ring O always
corre onds to a complex torusC/bwhere b is a certain ideal ofO . e a ion of invertible
ideals a of O on AVO (C) can then be seen as

a :C/b �AVO (C) 7¹→C/(a−1b) �AVO (C).



  

is a ion is obviously transitive, and two ideals a and a′ a identically if and only if they
are homothetic, that is, if and only if they belong to the same class of Pic(O ). erefore, this
a ion fa ors through the Picard group into a faithful and transitive a ion of Pic(O ) on
AVO (C); modulo prime ideals p of norm p, it reduces to the a ion of Pic(O ) on AVO (Fp).

eorem ... L O be an imaginary quadr ic order. For e iptic curves de ned over a
nite eld k, e abo e de nes a fai ful and transitive a ion of Pic(O ) ontoAVO (k).

Wemust nally mention that this a ion can also be seen on in ariants of elliptic curves:
ifB �AVO (C), its invariant j(B) lies in the ring cl s eld ofO , which is an abelian exten-
sion of K =Q(O ) with Galois group Pic(O ). e a ion of Pic(O ) on AVO (C) is then that
of the Galois group via the Artin symbol.

G A V

e situation in higher dimension is far from being as nice as in the elliptic case. Certain
properties nevertheless hold as they should, such as the following one of G ().

eorem ... L A be a simple ordinary abelian vari y de ned over a nite eld; if a
an in ertible ideal of its endomorph m ring, e degree of e ogeny φa e norm of a.

e transitivity of the a ion of the Picard group, which would generalize the result on
elliptic curves above, has only been shown to hold in the case that the endomorphism ring
ofA is maximal by W (); to prove this, he rst argued that all invertible
ideals are, in his terminology, kernel ideals, which implies the following.

eorem ... L A be a simple ordinary abelian vari y de ned over a nite eld k, and
sume End(A ) a maximal order OK; en, for any in ertible ideal a of OK:

– e endomorph m ring of φa(A ) exa ly ofA .
– e induced a ion of Pic(OK) onAVOK(k) fai ful and transitive.

e number of isomorphism classes of simple ordinary abelian varieties with endomor-
phism ring some maximal order OK can thus be estimated using the conje ure of S
() proved by B (); as a dire consequence of Lemma .., we have

disc(Z[π,π]) < 22g(g−1)qg2

which gives, as g is xed and q goes to in nity, the asymptotic behavior

#AVOK(Fq) = #Pic(OK) < qg2/2+o(1).
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E A

In our application, we wish to use the above theory for maximal orders as well as non-
maximal ones. erefore, we rely on the following consequence of the results above, com-
bined with the observation that, if the norm of an invertible ideal a is coprime to ℓ, since it is
also the degree of the isogeny φa, then the index [End(φaA ) : End(A )] cannot be divisible
by ℓ. Note that we proved the contrapositive statement earlier.

Proposition ... L A be a simple ordinary abelian vari y de ned over a nite eld k,
l π be its Frobeni endomorph m, l K =Q(π), and l O ⊂K be its endomorph m ring.

e in ertible ideals ofO of norm coprime to e d criminant ofZ[π,π] a onAVO (k)
ogenies of degree eir norm, and de nes a fai ful a ion of Pic(O ) onAVO (k).
Tomake this proposition effe ive, weneed to compute the isogenyφa. Denote its degree

by ℓ; since ℓ = N(a), we can start by enumerating all subgroups of cardinality ℓ of the full
ℓ-torsion subgroupA [ℓ]. Recall than even when φa is rational, the points of its kernel need
not be individually, but they are colle ively invariant under the Galois a ion. Still, we need
a pra ical way of telling φa apart from other isogenies of degree ℓ.

e improvements of A and E to the elliptic curve point counting method
of S () exploit certain a e s of complex multiplication theory. In particular,
they give a means to determine which eci c isogeny of degree ℓ corre onds to φa. It was
also written as Stage  of the algorithm by G, H, and S ().

is result a ually holds for general abelian varieties, which follows elementarily from
the theory ofTatemodules (fromwhichmostof the results thatwestated above are derived);
we therefore state it in its full generality.

Proposition ... L A be a simple ordinary abelian vari y de ned over a nite eld,O
its endomorph m ring and π � O e element corre onding to its Frobeni endomorph m.

L a be an in ertible prime ideal of O , written ℓO + u(π)O , where ℓ its norm and u
an irreducible fa or modulo ℓ of e chara er tic polynomial χπ of e primitive element π.

Assume ℓ coprime to e d criminant ofZ[π,π].
en, e chara er tic polynomial of e Frobeni endomorph m a ing on ker(φa) u.

is proposition cannot be readily applied to non-prime ideals a, but we will explain
later how this issue can be dealt with.

. Polarized Complex Multiplication

In pra ical computations, abelian varieties are represented as Jacobian varieties of hy-
perelliptic curves or as theta-coordinates. Since both naturally work with principal polar-



  

izations, complex multiplication theory needs to be adapted to take this extra stru ure into
account. Most of this theory originates from S and T ().

As in the plain case, westart by considering complexmultiplication elds before focusing
on the eci c endomorphism ring order and the a ion of its ideals.

R F M

Recall that ifA is an ordinary abelian variety of dimension g, its complexmultiplication
eld K = Q⊗ End(A ) is a totally imaginary quadratic extension of a totally real number
eld K+ of degree g, and that a complex multiplic ion type on K is a set of embeddings of K

inC satisfying Φ⊔Φ=Hom(K,C) where the union is disjoint.
Here, there is a ually no need to involveC, or even the algebraic numbersQ, since the

image of any embedding of K is necessarily contained in its normal closure Kc. From now
on, we therefore consider complex multiplication types given as sets of embeddings of K to
its normal closure; this is equivalent and allows for a simpler exposition.

De nition ... L Φ be a type ofK. e re ex eld Kr e xed eld of�
σ �Gal�Kc,Q� : Φ = Φ ◦ σ	 ,

e automorph ms ofKc leavingΦ globa y in ariant. It admits a unique re ex type Φr which
e restri ion of automorph ms ofKc whose in erses yieldΦ when restri ed toK, ,�

φ �Aut�Kc� : φ|Kr �Φr	 = �φ−1 �Aut�Kc� : φ|K �Φ	 .
More generally, for any eld extension K′/K, the type {φ � Hom(K′,K′c) : φ|K � Φ} is

called the induced type by Φ on K′. Types Φ which are not induced from a stri ly smaller
sub eld are said to be primitive. Simple abelian varieties have primitive types, and in that
case, we canonically have Krr = K and Φrr =Φ.

De ne the type trace trΦ : x � K 7→ ∑
Φ φ(x); its image a ually generates the eld Kr

and this can be used as an equivalent de nition for the re ex eld; more importantly, de ne
the type norm

NΦ : x �K 7→∏
φ�Φ φ(x) �Kr

(it is elementary to verify that the images of both these maps are in Kr). ere is also a re ex
type trace trΦr and a re ex type normNΦr : Kr→K.

e latter is particularly important to us, as we will make great use of it via the map it
induces on Picard groups: if a is an ideal ofOKr , there is a unique ideal ofOK, which we write
NΦr(a), such that

NΦr(a)OKc =
∏
φ�Φ φ(a)OKc
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(see for instance Proposition  in Chapter II of S ()). By the above, the map
NΦr : I(OKr)→ I(OK) induces a morphism of Picard groups, which we also write similarly:

NΦr : Pic(OKr)→ Pic(OK)

T P C G  S

Fix a primitive type Φ of a complex multiplication eld K of degree 2g, and denote the
totally real sub eld of K by K+.

Recall that a triple (Φ,a, ξ) yields the principally polarized complex torusCg/Φ(a) with
the polarization Eξ

Φ; eorem .. explained that all tori arise in this way and gave neces-
sary and sufficient conditions for two triples to yield isomorphic polarized varieties.

Following Se ion  of S (), a group C(O ) can be constru ed so as to
naturally a on this set of triples representing isomorphism classes of principally polarized
abelian varieties:

. Let P be the group of pairs (a, ρ) where ρ � K+ is totally positive and a is a fra ional
ideal of O satisfying aa = ρO , endowed with component-wise multiplication.

. Let I be the subgroup formed by the (μO , μμ) for μ �K×.

. Let C(O ) be the quotient group P/I.
As a consequence to eorem .., we therefore have:

Corollary ... For O = OK, e group C(O ) a s fai fu y and transitively on e s of
omorph m cl ses of principa y polarized abelian vari ies having complex multiplic ion by
O wi typeΦ. In particular, ey have e same cardinality.

It might be easier to understand the group C(O ) as part of the exa sequence

U(K) ¹→U+(K+) ¹→ C(O ) ¹→ Pic(O ) ¹→ Pic+(O+)
where the implied maps are, re e ively, the norm of K/K+, the embedding ρ 7→ (O , ρ),
the proje ion (a, ρ) 7→ a, and the map a 7→ aa ∩ K+; also, U+(K+) denotes the totally
positive units of the totally real sub eld K+, and Pic

+(O+) denotes the quotient of the group
of fra ional ideals of O ∩K+ by those that admit a totally positive generator.

Intuitively, the class group Pic(O ) a s on the set of abelian varieties up to isomorphism,
as proven by W () for O = OK; the subgroup Pic+(O+) encodes the dif-
ferent ways an isogeny can alter polarizations, and the groupU+(K+)/NK/K+

(U(K)) corre-
onds to isomorphism classes of principal polarization.



  

For instance, in the case of dimension g = 2, when the totally-real sub eld K+ contains
a unit of norm−1, which exa ly means that its fundamental unit is not totally positive, the
quotientU+(K+)/NK/K+

(U(K)) is trivial so we have a one-to-one map:

C(O ) ¹→ ker
�
Pic(O )→ Pic+(O+)

�
Although the computation of the polarized class group C(O ) of Shimura is a much less

classical topic than that of Picard groups, it is not more difficult; for instance, we note that
similar groups have been studied from an algorithmic viewpoint by C, D  D,
and O ().

P A

ere is a particular subgroupof thepolarized class groupof Shimura formedby elements
arising asGalois a ions. Here, we give a simpli ed exposition of this general theory and refer
to Se ion  of S () for a more robust constru ion.

LetA be a principally polarized abelian variety de ned overC with complex multipli-
cation by the maximal order OK of a eld K with type Φ. In fa , the abelian varietyA can
be de ned over the Hilbert class eldHKr which is the maximal abelian unrami ed exten-
sion of the re ex eld, and in particular its in ariants lie in that eld; the a ion that we now
describe can be seen as that of the Galois group ofHKr via the Artin symbol.

eorem ... In ertible ideals of Kr a on polarized tori wi complex multiplic ion by
OK wi typeΦ via

r � I(Kr) :Cg/Φ(a),Eξ
Φ 7¹→Cg/Φ

�
NΦr(r)−1a

�
, E

NKr/Q(r)ξ
Φ ;

an ideal r a s trivia ywhen its re ex type norm idealNΦr(r) a principal ideal ofOK gener ed
by an in ertible element μ �K× which s es μμ = NKr/Q(r).

Recall that the set of principally polarized abelian varieties with endomorphism ringOK
is a ed upon faithfully and transitively by the polarized class group C(OK) of Shimura. e
isogenies that arise via the re ex type norm (by theorem above) therefore a as the subgroup
of C(OK) formed by the elements �

NΦ(r),NKr/Q(r)
�

where r ranges over ideals of OKr . We emphasize that other elements of C(OK) also a as
isogenies, but that they might not be rational.

For instance, in dimension two, if (a, ℓ) � C(OK), and ℓ totally lits as ppqq in K, then
the possible values for a are pq, pq, and their re e ive conjugates; in that case, ℓ also lits
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completely in Kr and the re ex type norm maps the prime fa ors of ℓOKr onto those four
elements of C with norm ℓ2. In other cases, elements of C(OK) of norm ℓ2 might not be in
the image of the re ex type norm.

R  F F

We brie y review how the a ion that we have just de ned tran orts to nite elds, in
the case of simple ordinary abelian varieties of dimension two. For details, we refer to the
work of G () and G and L ().

We rst consider a principally polarized abelian varietyAp de ned over a nite eld of
chara eristic p; given any embedding ιp ofOK into End(Ap), implying thatAp has complex
multiplication by OK, there exists an abelian varietyA de ned over a number eld and an
embedding ι : OK→ End(A ) which, at a certain prime, reduce toAp and ιp re e ively.

Conversely, ifA is a simple polarized abelian variety with complex multiplication by
the maximal order of some eld K, its invariants lie in the Hilbert class eldHKr which is
the maximal abelian unrami ed extension of the re ex eld. For almost all primes p of its
eld of de nition, the abelian varietyA has good redu ion modulo p.
Now, let pdenote the rational prime belowp, that is pZ = p∩Z; when p lits completely

in the complex multiplication eld K this redu ion is a simple ordinary abelian variety. De-
note byAp the redu ion ofA modulo p; due to the inje ive map End(A )→ End(Ap),
we know thatAp also has complex multiplication by OK. In that case, all elements of norm
ℓg of the polarized class group of Shimura arise from the re ex type norm, and they give all
isogenies of type (Z/ℓ)g.

ere is another litting case for pwhich can result in the redu ionAp being a simple
ordinary abelian varieties: that where p is inert in K+ but lits as qq in K and as rrr′ in Kr,
where r′ has norm p2. In that case, redu ionmodulo a prime above r or r also yield a simple
ordinary abelian variety. However, the redu ion ofA modulo r′ is a super ecial vari y,
that is, far from being ordinary.

IfA is a simple ordinary abelian variety of dimension g = 2 de ned over a nite eld
k of sufficiently large chara eristic, we will later exploit complex multiplication theory to
predi the stru ure of its isogeny graph from that of its polarized class group of Shimura,
or rather do the converse: predi the stru ure of the group C(O ) from that of the isogeny
graph. For this, we have seen that we can always use isogenies of type (Z/ℓ)2 for primes ℓ
which lit completely in the re ex eld Kr.

However, we observe that elements ofC(O ) of the form (a, ℓ), where ℓ is a prime, which
are not in the image of the re ex type norm, o en also a as rational isogenies of type (Z/ℓ)2,
and we make use of these as well. In certain cases, this approach can be fully rigorous by



  

solely exploiting the a ion of C(O ) under the type norm, or that of certain elements (q, ℓ)
for primes ℓ litting in K as qq. In other cases, this requires additional hypotheses, which
we will then ecify.
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airing- riendly ari ies

. Cryptographic Requirements

e use of pairings enables many cryptographic protocols; as we havementioned before,
cryptography-grade pairings, that is, pairings which can be evaluated efficiently and are hard
to invert, are only known to be de ned on abelian varieties.

Here, we rst review cryptographic requirements for pairing-based constru ions, and
then consider how abelian varieties satisfying these conditions can be generated.

G C

LetA be an abelian variety de ned over a nite eld Fq and containing a cyclic sub-
group of order r. e embedding degree e(r), also written ewhen there is no ambiguity on the
subgroup, is de ned as the smallest integer such that theWeil pairing

ΨWeil :A [r](Fqe) ×A [r](Fqe) ¹→ μr ⊂ F×qe
is non-degenerate; extending a result of B and K (), R-
 and S () proved that, if r does not divide q− 1 and the degree of the
polarization ofA is coprime to r, then e divides the order of qmodulo r.

Using this pairing for cryptographic purposes imposes the following:

. It must be computationally infeasible to solve discrete logarithm problems inA [r].

. Itmustbe computationally infeasible to solve discrete logarithmproblems in μr ⊂ F×qe .
. It must be pra ical to compute over the eld Fqe .
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e last condition ensures that the algorithm ofM () evaluates theWeil pair-
ing efficiently. Note that many constru ions do not dire ly use theWeil pairing but rather
variants of it that enable evaluation eedups by small fa ors; however, froma variety genera-
tion point of view, thismakes little difference: so long as eld operations inFqe can efficiently
be computed, pairings with embedding degree e can be evaluated with more or less effort.

Later, it will be convenient to allow r to be a prime times a small cofa or; this does not
invalidate the above: the security simply rests on the largest prime fa or of r.

ere are two big decisions to be made:

Binary or prime elds? Fields of chara eristic two (also known as binary elds) are suited
to efficient hardware implementations; on the other hand, so ware implementations
work equally well with prime elds.

Supersingular or ordinary varieties? Supersingular varieties are easy to generate and read-
ily have small embedding degrees; however, they are quite ecial and have an easy
decisional Diffie–Hellman problem.

We choose toworkwith ordinary varieties de ned over prime elds. Some authors argue
that prime powers with exponent greater than one have density zero amongst prime powers,
but here we justify this choice by its convenience and the fa that it avoids Weil-descent
attacks altogether. Although attra ive for the design of cryptographic protocol, the prop-
erties of supersingular curves can be seem unnecessarily ecial; they are mostly interesting
over elds of small chara eristic, and it is not so challenging to generate them.

To avoid wasting bits, we wish to balance the expe ed hardness the discrete logarithm
problem in the abelian varietyA (Fq) and in the group μr ⊂ F×qe as they are rendered equiv-
alent by the pairing. When q is a prime power, H () warned that μr might reside in
a stri sub eld of F×qe , leading to faster attacks on its discrete logarithm problem. However,
this problem does not arise when q is prime.

A

SupposeA is an ordinary abelian variety of dimension g de ned over a prime eld Fq
of which the discrete logarithm problem and pairing are considered for cryptographic use.
By the Pohlig–Hellman redu ion, it is sufficient to consider its largest prime subgroupH ;
we denote its order by r and its embedding degree by e. In order avoid attacks on high-genus
varieties, we furthermore assume that g = 1,2; this conveniently enables us to use the fast
arithmetic of Jacobian varieties of hyperelliptic curves.

To measure the cryptographic efficiency, x g and let q go to in nity: the complexity of
additions inA (Fq) is polynomial in logq; disregarding the pairing, the discrete logarithm
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problem inA (Fq) achieves an expe ed security of 1
2 log2 r bits. Hence, we introduce the

quantity

ρ =
g log2 q
log2 r

which, since #A (Fq) ~ qg, also indicates the proportion of bits used to represent points
ofA (Fq) that a ually contribute to the security of scheme: if ρ ≈ 1 then nearly all of the
variety is put to use; if ρ ≈ 2 then only half of the bits are needed to identify points ofH .

Recall the best-knownbounds on the complexity of solving discrete logarithmproblems:

. Discrete logarithm problems inA (Fq) can be solved in O
�
r1/2+o(1) logq

�
.

. Discrete logarithm problems in F×qe can be solved heuristically in Lc1/3
�
qe
�
.

To solve the rst problem, in general, no better algorithm than generic ones is known, for
which a lower bound of

p
r is proven; the other term in the complexity denotes the cost of

operations inA (Fq). Many variants of the number eld sieve can be used to solve the second
problem: the method of M () applies to prime elds, and that of J and
L () is particularly adapted to extension elds such as here.

In the most effe ive case that ρ ≈ 1, balancing the two complexities above requires

1

2
g logq log logq ≈ c

�
e logq

�1/3 �log e+ log logq
�2/3

which implies e ~
� g
2c

�3 � 1
3 logq

�2
log logq and shows that the embedding degree should

grow quadratically in the size of the base eld; this is another reason to avoid supersingular
varieties: since their embedding degrees are uniformly bounded as g is xed (see below), they
do not scale well to higher levels of security.

P

To sele the parameters q and e according to the level of security chosen (or equivalently
the desired date until when the cryptosystem should withstand attacks), the cost of attacks
on the discrete logarithm problems in both nite elds and abelian varieties must be care-
fully considered. Various agencies and organizations regularly publish updated tables listing
parameter tuples for various security levels, such as ECRYPT II () whose table was fea-
tured in the rst chapter. Most agree that pairing-based cryptosystems aimed at being secure
beyond  should have a 256-bit r and a 3248-bit qe; as usual, more is better.

e pra ical cost of an attack can be estimated by using timings of previous attacks to
calibrate the big-O (and possibly other) constants in the asymptotic complexity; this usually
gives a fair estimation for larger instances. Here, we need to control both the hardness of
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F . e abscissa bounds the security level of the discrete logarithm problem in F×qe
while the ordinate does the same in E/Fq. e diagonal represents the optimal case that
these are balanced. e curves plot what elliptic curves achieve for sele ed values of e/ρ.

the discrete logarithm problem in the curve and the embedding eld. Figure  does such a
rough analysis for the parameters (ρ, e,q) of pairing-friendly curves. It shows, for instance,
that 128 bits of security are best achieved by elliptic curves for which e/ρ ≈ 12, with themost
preferable choice of ρ ≈ 1 implying that e = 12 and q ≈ 2256.

Before explaining how to generate elliptic curves and abelian varieties with the above
properties, let us rst say a bit more on supersingular varieties.

S V

While ordinary varieties are the generic case, supersingular varieties are the other ex-
treme: recall that supersingular abelian vari ies are de ned as being isogenous to powers
of supersingular elliptic curves (elliptic curves with zero p-rank) or, equivalently, as having
Frobenius endomorphisms that satisfy πn = ±qn/2 for some integer n.
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eir cryptographic interest stems from the following result of G ().

Proposition ... e embedding degree of any subgroup of any g-dimensional supersingular
abelian vari y de ned over a nite eld uniformly bounded by some quantity eg.

We have for instance e1 = 6, e2 = 12, e3 = 30, e4 = 60.

For certain types of base elds, the bound eg can be lowered: the optimal bound for e1 is
4 in chara eristic two, 6 in chara eristic three, 3 in higher chara eristic, and 2 over prime
elds with more than three elements.
An interesting feature of supersingular varieties is the existence of d tortionmaps, that is,

non-rational endomorphisms. For ordinary varieties, we have seen that all endomorphisms
de nedover an algebraic closure are also de nedover the base eld, so their eld of de nition
makes no difference. However, for supersingular varieties, there exist endomorphismswhich
do not commute with the Frobenius endomorphism.

Such d tortion maps ψ are useful in cryptography because they send points of the ra-
tional r-torsion subgroup to points ofA [r](Fqe) which might not be rational. en, the
application

(P,Q) �A [r](Fq)2 7¹→ΨWeil(ψ(P),Q) � μr
is a “self ” pairing which is a very attra ive obje to build cryptographic primitives on, as
its domain is the Cartesian produ of two copies of the same cyclic group of order r, rather
than the Cartesian produ of two different ones.

On the other hand, thismakes the decisionalDiffie–Hellman problem easy, since for any
triple of integers (a,b, c) and point P onA , one can verify whether c = ab given P,aP,bP, cP
by checking whether

ΨWeil(ψ(aP),bP) = ΨWeil(ψ(P), cP);

from a security viewpoint, this can be seen as an undesirable property. Naturally, many pro-
tocols take advantage of that situation as well.

Since embedding degrees of supersingular curves are bounded, the base eld size must
grow more than linearly in the desired security level in order to avoid discrete logarithm
attacks in F×qe via the pairing; this lack of scalability is unpra ical in the long term, and we
now shi our focus to the ordinary case.

. Complex Multiplication Method

eproblemof constru ingordinary abelian varieties de nedover a nite eldonwhich
pairings are efficiently computable (meaning that the embedding degree is small) is an a ive
topic of research.
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is se ion describes the so-called complex multiplic ion m hod for generating ordi-
nary abelian varieties with prescribed endomorphism rings; as a consequence, it also gener-
ates varieties whose Frobenius endomorphism have prescribed polynomials. Since the exis-
tence of a subgroup of order r with embedding degree e only depends on this polynomial,
the next se ion will exploit this method to generate pairing-friendly varieties.

S  P-F V

As we have argued before, abelian varieties of dimension g = 1 and 2 are the most suit-
able for cryptosystems which rely on the discrete logarithm problem. When no additional
stru ure (such as a pairing) is required, abelian varieties need just have a near-prime group
order, and are best generated by random search, which additionally reduces their likelihood
of having undesirable ecial properties. For elliptic curves, such computations are classical,
and for g = 2 it was recently demonstrated pra ical by G and S ().

When, on top of a near-prime group order, one seeks a small embedding degree, this
approach is not feasible anymore due to the scarcity of abelian varieties with the desired con-
dition. More precisely, B and K () proved the following.

eorem ... ere are mostM1/2+o(1) ogeny cl ses of e iptic curves E/Fp wi prime
order and embedding degree less an log2 p, where p a prime in {M/2,… ,M}.

Since there are roughly M3/2 isogeny classes of elliptic curves de ned over Fp with p �
{M/2,… ,M}, this is a pretty slim fra ion of the total. L and S () recently
gave a similar result for dimension-two abelian varieties:

eorem ... L H and K be positive integers, e number of pairs (p,N) whereN e
order of a dimension-two abelian vari y de ned over Fp wi p � {M/2,… ,M}, such
N= hr where h BH, r prime and h embedding degree less anK mostM3/2+o(1)HK2

forM large enough.

Since there are roughly M5/2 pairs (p,N) arising as orders of two-dimensional abelian
varieties, this gives, similarly to the one-dimensional case, a probability of p−1+o(1) of nding
a pairing-friendly abelian variety by random search over Fp.

e theory of complex multiplication provides a method for generating such varieties
efficiently. is involves two steps: we will rst describe how varieties with prescribed en-
domorphism rings and prescribed elds of de nition can be constru ed using the so-called
complex multiplication method, and we will then consider chara erizing pairing-friendly
varieties in terms of their endomorphism ring and base eld.
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C 

Since abelian varieties of dimension three or more are not interesting for cryptogra-
phy, we restri to Jacobian varieties of hyperelliptic curvesC since all principally polarized
abelian variety of dimension one or two are of this type. is allows to use invariants which
uniquely identify the isomorphism class of such a variety and are expressed as rational func-
tions of the coefficients of an equation forC .

Fix a genus g and a family of invariants (Ii) that uniquely identify birationally equivalent
classes of hyperelliptic curves. For instance, in dimension one, the j-in ariant

C : y2 = x3 + ax+ b 7¹→ j(C ) =
2833a3

22a3 +33b2

(where we have assumed the chara eristic to be different from 2 and 3) alone suffices. In
higher dimension, as we have mentioned before, more invariants are necessary.

Let O be the order of a complex multiplication eld K of degree 2g, that is, a totally
imaginary quadratic extension of a totally real number eld. S () rst proposed
to encode the information about all abelian varietiesA of dimension g de ned over the
complex numbers into the following polynomial

H O
i (x) =

∏
{A :EndAAO }

�
x− Ii(A )

�
,

whereA ranges over isomorphism classes of abelian varieties. In dimension one, they are
usually calledHilbert cl s polynomialswhen O is the maximal order of K, as their roots, the
invariants of abelian varieties with endomorphism ringO , generate the Hilbert class eld of
O ; for non-maximal orders and in higher dimension, these lie in the ring class eld ofO and
the polynomials are simply known as cl s polynomials.

W () later developed this theory and explained how these polynomials could
be used to generated abelian varieties over nite elds with prescribed endomorphism ring,
as we will soon explain. When there are two invariants or more (that is, for g > 1), these
polynomials do not encode which root ofH O

1 corre onds to which root ofH O
i for i > 1;

in other words, the invariant tuples we are interested in are lost amongst tuples of unrelated
invariants.

To address this issue, G, H, K, R, and W
() interpolated the values Ii(A ) at the I1(A ): they de ned

H ′O
i (x) =

∑
EndAAO

Ii(A )
∏

EndBAOB̸AA

�
x− I1(B)

�
for i > 1. is encodes exa ly the information wanted.
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R  P 

LetA be an ordinary abelian variety with complex multiplication by O de ned over
some number eld, and let p be a prime of degree one at which the redu ionAp ofA is
itself an ordinary abelian variety de ned overFp where p is the rational prime below p. Since
invariants are compatible with redu ion, we have Ii(Ap) = Ii(A )p.

As the endomorphism ring ofA is mapped inje ively into that ofAp, we have O ⊂
(EndAp); whenO is themaximal order, equality must hold, and this is also the case for any
order whenAp is an elliptic curve, due to the Deuring li ing theorem.

Consequently, an abelian variety with complex multiplication byO de ned over a nite
eld can be found using the following algorithm.

Algorithm ...
I: A prime p, and an order O , ei er imaginary quadr ic

or maximal in a quartic complex multiplic ion eld.
O: An abelian vari yA /Fp wi EndA A O .

. Compute e cl s polynomialsH ′O
i (x).

. For each root I1 ofH O
1 (x) mod p:

. For a i > 1, l Ii =H ′O
i (I1)/H O

1 (I1).
. Use e m hod of M () to compute a hypere iptic

curve whose Jacobian vari y h in ariants (Ii).

Note that the output of this algorithm might be empty; for instance, when there are no
abelian varieties with endomorphism ringO de ned over the eld with p elements. In other
cases, the number of curves returned might not be constant as O is xed and p varies. e
conceptually simplest case is that where p completely lits in the ring class eld of O : then,
theH O

i lit into linear fa ors modulo p.

C  C P

Beforemaking use of themethod above, let us brie y describe the currentmethods avail-
able for computing class polynomials in dimension one and two.

Since the class polynomialsH O
i are de ned over the complex numbers and have good

redu ion to nite elds, there are, as with modular polynomials, two methods to compute
them: a complex analytic method and one based on the Chinese remainder theorem.

e complex analytic version evaluates the invariants Ii(A ) for complex tori verify-
ing EndA A O to sufficient precision to identify the coefficients of the class polynomial;
it requires tight bounds on the height of these coefficients. C and H
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() also proposed a p-adic version which proceeds similarly but uses the canonical li of
an abelian variety de ned over a small extension of Fp to tran ort the computation toQp.

eChinese remainder theoremversion reconstru s the polynomialsH O
i �Q[x] from

their redu ion to many small prime elds Fp by enumerating the abelian varieties with en-
domorphism ring O in each such eld; typically, a rst variety with complex multiplication
Q⊗O is found by sheer luck (this requires computing the endomorphism ring of many ran-
dom curves), and isogenies are then used to nd a curve with endomorphism ring exa lyO
and to enumerate all other such varieties.

When the dimension ofO is xed, the complexity of all methodsmainly depends on the
order of the Picard group ofO , which di ates the number of roots of the class polynomials.

For elliptic curves, all methods have a quasi-linear runtime in the size of the output; see
the careful analyses of E (), B (), and S ().Apra ical
advantage of the Chinese remainder theorem version is that it need not keep the full poly-
nomialsH O

i �Q(x) in memory: only their redu ions modulo many primes are required;
from these,H O

i can be dire ly reconstru ed in the prime eld where we seek an abelian
variety with endomorphism ring O . is is particularly useful as memory requirements are
the current bottleneck of the other two methods.

Indimension two,W() introduced the complex analyticmethod,C,M-
, K, and T () the Chinese remainder theorem one, and G,
H, K, R, andW () a 2-adic method. All have since
been improved by many researchers. eir re e ive eeds do not support a range of or-
ders O as wide as for elliptic curves, but quite a fair number of class polynomials have been
computed and made available, for instance in the E () package.

. Elliptic Curve Generation

Let us now explain how to apply thematerial of the previous se ion to generate pairing-
friendly elliptic curves; very satisfying results can be obtained in this case. is is however
not the case for higher-dimensional varieties, as the next se ion will discuss.

T C–PM

We have explained how an ordinary elliptic curve with prescribed order O can be gen-
erated over a prescribed nite eldFp whenO has small class number or, equivalently, small
discriminant. We now consider which parameters p andO should be chosen in order for the
resulting curve to be pairing-friendly.
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LetE be an ordinary elliptic curve over the prime eldwith p elements; the chara eristic
polynomial χπ(x) of its Frobenius polynomial is of the form x2 − tx+ p where the integer t
satis es |t| < 2pp. Conversely, for each such nonzero integer, there exists an ordinary curve
E/Fp with cardinality p+ 1− t (we assume p ≠ 2,3). If r is the largest prime fa or of #E ,
we require that its embedding degree be small, that is, r | pe− 1 for some small integer e.

Additionally, for the complex multiplication method to be pra ical, there must exist
orders of small discriminants inQ(π), that is, the squarefree part of 4p− t2 must be small.

erefore, we require that:
. p be a prime number.
. t be a nonzero integer less than 2pp in absolute value.
. r be a prime fa or of p+1− t such that r | pe− 1 for a small e.
. the squarefree part Δ of t2− 4p be small in absolute value.
Since Δ and e need to be small, we rst x them: if an integer p can be derived as a

fun ion of Δ and e and it is not prime, we can always rerun the algorithm on a different
input and hope that it takes a prime value a er roughly logp trials; however, xing p and
deriving Δ or e would have little chances of producing small numbers.

Once Δ and e have been xed, the method of C and P () consists in
rewriting the above set of conditions to the equivalent one: t2− 4p = v2Δ

r |Φe(t− 1)
r | v2Δ− (t− 2)2

where Φe denotes the eth cyclotomic polynomial; the second condition asserts that e is the
smallest integer such that r | pe − 1 but this stronger condition is not as important as the
constru ion that it enables: since Φe is irreducible it yields a number eld where to work.

is gives the following algorithm.

Algorithm ...
I: A neg ive and a positive integer,Δ and e.

O: A prime p and an order O such ere ex ts a pairing-
iendly e iptic curve wi endomorph m ring O over Fp.

. Choose a prime eld Fr con ining
p
Δ and an e root of unity ζe.

. Put t = 1+ ζe and v = (t− 2)/
p
Δ in Fr

. Li t and v toZ and put p = 1
4 (t

2− v2Δ).
. Unless p prime, go back to Step .
. Output p and e order O =Z+ u2OQ(pΔ) where u any div or of v.
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Due to p being a sum of squares li ed fromFr the resulting elliptic has ρ ≈ 2 on average.

F  P-F C

Better ρ values are achieved by families of curveswith a constant embedding degree e and
discriminant Δ over elds Fp for increasing primes p. Families of elliptic curves are given by
tuples (Δ, e,p(x), t(x), r(x),v(x)) where the last four parameters are polynomials in a formal
variable x; additionally to the conditions above, since p and r are expe ed to take prime val-
ues, they are required to be irreducible. e density of primes they produce can be estimated
using Conje ure ...

Before explaining how to adapt themethod above to this context, let us give two explicit
families; for a broader coverage, we refer to F, S, and T ().

MNT curves. Shortly before the constru ive use of pairings in cryptography was uncov-
ered, M, N, and T () warned that certain explicit families of
curves had a small embedding degree and therefore were probably unsuitable for crypto-
graphic use: they exhaustively studied the case that ρ ≈ 1 and the cyclotomic polynomial Φe
is quadratic, that is, e � {3,4, 6}; they gave an explicit description of all such ordinary elliptic
curves; it was later noticed that they provide interesting pairing-friendly curves. For exam-
ple, they proved that a curve features ρ ≈ 1 and e = 6 if and only if p(x) = 4x2 + 1 is prime
and t(x) = 1± 2x for some integer x.

e Barreto–Naehrig family. B and N () exhibited a family of or-
dinary elliptic curves with ρ ≈ 1 and e = 12; as we have seen before, this is optimal to achieve
the 128-bit security level using primes p of  bits. eir family has Δ =−3 and

p(x) = 62x4 +62x3 +4 · 6x2 +6x+1 t(x) = 1+ 6x2

with r(x) = p(x) + 1− t(x).

e advantage of such families is that they x the discriminant Δ and the asymptotic
value of ρ, as we indeed have the limit ρ→ degp/deg r as x→∞. is enables the generation
of good pairing-friendly curves with ρ bounded below 2 over large prime elds.

Deriving curves from such an explicit family is easy: for an expe ed p of n bits, take a
random integer x having n/deg(p) bits, evaluate p(x) and r(x) and repeat the process until
both p(x) and r(x) are primes; this requires an expe ed O(n2) trials.
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T B–WM

B andW () adapted the method of C and P () to gen-
erate families of polynomials as de ned above. eir constru ion follows the above except
that the arithmetic is done over polynomial rings rather than over the integers.

Algorithm ...
I: A neg ive and a positive integer,Δ and e.

O: A pairing- iendly family of curves given by p(x), t(x), and r(x).
. Choose an irreducible polynomial r(x) wi positive leading coefficient

such e eldQ(x)/r con ins
p
Δ and an e root of unity ζe.

. Put t = 1+ ζe and v = (t− 2)/
p
Δ, elements ofQ(x)/r.

. Li t and v toZ[x] and put p = 1
4 (t

2− v2Δ).
. Unless p irreducible, go back to Step .
. Output p(x), t(x), and r(x).

Since the polynomial p(x) is constru ed as a sum of squares of li s from Q(x)/r, its
degree is roughly twice that of r. However, when deg(r) is small, the degree of p(x) can be
much smaller and yield ρ values below 2; note that deg(p) being smaller is not a problem:
curves de ned over large prime elds can still be obtained by evaluating p(x) at large integers
x; in fa , this is preferable since the slower increase of polynomials gives more exibility.

L C

To conclude this se ion, we discuss the results of B. and S ().
In this paper, we noted that the twomethods described above only x the complexmulti-

plication eld or, equivalently, the isogeny class, but not a eci c endomorphism ring order
O which the complex multiplication method takes as input. A ually, our presentation of
the Cocks–Pinchmethod above already showed that fa , since it stated that the order to be
output could be of the form Z + uOQ(π) for any divisor u of v, where t2 − 4p = v2Δ is the
discriminant of the minimal orderZ[π].

is means that, once parameters for a pairing-friendly curve or family have been com-
puted, before applying the complex multiplication method and obtaining an a ual elliptic
curve, there is still some choice to be made on the eci c endomorphism ring desired. In
the Brezing–Wengmethod, since v(x) is constru ed as (t−2)/pΔ, its degree as polynomial
is likely to be roughly that of r; this typically gives a large (and predi able in size) pool of
fa ors to choose from as the condu or of the endomorphism ring.

erefore, pairing-friendly curveswithnon-maximal endomorphismringsO canbe gen-
erated as easily as maximal ones as long as O is in the range of the complex multiplication
method.
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Denote byE1 andEu the elliptic curveswith trace t and endomorphism rings re e ively
OQ(π) and O =Z+ uOQ(π); there is an isogeny of degree u going from E1 to Eu. Computing
this isogeny takes essentially quadratic time in the largest prime fa or of u, as we will see in
subsequent chapters. erefore, as it takes u2+o(1)Δ time to generate the curve Eu via class
polynomials, using different values for u does not yield fundamentally new cryptosystems; it
simply shows that a small range of condu ors is readily available from pairing-friendly curve
generation methods.

. Variety Generation

As a natural generalization of the problem of pairing-friendly elliptic curves generation,
we now consider generating higher-dimensional pairing-friendly abelian varieties. We will
rst give general statements before mentioning state-of-the-art results.

M  S

From amathematical viewpoint, it is only natural to switch our focus to abelian varieties
when we feel the pool of interesting elliptic curves has been depleted, since abelian varieties
with an efficient arithmetic (such as Jacobian varieties of genus-2 hyperelliptic curves) have
equally effe ive and secure pairings; they can even be evaluated faster than that of elliptic
curves as F and L () demonstrated.

Originally, abelian varieties were proposed for cryptographic use not only as alternatives
to elliptic curves but also as a potential improvement: since the size of the group is g times
the size of the base eld, where g is the dimension, the parameters of a cryptosystembased on
dimension-two abelian varieties need only be of half the size of an equivalently secure elliptic
cryptosystem; in addition, the smaller base eld can possibly be exploited to yield a faster (or
at least competitive) arithmetic to that of elliptic curves.

Although abelian varieties readily provide a good framework for cryptosystems based on
the discrete logarithm problem only, other fa ors need to be taken into account for pairing-
based cryptography. Before explaining how the situation degrades for ordinary varieties, let
us recall that two-dimensional supersingular abelian varieties have an embedding degree of
at most 12 and ρ values which can be close to 1; they are currently the only kind of two-
dimensional abelian varieties suitable for cryptographic use.

All known constru ions of ordinary pairing-friendly varieties of dimension two have
large ρ values: we will see that none has ρ B 2, and that ρ values close to 2 are only achieved
by ecial constru ions; generic constru ions feature ρ C 4, at the time of this writing.

It therefore appears as if genus-two constru ions had a lot of room for improvement.
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CMM

We have seen that the computation of class polynomials, although harder for abelian
varieties of dimension two than for elliptic curves, can be done (and has been done) for a
limited number of orders O , all of which are ring of integers of quartic complex multiplica-
tion elds with relatively small discriminant.

erefore, it is even more important to x O as a rst step of any constru ion than it
was with elliptic curves. We distinguish two types of constru ions:

. Generic constru ions, which take an arbitrary maximal quartic complex multiplica-
tion order as input, and output generic pairing-friendly abelian varieties.

. Speci c constru ions, which focus on varieties of a particular form (usually implying
that O is xed too) and exploit explicit results due to this form.

Here, by “generic” we mean that the former methods output varieties with no particular
properties other than those required; in particular, the varieties are usually absolutely simple
and ordinary. is is to be compared to the varieties obtained by the latter method which
are typically simple but not absolutely simple.

G C

e rst constru ion of ordinary pairing-friendly abelian varieties of dimension g > 1
with cryptographic size are due to F (). It can be considered a genus-two analog
to the Cocks–Pinchmethod, and proceeds by solving explicit equations which arise by writ-
ing the chara eristic polynomial of the Frobenius endomorphism in terms of parameters for
the desired complex multiplication eld. e abelian varieties it generates have a typical ρ
value of 8.

Later, F, S, and S () provided a cleaner framework
for constru ing pairing-friendly ordinary abelian varieties of dimension two by using more
of the theory of complex multiplication.

Let π be the Frobenius endomorphism of a simple ordinary abelian varietyA over a
nite eld. eir idea was to write the condition thatA has a subgroup of order r with

embedding degree e as ¨
r |NQ(π)/Q(π− 1)

r |Φe(ππ)
.

Now let Φ be a type on the complex multiplication eld K, and denote by Φr and Kr

their re e ive re exes. e key observation is that, if r is a prime congruent to one modulo
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e that lits completely in K, and if∏
φ�Φr

�
ξ mod rφ

�
= 1 and

∏
φ�Φr

�
ξ mod rφ

�
= ζe

where ζe is an eth root of unity and
∏

φ�Φr rφrφ denotes the fa orization of r in Kr, then the
type norm π = NΦr(ξ) of ξ is a q-Weil number (that is, a root of a q-Weil polynomial) sat-
isfying the conditions above asserting that it represents an ordinary pairing-friendly abelian
variety.

Computationally, numbers ξ can be constru ed from their redu ionsmodulo the prime
fa ors of r so as to satisfy the above requirement; a er sufficiently many trials, the integer
q = NKr/Q(ξ) is expe ed to be prime, and when it is additionally unrami ed in K and π
generates K, this yields, by Honda–Tate theory, an isogeny class of ordinary pairing-friendly
abelian varieties with complex multiplication by K.

e method above still produces varieties whose embedding degree is 8 or more, but
F () soon adapted it to generate families of pairing-friendly varieties similarly
to the Brezing–Weng method for elliptic curves. He applies it to nd many families with ρ
less than 8, and a particular one with an asymptotic ρ value of 4 for e = 5.

S C

To improve on the ρ values obtained by constru ions applicable to arbitrary complex
multiplication elds, one way is to consider abelian varietiesA of a particular form and
exploit explicit results regarding this form as much as possible. Usually,A is taken as the
Jacobian variety Jac(C ) of a hyperelliptic curveC of genus two with a particular shape of
Weierstrass polynomial.

For instance, consider curvesC of the form y2 = x5 + ax for some number a � Fp where
p is a prime congruent to onemodulo eight; in that situation, the associated Jacobian variety
Jac(C ) is ordinary and simple, and K and T () exploited explicit
formulas for the chara eristic polynomial of the Frobenius endomorphism in terms of a
and p to obtain an analog of the Cocks–Pinch method for that eci c type of curves. ey
obtained a ρ value of 3 with the embedding degree e = 24.

e varieties they constru ed are not absolutely simple: over an extension containing
fourth roots of e, they lit as produ s of two elliptic curves. F and S ()
studied such varieties from amuchmore general per e ive: from an elliptic curveE which
is pairing-friendly over some extension of its base eld, they explain how to derive a simple
ordinary pairing-friendly abelian variety which becomes isomorphic to a power of E over
some extension of the same base eld. As an application, they constru families of such
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abelian varietieswith ρ ≈ 2.22 and e = 27, which are to date the bestknownordinary pairing-
friendly varieties of dimension two.
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xponential hods

e last chapter was concernedwith constru ing abelian varieties with prescribed endo-
morphism rings and we now turn to the inverse problem: that of computing the endomor-
phism ring of a prescribed variety. Our contribution is covered by the next three chapters;
here, we review prior state-of-the-art algorithms, all of which have a worst case running time
exponential in the size of the base eld.

All se ions but the last solely consider ordinary varieties, and our complexity analyses
concern a xed dimension g and a cardinality q of the base eld going to in nity.

IfA is an ordinary abelian variety with complexmultiplication eldK, an isomorphism
Q(π) A K between the eld of fra ions of End(A ) and K will be understood throughout
this chapter; this identi es endomorphism rings uniquely as orders of K.

. Isogeny Volcanoes

Let us rst describe the stru ure of the conne ed component of the isogeny graph con-
taining a prescribed simple ordinary abelian variety over a nite eld; we will emphasize
vertical isogenies and their role in the algorithm of K () for computing endomor-
phism rings in the dimension-one case.

V I

Following F  and M (), we say that an isogeny is horizon l when
its domain and codomain have isomorphic endomorphism rings, and that it is vertical oth-
erwise; we rst focus on the latter kind, in the context of computing endomorphism rings.
Later, we will use horizontal isogenies, via complex multiplication theory, as the key to our
subexponential-time algorithm for computing endomorphism rings.





  

To put to light the relationship between endomorphism rings and vertical isogenies, we
use an observation of K:

Lemma ... L φ :A →B be an ogeny of type (Z/ℓ)g b ween ordinary abelian vari-
ies de ned over a nite eld. e order End(B) bounded below byZ+ ℓEnd(A ).

Indeed, since φ lits multiplication by ℓ, we have ℓEnd(A )⊂ End(B), and since the
latter is an order it must also contain Z. Note that applying this lemma to the dual isogenybφ gives a bound on End(B) from above. To encompass both bounds, we generalize the
inclusion index to the following distance on the lattice of orders.

De nition ... For any two orders O and O ′ of e same eld, de ne e order distance
dist(O ,O ′) [O : O ∩O ′] + [O ′ : O ∩O ′].
Corollary ... L φ : A → B be an ogeny of type (Z/ℓ)g b ween ordinary abelian
vari ies de ned over a nite eld. e d nce dist(EndA , EndB) div ible by ℓ4g−2.

is follows from the lemma, since Z + ℓO has index ℓ2g−1 in O , for any order O . By
exploiting the symmetry of the lattice of orders, the distance could even be proven to divide
ℓ2g−1. However, this simple result is sufficient for us; as a consequence, there can only be
nitely many vertical isogenies of a given type leaving from any given varietyA since:

– only nitely many orders of K are endomorphism rings, that is, containZ[π,π];
– therefore there are only nitely many possible degrees for vertical isogenies;

– sinceA [ℓ] = (Z/ℓ)2g there are nitely many suitable subgroups.

Recall the results of T () andW ():

eorem... Isogeny cl ses of abelian vari ies de ned over a nite eld are identi ed by e
chara er tic polynomial of eir Frobeni endomorph m. Endomorph m rings of ordinary
vari iesA are exa ly ose orders of e complex multiplic ion eldK con inZ[π,π].

is shows that the stru ure of vertical isogenies is quite rigid: the possible degrees
are xed per isogeny class by the index of the minimal order Z[π,π] in the maximal one
of K. Worse, they can be as large as [OK :Z[π,π]] which Lemma .. showed can only be
bounded by qg2/2+o(1) where q is the cardinality of the base eld and g the dimension of the
variety. is does not give much exibility for working with vertical isogenies, and canmake
it quite costly to evaluate them.

On the other hand, we will later argue that horizontal isogenies are convenient to work
with, as there are in nitely many with domain any given variety.
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F . Stru ure of the graph of vertical isogenies and of the lattice of orders.

G S

As a consequence to the above, the stru ure of the vertical-isogeny graph can be de-
scribed as resembling that of the lattice of orders which contain the minimal orderZ[π,π].
Corollary ... L G be e graph whose vertices are cl ses of vari ies wi Frobeni en-
domorph m π, up to horizon l ogenies, wi edges e vertical ogenies of type (Z/ℓ)g. Sim-
ilarly, l H be e graph whose vertices are e orders con ining Z[π,π], wi edges b ween
two orders O ⊊ O ′ when ere no O ′′ s fying O ⊂O ′′ ⊂O ′.

e map (A →A ′) � G 7→ (EndA → EndA ′) � H b e ive on e vertices, and
lits edges into sequences of most 2g− 1 edges.

Figure  is probably worth all the above words: it depi s the graph of vertical isogenies
(the big circles denote horizontal isogenies classes) to the le , and the corre onding lattice
of orders to the right. In fa , this is a simple case, similar to the situation in dimension one:
each order above Z[π,π] is uniquely identi ed by its index in OK, and vertical isogenies are
in bije ion with edges of the lattice of orders, that is, they do not jump orders.

Computing the endomorphism ring of a variety is therefore equivalent to determining
its location up to horizon l ogenies in the isogeny graph.

To see how big this stru ure can be, consider the typical case of ordinary varieties of
dimension g = 2 de ned over the prime eldwith p elements. From the conditions on p-Weil
polynomials, we deduce that there must be p3/2+o(1) isogeny classes. Since there are p3+o(1)



  

isomorphism classes of curves, each isogeny class contains, on average, p3/2+o(1) isomorphism
classes.

From now on, we will assume that the discriminant ofZ[π,π] (and therefore its index in
the maximal order) has been fa ored, so that we can make use of the various algorithms for
lattices of orders developed earlier.

Froma cryptanalysis viewpoint, ifA is an abelian variety ofwhich thediscrete logarithm
problem is to be used in a cryptographic scheme, andA ′ is a variety in the same isogeny
class for which this problem is known to be weak, it should be ensured that it is infeasible to
compute any isogenyA →A ′.

By the theory of complexmultiplication, there aremany horizontal isogenies of small de-
gree going from any abelian varietyA to others with the same endomorphism ring; there-
fore, horizontal isogeny classes can be “walked around” quite easily. Note, however, that
nding an explicit path from a prescribed variety to another might be a difficult task when

the horizontal isogeny class is big, since only generic methods are available.
However, whenA andA ′ havedifferent endomorphismrings, denotingby ℓ the largest

prime fa or of dist(EndA , EndA ′), any isogeny chain going fromA toA ′m t contain
an isogeny of degree ℓ. Since current isogeny-computing algorithms require exponential time
in log(ℓ), this bounds below the time needed to tran ort the discrete logarithm problem.

L S  DO

F  and M () gave a metaphorical interpretation of the work of K-
 () on thestru ure of the graphof isogenies of typeZ/ℓ, for a xedprime ℓ, between
ordinary elliptic curves de ned over a nite eld. In dimension one, a number of properties
whichwe sumup in the proposition below indeed give graphs of degree-ℓ isogenies a distinc-
tive olcano look.

Recall that the complex multiplication elds of ordinary elliptic curves are exa ly the
imaginary quadratic number elds; orders of such elds are of the form Z + fOK where f is
the index in the maximal order OK.

e following rephrases Proposition  of K () and, for short, refers to iso-
morphism classes of elliptic curves as curves and to the valuation at a xed prime ℓ of the
condu or of their endomorphism ring as their dep .

Proposition ... Consider e graph of ogenies of prime degree ℓ b ween omorph m
cl ses of e iptic curves de ned over a nite eld wi complex multiplic ion by e imaginary
quadr ic eld K = Q(pD) of d criminantD, and denote by v e valu ion of [OK : Z[π]]
ℓ. e fo owing exha tively describes a edges of graph.
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F . Typical volcano stru ure in dimension one when the discriminant is a square
modulo ℓ (the prime degree of isogenies); here, in the case that ℓ = 3.

. From a curve dep u > 0, ere one ogeny going up to a curve dep u− 1.

. From a curve dep u < v, ere are ℓ ogenies going down to ℓ curves dep u+1,
unless u = 0 in which c e ere are ℓ−1, ℓ, or ℓ+1whenD re e ively a square, zero,
or a non-square modulo ℓ.

. From a curve dep 0, ere are two ogenies going to curves dep 0 whenD a
square modulo ℓ, and one whenD div ible by ℓ.

Again, Figure  is likely worth the above words: it di lays one conne ed component of
the graph that we discussed; note that by the proposition and results of complex multiplica-
tion theory, all conne ed components of this graph are isomorphic.

e algorithm of K () computes the endomorphism ring of an ordinary curve
E by determining the valuation of its condu or at certain primes ℓ, for which it probes the
location of E in the graph stru ure that we have just described.

is relies on the vertical stru ure of this graph being that of trees rooted on the (pos-
sibly degenerated) cycle of curves with locally maximal endomorphism rings. Note that this
stru ure is lost in higher dimension, as we will later see.



  

K’ A

K () introduced many ideas and results related to the computation of endo-
morphism rings of elliptic curves over nite elds. Let us just describe two of them which
lead to his deterministic algorithm for computing the endomorphism ring End(E ) of an or-
dinary elliptic curve E over Fq in time q1/3+ε.

e rst idea dire ly exploits the stru ure of the volcano discussed above: the valuation
of the condu or of End(E ) at some prime ℓ can be found by determining on which level of
the graph of degree-ℓ isogeniesE lies. To this extent, compute three chains of degree-ℓ isoge-
nies starting fromE ; one chain necessarily descends to levels of higher depth, and eventually
hits a leaf, that is, a curve with depth v fromwhich no isogeny leaves but the dual of that with
which we arrived. e set of leaves is called the oor of r ionality; its curves only have one
rational subgroup of order ℓ (whence the expression), and the ℓ remaining subgroups de ne
isogenies over an extension of the base eld. is gives the following algorithm.

Algorithm ...
I: An ordinary e iptic curve E/Fq.

O: e condu or of its endomorph m ring.
. Count e points of E and deduce its complex multiplic ion eldK.
. For each prime ℓ dividing [OK :Z[π]]:
. Compute ree curves ℓ- ogeno to E .
. Keep walking a non-backward chain of ℓ- ogenies om each.
. Denote by uℓ e leng of e chain ends rst.
. R urn [OK :Z[π]]/∏ℓuℓ .

By non-backward, we mean that we avoid duals of isogenies already computed. e rst
step uses polynomially many operations in log(q). Each isogeny can then be computed in
time ℓ2+o(1) using the independent improvement of D () and K (),
Se ion ., on the formulas of V (); this process will be detailed in the next chapter.
Since ℓ can be as large aspq, the overall complexity is only bounded by q1+o(1).

e second idea then comes to the rescue by trading off vertical isogenies for horizontal
ones; the concise presentation below is largely in ired by a talk of K ().

Recall from complex multiplication theory that there are exa ly #Pic(O ) curves with
endomorphism ringO , and that they form a conne ed component of the horizontal isogeny
graph. erefore, when ℓ is large, the value of uℓ can be tested by comparing the class number
of the order O with valuation uℓ to the number of curves in the horizontal isogeny compo-
nent. Formally, this gives the algorithm below.
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Algorithm ...
I: An ordinary e iptic curve E/Fq.

O: e condu or of its endomorph m ring.
. Count e points of E and deduce its complex multiplic ion eldK.
. For each prime-power fa or ℓv B q1/6 of [OK :Z[π]]:
. Apply e former algori m.
. For each prime-power fa or ℓv > q1/6 of [OK :Z[π]]:
. Count e number of curves having horizon l ogenies to E .
. D ermine e order whose cl s group m ches.

e horizontal isogenies of Step  can be constru ed as chains of isogenies of degree up
to 12 log2Δ, where Δ = disc(K), by eorem ... In addition, not the whole horizontal
isogeny class need be enumerated: it is sufficient to compute enough of it so as to rule out
other orders with smaller class number.

K () concludes that:

eorem .. (GRH). For any real number ε > 0, endomorph m rings of ordinary e iptic
curves can be computed in d ermin tic time q1/3+ε.

. Higher Dimension

Before presenting methods for computing endomorphism rings in arbitrary dimension,
let us describe more of the stru ure of isogeny graphs. We start by formalizing the localiza-
tion of the lattice of orders at a prime; this isolates a subgraph of the corre onding isogeny
graph stru ure. en, we move on to describing those eci c a e s of the isogeny graph
which differ from dimension one to dimension two and more.

L O S

Fix a number eld K and consider the lattice L of orders O that contain a prescribed
minimal order m, which will be Z[π,π] in our applications. e index of any such order in
themaximal orderM = OK then obviously divides w = [M :m].

Now if ℓ is a prime fa or of w, we can localize the lattice of orders via the map

L ¹→ Lℓ = {O � L : [M : O ] | ℓ∞}
O 7¹→ Oℓ = O +mℓ

where mℓ is the smallest order of the codomain, that is, the smallest order with index in
M a power of ℓ. is proje s O onto the maximal orderM locally at all primes but ℓ, thus



  

isolating the local information at ℓ. is information can be recombined by the isomorphism

L A

∏
ℓ Lℓ

O 7¹→ O +mℓ∩
ℓOℓ 7¹→ (Oℓ)

which can be evaluated in time polynomial in log |Δ|, where Δ = disc(m), using the classical
algorithms from Chapter .

For us, K is the complex multiplication eld of an ordinary abelian varietyA over a
nite eld, andm = Z[π,π]. We will o en say that we consider the endomorphism ring of
A loca y ℓ to mean that we consider the localization End(A )ℓ; by the above, knowing
End(A )ℓ for each prime fa or ℓ of w is sufficient to identify End(A ) exa ly.

Since isogenies of degree ℓn can only move endomorphism rings by distances that are
powers of ℓ, the endomorphism rings of abelian varieties in a conne ed degree-ℓ vertical
isogeny class are inje ively proje ed to Lℓ. erefore, for the purpose of identifying the
endomorphism ring using vertical isogenies, those of degree ℓ can be considered one prime
ℓ at a time.

In dimension one, K is an imaginary quadratic eld in which orders are uniquely identi-
ed by their index in OK. e local lattice Lℓ is then the chain

OK ⊃Z+ ℓOK ⊃Z+ ℓ2OK ⊃ · · · ⊃Z+ ℓvalℓ wOK.
Consequently, it is really worthwhile for many algorithms dealing with imaginary quadratic
orders to work locally, so as to bene t from this simple stru ure: this usually yields concep-
tually simpler algorithms. However, from dimension two on, the local lattice is not a tree
but a general lattice itself, so it makes no conceptual difference whether one works locally or
not, although it is advantageous for performance reasons.

L I S

Let us now brie y present the major differences between the degree-ℓ isogeny graph
stru ure for elliptic curves and for higher-dimensional abelian varieties. Part of the last
chapter will be devoted to giving details and results of computations on these a e s.

LetO be the endomorphism ring of an ordinary elliptic curve de ned over a nite eld.
e distin ive look of its isogeny volcanoes stems from two properties:

– Rational primes ℓ lit in at most two ideals of O .
– Ideals of prime norm dividing the index [OK : O ] are not invertible in O .
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F . Graph of isogenies of type (Z/3)2 containing the Jacobian variety of the curve
y2 = 8x6+3x5+7x4+5x3+12x2+5x+5 over the eld with 23 elements. Red circle varieties
havemaximal endomorphism ring, and blue triangle ones have index 9 in themaximal order.

By the theory of complex multiplication, the rst property implies that elliptic curves
with locally maximal endomorphism ring lie on (possibly degenerated) circles: the cr er of
the volcano. When the prime ℓ is inert, these circles degenerate into single vertices; when
it lits as pp, then each circle has length the order of p in Pic(O ). e second property
implies that there are no horizontal isogenies of prime degree between elliptic curves with
locally non-maximal endomorphism rings, that is, other than at the crater of the volcano.

Both properties are lost in higher dimension; indeed, if O is an order in a complex mul-
tiplication eld of degree 2g for g > 1, then:

– Rational primes ℓ can lit in up to 2g ideals of O .
– Ideals of prime norm not coprime to the index [OK : O ] may be invertible in O .

is implies that horizontal degree-ℓ isogenies between varieties with locally maximal
endomorphism rings now have a slightly more involved stru ure than a cycle, and that they
might also exit other than at the top of the volcano. Both features are di layed on Figure .

We shall say more on this topic in the last chapter. In the meantime, the reader should
not bemisled into thinking that all higher dimensional local isogeny graphs portray the same
stru ure as this eci c one; however, this gives an idea why generalizing the algorithm of
K () for computing endomorphism rings cannot be done straightforwardly.



  

P  T S

Although endomorphism rings of higher-dimensional abelian varieties cannot be deter-
mined by their vertical isogeny graph stru ure alone, other stru ures can be involved in a
hope to adapt the method of K () to this generalized setting.

I and J () recently gave a method for nding subgroups of order ℓ in
ordinary elliptic curves over nite elds that are kernels of ascending or horizontal isogenies,
meaning that they lead to curves with larger (or equal) endomorphism rings. Essentially,
they exploit the relationshipbetween the rational ℓ∞-torsion subgroupstru ure of an elliptic
curve and the valuation at ℓ of its endomorphismring. Toobtain the subgroupstru ure, they
rely on pairing computations and on the algorithm of C () for computing
the torsion, which will be discussed in the next se ion.

is permits one to navigate in the volcano not just blindly relying on the tree stru ure
of vertical isogenies, but with “some sense of orientation.” Since we believe their method
should be, to some extent, applicable to higher dimension varieties, we brie y present it.

A theorem of L () states the following.

eorem ... L π be e Frobeni endomorph m of an ordinary e iptic curve E de ned
over Fq and put O = End(E ). e O -modules E (Fqn) and O /(πn− 1) are omorphic.

Since O is a quadratic order, the group stru ure of the elliptic curve E (Fq) is therefore
of the form Z/N0 ×Z/N1 where N0 | N1. In particular, its ℓ

∞-torsion subgroup stru ure
is of the form Z/ℓα0 ×Z/ℓα1 and I and J () derive explicit formulas for the
integers α0 and α1 which show that they only depend on the valuation at ℓ of the condu or
of End(E ).

To give an example of the eci cway inwhichα0 andα1 are affe edby vertical isogenies,
let us reproduce Proposition  of I and J ().

Proposition ... L E be an e iptic curve of r ional ℓ∞-torsion subgroup Z/ℓα0 ×Z/ℓα1
wi α1 > α0. If P a point of order ℓα0 , en e ogeny wi kernel gener ed by ℓα0−1P
descending.

e computational ingredients are simple: we will present a torsion- nding method in
the next chapter, as it is needed in our own algorithms, and pairing evaluations are used to
test relations between the order of ℓ∞-torsion points. erefore, we believe this method has
a good potential of being generalized to higher dimension, at least partially.

Since it is based on vertical isogenies, this approach is probably not best suited to com-
puting endomorphism rings, as we argue below. Nevertheless, it has other interesting appli-
cations which can be found in the original article.
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L  V I

Isogeny computation is currently a topic in a ive development for abelian varieties of
dimension g > 1. e state-of-the-art algorithm of C and R () can only
compute isogenies of type (Z/ℓ)g and requires the prime ℓ to be reasonably small: although
the asymptotic complexity is polynomial in ℓ and exponential in g, the constant fa ors and
exponents are such that only amuchmore restri ed range of isogenies can be computed than
in dimension one.

We have argued before that vertical isogenies have constrained degrees; if certain iso-
genies are not within reach of known isogeny-computing methods, then their local vertical
isogeny volcano is simply not computable. A er our review of previous methods, the next
chapter will present an algorithm which addresses this issue by relying on horizontal isoge-
nies, whose degrees can be chosen with much more exibility.

Another obstru ion arises from the type of the isogenies that can be evaluated: consider
a chain of orders

OK = O1 ⊃ · · · ⊃ Ov =Z[π,π]
where each order is contained in the following one with prime order ℓ; this is a simple case,
as we have mentioned that there are others for g > 1, but it suffices to make our point.

W () proved the existence of abelian varietiesAi with endomorphism
ringOi and T () proved that there exist isogenies between all of theAi; the degrees
of these isogenies are necessarily powers of ℓ.

However, the kernels of these isogenies need not be of type (Z/ℓ)g or a combination of
such subgroups. In other words, in dimension g, we might “skip” up to g− 1 orders when
computing vertical isogenies. In the case that g = 2, for instance, starting from an abelian
variety with endomorphism ring O0 and following isogenies of type (Z/ℓ)2 we might only
reach abelian varieties with endomorphism ring Oi for i even, and fail to reach those with i
odd. e last chapter will give several examples illustrating this.

. General Methods

Two methods were previously known for computing endomorphism rings of general
abelian varietiesA de ned over nite elds. Both test whether elements α of the complex
multiplication eld K =Q(π) corre ond to endomorphisms ofA ; doing so for generating
sets of orders permits one to eventually recover the full endomorphism ring.

To nd whether α � End(A ), the method of E and L () tests
if some easy-to-evaluate multiple nα kills the full n torsion subgroup ofA .



  

Recently,W () designed a newmethodwhich can loosely be understood as a
Chinese remainder theorem variant of the latter: to determine whether α � End(A ), it tries
to interpolate the potential corre onding endomorphism over small torsion subgroups.

E E

LetA be a simple ordinary principally polarized abelian variety de ned over the eld
with q elements. Since the endomorphism ring ofA always contains the order Z[π,π], let
us explain how the a ion onA of an endomorphism α of this subring can be evaluated.

Evaluating the Frobenius endomorphism π is straightforward: it suffices to put the coor-
dinates of a point to the qth power, which, using a double-and-add approach, only requires a
number of base eld multiplications that is polynomial in log(q). On the other hand, evalu-
ating the Verschiebung endomorphism π = q/π is more involved but can be avoided, unless
p divides the condu or ofZ[π,π] where p is the prime of which q is a power.

Since K =Q(π), any element α �K can be written as a rational polynomial in the Frobe-
nius endomorphism π: if 2g is the degree of the eld, there exist an integer n and integers αi
for i � {0,… ,2g− 1} such that

α =
1

n

∑
i
αiπ

i.

Computing α therefore amounts to evaluating the Frobenius endomorphism, scalar multi-
plications, endomorphism compositions, and one division. Note that division by n is easily
computed on torsion subgroups ofA of order coprime to n: simply multiply by the inverse
of nmodulo the order. Subgroups of order not coprime to n will soon be addressed.

In the following, α will always be an algebraic integer of K, and we assume this from now
on. Put w′ = [OK : Z[π]]; as a group, 1

w′Z[π] then contains OK. erefore, α can be written
in the form above for some integer n dividingw′. And this is in fa always the case when the
above expression is reduced, meaning that gcd(αi,n) = 1.

Recall from Lemma .. that w′/w = [Z[π,π] : Z[π]] = qg(g−1)/2 where w = [OK :
Z[π,π]] as before. As a consequence, the prime fa ors of the denominator n are those of w
(that is, the degrees of vertical isogenies) plus, possibly, q.

T E–LM

Wenow present themethod of E and L (); it was rst targeted
at testingwhether endomorphism rings of abelian varieties over nite elds aremaximal, but
it applies to other orders as well. It relies on Corollary  which reads as follows.
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Proposition ... L A be an abelian vari y de ned over an algebraica y closed eld. If α
an endomorph mofA andn coprime to e ambient chara er tic, enA [n]⊂ ker(α) if

and only if α/n � End(A ), , if ere ex ts an endomorph m β such α = n◦β = β◦n.
In other words, the endomorphism corre onding to the algebraic integer α kills the full

n-torsion subgroup if and only if α/n belongs to the endomorphism ring.
As we have mentioned before, whenA is ordinary, assuming the base eld to be alge-

braically closed does not affe the endomorphism ring; it only demands that we compute
the full n-torsion ofA , possibly over an extension of the a ual ( nite) base eld.

Consequently, an order O of the complex multiplication eld K ofA can be tested to
be contained in End(A ) by computing a generating set for O , writing its elements α in the
form 1

n
∑

i αiπ
i, and testing whether

∑
i αiπ

i kills the full n-torsion ofA for all such α. A
module basis for O has cardinality 2g, but since Z is contained in both O and Z[π], only
2g−1 tests are really required; furthermore, as only an algebra basis is required, much fewer
elements a ually need to be tested.

e proposition requires denominators n to be coprime to the order q of the base eld.
When the index [OK : Z[π,π]] is coprime to q, this can always be made the case: since the
index ofZ[π,π,qα] inZ[π,π, α] divides q and both orders containZ[π,π], this indexmustbe
one, which means that qα and α belong exa ly to the same orders above Z[π,π]; therefore,
the fa or of n divisible by a power of q can simply be dropped.

is method is suited to local computations: similarly to what we did above, if ℓ is a
prime, one can show that End(A )ℓ = Oℓ can be determined only using elements whose
denominators are powers of ℓ. We will later rely on this local version to determine the endo-
morphism ring locally at small primes ℓ where our own algorithm fails to compute it.

When g is xed andwework over base elds of increasing prime cardinality q, it becomes
increasingly rare for q to divide the index Z[π,π], although this can be seen to happen. In
those cases where we want to determine the endomorphism ring locally at a large prime, the
present method is probably not the best suited in the rst place.

Twobuilding blocks remain tobe explained: computing the full ℓ-torsion, and efficiently
nding the endomorphism ring by testing whether O ⊆ End(A ) for chosen orders O ; al-

gorithms for both will be described and analyzed in the next chapter. When g is xed and q
goes to in nity, we deduce that the worst-case overall complexity of this method is

ℓ2g+o(1) log2+o(1) q where ℓ = qg2/2+o(1).

Note that in the case that we only wish to test whether End(A ) is maximal, F
and L () subsequently improved this method using eci c probabilistic tests.



  

C  E

Let us now brie y introduce elements of the theory of corre ondences as background
material for the work ofW (), which will be discussed below.

Firstde ne a fun ion eldKover k (whichwewriteK/k) as a nitely generated extension
of transcendence degree one. In Chapter , we saw that fun ion elds arise from algebraic
varieties, but here we will work with them abstra ly. For details on the following, we refer
to Chapter  of the colle ion of le ures by D ().

De nition ... L K/k be a fun ion eld, and K′/k an extension eld. ere ex ts a
fun ion eld L/l such L con insK, l∩K = k, and L e composite extension ofK and a
sub eld of l k- omorphic toK′.

e fun ion eld L/l ca ed e constant eld extension ofK/k byK′/k.

D () introduced corre ondences as ideals of maximal orders of fun ion
elds L/l, up to both principal ideals and constant ideals, that is, ideals with nontrivial inter-

se ion with l. When L is the constant eld extension of a fun ion eld k(C )/k by another
k(C ′)/k whereC andC ′ are two algebraic curves de ned over a nite eld k, he showed
that corre ondence classes represent isogenies from the Jacobian variety ofC to that ofC ′.

In the particular case thatC =C ′, this gives a bije ion

C : End(JacC )
~¹→{corre ondence classes} = I(OL)/ ~

which is compatible with the ring stru ure in the sense that for all endomorphisms α and β
we have C(α + β) = C(α) · C(β), and similarly there exists a computational way of deriving
the composition C(α ◦ β) from C(α) and C(β).

For instance, corre ondences representing the Frobenius endomorphism π, the Ver-
schiebung endomorphism π, and the identity I are easily obtained; multiplication-by-n is
then represented by C(I)n, and so on.

Finally, and this is maybe the most crucial point for what follows, the a ion of a corre-
ondence on a point, that is, that of the endomorphism it represents can be evaluated simply

in terms of elementary fun ion eld operations.

W’ A

To determine whether some prescribed algebraic number ofQ⊗End(JacC ) represents
an endomorphism, start as before by writing it as an element α �Z[π] divided by some inte-
gern; the corre ondence classC(α) is easily computed fromC(π), so it remains to determine
whether it can be divided by n.
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emain idea ofW () is to interpolate the hypothetical corre ondence class
C(α/n) over a set of small-torsion points: let Pi be a point of Jac(C ) of ordermi; if it exists,
C(α/n) should a as

Pi 7¹→ (n−1 modmi)C(α)(Pi);

and we can write equations asserting that a formal corre ondence class D a s this way.
W () gives an upper bound on the number of points Pi required to completely
chara erize the a ion of α/n, that is, ensuring that if the system admits a solution D, then
we must have D = C(α/n), and as a consequence α/n � End(JacC ).

He exhibits corre ondence class representatives which are compatible with the above
operations and therefore allow efficient corre ondence class computations. ese repre-
sentatives are written in Hermite normal form and are almost entirely determined by their
norms due to the restri ive conditions required for being a representative.

erefore, W () focuses on interpol ing e norm, which is of the form

NL/k(C )(C(α/n)) = xl +
l−1∑
i=0

fi
gi
xi

for some degree l B g, where the indeterminates fi and gi are polynomials of bounded degree
with coefficients in k(C ); see “Abschätzung der Grade der Polynome in x2” in Se ion .
on page .

e whole procedure is summarized in “Algorithmus : Approximation” of the same
se ion on page . at algorithm takes as input aZ-basis β of an order O of which C(β)
is known, an element α of some order O , and an integer n; if α/n is an endomorphism, it
returns a corre ondence representing it, or returns false otherwise.

As we will describe in the next chapter, being able to test whether prescribed orders O
are contained in the endomorphism ring suffices to determine it in a polynomial number of
steps in the size of the base eld.

A short analysis of the method can be found in Se ion .; in brief, the degree of the
norm of α/n is polynomial in n and it thus requires interpolating a number of points which
is polynomial in n. In the worst case, the overall algorithm therefore uses exponential time
in the size of the base eld.

Nevertheless, it has the interesting feature that, as n grows, testing whether α/n is an en-
domorphism becomes easier; indeed, the size of the hypothetical corre ondence represent-
ing it then gets smaller, so a shorter system of equations can be used. Note that all methods
we have previously seen showed the reverse phenomenon.



  

. Supersingular Methods

For the sake of completeness, let us address the case of supersingular elliptic curves in this
se ion (and this se ion only). Knownmethods for computing endomorphism rings of such
curves all have an exponential asymptotic running time in the size of the base eld; however,
contrary to the ordinary case, we are quite pessimistic about the possibilities of improvement.

In addition to themethods presented here, we note thatK () has an algorithm
that gives some information on the endomorphism ring of supersingular curves which suf-
ces to determine it only in eci c cases; however, we are unaware of further developments

of this technique.

I S C

We rstpresent background results on supersingular elliptic curves, their isogeny classes,
and their endomorphism rings. Most results originate fromD ().

Recall that an elliptic curveE de ned over a nite eld of chara eristic p is supersingular
when it has no p-torsion. As a meager compensation for the troubles ahead, we have:

Proposition ... Up to omorph m, every supersingular e iptic curve de ned over a nite
eld of chara er tic p de ned over Fp2 .

As a consequence, it is simple to enumerate all such isomorphism classes. Endomor-
phism rings of supersingular curves can similarly be enumerated simply.

Proposition ... Endomorph m rings of supersingular curves corre ond b e ively tomax-
imal orders ofQp,∞, e qu ernion algebra rami ed only p and∞. Two such curves de ned
overFp2 have e same endomorph m ring if and only if ey are conjug e underGal(Fp2/Fp).

is is why we are sceptical as to the possibilities of substantial improvements on the
computation of endomorphism rings in this case: since all orders are maximal, and there are
exponentiallymany of them, there seems to be noway around considering each, one at a time.
Althoughwe have not yet presented ourmethodwhich exploits the stru ure of the lattice of
orders in the ordinary case, the localization that we have described earlier (andwhich suffices
in dimension one) should convince the reader of the bene t of having such a stru ure.

As for ordinary curves, there is a theory of complex multiplication; however, care must
be taken due to its non-commutativity.

Proposition ... Fix a supersingular curve E . For any le ideal a of End(E ) coprime to p,
e degree of e ogeny φa wi kernel ker(φa) = ∩α�a ker(α) e norm of a; a ogenies

b ween supersingular curves ar e in way.
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If E ′ = φa(E ), en End(E ′) e right order of a, , {x � Qp,∞ : ax ⊂ a}. If
additiona y E ′′ = φb(E ), e curves E ′ and E ′′ are omorphic if and only if a and b are in e
same le ideal cl s.

Much more can be said on the stru ure of this isogeny graph: for instance, when p =
1 mod 12, it is a Ramanujan graph, a particular case of expander graph with desirable prop-
erties, such asmixing properties for randomwalks, whichmakes it notably a suitable building
block for a hash fun ion, as was proposed by C, L, and G ().

 A

To give the above an effe ive avor, let us brie y recall various results related to the
stru ure of quaternion algebras.

e stru ure of the quaternion algebraQp,∞ is readily given by a result of P ()
which states that

Qp,∞ AQ[i, j,k]/(i2− a, j2− b, ij+ ji, ij− k),

for (a,b) =


(−1,−1) if p = 2,
(−1,−p) if p = 3 mod 4,
(−2,−p) if p = 5 mod 8,
(−p,−q) if p = 1 mod 8,

where q can be any prime congruent to three modulo four, modulo which p is not a square.

To enumeratemaximal orders of this algebra, we can exploit the proposition abovewhich
states that the isogeny graph is conne ed. erefore, if O is any maximal order ofQp,∞ and
a ranges through representatives of each le ideal class ofO , then the right order of a ranges
through all maximal orders of the quaternion algebraQp,∞.

TMM–LM

To nd out which eci c maximal order ofQp,∞ is isomorphic to End(E ), MM
and L () proposed to

– count the number of endomorphisms of E of degree ℓ;

– compare it to the number of elements of O of norm ℓ.

By the proposition we saw earlier, isogenies corre ond to ideals, and endomorphisms
corre ond to principal ideals. erefore, when O is the particular order isomorphic to
End(E ), the two numbers must be equal.



  

Repeating the above for various primes ℓ different from the chara eristic rules out orders
O from the candidate list, so that eventually the endomorphism ring alone remains. is
formally proceeds as the following procedure.

Algorithm ...
I: A supersingular e iptic curve E/Fp2 .

O: An order omorphic to its endomorph m ring.
. L L be e l t of maximal orders ofQp,∞.
. Until L a singl on:
. Pick a prime ℓ, and count e degree-ℓ endomorph ms of E .
. Rule out orders of L wi a different count of elements of norm ℓ.
. R urn e only element in L.

For Step MM and L () derive an explicit method in Se ion .; it
boils down to nding integer solutions of a quadratic equation.

is procedure behaves quite well in pra ice: its bottleneck is the enumeration of iso-
genies of degree ℓ from E to E ; MM and L () give explicit formulas for
ℓ = 2 and ℓ = 3, and the isogeny-computing machinery for elliptic curves is nowadays at a
stage of development where such operations can be performed quickly for a large range of ℓ.

However, westress that its termination is not guaranteed, as two distin maximal orders
ofQp,∞ might have the same number of ideals of norm ℓ for in nitely many primes ℓ.

C’ A

Although testing the norm of ideals alone is not sufficient to guarantee the termination
of the endomorphism-ring identifying process, C () observed in his Proposi-
tion . that considering both the norm and the trace yields a sufficient amount of informa-
tion a er nitely many tests. More precisely, he proved the following.

Proposition ... No two maximal orders of e qu ernion algebraQp,∞ have e same s��
tr(α),N(α)

�
: α � O ,N(α) B b

	
where b a cer in bound which O(p).

e norm and trace of such numbers map to the norm and trace of the chara eristic
polynomial of the corre onding endomorphism: we have

φ(2)
a
− tr(φa)φa +N(φa) = 0
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since the degree (or norm) of an isogeny is always known (as we constru them from their
kernels), the trace of φ can be found by testing the possible values in turn over a sufficiently
large extension of the base eld.

is gives the following algorithm.

Algorithm ...
I: A supersingular e iptic curve E/Fp2 .

O: An order omorphic to its endomorph m ring.
. L L be e l t of maximal orders ofQp,∞.
. For successive primes ℓ, starting om ℓ = 2:
. Compute e mult I = {tr(φ)},

where φ ranges over degree-ℓ endomorph ms of E .
. Rule out om L ose orders O for which I ≠ {tr(β)}

where β ranges over e elements of norm ℓ in O .
. R urn e only element in L.

By the proposition above, this algorithm terminates a erO(p) operations. Nevertheless,
since computing the trace of the endomorphisms is extremely costly, the former procedure is
more suited to a large range of pra ical problems, although it is not guaranteed to terminate.
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ubexponential hod

Wehave so far discussed endomorphism-ring computationmethodswith an exponential
worst-case runtime, and will now present one of subexponential complexity.

is method was rst introduced in B. and S () under a form quite
eci c to elliptic curves, and relying on several unproven assumptions. All assumptions but

the GRH were later removed in B. () by modifying parts of the algorithm. Here, we
present a variant of this algorithm which applies to general abelian varieties.

We stress that this chapter considers abelian varieties without taking polarizations into
account, which is not an effe ive approach in dimension g > 1, but allows for a conceptually
simpler presentation. For g = 1, where polarizations are unneeded, it is highly effe ive, and
the next chapter will be devoted to rigorously proving its probabilistic runtime under the
generalized Riemann hypothesis, and its unconditional corre ness.

Modi cations that make our method pra ical for g = 2 will be presented in the last
chapter; they are expe edly slower and rely on more unproven hypotheses.

. Algorithm Overview

LetA be a simple ordinary abelian variety de ned over a nite eld; denote by K its
complex multiplication eld and x an isomorphism ι : K→ Q⊗ End(A ), which will be
implicitly understood from now on.

To locate End(A ) amongst candidate orders of K, the main idea to our subexponential
method is to compute certain properties describing the Picard groups of candidate orders,
and to test them via complex multiplication in the horizontal isogeny graph. Since there
exist subexponential algorithms for computing Picard groups we are done... Almost so.

We now give the main ingredients enabling this approach. Computational details are
given in subsequent se ions, while proofs and rigorous analysis are in the next chapter.





  

L  O

Let us rstbrie y recall results that expresswhere the endomorphism ring is to be sought.

LetA be a simple ordinary abelian variety of dimension g de ned over a nite eld
with q elements. e Frobenius endomorphism π a s on geometric points ofA by raising
their coordinates to the qth power; its chara eristic polynomial χπ(x) is a q-Weil polynomial,
which means that it is monic, has integer coefficients, and has 2g complex roots, each of
absolute valuepq.

Computing this polynomial is equivalent to counting thenumberof points on the variety
over Fqn for n � {1,2,… , g}, as we have

#A (Fqn) = Resu
�
χπ(u),u

n− 1
�
.

S () proved that that this can be done in deterministic polynomial time in log(q)
for elliptic curves; his algorithm was later generalized to abelian varieties by P ().

Many endomorphisms stem from the Frobenius endomorphism, sinceQ⊗End(A ) A
Q(π). Since the complex multiplication eld K = Q(π) is isomorphic toQ[x]/(χπ(x)), by
computing theWeil polynomial ofA we have already determined the endomorphism ring
up to a ions. Fixing ι : K→Q⊗End(A ) means xing this isomorphism; here, we simply
put x = π and make this implicit from now on.

is isomorphism maps End(A ) to an order in K so we have

Z[π,π]⊂ End(A )⊂OK;
the index [OK : Z[π,π]] is the square part of the quotient disc(Z[π,π])/disc(OK), and it
measures how broad the search-range is. As a simple upper bound, we use Δ = disc(Z[π,π])
which Lemma .. proved can be as big as qg2/2+o(1) in the worst case.

e orders of K containing Z[π,π] form the l tice of orders. Since it might contain
exponentially many orders, we need to devise a better way of nding End(A ) than testing
each order in turn. Computing End(A ) locally at many primes ℓ helps, but is not sufficient
since (apart from the case that g = 1) the local lattices themselves might not have any nicer
stru ure than the general one.

Instead of localizing, we use a lattice-ascending algorithm designed to only test polyno-
mially many orders. For those orders O , it tests whether O ⊂ End(A ) using tools derived
from complex multiplication theory.

P I  C

We exclusively consider ideals of norm coprime to Δ, so that they are unrami ed and
invertible in Z[π,π]. Recall that such ideals of O a on the set AVO (k) of abelian varieties
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de ned over the nite eld k with endomorphism ring O by a : A 7→ φa(A ) where φa
denotes the isogeny with kernel

∩
α�a ker(α). We assume that this induces a faithful and

transitive a ion of Pic(O ) on AVO (k); by complex multiplication theory, this is always the
case when O is an imaginary quadratic order, or a ring of integers.

Intuitively, the stru ure of the Picard group of End(A ) therefore di ates that of the
horizontal isogeny graph component containingA . Our approach is essentially to look at
the latter and deduce information on the former, which might eventually lead to the identi-
cation of End(A ). We formalize the notion of stru ure by the following concept.

De nition... An ideal a ofZ[π,π] said to be principal inO if e ideal aO principal;
it said to be principal in the isogeny graph when e ogeny φa an endomorph m ofA .

In fa , wemeant φaEnd(A ) rather than φa since we want it to a onA even though a is
an ideal of Z[π,π]. Obviously, since we are looking for End(A ) we cannot really compute
aEnd(A ), but we will see later that φaEnd(A ) can be computed regardless.

erefore, an ideal is principal in End(A ) if and only if it is principal in the isogeny
graph, which gives a way to tell the endomorphism ring apart fromother orders of the lattice.
To avoid testing all orders, we rely on this simple result.

Lemma ... If an ideal principal in some order, it principal in a orders con ining it.

Indeed, ifO ⊂O ′ are two orders containingZ[π,π], themap a � I(O ) 7→ aO ′ � I(O ′)
induces, as we have mentioned before, a surje ive morphism of Picard groups. Intuitively,
this means that more and more ideals become principal as we ascend the lattice of orders, or
equivalently that Picard groups get smaller. is is why we choseZ[π,π] to be the ring of our
ideals: via the morphism a 7→ aO we can map ideals ofZ[π,π] to any order of the lattice.

Computationally, the lemma above implies that by verifying whether principal ideals of
O are also principal in the isogeny graph, we can convince ourselves that O is contained in
End(A ). However, this approach does not prove anything (in fa , it fails in certain rare
cases that we will cover later); to rigorously assert the location of the endomorphism ring,
we use the following concept.

De nition ... A certi cate for e order O cons ts of:

– a family of orders Oi and ideals ai principal in Oi but not in O ,
– a family of orders Oj and ideals aj principal in O but not in Oj,

such O e only order abo eZ[π,π] s fying Oi ̸⊂ O and Oj ̸⊃ O for a indices.
It said to be veri ed on e abelian vari yA if e ideals aj are principal in its ogeny

graph where e ai are not.



  

If a certi cate for the orderO is veri ed on the abelian varietyA , by the contrapositive
of the lemma above, then we have End(A ) = O . In fa , the family (Oi,ai) is effe ively
constru ed when one executes the lattice-ascending walk that we are about to describe; the
family Oj is then typically chosen to consist of all orders immediately below O , that is, just
one level below O in the lattice of orders.

e next se ion will address the search for ideals and, as a consequence, show that it
takes L(qg2)1/4γ+o(1) time to generate a certi cate that can subsequently be veri ed within
L(qg2)3gγ+o(1) operations, as q goes to in nity and γ is any positive constant real number. is
eliminates the need to carefully ensure the corre ness of our algorithm: we can simply run
an algorithm that is only proven to return a corre result with probability ε > 0 and, when
it does return a result, verify it using our certi cate method; if it proves to be incorre , we
start over. e expe ed overhead on the complexity is 1/ε.

C  B

To search for the endomorphism ring End(A ) in the lattice of orders, we test whether
orders O lie below it by sele ing principal ideals of them and checking whether they are
principal in the isogeny graph.

It remains to design a general strategy to sele the orders to be tested.

We shall say that an order O lies dire ly above another O ′ if we have O ⊃O ′ but there
exists no order O ′′ different from O and O ′ satisfying O ⊃ O ′′ ⊃ O ′; we also de ne the
corre ondingnotionof “dire ly below”where inclusions are reversed. As an example, when
an order contains another with prime index, then it must lie dire ly above it.

To ascend the lattice of orders, we proceed one step at a time: each step consists in enu-
merating all orders lying dire ly above a prescribed orderO ′. We have seen that the index of
O ′ in any order dire ly above it is a divisor of ℓ2g−1where ℓ is a prime fa or of [OK :Z[π,π]].
By fa oringΔwe therefore obtain the possible values of ℓ, andwe can then use the algorithm
described earlier that lists those orders containing O ′ with a prescribed index.

Ourstrategy to locate the endomorphism ring in this lattice by testing orders and ascend-
ing in corre onding dire ionsworks as follows: given someorderO ′ contained inEnd(A )
(westartwithO ′ =Z[π,π]), nd someorderO dire ly aboveO ′which lies belowEnd(A );
then replace O ′ by O and iterate the process. e ascension ends when no O is found to be
contained in End(A ); then, wemust have End(A ) A O ′. See Figure  where we start from
the bottom and ascend towards orders O for which the statement O ⊂ End(A ) holds.

Formally, we obtain the following algorithm.



..   

false

false

true

Z[π,π]

OQ(π)

EndA

true

true

true

false

F . Locating End(A ) by ascending a test-sequence of orders.

Algorithm ...
I: A simple ordinary abelian vari yA over a nite eld Fq.

O: An order omorphic to its endomorph m ring.
. Compute e Frobeni polynomial χπ(x) ofA .
. Fa or e d criminant Δ and constru e order O ′ =Z[π,π].
. For orders O dire ly abo e O ′:
. If O ⊂ End(A ) s O ′←O and go to Step .
. R urn O ′.

To testwhether an order lies aboveO we compute sufficiently many principal ideals of it
and test whether they are principal in the isogeny graph. Before detailing this process, let us
present an alternative approach to locating the endomorphism ring in the lattice of orders.

e next se ions will show that it requires L(|Δ|)1/4γ+o(1) time to nd random principal
ideals O whose associated isogenies can be computed within L(|Δ|)3gγ+o(1) operations; to
balance these costs, we set γ = 1/

p
12g and since |Δ| < qg2+o(1) we nd an overall runtime of

L(q)g
p

3g/2+o(1).

Note that for g = 1 we can do better by using a faster isogeny computing method whose
exponent is just 2γ instead of 3gγ for the arbitrary-dimension method.



  

C A

Rather than start at the bottom of the lattice and ascend towards the endomorphism
ring, we can generate certi cates for each order starting from the top and attempt to verify
them; to ensure this only uses subexponentiallymany operations, we trim the lattice of orders
as we go. e runtime is then bounded in the size of the output, rather than the input. e
method ofW () had a similar feature; however, our bound is subexponential.

In most cases, there are only polynomially many orders in log |Δ|, but to give a subexpo-
nential bound on the complexity of our algorithm when there are exponentially many, we
elimin e small branches of orders as we go; these branches corre ond to small prime power
fa ors ℓ of the index [OK : Z[π,π]]; by “eliminating them,” we mean computing the endo-
morphism locally at ℓ using the method of E and L (). Formally,
we proceed as follows.

Notation. Let bx(f(x)) denote any fun ion satisfying f(x) < bx(f(x)) < f(x)1+o(1) that can
be evaluated in essentially linear time in f(x).

Algorithm ...
I: A simple ordinary abelian vari yA over a nite eld Fq.

O: An order omorphic to its endomorph m ring.
. Compute e Frobeni polynomial χπ(x), and fa or [OK :Z[π,π]] ∏

ℓvℓ .
. S S←Ø and r← 2.
. For a primes ℓ wi ℓ2gvℓ < br

�
exp
p
log(r)

�
:

. If ℓ � S, compute End(A )ℓ and add ℓ to S.
. For a orders O wi ∀ℓ � S,Oℓ = End(A )ℓ and |disc(O )| < r:
. Test wh her End(A ) = O ; if yes, en r urn O .
. S r← r1+1/bq(logq) and go back to Step .

Step  applies the method of Eisenträger and Lauter locally at ℓ; its complexity is there-
fore ℓ2gvℓ+o(1), omitting polynomial fa ors in log(q). e inequality of Step  thus ensures
that no more than Lo(1)(r) operations are ent there.

e cost of generating a certi cate for O is bounded by L(disc(O ))1/4γ+o(1) when the
veri cation time is bounded by L(disc(O ))3gγ+o(1); to balance these, Step  uses γ = 1/

p
12g

which gives it a complexity bound of L(disc(O ))
p

3g/2+o(1). Step  ensures that:

– only orders that match the local information obtained in Step  are tested;

– testing them all uses at most LO(1)(r) computing time.
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Step  increments r little by little so that, on the one hand, it never goesmuch beyond the
discriminant of End(A ), and, on the other hand, it takes only O(g logq)2 iterations for r to
reach |disc(Z[π,π])| =O(qg2+o(1)) and thus for our algorithm to have considered all orders.

To bound the number of orders to be tested in Step , assume that there are at most
n1+o(1) orders contained in O with index n; this is a classical fa for g = 1 (since orders are
identi ed by their index inOK) and it has been proven by N () for g = 2. We
thus nd that for r = n2 the number of orders satisfying the condition of Step  is bounded,
up to exponent 1+ o(1), by the number of divisors of

�OK :Z[π,π]�, ∏
ℓgvℓ<exp

p
log r

ℓvℓ

that are less thann, where the denominator removes primepowers fromS; a crude calculation
shows that this number is bounded polynomially in log(q).

Ignoring the cost of fa oring the discriminant Δ, and omitting polynomial fa ors in
log(q), we obtain an overall complexity of

L
�
disc(EndA )

�p3g/2+o(1) .

. Finding Principal Ideals

To test whether some prescribed order O lies below the endomorphism ring of a sim-
ple ordinary abelian varietyA , we rst compute principal ideals a that discriminate the
stru ure of Pic(O ) from that of other orders containingZ[π,π]. en, we evaluate the cor-
re onding isogenies; for this reason, we compute the fa orization a =

∏
pzp and then

evaluate φa as the composition of zp times the isogeny φp, for all p.
We therefore consider smooth ideals with small exponents, which we call short ideals.

GM

LetB be a generating set of ideals for the Picard group of an order O in a number eld
K; for instance, under the generalized Riemann hypothesis, we can take for B the set of
prime ideals of norm less than 12 log2 |discO |. By computing rel ions ofB, wemean nding
produ s of ideals ofB that are principal.

For convenience of the exposition and of the implementation, letB a ually generate the
Picard group of the minimal orderm; this way, the set {bO : b � B} generates the Picard



  

group of any order O containingm, and its relations are ve ors under the produ map

σ :
� ZB ¹→ I(m)

x 7¹→ ∏
p�B pxp

.

If we let σO (x) denote the ideal class of Pic(O ) containing the ideal σ(x)O , then the set of re-
lation ve ors x �ZB forO is exa ly the lattice ΛO = ker(σO ). Note that sinceB generates
the Picard group, the map σO is surje ive and we have

PicO AZB/ΛO
whichmeans that computing relations is essentially equivalent to computing the groupstruc-
ture of Pic(O ). e principal ideals of O we search for will be obtained in the form σO (z),
where z �ΛO is a relation ve or to be found.

To nd kernel ve ors of σO , we rst need to identify a nite subset of ZB which is
big enough to contain a generating set for ΛO . Let n denote the class number of O ; since
Pic(O ) is generated by B and its elements have order n at most, the box {0,… ,n − 1}B
maps surje ively onto the Picard group via σO . As a consequence, there exists a generating
set for ΛO contained in the box B = {0,… ,n}B. We are the proof to the reader, since a
much better bound will be derived (and proved) shortly.

Note that the class number n satis es n = |discO |1/2+o(1); however, analytic methods
can be used to derive effe ive, tighter bounds on n.

To nd relations of the group G = Pic(O ) on B, one can use the baby-step giant-step
method. It consists in litting the basis B into a disjoint union B0 ⊔B1 of two sets of
approximately equal size, so that this litting carries over to box B and decomposes it as a
dire produ B0 ×B1, where Bi is the set of ve ors of B with support inBi.

Algorithm ...
I: A box B where to look for rel ions under σO : B→G.

O: A rel ion, , a ve or of ker(σO ).
. Split B e dire produ B0 ×B1.
. For ve ors x � B0: store x in a ble indexed by σO (x).
. For ve ors y � B1:
. If (σO (y))−1 = σO x, r urn e rel ion x+ y.

e table constru ed in Step  is typically implemented as a hash table, so that the cost
of the lookup in Step  is negligible. A Gray code can be used to enumerate elements of
B0 and B1 so that each evaluation of σO just requires O(1) operations. is algorithm then
requires an expe ed O(

p
n) number of group operations and storage ace.
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Note that a ace-efficient generic method for nding relations in arbitrary nite groups
will be presented in the next chapter; it can be used in Picard groups in particular. For the
moment, let us discuss a simple application of such generic algorithms to the computation
of endomorphism rings.

R   E R

Let us brie y present an alternative to our approach to computing the endomorphism
ring End(A ) of a simple ordinary abelian varietyA de ned over a nite eld: we rst gave
a method for computing End(A ) om below by nding principal ideals of candidate orders
and testing them in the isogeny graph; then we gave a method which works om abo e by
attempting to prove that O = End(A ) for orders O of increasing discriminant.

Amore dire way of computingEnd(A ) omabo e is simply to reverseour rstmethod
which proceeds om below: rather that nding relations of orders and evaluating them in the
isogeny graph, we can nd relations in the isogeny graph and evaluate them in Picard groups.

is gives the method below.

Algorithm ...
I: A simple ordinary abelian vari yA over a nite eld Fq.

O: An order omorphic to its endomorph m ring.
. Compute e Frobeni polynomial χπ(x) ofA .
. Fa or e d criminant Δ and constru e order O ′ = OK.
. For orders O dire ly below O ′:
. If End(A )⊂O s O ′←O and go to Step .
. R urn O ′.

To test whether End(A ) lies below some order O , we nd isogeny chains fromA to
itself: in the baby-step giant-step algorithm above, it suffices to replace σO by the map

x �NB 7¹→ φp1
◦ · · · ◦ φp1︸ ︷︷ ︸
xp1

times

◦φp2
◦ · · · ◦ φp2︸ ︷︷ ︸
xp2

times

◦ · · · (A )

(better yet, use thePollard approach of the next chapter); once a principal ideal of the isogeny
graph is found, it suffices to check whether it is principal in the order O as well.

is approach has the advantage that, quite o en, only one relation of the isogeny graph
suffices to rule out all orders but one, so the endomorphism ring is computed in justone shot.

As before, this is a probabilistic process: the ideal we nd in End(A )might a ually also
be principal in some stri ly smaller order; in order to increase the probability of success, we
can use several relations, but to unconditionally prove the output (henceforth transforming
our method into an algorithm of Las-Vegas type), we have to rely on certi cates.



  

S A

S () rst gave an algorithm for nding relations of ΛO when O is an imagi-
nary quadratic orders; building upon it, H and MC () proved that the
full Picard group stru ure, that is, a generating set for ΛO , can be determined in proven
subexponential time under the generalized Riemann hypothesis. is was later extended by
B () to arbitrary number elds, under additional heuristic assumptions.

All nd relationsusing a classical smoothness-based techniquewhich exploits the integer-
like stru ure of ideals in number elds.

Algorithm ...
I: A box B where to look for rel ions under σO : B→ Pic(O ).

O: A rel ion, , a ve or of ker(σO ).
. Take a random element x � B and compute a = σO (x).
. Reduce a to an equivalent but sma er ideal b.
. If possible, nd a preimage y � σ−1O (b) and r urn x− y.
. R urn to Step .

To nd preimages easily, S () takes as basisB the set of prime ideals of norm
less than some bound, so that the existence of a preimage in B can be asserted by a smooth-
ness test on the norm of the ideal, and the fa orization of that norm yields the preimage.
Several ingredients are needed to bound its complexity, the most important one being that
a random integer in {1,… ,n} has a probability L(n)−1/2c+o(1) of being L(n)c-smooth, for any
constant c > 0; in the case that O is an imaginary quadratic orders, S () proved
that norms of reduced ideals are distributed as random integers; in fa , this behavior is ob-
served, although not proven, for orders of general number elds as well.

e next chapter will present all these arguments rigorously.

S B

Since our relations (and the ideals derived from them) are expe ed to discriminate the
endomorphism ring from other orders of the lattice, we must ensure that when we generate
a relation in ΛO for some order O , it does not belong to ΛO ′ for some other order O ′. Of
course, we have seen that O ⊂ O ′ implies that ΛO ⊂ ΛO ′ , and our lattice-ascending algo-
rithm a ually takes advantage of that, so we should rather require the above for orders O ′
not above O , that is, O ̸⊂ O ′.

Note that there exist orders O ≠ O ′ with ΛO = ΛO ′ , but not too many: for g = 1, there
are just three such cases, and we can easily fall back on a eci c method to deal with them.
Rigorous details will be given in the next chapter.
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In general, to ensure that the relations z we generate belong to ΛO but not another ΛO ′ ,
we require that they are random rel ions in the sense that, for any orderO ′ aboveO , we have

Prob
�
z �ΛO ′ |z �ΛO � = #PicO ′

#PicO + o(1);

in other words, the relation is quasi-uniformly distributed in the quotient ΛO ′/ΛO .
To obtain random relations ofO , H andMC () used ve ors zwith

coordinates up to n4, where n is the class number. In the Picard group, a double-and-add
method can be used to compute each term pzp in time linear in log(n), so that σO can be
evaluated in subexponential time.

However, for thepurpose of checkingwhether the ideal σ(x−y) is principal in the isogeny
graph, the associated isogeny needs to be evaluated. For this, there is no double-and-add
technique, and the isogeny φp has to be evaluated zp times, which makes the bound n4 on
the coordinates quite painful. Note that since y is the exponent ve or in the fa orization of
the norm of a reduced ideal, it is at most linear in logn, so what is really needed here to keep
the isogeny-computing cost low is just to nd a smaller box B for which the quasi-uniform
distribution of classes still holds.

A conje ural small box was rst used by B. and S (); later, C,
J, and S () noted that a result of J,M, andV ()
enables to prove, under the generalized Riemann hypothesis, that such a box indeed yields
random relations. We conclude with an explicit version of the general algorithm.

Algorithm ...
I: An order O of d criminantD.

O: A random rel ion z �ΛO .
. Form e s B of primes p of O wi norm less anN= L(D)γ.
. Draw uniformly random a ve or x �ZB wi coordin es
|xp| < bD(log4+ε |D|) ifN(p) < bD(log2+ε |D|), else xp = 0.

. Compute a reduced ideal a in e cl s σO (x).
. If a fa ors overB

∏
pyp en r urn e ve or x− y.

. O erw e, go back to Step .

Here, ε stands for any xed positive real number. Step may use the LLL algorithm aswe
mentioned earlier; for any “good” redu ionmethod, the probability that Step  is successful
is L(D)−1/4γ+o(1); the overall complexity is then L(D)1/4γ+o(1) to generate a relation of length
L(D)γ; the longer the relation, the costlier the evaluation of the associated isogeny.



  

. Computing the A ion of Ideals

Wenowconsider effe ivemeans of testingwhether an ideala a s trivially on the isogeny
graph of an abelian varietyA . Here, we focus on the case of elliptic curves, but certain bricks
will be reused in the last chapter for abelian varieties of dimension two.

M E 

Once a principal ideal a of O in the form
∏

B pzp is found, we wish to determine
whether the associated isogeny a s trivially onA ; in fa , this does not require explicitly
evaluating the isogeny φa, but only determining whether it mapsA onA .

Elliptic curves isogenous to a given one with a prescribed way can be listed efficiently via
modular polynomials; this uses j-invariants to identify isomorphism classes of curves, and
modular polynomials Φm(X,Y) which we now recall.

Proposition ... For any m � N, ere ex ts some polynomial Φm(X,Y) � Q[X,Y] of
degree m+1 such , over elds of chara er tic coprime tom, e j-in ariants of e iptic curves
m- ogeno to a prescribed j0 are exa ly e roots ofΦm(X, j0).

C () proved the bit-size of Φm to beO(m3+o(1)). It can be computed in quasi-
linear time by the oating-point method of E (), or by the alternative method of
B, L, and S () based on the Chinese remainder theorem,
which offers additional advantages such as reduced memory requirements.

To test whether φa a s trivially onA , we can evaluate ΦN(a)(X,Y) at (j(A ), j(A )). If
the result is non-zero, then φa cannot sendA toA ; if the result is zero, then there exists
one isogeny of degree N(a) fromA toA , but it need not be φa in general.

For pra ical purposes, rather than seeing φa as an isogeny of degree N(a), we see it as
a chain formed of zp isogenies of norm N(p) for each p � B. Consequently, it suffices to
compute the modular polynomials ΦN(p) and to combine them as isogeny steps. We now
detail this procedure, in a manner which also addresses the issue of the previous paragraph.

C

When we evaluate ΦN(p)(X,Y) at X = j(A ), the roots in Y are the j-invariants of the
codomain of degree-N(p) isogenies with domainA . Amongst these roots lies φp(A ) but
we have no information as to which it is.

To address this, we can explore a isogenies of degree N(p). When a has many fa ors,
this can be costly as we might have to consider several roots of ΦN(p) at each step of the
isogeny chain, therefore eventually exploring an exponential number of varieties in logN(a).
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Endomorphism rings of elliptic curves are imaginary quadratic orders, and there are
therefore at most two ideals of a given prime norm: p and p. In the isogeny chain

A0

φp¹→A1

φp¹→ ·· · φp¹→Azp

corre onding to the fa or pzp of a, the conjugate prime p a s onAi as the dual isogeny of
φp :Ai−1→Ai. us, for i > 0,we candeterminewhichof the two roots ofΦN(p)(j(Ai),Y)
is not going backward in the chain, and the two roots need to be considered only for i = 0.

is helps when a does not have many prime fa ors but has one with high exponent:
rather than just testing if

∏
B pzp is principal, we count how many produ s

∏
B
bpzp are,

where bp � {p,p}; this is equivalent to counting the number of endomorphisms ofA that
are chains consisting in zp non-backwards isogenies of degree N(p), for each p.

When there are just two ideals p and p of normN(p), this gives:

De nition ... L
∏

B pzp be e fa oriz ion of an ideal a �Z[π,π].
Its cardinality inO e number of ve ors (bp) �∏p�B{p,p} forwhich∏B

bpzp trivial.
Its cardinality in the isogeny graph ofA e number of chains formed by zp ogenies of

normN(p), for each p �B, which mapA onto itself.

ese two quantities are the same forO = End(A ), and, for elliptic curves, we evaluate
the latter via using the method below starting from the j-invariant j0 = j(A ).

Algorithm ...
I: A j-in ariant j0 and an ideal

∏
B pzp .

O: e cardinality of ideal in e ogeny graph of j0.
. L J′ be e l t (j0).
. For each p �B:
. S J← J′ and l J′ be an empty l t.
. For each j in J:
. L {j+, j−} be e roots ofΦN(p)(X, j), and s j′+← j and j′−← j.
. Repe zp− 1 times:
. S (j′+, j+)← (j+, e root ofΦN(p)(X, j+) different om j′+).
. S (j′−, j−)← (j−, e root ofΦN(p)(X, j−) different om j′−).
. Append j+ and j− to J′.
. R urn e multiplicity of j0 in J′.

Since we compute two branches for each prime fa or of a, the overhead this cardinality
algorithmadds on the principal approach is 2wwherew is thenumberof prime fa ors. When
w is small, this is greatly compensated by the eed of using modular polynomials.



  

CM A

We brie y review results on evaluating the explicit isogeny φp associated to an ideal p.
Recall Proposition .. which states that invertible prime ideals p of O written as

ℓO + u(π)O a on the kernel of the associated isogeny φp with chara eristic polynomial
u. erefore, to tell the isogeny φp apart from other isogenies of degree N(p), one need just
compute the a ion of the Frobenius endomorphism on its kernel.

To evaluate isogenies from their kernels, we use the formulas of V () for elliptic
curves, and their generalization to abelian varieties by L andR () together
with the improvements of C and R (). ese methods take as input a sub-
groupH of an abelian varietyA and output the isogenyA →A /H . Since they work
with principally polarized abelian varieties, they additionally require thatH be a maximal
isotropic subgroup with re e to theWeil pairing, and that it be isomorphic to (Z/ℓ)g.

We thus seek ideals a =
∏

qzq where the kernel of each φq is maximal isotropic and of
type (Z/ℓ)g; to this extent, in dimension g > 1, we restri to ideals a arising via the re ex
type norm, on which the last chapter will say more. When we have a prime decomposition
q =
∏

p for a eci c term q, the Frobenius endomorphismmust a on ker(φq) with char-
a eristic polynomial

∏
up(x) where the up(x) are such that p =N(p)O + up(π)O .

Finally, we observe that, ifA is an ordinary abelian variety of dimension g de ned over
a nite eld, all points of rational subgroups of type (Z/ℓ)g are de ned over an extension of
degree at most ℓg− 1.

e chara eristic polynomial of the a ion, on such a subgroupH , of the Frobenius
endomorphism divides χπ(x) mod ℓ, and themultiplicative order n of xmodulo this fa or is
precisely the extension degree over which all points ofH are de ned. erefore, to evaluate
the degree of an extension over which all points of rational subgroups of type (Z/ℓ)g are
de ned, it suffices to compute the least common multiple of the multiplicative order of x
modulo the degree-g fa ors of χπ(x) mod ℓ.

DM

Let q be an ideal such that ker(φq) is a maximal isotropic subgroup of order ℓg inA . In
order to compute this isogeny, we combine several classical tools into the algorithm below. It
requires a basis for the ℓ-torsion ofA de ned over a certain extension, which we will soon
explain how to compute; the kernel is then identi ed by the polynomial u =

∏
up with

up de ned as above, and we use the explicit isogeny algorithm to compute φq from it. We
make this algorithm output the isogenous curve φq(A ), so it can readily be plugged in to
our endomorphism ring computing method.
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Algorithm ...
I: An abelian vari yA /Fq wi Frobeni polynomial χπ

and a sui ble ideal q of norm ℓg.
O: e ogeno vari y φq(A ).

. Find a b (Pi) of eA [ℓ] over e extension of degree ℓg− 1 of Fq.
. Write e m rixM of e Frobeni endomorph m on e b (Pi).
. Enumer e ose sub aces of dimension g stable underM �Mat2g(Z/ℓZ).
. D ermine which corre onds to q ing e Frobeni a ion.
. Compute e ogeny of which eigen ace e kernel.

For a maximal isotropic subgroup ofA of order ℓg de ned over the extension of de-
gree ℓg − 1 of the base eld, the method of L and R () requires ℓ3g+o(1)

operations as g is xed and ℓ goes to in nity.
Step  decomposes π(Pi) as

∑
j�{1,…,2g}MijPj for which a baby-step giant-step approach

uses O(ℓg) operations over the extension eld. Step  is classical and takes quasi-linear time
in gω log(ℓ) where ω < 2.376 is the best known exponent for matrix multiplication.

Finally, Step  uses eorem  ofC (), where the extension is chosen so
as to contain all points of rational subgroups of type (Z/ℓ)g. e simple algorithm we give
below a ually computes all such points, from which a basis can easily be extra ed; it works
by sele ing random ℓ∞-torsion points and li ing them along each others. Here, we let k(P)
denote the valuation at a xed prime ℓ of the order of a point P.

Algorithm ...
I: An abelian vari yA /Fq wi Frobeni polynomial χπ and a prime ℓ.

O: e ℓ-torsion subgroup ofA over Fqℓg−1 .
. Write #A (Fqℓg−1) mℓk where ℓ ∤m.
. Cre e an empty soci ive array B.
. While B h fewer an ℓ2g keys:
. L P =mO whereO a random point ofA (Fqℓg−1).
. For j om k(P)− 1 down to 1, if ℓjP a key of B:
. If j > k(B[ℓjP]) en go to Step .
. S P← P− ℓk(B[ℓ

jP])−j−1B[ℓjP].
. If P = 0 en go back to Step .
. For a keysQ of B and x � {1,… , ℓ}, s B[ℓk(xP+Q)−1(xP+Q)]← xP+Q.
. R urn e keys of B.

Random points ofA can be drawn efficiently whenA is given as the Jacobian variety
of a curve in Weierstrass form. Using the last two algorithms, we compute, in Mumford



  

coordinates, the kernel of the isogeny that we wish to evaluate; we then convert it to theta
representation where the algorithm of C and R () is applied, and nally
use the method of M () to convert the codomain variety back as the Jacobian of
a curve inWeierstrass form, so that the whole process can be iterated.

Since the cardinality ofA (Fqℓg−1) is qgℓ
g+o(1) multiplying random points of it bym uses

O(gℓg logq) operations inA (Fqℓg−1). Similarly, all orders are bounded by k = O(gℓg logq).
Finally, the probability of going back to Step  is O(1/ℓ) as proven byC ().

Using fast eld arithmetic, and representing points ofA in Mumford coordinates, op-
erations inA (Fqℓg−1) have a bit complexity of (ℓg logq)1+o(1); if an efficient data stru ure
such as a red-black tree is used to store the keys of B, we have:

Proposition ... L A /Fq be an abelian vari y of known Frobeni polynomial, and q
a sui ble ideal of Z[π,π]. Algori m .. r urns e abelian vari y φqEnd(A )(A ) in time
bounded by (ℓg logq)2+o(1), g xed and ℓ goes to in nity.

Note that, in Algorithm .., rather than storing the whole ℓ-torsion subgroup in an
associative array, a pairing could be used to tran ort discrete logarithm problems to a nite
eld where they can be more efficiently solved. is technique gives a valuable eedup for

large values of ℓ, although the overall complexity remains polynomial in ℓ due to the exten-
sion eld arithmetic.

. Pra ical Computations

We now present the algorithms used and results obtained by pra ical runs on elliptic
curves. Applying the same techniques to general abelian varieties will be the topic of the last
chapter. Timings reported hereweremeasured on a single core of a recent desktop computer,
such as an AMDOpteron clocked at 2 GHz.

B  C

Let E be an ordinary elliptic curve de ned over a nite eld Fq. e rst step of our
algorithm is to compute the chara eristic polynomial χπ of the Frobenius endomorphism of
E . It is equivalent to counting the number of points ofE which is of the formχπ(1) = p+1−t
for a certain integer t � {−2pq,… ,2pq}. Over a base eld of cryptographic size, say, with
q a prime of 256 bits, this takes under ten seconds on just one core of a standard desktop
computer using the Schoof–Elkies–Atkin algorithm. Note that further developments by
S () nowmake this possible for primes p over 5000 decimal digits.

Next, we need to nd principal ideals of orders O , and start by deciding which prime
fa ors we want them to have. For maximal orders O of imaginary quadratic elds, B
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F . Dots plot the minimal k such that every class of Pic(O ) contains the produ
of a subset of Sk. Gray dots cover all imaginary quadratic orders O of discriminant at least
−108, and black dots are for 104 random O drawn according to a logarithmic distribution.

e lines represent k = d log2(#PicO ) for d = 1,2.

() proved under the generalized Riemann hypothesis that the primes up to 6 log2 |Δ|
generate the Picard group, whereΔ is the discriminant ofO . Heuristically, we nd thatmuch
less are necessary, which lead to the following conje ure.

Conje ure ... For any d > 1, if O an imaginary quadr ic order of sufficiently large
d criminant, en any cl s of Pic(O ) con ins e produ of a subs of Sk, where Sk con ins
e rst k = d log2(#PicO ) non-principal prime ideals.

is is a ually stronger than asking for Sk to generate the Picard group: it requires that
Sk generates it wi bounded exponents in {0,1}. However, it is a natural conje ure to make
since it asserts that the set Sk behaves as a random subset of Pic(O ) would in the sense of
Proposition . of I and N (). Our empirical veri cations have not
found a single order for which the conje ure does not hold with d = 2; for values of d closer
to 1, we found this to be true for many orders above a certain lower bound, as can be seen on
Figure .

e above is most useful when generating relations using generic methods: it states that
only slightly more primes than a cardinality argument would require a ually suffice. is
yields short associated isogenies (which are a must in dimension two).



  

However, as we strive to balance the cost of nding a principal ideal in O with that of
evaluating the associated isogeny, generic methods do not scale well: for discriminants of
more than 128 bits, a generic method would require above 32 operations in Pic(O ); from
there on it is therefore advisable to switch to the subexponential method of S ().
Note that by the conje ure we can use a box with support in Sk.

Since our principal ideals rarely have more than 10 prime fa ors, it is really worth using
the cardinality approach: modular polynomials permit one to compute isogenous curves
quickly, and they can be precomputed and reducedmodulo p for all the primes ℓwe consider,
whereas computing the torsion would have to be done from scratch at each step.

H C  DO

So far, our endomorphism ring computing method tested whether O ⊂ End(A ) for
various orders O ; since this process has a small probability of failure, we then certi ed the
candidate order so as to unconditionally verify our result.

In B. and S (), we used a quite different approach which simultane-
ously nds O and veri es it. It exploits the particular stru ure of the lattice of orders for
elliptic curves; we start by recalling this stru ure.

Let w denote the index ofZ[π] in OQ(π) where π denotes the Frobenius endomorphism
of an ordinary elliptic curve de ned over a nite eld. OrdersO of K =Q(π) have the form
Z+ fOK where f is the integer that generates their condu or overOK; therefore, inclusion of
orders corre onds to divisibility of condu ors, so that orders containingZ[π] are in bijec-
tion with divisors f of w.

Let pi be a prime power dividing w, and consider the problem of deciding whether pi
divides the condu or u of End(E ). Here, a certi cate for pi needs only consist of one ideal a
which is principal in the order of condu orw/pvalp w−i+1 but not in that of condu or pi: if a
is principal in the isogeny graph ofE , thenwe necessarily have pi|u. Indeed, in that situation,
End(E ) does not contain the order with condu orw/pvalp w−i+1, whichmeans its condu or
u divides w without dividing w/pvalp w−i+1, in other words, pi divides u.

In number elds of degree greater than two, it does not seem to be possible to certify
orders in a nice way as above, using just one ideal; that is why we needed to develop a more
general method for arbitrary abelian varieties.

G E

Let E be the elliptic curve withWeierstrass equation

Y2 = X3− 3X+2728849899765998058103612158899570741955717345
over Fq with q = 2872801286401014961877470682093858455400487431
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is curve is ordinary and it has q+1− t points, for a trace t of 1868. e discriminant of π
is 4q− t2 and its fa ors as−7w2 where

w = 2 · 127 · 524287 · 304250263527209.

We rst compute the endomorphism locally at 2 using the method of E
and L (), which is nearly instantaneous; it nds that the order with condu or 2
does not contain End(E ).

For the prime 127, we use the local method of K (): since Φ127(j(E ), ·) proves
to have multiple roots, 127 does not divide the condu or of End(E ). is also takes negli-
gible time.

Since End(E ) was found to be maximal locally at 2 and 127, we can now simply set
w→ w/254 and work with this new w. For the bigger primes, we turn to nding principal
ideals with a generic method and verifying them in the isogeny graph. We choose to work
with the degrees 11, 23, 29, 37, and43,meaning thatwe look for a principal ideal as a produ
of prime ideals of norm these numbers. Note that it is interesting to use only a few primes
here since then few modular polynomials have to be computed, and can be reused many
times.

Using hardcoded certi cates, it is easier to deal with bigger primes, so let use start with
the biggest one p. Using the baby-step giant-step method, we nd in just a second that the
relation 234 · 297 · 37,17 · 434 has cardinality 4 in the order with condu or w/p, and zero
in that with condu or p. Computing the associated tree of isogenies took 9 seconds; as it
turns out, the cardinality of the relation in the isogeny graph is 4 as well, therefore p does not
divide the condu or of End(E ).

We nish with p = 524287: again, we look for a relation with the baby-step giant-step
method; it takes roughly 20minutes to uncover the relation 1147 · 23707 · 29540 · 37103 · 43197

which has cardinality 2 in the order with condu or w/p, and zero in that with condu or
p. e associated tree of isogenies took 6 minutes to compute, and since the relation has
cardinality zero in the isogeny graph, we conclude that End(E ) has condu or p.

In less than half an hour, we therefore established that End(E ) =Z+524287OK.
e runtime of this generic method is bounded by q1/4+o(1) but if we had computed

End(E ) om abo e by searching for relations in its isogeny graph, the bound would have
been (discEnd(E ))1/4+o(1). However, since our curve was generated with the complex mul-
tiplication method (to give it an interesting endomorphism ring), it would not have been
fair: we would have found End(E ) much too quickly!



  

S E

Let E be the elliptic curve withWeierstrass equation

Y2 = X3− 3X+660897170071025494489036936911\
196131075522079970680898049528

over Fq with q = 160693804425899027555081234320\
6050075546550943415909014478299

where the backslash symbol denotes that a number has been wrapped over to the next line.
Again, the curve is ordinary and it has trace t = 212 (which it takes just a few seconds to
compute). Fa oring the discriminant 4q− t2 ofZ[π], we nd that

w = 2 · 127 · 524287︸ ︷︷ ︸
p1

· 7195777666870732918103︸ ︷︷ ︸
p2

.

As before, the primes 2 and 127 can be dealt with by climbing the local volcano. None
of them divides the condu or u of End(E ); this only takes a few seconds.

To determine whether p1 divides u, we use the algorithm of S () with the
smoothness bound 600 to nd a relationwith non-zero cardinality in the order of condu or
w/p1. It takes about four minutes to nd the relation

21798 · 233 · 291 · 372 · 5329 · 1371 · 1491 · 2331 · 2632 · 5471

whose cardinality in the order with condu or p1 is zero. Computing the relevant modular
polynomials via themethod ofB, L, and S () requires under
four minutes and the associated tree of isogenies is found to have cardinality zero within just
a minute; as a consequence, we deduce that p1 is a fa or of u. Note that, here, we made
use of the prime 2 although it divides the index w; this process is described in Se ion . of
S ().

For the prime p2, this is, as expe ed, much faster: the relation 223 ·115 ·431 ·712 is found
to have positive cardinality in the order with condu or w/p2 but not that with condu or
p2. It is found that p2 does not divide u and the whole process takes just a few seconds.

In about 5 minutes, we have thus proved that End(E ) has condu or 524287, but note
that this computation was much more difficult than the previous one due to the larger size
of p2 here: it could not have been achieved with generic methods.
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omplexity nalys

is chapter is devoted to a rigorous analysis of the method that we have just presented;
the main result is a proof, under the generalized Riemann hypothesis, that our algorithm
indeed computes endomorphism rings of ordinary elliptic curves in subexponential time.

Most of material used has already appeared in B. () for elliptic curves; here, when
this can be done, we state our results for general varieties. Polarization issues are deferred to
the next chapter, which will therefore also cover pra ical computational a e s in dimen-
sion g > 1.

As usual, letA be a simple ordinary abelian variety de ned over a nite eld Fq.

. Orders from Picard Groups

We rst prove that if we can identify the stru ure of the Picard group of the endomor-
phism ring ofA , then we can determine End(A ) unambiguously.

P

Recall that the rst step is to compute the chara eristic polynomial χπ of the Frobenius
endomorphism π ofA . For this, we use the method of P () and more precisely
the improved algorithm of A and H () which, whenA is the Jacobian
variety of a genus-g hyperelliptic curve, has a complexity of

(logq)O(g2 log g).

Even if it were not for cryptographic reasons, we would avoid non-Jacobian varieties since
our algorithms requires to efficiently draw points at random, which we cannot do whenA
is expressed in a more general form (such as theta constants).





  

e number of points ofA de ned over the extension of degree e is then

#A (Fqe) = Resu
�
χπ(u),u

e− 1
�

which means that our algorithm for computing the ℓ-torsion does not have to count the
number of points over a new extension every time a new prime ℓ is considered.

To navigate the lattice of orders of the complex multiplication eld K =Q[X]/(χπ(X)),
that is, computeM = OK,m = Z[π,π] and the fa orization of [M :m], we need to fa or
the discriminant Δ of χπ which satis es

|Δ| B (2
pq)2g(2g−1).

For this, the unconditional method of L and P () uses L(|Δ|)1+o(1)
operations; assuming unproved hypotheses, wemight also use the number eld sieve ofC-
 () with conje ured runtime

LcNFS

1/3
(|Δ|) where cNFS =

1

3
3
Æ
92+ 26

p
13 ≈ 1.902.

For elliptic curves, we were able to prove the corre ness and complexity of the rest of
ourmethod only assuming the generalized Riemann hypothesis. In that case, the complexity
is

L(q)1/
p
2+o(1),

so the cost of fa oring via the unconditionally proven method dominates; we found it curi-
ous that no known fa oring algorithm achieves a better exponent assuming solely the gen-
eralized Riemann hypothesis: there seems to be a gap in the hypothesis required as, in terms
of asymptotically fastest methods, we go straight from an unconditionally proven method
to one which relies on many non-standard heuristics.

In dimension two, we will see that additional unproven hypotheses, other than the gen-
eralized Riemann hypothesis, are necessary.

O  I

Let us brie y address the complexity of the algorithms used for navigating the lattice and
computing with ideals of arbitrary orders in it.

e algorithms used greatly differ from dimension one to dimension two: in dimension
one, the lattice is simply the set of divisors of [M : m] while in higher dimension its struc-
ture has no such ecial form; again in dimension one, ideals can be dealt with extremely effi-
ciently as binary quadratic forms while in higher dimension only general methods involving
Hermite normal form and LLL redu ion can be used.



..     

In fa , we nd that, in the realm of elliptic curves, many problems can be solved in es-
sentia y linear time, that is, with a complexity asymptotically equivalent to the size of the
output, up to an exponent of 1 + o(1); but those problems become suddenly much harder
with higher-dimensional abelian varieties and no such satisfying algorithm is known. is
is for instance the case for the generation of Hilbert class polynomials. Our own endomor-
phism ring computing algorithm will not be an exception to this rule, as many simple and
easy to analyze a e s of it are lost when going from dimension g = 1 to g = 2.

Regardless of the dimension, since we use the building blocks for orders and ideals on
inputs of size for which their complexity is polynomial in log(q), we need not worry too
muchabout them: as our overall expe ed complexity is superpolynomial, the costof all these
subroutines disappears within the o(1) term of the exponent. is might seem a little too
rough, so we refer to C () for more careful statements regarding the complexity
of these standards calculations.

O   P G

Our relation method uses the Picard group stru ure to chara erize an order. is sec-
tion and the next are devoted to proving the corre ness of this approach: here, we will see
that there are not many orders with the same Picard group stru ure, and there, we will de-
scribe a workaround technique for distinguishing these rare orders from each other.

We rst consider the one-dimensional case, as the ideal stru ure of non-maximal orders
is much better understood in this case. IfO is an order of an imaginary quadratic eld K, we
letB be a generating set of ideals for Pic(O ), and denote by ΛO the relations of Pic(O ) for
this basisB; in other words, we assume that Pic(O ) AZB/ΛO .
Proposition ... L O and O ′ be two orders in an imaginary quadr ic eld K. e
l ticeΛO ′ con insΛO if and only if e order O ′ con ins O or if one of e fo owing holds:

. K =Q(p−4) and O ′ h condu or 2;
. K =Q(p−3) and O ′ h condu or 2 or 3;
. e prime 2 lits inK and O ′ h index 2 in some order abo e O of odd condu or.

Proof. Denote by SO (re . SO ′) the set of primes ℓ that lit into principal ideals inO (re .
O ′). Using relations formed of a single prime ideal, we see that ΛO ⊆ΛO ′ implies SO ⊆ SO ′ .
Now SO (re . SO ′) is also the set of primes that lit completely in the ring class eld LO
of O (re . LO ′). By Chebotarev’s density theorem SO ⊆ SO ′ thus implies LO ′ ⊆ LO which
means that the class eld theory condu or f(LO ′/K) of LO ′ divides f(LO /K).



  

is condu or f(LO /K) is related to that fO of O in the following manner (see Exer-
cises .–. of C ()).

f(LO /K) =


OK, when K =Q(p−4) and fO = 2,
OK, when K =Q(p−3) and fO = 2 or 3,
f′, when 2 lits in K and fO = 2f′ with f′ odd,
fO , otherwise.

Naturally, the same stands for O ′. In the latter case, the fa that f(LO /K) divides f(LO ′/K)
implies that fO ′ divides fO , in other words O ⊆ O ′; the three other cases corre ond, in
order, to the exceptions listed in the proposition.

Intuitively, this means that identifying orders by their Picard groups has a single blind
ot locally at 2 and 3 where the two largest orders cannot be distinguished.

For orders in higher-degree number elds, we were unable to prove a similar result, but
have observed that pairs of orders with identical Picard group stru ure follow a similar pat-
tern to what the proposition above describes for imaginary quadratic orders; therefore, we
will assume:

Assumption ... Fix g �N; ere ex ts an integerB such , if any two ordersO andO ′
of a complex multiplic ion eld K of degree 2g have identical Picard group stru ure, en one
con ined in e o er wi index a div or of B, and bo orders are maximal a primes

but e fa ors of B.

For instance, in the case of quartic complex multiplication elds, our computations sup-
port

B = 26 · 34 · 53 · 72 · 112 · 13 · 17 · 19 · 23 · 31 · 41 · 83 · 127 · 131 · 151

is bound B could be reduced by excluding nitely many number elds.
Even if this assumption turns out to be wrong, our algorithms will still be fun ional as

they do not need to know in advance which orders have the same Picard group stru ure: it
can always be tested, as we ascend the lattice of orders and generate certi cates, if an order
has the same Picard groupstru ure as some order dire ly above or below it. is is naturally
quite expensive, but retains the unconditional corre ness of our output.

LW

Aswehave seen, twodistin orders of a complexmultiplication eldKcanhave identical
Picard group stru ure, in a limited number of cases. ose orders cannot be distinguished
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using the complexmultiplication a ion, so we need anothermethod to tell them apart from
each other.

To tackle these cases, we apply our lattice-ascending and order-testing procedures nor-
mally and fall back on a second method when the endomorphism ring is found to be one of
these. is amounts to ascending the lattice of orders quotiented by classes of orders with
identical Picard group stru ure; when the class of End(A ) is identi ed, we determine pre-
cisely which order End(A ) is using the following algorithm.

Algorithm ...
I: A simple ordinary abelian vari yA over e nite eld wi q elements,

and an order O wi e same Picard group stru ure End(A ).
O: An order omorphic to End(A ).

. Compute e Frobeni polynomial χπ(x), and fa or [OK :Z[π,π]] ∏
ℓvℓ .

. For a prime fa ors ℓ wi ℓ2gvℓ < L(|Δ|):
. D ermine End(A ) loca y ℓ.
. For o er prime fa ors ℓ:
. Compute vario ℓ- ogenies and see if ey change e

Picard group stru ure of e endomorph m ring.
. Deduce End(A ).

e condition in Step  ensures that the complexity of determining the endomorphism
ring locally at ℓ via the method of E and L () in Step  is bounded
subexponentially. Basically, since orders with identical Picard group stru ure only differ by
smooth indices (as we saw in the previous se ion), only small primes ℓwill be of interest here
(for others, Oℓ is the only possibility for End(A )ℓ); for these small primes, the condition
means that the depth vℓ of the local lattice is not too large.

When vℓ is large, thismethod is too costly. On the other hand, since only the rst few top
orders have identical Picard group stru ure, we can compute random chains of ℓ-isogenies
and count the minimal number of isogenies it takes to reach a variety whose endomorphism
ring has a different Picard group stru ure (which we determine using our subexponential
method). Since we can compute exa ly which orders have identical Picard group stru ure,
this gives us some information as to which order our endomorphism ring is.

is is obviously a rather poor approach. Best would be to use a higher-dimensional
analog to the method of I and J () and generalize the algorithm of K
() to compute the endomorphism ring locally at ℓ in time ℓO(1) rather than ℓO(vℓ).

As the complexity of our fall back method depends not only on the prime ℓ at which we
want to locally compute End(A ), but on the entire fa or ℓvℓ of the index [OK : Z[π,π]],
and we found no satisfying way of patching it, we simply rule out deep lattices.



  

Assumption ... L O ⊂ O ′ be two orders con ining Z[π,π] wi identical Picard
group stru ures. If ℓ a prime fa or of e index [O ′ : O ], we sume e valu ion vℓ of
[OK :Z[π,π]] ℓ such ℓ2gvℓ < L(q).

In dimension one, the method of K () computes End(A )ℓ locally at ℓ by
climbing the ℓ-isogeny volcano in time vℓℓ2+o(1), so the assumption above is not required
in that case.

. Picard Groups from Relations

R S

We recall the standard “generator and relations” setting based on prime ideals to study
the stru ure of Picard groups of orders in number elds.

roughout this se ion,O will be an order in an algebraic number eld, andB a gener-
ating set of ideals for its Picard group; for computational reasons we assume thatB consists
of prime ideals. We denote by ΛO the lattice of relations amongst elements of B seen as
ve ors ofZB, so that we have

Pic(O ) AZB/ΛO .
Our rst task will be to bound the norm of primes contained inB; this is the purpose

of the following se ion which describes various Chebotarev theorems that have been used
over the years — this application being just one eci c use of them.

Next, we will consider bounding the diameter of the lattice ΛO which plays a crucial role
in the generation of relations that chara erizes O . More explicitly, H and MC-
 () proved that any bound on the diameter of the lattice ΛO yields a box B whose
pushforward distribution by σO is quasi-uniform; in other words, produ s of random ele-
ments of this box give quasi-random elements of the Picard group of O .

is property is crucial to ensure that the relations we obtain permit us to distinguish a
lattice from stri ly smaller ones.

Originally, a bound elementarily derived from the theorem of S () was used
by H andMC (); later, B () adapted their algorithm to
general number elds, therefore relying on the theorem of B (). We will here
give, as a consequence of the generalized Riemann hypothesis, a better bound which we will
derive from a more general result of J, M, and V ().

C T

Let us rst recall the classical density eorem of T ().
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eorem ... L L/K be a nite normal extension of number elds, and denote by π(p)
e Frobeni element inGal(L/K) which corre onds to a given prime p ofK. Such Frobeni

elements are ymptotica y uniformly d tributed in e sense , for any conjugacy cl sC of
e Galo group,

#{p : π(p) �C ,N(p) < x} ~
x→∞

#C
#Gal(L/K)

Li(x)

where Li(x) =
∫ x
2

dt
log t ymptotica y equal to e number of prime ideals of norm less an x.

is theorem has countless applications; for instance, if L is the litting eld of a poly-
nomial f �K[x], it gives the density of primes p of Kmodulo which f has prescribed litting
patterns.

In our setting, we are mostly interested in the case where K = Q and L is the ring class
eldHO of an orderO in some complexmultiplication number eld. Via theArtinmap, the

Chebotarev density theorem descends to ideals of the order O and asserts that the density
of prime ideals which belong to a prescribed ideal class of Pic(O ) is 1/#Pic(O ); this implies
in particular that each ideal class can be represented by a prime ideal, from which we can
conclude that it is indeed possible to have a generating setB for Pic(O )made of prime ideals.

More generally, so-called effe ive Chebo rev eorems give upper bounds on elements
generating number theoretic groups. Historically, interest rst lied in bounding the least
quadratic non-residue modulo n: G rst established the bound 2

p
n + 1 (for n > 2)

elementarily and, to date, the best known unconditional bound of B () is still
exponential — the proof mixes arguments of V () with the Hasse–Weil
bound on the number of points of hyperelliptic curves.

Assuming the Riemann hypothesis for the zeta fun ion of certain elds L, more precise
results can be derived. Most o en, authors simply assume the extended Riemann hypothesis
(ERH), or even the generalized Riemann hypothesis (GRH) for convenience. Under this
assumption, A () proved that the bound above can be made O(log2 n).

L and O () later generalized this to general number elds: they
proved that if L is a nite nontrivial extension of an algebraic number eld K, the least prime
ideal of K that does not lit completely in L is bounded by O(log2(disc(K)2N(f(L/K)))).

B () gave explicit constants O for these results: he showed that in the result of
A () we have O B 2, and that O B 3 for the generalized result. He derived the
following:

eorem ... Assuming e Riemann hypo es for e z a fun ion of e number eld
K, its Galo groupGal(K/Q) gener ed by e Frobeni elements of its prime ideals of norm
less an 12 log2 |disc(K)|.



  

D  S P

As we have already pointed out, knowing that the set B of prime ideals of norm less
than 12 log2 |Δ| generates the Picard groups of orders O containingZ[π,π] is not sufficient.
Indeed, evaluating isogenies associated to ideals awhich involve large exponents is costly, so
it is not sufficient to write a as a produ of primes ofB: we also want this produ to be
short. In other words, we ask that a =

∏
p�B pnp for a small exponent ve or n.

Obviously, its norm ∥n∥1 =
∑���np��� is less than the class number. In their Lemma ,

H andMC () proved that any bound on the diameter of the lattice ΛO
yields a box B suitable to search for relations, and as a bound they used the latter elementary
result on the norm of n. B () did the same in his Lemma . for arbitrary
orders.

However, assuming the generalized Riemann hypothesis, a much better bound can be
derived from Corollary . of J, M, and V (), which implies:

eorem .. (GRH). For a g �N and ε > 0, ere ex ts c > 1 such , ifO an order
of dimension 2g and d criminantΔ, en for random ve ors x drawn om e box

B =

(
x �Z{p:N(p)<log2+ε |Δ|} :

∑
B

|xp| = c
log |Δ|

log log |Δ|
)

e probability σO (x) fa s in any xed ideal cl s of Pic(O ) le t 1/2#Pic(O ).
In terms of distribution, this states that the pushforward distribution by σO of the uni-

form distribution UX on the set X of ve ors of norm c log |Δ|/ log log |Δ| is within varia-
tion distance 1/2 from the uniform distribution on the Picard group. Essentially, this says
that produ s of randomly sele ed primes of quadratic norm behave as uniformly-drawn
elements of the Picard group.

D  R L

e above theorem implies that each element of Pic(O ) has a preimage of small norm,
from which we can easily derive a bound on the diameter of ΛO . Recall that the diam er of
a lattice is the smallest value diam(F) where F ranges over its fundamental domains.

Corollary .. (GRH). Fix any positive number ε. If O an order of d criminant Δ
and B denotes its s of primes of norm less an log2+ε |Δ|, e diam er of e l tice ΛO
o(log4+ε |Δ|).
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Proof. To prove this, we constru a generating set for ΛO formed by O(log2+ε |Δ|) rela-
tions of norm o(log2 |Δ|). B () showed that Pic(O ) is an abelian group of order
Δ1/2+o(1) so there exist O(log |Δ|) ideal classes αi such that ZB/ΛO A

∏ 〈αi〉; we x these
and proceed to write a generating set for ΛO consisting of:

– relations expressing that αord(αi)i = 1;

– relations expressing the primes p �B in terms of the αi.

First de ne amap σ−1O by xing a preimage of norm atmost c log |Δ|/ log log |Δ| for each ideal
class; it exists by eorem... Now use a double-and-add approach to ensure that norms
remain small: for each i, express that αord(αi)i = 1 by the relations

(i) σ−1O
�
α2

j

i

�− 2σ−1O
�
α2

j−1
i

�
for j � {1,… ,⌊log2 ord(αi)⌋};

(ii)
∑

j bjσ−1O
�
α2

j

i

�
where bj denotes the jth least signi cant bit of ord(αi).

Now write each p � B on the αi by decomposing its class as a produ
∏

αnii where ni �{0,… ,ord(αi)}; noting δp the ve or with coordinate one at p and zero elsewhere, this gives
the relations:

(iii) δp−∑i
∑

j cijσ
−1
O
�
α2

j

i

�
where cij is the jth least signi cant bit of ni.

Preimages by σO have length o(log |Δ|) and there are at most
∑⌊log2 ord(αi)⌋ = O(log |Δ|)

terms, therefore each such relation has length o(log |Δ|)2.

. Relations from Smooth Ideals

Let us now give the mathematical background required to prove the complexity of the
subexponential method for nding smooth relations in Picard groups.

I S

Westart by reviewing fundamental properties of smooth numbers; these are the base on
which most subexponential algorithms are build upon (for instance, we have already men-
tioned fa oring algorithms). First recall their de nition.

De nition ... An integer x said to be y-smoo if it h no prime fa or larger an y.
e number of y-smoo integers less an x denotedΨ(x, y).

Bounding the value of the Ψ fun ion for particular ranges of x and y is an important
problem. For instance, for any xed u C 1, we have

Ψ
�
x,x1/u

�
~

x→∞
xρ(u)



  

where the constant ρ(u) is the Dickman fun ion. is fun ion was extensively studied by
 B who gave many ways to evaluate it. To use such smoothness results in index-
calculus methods, we need more than a polynomial relation of the form y = x1/u: we would
like to consider the case where u → ∞ as x → ∞. e eci c result we rely on is due to
C, E, and P ().

eorem ... For u C 3 we have

Ψ
�
x,x1/u

�
C x exp

�−u�logu+ log logu− 1+ o(1)
��

Corollary ... e probability for a random number of {1,… ,x} to be L(x)γ-smoo
equivalent to L(x)−1/2γ+o(1) x→∞.

Proof. Apply the theorem above to u = 1
γ

q
logx

log logx and combine it with the upper bound in
eorem  of B ().

See G () for a survey of this topic.

I S

Our algorithms do not exa ly work with integers: they work with ideals. Via the norm,
the stru ure of the ring of ideals resembles that of integers; for our particular goal, it suffices
to say that ideals are smooth if and only if their norms are. However, not all results are easy
to generalize from integers to ideals.

In fa , our rst algorithm for computing endomorphism rings of elliptic curves, fromB.
and S (), relied on the assumption that certain ideals we generated had a
uniformly distributed norm, so thatwe could dire ly apply the result of the previous se ion.
We now explain how this assumption can, in some setting, be rigorously proven.

Let us rst recall the relevant part of our algorithm: for an order O of discriminant Δ,
we rst sele a ve or x uniformly at random from the box B = {0,… , log4+ε |Δ|}B whereB
is the set of prime ideals of norm less than log2+ε |Δ|; we then look for a small representativebx of the class σO (x) � Pic(O ) and attempt to fa or it over the base consisting of all the prime
ideals of norm less than L(|Δ|)γ.

To rigorously bound the number of times randomve ors x � Bhave to be sele ed before
one with smooth redu ion is found, we need to show that the norm of bx behaves like a
random integer in a certain interval.

For imaginary quadratic orders, S () used the standard redu ion of binary
quadratic forms; to obtain a result on the smoothness probability of bx, he proceeds in two
steps: Proposition . and .:
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Proposition ... Ideal cl ses σO (x) of randomly sele ed ve ors x � B are qu i-uniformly
d tributed in e Picard group of O .

By qu i-uniformly d tributed, we mean that the probability for σO (x) to belong to a
prescribed subset S of Pic(O ) is

(1 + o(1))
#S

#Pic(O )
in other words, the pushforward distribution σO ⋆UB is within variation distance o(1) of the
uniform distribution on Pic(O ).

Note that S () started from amuch bigger box B than ours; it was, back then,
the best possible under the generalized Riemann hypothesis; however, here, we make use of
Corollary . of J, M, and V () and of the smaller box B it proves
to suffice.

When we know that σO (x) is quasi-random, it remains to see whether the elementbx of
each σO (x) has a smoothness probability comparable to integers of {1,… ,

p|Δ|/3}.
Proposition ... e number of reduced ideals whose norm L(|Δ|)γ-smoo le t
n/L(|Δ|)1/2γ+o(1) where n = #Pic(O ) e to l number of reduced ideals.

e proof of S () involves calculations which are eci c to the arithmetic of
binary quadratic forms. is makes it challenging to generalize this proposition in higher-
dimensional orders, and another issue is that there is no canonical notion of redu ion there.

e method of B () for arbitrary orders relies on the following assumption,
and we do as well.

Assumption... e norms of reduced ideals ed by e smoo rel ion nding algori m
are likely to be smoo random integers of {1,… ,

p|Δ|}.
R  R

To obtain a generating set for the lattice ΛO by nding relations of it, we must ensure
that those relations do not lie in some particular subset. For instance, if the orderO contains
O ′, then we have ΛO ′ ⊂ΛO , and wemust prove that our relations have no predi osition of
a ually lying in ΛO ′ . Whence the following de nition.

De nition ... L P be a probabil tic procedure which, on input an order O con ining
Z[π,π] for someWeil number π, r urns a rel ion x �ΛO , which we see a random variable.

We say P gener es quasi-uniformly distributed relations of O if, for any order O ′
con ining Z[π,π], e proje ion of x in e quotient group ΛO /ΛO∩O ′ wi in vari ion
d nce o(1) om e uniform d tribution, e d criminant of π goes to in nity.



  

Proving that the method of S () does indeed generate quasi-uniformly dis-
tributed relations was done by H andMC () in their Lemma .

Proposition... IfO ′ an order con ined inO , rel ions foundby em hod of S
() are qu i-uniformly d tributed in ΛO /ΛO ′ when B = {0,… ,#Bd1+ε}B, where d a
bound on e diam er ofΛO .

e proof is pretty simple and involves looking at the geometry of the lattices in a fairly
elementary way. We reproduce it below, in themore general context of an un eci ed bound
d on diamΛO .

Proof. Let xbe a randomvariablewith uniformdistribution onBt = {0,… , t}B, letbx � σO (x)
denote its redu ion, and noteS the set of ideals withL -smooth norms. Wewant to prove
that

Prob
�
x− σ−1(bx) � ω��bx �S � = �ΛO : ΛO ′

�−1 (1 + o(1))

for any xed class ω �ΛO /ΛO ′ . We can rewrite the le -hand side as

#
�
x � Bt :bx �S ,x− σ−1(bx) � ω	

#{x � Bt :bx �S }
and by summing over all possible reduced ideals y we further obtain∑

y�S #
�
x � Bt : x � σ−1(y) + ω

	∑
y�S #

�
x � Bt : x � σ−1(y) +ΛO

	 .
Now, to evaluate each term of these sums, let us count the number of points of Bt =

[0, t + 1)B which lie in the translation z + Λ of some lattice Λ. To this extent, letF be a
fundamental domain for Λ: each point of z+Λ corre onds to a cell in the tiling ofRB by
F ; if diamF B d we therefore have

Bt−d ⊂ (z+Λ)∩Bt +F ⊂ Bt+d

which gives, in terms of volumes,

(t− d)#B B detΛ · #
�
(z+Λ)∩Bt

�
B (t+ d)#B

so as soon as #Bd = o(t), the sandwich theorem proves that

#
�
(z+Λ)∩Bt

�
=

t#B

detΛ
(1+ o(1));
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by substituting this in the probability sought expressed as a quotient of sums, we obtain

#S t#B

detΛO ′
(1 + o(1))

,
#S t#B

detΛO
(1 + o(1)) ;

Choosing t = #Bd1+ε satis es the requirement #Bd = o(t) and gives the result.

Recall that if O is an order of discriminant Δ andB consists of all prime ideals of norm
less than log2+ε |Δ|, then the diameter of ΛO is o(log4+ε |Δ|). erefore, whenO is imaginary
quadratic, the above proposition shows that the algorithmof S () generates quasi-
uniformly distributed relations of ΛO when drawing its random ve ors uniformly from the
box B = {0,… , log2+ε |Δ|}B.

WhenO is an order in a complexmultiplication of degree four ormore, as we havemen-
tioned before, we do not knowof similar results and believe that theymight be quite difficult
to establish. However, we can still amend the algorithm of B () to make use
of this type of bound. is gives a conje ural running time, but the result can in any case be
unconditionally proven by certi cates, so we have a Las-Vegas algorithm.

G E R

To prepare for the jump to the next chapter, let us put together the results that we have
established so far. Here, we let π be the Frobenius endomorphism of an abelian variety of
dimension g de ned over a nite eldFq, and recall fromLemma .. that disc(Z[π,π]) =
qg2+o(1) so that via the theorem of B () the class number is qg2/2+o(1).

Proposition ... L O be an order of d criminant Δ in a number eld of degree 2g;
random rel ions ofO in ol ing polynomia y many ideals in log |Δ| of norm up to L(|Δ|)γ can
be found in probabil tic time L(|Δ|)γ +L(|Δ|)1/4γ+o(1).

sumes e generalized Riemann hypo es for g = 1, and Assumption .. for
g > 1.

Unlike H and MC (), we do not seek to compute the full group
stru ure of Pic(O ) — this would be costly since a subexponential number of relations is
required to eliminate all fa ors of the fa or base. Here, we just aim at distinguishing orders
containingZ[π,π] from one another.

IfO ′ is an order such that ΛO ′ is stri ly contained in ΛO , a quasi-uniformly distributed
relation has probability at most 1/2+ o(1) of also holding in O ′. erefore, since we have a
polynomial number of orders in log |Δ| to discriminate from, it is sufficient to only generate
polynomially many orders in log log |Δ| to ensure that the relations chara erize the lattice
ΛO with probability 1− o(1).



  

Combining the above with our earlier notes on the complexity of isogeny computation,
we have proved the following.

eorem ... L A be a simple ordinary abelian vari y of dimension g de ned over
e nite eld wi q elements. Under e generalized Riemann hypo es , we can compute

End(A ):

– if g = 1, in L(q)1+o(1) +L(q)1/
p
2+o(1) oper ions;

– if g = 2, in L(q)g
p

3g/2+o(1) oper ions, under Assumptions .., .., .., and
...

For g = 2, details will be given in the next chapter.

. Relations from in Air

As a supplement to this chapter, we shall now see how to generate relations in a generic
manner, that is, not using any extrinsic information about the underlying group. For Picard
groups, such methods are much slower than smoothness-based ones but yield much shorter
relations; this will be an important ingredient for making pra ical use of our method in
dimension two.

G S P

Let S be a sequence of elements in a nite group G of order n, written multiplicatively,
and consider the problem of writing a prescribed element z � G as the produ of a subse-
quence of S; we call such a subsequence a short produ represen tion of z on S.

If G were a commutative group, we could have noted it additively, let S be a multiset
of elements of it, and look for a sub-multiset which adds up to z; in the case that S has no
repeated elements, this is known as the subs sum problem. However, since for our approach
it makes absolutely no difference whether G is commutative, we have chosen to use themore
general formalism of non-necessarily-commutative groups.

Consider the produ mapπ :P(S)→GwhereP(S) denotes the set of all subsequences
of S. For all elements of G to admit short produ representations, the map π needs to be
surje ive which, by a counting argument, implies k C log2 n where k is the length of S.

In the case that G is commutative, E and R () showed that this bound is
not far from being sufficient: they prove that a random sequence S of length

k = log2 n+ log2 logn+ωn



..     

satis es π(P(S)) = G with probability approaching 1 as n→∞, provided that ωn→∞.
For nding short produ representations via generic means, just knowing the existence

of a preimage by π for all z � G is not enough: we need to know the distribution of such
preimages. I and N () proved the following result on the inverse dis-
tribution.

eorem ... Fix some real number d. For groupsG of order n large enough, we have

ProbS
hπ⋆UP(S)−UG

 C n−c
i
B n−c

where c = (d−1)/2 and e sequence S drawn uniformly random om e s of sequences
ofG wi leng k = (d+ o(1)) log2 n.

Recall thatUX denotes the uniform distribution on the ( nite) set X, and that the p h-
forward d tribution f⋆σ of a distribution σ on X by a fun ion f : X→ Y is de ned as

f⋆σ(y) = σ
�{x �X : f(x) � y}� ,

for any subset y of Y. Finally, the vari ion d nce ∥σ−σ′∥ between two distributions on Y
is the maximum value of |σ(y)− σ′(y)| as y ranges over all subsets of Y.

In other words, the theorem means that, for a random sequence S of density d > 1, the
distribution of subsequence produ s almost surely converges to the uniform distribution on
G as n goes to in nity.

In some particular cases, nding short produ representations is a well-known problem.
For instance, when G is the Picard group of some order and S contains all prime powers pα
with p < L(|Δ|) and α < logp |Δ|, then this is exa ly the problem of nding relations which
we have studied extensively. Now this problem does not have a “constant” density, as the
quantity k/ log2 n goes to in nity pretty quickly with n.

For instances of constant density in the group G =Z/nZ, the best algorithm has a time
and ace complexity of O(n0.3113); it consists in li ing the instance to k subset sum prob-
lems in Z, also known as knapsack problems, which can be solved efficiently by a method
of H-G and J (). Again, this algorithm is tailored for a eci c
group representation.

Algorithms that only perform multiplications and inversions (which return uniquely
identi ed group elements), draw elements at random from G, and test their equality, are
called generic algori ms. In essence, they are not tied to any eci c group and apply to any
effe ive group. S () proved that solving discrete logarithm problems generically
has a lower bound of Ω(pp) where p is the largest prime fa or of n; since this is a ecial
case of short produ representation, this means that generic short produ representation
algorithms cannot have a faster-than-square-root complexity in the worst case.



  

B-S G-S

Let us rst review classical approaches to the problem of nding a short produ repre-
sentation of an element z �G on a sequence S.

Abrute-force algorithmwould exhaustively enumerate the setP(S) and for each element
y of it test whether π(y) = z.

e standard baby-step giant-step approach lits the search ace as a dire produ
P(S) = P(A) ×P(B) simply by writing S as the concatenation of two smaller sequences
A and B; then, it aims at nding a pair of elements (x, y) � P(A) ×P(B) which co ide in
the sense that π(x) = zπ(y)−1. is can be implemented efficiently by rst precomputing
and storing a table of all π(x) for x � P(A), and then checking whether each zπ(y)−1 for
y � P(B) is in this table; the lookup can be done in time O(logn) using an efficient data
stru ure.

For convenience, we de ne an application μ which maps any sequence y = (y1,… , ym)
to μ(y) = (y−1m ,… , y−11 ), so that π(y) and π(μ(y)) are inverses in G. e baby-step giant-step
algorithm then amounts to the following procedure.

Algorithm ...
I: A nite sequence S and a rg z �G.

O: If it ex ts, a subsequence of S whose produ z.
. Split S a conc en ionAB of sequences of roughly equal sizes.
. For each x �P(A), store x in a ble indexed by π(x).
. For each y �P(B):
. If π(zμ(y)) = π(x) for some x, en r urn xy.
. R urn z h no preimage by π inP(S).

As each element ofP(A) can be represented by k/2 bits (which is a constant fa or away
from the size of a group element, when the density d is xed), the total memory consumed
by this algorithm isO(2k/2). By enumerating elements ofP(A) andP(B) in a suitable order
(for instance, using a Gray code), only one group operation is required per step, so that the
total runtime is O(2k/2).

S and S () gave a more ecialized generic method for solving
knapsack problems, which improves the ace complexity of the baby-step giant-step algo-
rithm to O(2k/4).

P R

In order to apply the Pollard ρ approach to the problem of nding short produ repre-
sentations, we simply need a notion of collision on a certain domainC and an iterationmap
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φ :C →C which preserves collisions in the sense that if x and y collide, then φ(x) and φ(y)
also collide.

Here, we use the same domain that was used by the baby-step giant-step algorithm: lit
S as a concatenation AB of two sequences of roughly equal size, and let the domain be the
disjoint union C = A ⊔B whereA = P(A) andB = zμ(P(B)). Now collisions are
de ned with re e to the produ map π :C →G; when an element x �A collides with
an element y �B , that is, π(x) = π(y), then we have a short produ representation of z as
xy′ where y = zμ(y′).

Now since the iterationmapφmust re e collisions, itmust fa or through the produ
map π so we can write φ = η ◦ π for some η : G→C . Since we have no requirement on η,
we simply take it to be a hash fun ion fromG toC , that is, an effe ive map which behaves
as if it were drawn uniformly at random fromC G.

In pra ice, to compute η(g) we can take the unique bit-string representation of g, hash it
using astrong cryptographic hash fun ion, anduse the resulting bit-string g0g1g2…todi ate
an element ofC ; for instance, the rst bit g0 can be used to decide whether φ(g) lies inP(A)
or zμ(P(B)), the second bit g1 to decide whether the rst element of A (re . B) belongs to
φ(g), etc. (Note that η cannot be surje ive since G is smaller thanC .)

is gives the following algorithm.

Algorithm ...
I: A nite sequence S and a rg z �G.

O: A subsequence of S whose produ z.
. Split S a conc en ionAB of sequences of roughly equal sizes.
. Pick a random element w �C and a h h fun ion η : G→C .
. Find e le t i > 0 and j C 0 such φ(i+j)(w) = φ(j)(w).
. If j = 0 en r urn to Step .
. L s = φ(i+j−1)(w) and l t = φ(j−1)(w).
. If π(s) ≠ π(t) en r urn to Step .
. If s �A and t = zμ(y) �B for some y, output sy and termin e.
. If t �A and s = zμ(y) �B for some y, output ty and termin e.

Basically, we start from a random pointw and compute iterates φ(i)(w) until we nd two
which are equal: once we have the rst such collision, that is, φ(s) = φ(t) with s ≠ t, we rst
make sure it is not due to the hash fun ion, so that the collision must arise in the produ
map. en, if it is a collision between an element ofA and one ofB , which happens with
expe ed probability 1/2, we have a short produ representation.

Step  can be implemented by Floyd’s algorithm, by the method of distinguished points,
or any other collision-dete ion technique (which reduces by a constant fa or the number
of expe ed evaluations of the map φ before nding a collision).



  

is gives an algorithm with constant storage ace and a time complexity of O(k
p
n).

We refer the reader to B. and S () for a rigorous proof (and also for details
regarding this whole se ion) and now turn to applications.

A

is method a ually has a broad range of applications; in particular, it can be used to
nd isogenies between two ordinary elliptic curves de ned over a nite eld having the same

endomorphism ring in square-root time and without storage requirements. is application
can be found in B. and S (). Here, we will present a different one, maybe
not as important, but which applies dire ly to the topic of computing endomorphism rings.

As usual, we x an ambient nite base eld Fq and letA denote an simple ordinary
abelian variety. Consider the set G of isomorphism classes of abelian varieties whose endo-
morphism ring is the same as that ofA ; as we have seen before, it is a principal homogeneous
ace for the Picard group Pic(EndA ) whose cardinality we denote n (in the worst case, it

is exponential in log(q) and the dimension g ofA ).
Our method for computing End(A ) has so far been to compute relations in the Picard

group of the possible orders (those that contain Z[π,π]) and checking whether they hold
in the isogeny graph. Here, we take the inverse approach: we will look for relations in the
isogeny graph, and then rule out from the list of possibilities those orders in which the rela-
tions do not hold.

Of course, since the only algorithms we have at our di osal for nding relations in the
isogeny graph are generic, this is much slower than looking for relations in Picard groups.
However, this gives a runtime which mostly depends on the output: the closer to OK the
endomorphism ring ofA , the faster it is found.

To look for relations in the isogeny graph ofA , a baby-step giant-step approach is simple
to use: let S be a set of prime ideals of OK which are coprime to the condu or of Z[π,π],
lit it as a concatenation AB, letA =P(A) andB =P(B), and de neC =A ⊔B . We

view an element x = (p1,p2,… ,pm) ofC as the isogeny

φp1p2…pm
(A ) = φp1

◦ φp2
◦ · · · ◦ φpm

(A )

and we de ne the map π :C →G as sending x to the variety which is the codomain of this
isogeny.

Now it is straightforward to adapt the Pollard ρ method to this context as we have done
before: it suffices to take a hash fun ion η : G→C and to iterate the map φ = η◦π enough
times to nd a collision. Recall from Chapter  that, in the worst case, we might have

#G = #Pic
�
EndA � = q(1/2+o(1))g2
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so that if we take a sequence S of length at least

(d+ o(1))g2 log2 q

for some d > 1, we can effe ively nd a relation of the isogeny graph in probabilistic time
q(1/4+o(1))g2 using virtually no memory, assuming the quasi-uniform distribution of produ s
of S in thePicard group; this assumption canbe replacedby the generalizedRiemannhypoth-
esis by substituting log2(q) by log

2+ε(q) above, via a result of J,M, andV
() — note however that this has little effe on the runtime: although the produ s to
be computed have more terms, the collision probability is unchanged.

By nding relations in the isogeny graph ofA , we can testwhether a given orderO con-
tains End(A ) in time disc(EndA )1/4+o(1) up to polynomial fa ors in log(q) and g. ere-
fore, locating the endomorphism ring takes just as much time using the “reversed” lattice-
ascending procedure of the previous chapter for computing End(A ) from above.

Note that certi cates that are generated with such generic methods have a length poly-
nomial in the size of the base eld logq, which is much smaller than what subexponential
methods can generate. More precisely, this length can essentially be quadratic if we require
that the runtime of the generation algorithm be bounded under the generalized Riemann
hypothesis (via eorem ..), or linear if the heuristic Conje ure .. is used instead.

Verifying the certi cate then just requires polynomial time in its size: it suffices to verify
the number of points on the variety and compute the isogenies associated to the ideals in the
relation.

Here again, we have made use of isogenies between isomorphism classes of abelian vari-
eties, not involving any polarizations, which is not an effe ive notion in dimension g > 1.
We thus devote the next chapter to describing the changes required for making effe ive use
of our endomorphism computing method on abelian varieties of dimension g > 1.

References

. IvanM. V.
“On the distribution of quadratic residues and non-residues”.
In: Journal of e Physico-M hem ical Soci y of Perm . Pages –.

. Nikolai T.
“Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer
gegebenen Substitutionsklasse gehören”.
In:M hem che Annalen .. Pages –. DOI: 10.1007/BF01206606.

http://dx.doi.org/10.1007/BF01206606


  

. Carl L. S.
“Über die Classenzahl quadratischer Zahlkörper”.
In: A a Ari m ica . Pages –.

. Richard B.
“On the zeta-fun ions of algebraic number elds”.
In: American Journal of M hem ics .. Pages –.
DOI: 10.2307/2371849.

. Nesmith C. A.
“ e least quadratic non residue”. In: Annals of M hem ics .. Pages –.
DOI: 10.2307/1969420.

. David A. B.
“ e distribution of quadratic residues and non-residues”.
In:M hem ika . Pages –. DOI: 10.1112/S0025579300001157.

. Paul E and Alfréd R.
“Probabilistic methods in group theory”.
In: Journal d’Analyse M hém ique .. Pages –.
DOI: 10.1007/BF02806383.

. Nicolaas G. de B.
“On the number of positive integers B x and free of prime fa ors > y, II”.
In:Koninkl ke Nederlandse Akademie vanW enschappen. Proceedings, Series A
.. Pages –.

. Jeffrey C. L and AndrewM. O.
“Effe ive versions of the Chebotarev density theorem”.
In: Algebraic number elds: L-fun ions and Galo properties.
Proceedings of a Symposium held at the University of Durham in .
Academic Press. Pages –.

. Richard S and Adi S.
“A T =O(2n/2), S = O(2n/4) algorithm for certain NP-complete problems”.
In: SIAM Journal of Computing .. Pages –. DOI: 10.1137/0210033.

. Earl C, Paul E, and Carl P.
“On a problem of Oppenheim concerning ‘fa orisatio numerorum’”.
In: Journal of Number eory .. Pages –.
DOI: 10.1016/0022-314X(83)90002-1.

. Martin S.
“A probabilistic fa orization algorithm with quadratic forms of negative

http://dx.doi.org/10.2307/2371849
http://dx.doi.org/10.2307/1969420
http://dx.doi.org/10.1112/S0025579300001157
http://dx.doi.org/10.1007/BF02806383
http://dx.doi.org/10.1137/0210033
http://dx.doi.org/10.1016/0022-314X(83)90002-1


..     

discriminant”. In:M hem ics of Compu tion .. Pages –.
DOI: 10.1090/S0025-5718-1987-0878705-X.

. Johannes B.
“A subexponential algorithm for the determination of class groups and regulators of
algebraic number elds”. In: Séminaire de éorie des Nombres, Par .
Edited by Catherine G. Volume . Progress in Mathematics. Birkhäuser.
Pages –.

. David A. C.
Primes of e form x2 + ny2. JohnWiley & Sons. ISBN: ---.

. James L. H and Kevin S. MC.
“A rigorous subexponential algorithm for computation of class groups”.
In: Journal of e AmericanM hem ical Soci y .. Pages –.
DOI: 10.2307/1990896.

. Eric B.
“Explicit bounds for primality testing and related problems”.
In:M hem ics of Compu tion .. Pages –.
DOI: 10.1090/S0025-5718-1990-1023756-8.

. Jonathan P.
“Frobenius maps of abelian varieties and nding roots of unity in nite elds”.
In:M hem ics of Compu tion .. Pages –.
DOI: 10.2307/2008445.

. HendrikW. L and Carl P.
“A rigorous time bound for fa oring integers”.
In: Journal of e AmericanM hem ical Soci y .. Pages –.
DOI: 10.1090/S0894-0347-1992-1137100-0.

. Henri C.
A course in compu tional algebraic number eory. Volume .
Graduate Texts in Mathematics. Springer. ISBN: ---.

. Don C.
“Modi cations to the number eld sieve”.
In: Journal of Cryptology .. Pages –. DOI: 10.1007/BF00198464.

. Russel I andMoni N.
“Efficient cryptographic schemes provably as secure as subset sum”.
In: Journal of Cryptology .. Pages –. DOI: 10.1109/SFCS.1989.63484.

http://dx.doi.org/10.1090/S0025-5718-1987-0878705-X
http://dx.doi.org/10.2307/1990896
http://dx.doi.org/10.1090/S0025-5718-1990-1023756-8
http://dx.doi.org/10.2307/2008445
http://dx.doi.org/10.1090/S0894-0347-1992-1137100-0
http://dx.doi.org/10.1007/BF00198464
http://dx.doi.org/10.1109/SFCS.1989.63484


  

. David R. K.
“Endomorphism rings of elliptic curves over nite elds”.
PhD thesis. University of California at Berkeley.
URL: http://echidna.maths.usyd.edu.au/kohel/pub/thesis.pdf.

. Vi or S.
“Lower bounds for discrete logarithms and related problems”.
In: Advances in Cryptology— EUROCRYPT ’. Edited byWalter F.
Volume . Le ure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/3-540-69053-0_18.

. LeonardM. A andMing-Deh H.
“Counting points on curves and abelian varieties over nite elds”.
In: Journal of Symbolic Compu tion .. Pages –.
DOI: 10.1006/jsco.2001.0470.

. Andrew G.
“Smooth numbers: computational number theory and beyond”.
In: Algori mic Number eory: L tices, Number Fields, Curves and Cryptography.
Edited by Joseph P. B and Peter S. Volume .
Mathematical Sciences Research Institute Publications. Cambridge University Press.
Pages –.

. Gaetan B and Andrew V. S.
“Computing the endomorphism ring of an ordinary elliptic curve over a nite eld”.
In: Journal of Number eory .. Edited by Neal K and Vi or S. M.
Special Issue on Elliptic Curve Cryptography. Pages –.
DOI: 10.1016/j.jnt.2009.11.003.

. Kirsten E and Kristin E. L.
“A CRT algorithm for constru ing genus  curves over nite elds”.
In: Ari m ic, Geom ry and Coding eory— AGCT ’.
Edited by François R and Serge V. Volume . Séminaires et Congrès.
Société Mathématique de France. Pages –.

. David J, Stephen D. M, and Ramarathnam V.
“Expander graphs based on GRHwith an application to elliptic curve cryptography”.
In: Journal of Number eory .. Pages –.
DOI: 10.1016/j.jnt.2008.11.006.

. Nick H-G and Antoine J.
“New generic algorithms for hard knapsacks”.
In: Advances in Cryptology— EUROCRYPT ’. Edited by Henri G.

http://echidna.maths.usyd.edu.au/kohel/pub/thesis.pdf
http://dx.doi.org/10.1007/3-540-69053-0_18
http://dx.doi.org/10.1006/jsco.2001.0470
http://dx.doi.org/10.1016/j.jnt.2009.11.003
http://dx.doi.org/10.1016/j.jnt.2008.11.006


..     

Volume . Le ure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/978-3-642-13190-5_12.

. Sorina I and Antoine J.
“Pairing the volcano”. In: Algori mic Number eory— ANTS-IX.
Edited by Guillaume H, François M, and Emmanuel T.
Volume . Le ure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/978-3-642-14518-6_18.

. Gaetan B.
Computing endomorph m rings of e iptic curves under e GRH.
arXiv.org: 1101.4323.

. Gaetan B and Andrew V. S.
“A low-memory algorithm for nding short produ representations in nite groups”.
In:Designs, Codes and Cryptography.To appear.
DOI: 10.1007/s10623-011-9527-8.

http://dx.doi.org/10.1007/978-3-642-13190-5_12
http://dx.doi.org/10.1007/978-3-642-14518-6_18
http://arxiv.org/abs/1101.4323
http://dx.doi.org/10.1007/s10623-011-9527-8






olarized hod

Tomakepra ical use of our subexponentialmethod for computing endomorphism rings
of ordinary abelian varieties in dimension higher than one, polarizations must be taken into
account. is requires certain modi cations to be made on our framework, algorithms, and
implementation, which we now describe. We also need to rely on more unproven assump-
tions.

We focus on the case of Jacobian varieties of genus-two hyperelliptic curves, since the
availability of certain computational tools (such as themethodofM ()) is limited
in higher dimensions. Notwithstanding those issues, we believe most of the differences that
higher-dimensional varieties have in comparison to elliptic curves are addressed here.

e modi ed algorithm will be presented before the computation of isogenies; we then
give a ual computation results and nally discuss vertical isogenies.

. Algorithm

CM F

Westart by recalling some of the theory on which our approach relies.
LetA be a simple ordinary principally polarized abelian variety of dimension g de ned

over a nite eld. Weassume that an embedding of its complexmultiplication eldK =Q(π)
into End(A )⊗Q has been xed, which is equivalent to xing a type Φ on K.

As we saw in Chapter , ideals of the re ex eld Kr a on isomorphism classes of prin-
cipally polarized abelian varietiesA via the re ex type norm (see Figure ):

r � I(Kr) :Cg/Φ(a),Eξ
Φ 7¹→Cg/Φ

�
NΦr(r)−1a

�
, E

NKr/Q(r)ξ
Φ
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F . Complex multiplication eld extensions and their re ex counterparts.

e main difference to the preceding chapter is that, when the dimension g is two or
more, this a ion only gives certain elements of the polarized class group C(OK); in other
words, it describes certain, but not all, isogenies. erefore, a rigorous analysis of our algo-
rithm in this setting would be much more involved than in the utopian case where polariza-
tions were disregarded: one would need to assert the existence of short relations arising via
the re ex type norm, which we see no simple way of doing. erefore we assume:

Assumption ... Under e map (a, ℓ) 7→ (aO , ℓ), composed to e right wi e re ex
type norm, ideals of e ring of integers of e re ex eld a fai fu y on e s AVO (k) of
principa y polarized abelian vari ies wi endomorph m O over e b e eld k.

is comes on top of the generalized Riemann hypothesis, and Assumptions ..,
.., and .., which state re e ively:

– OrdersO ⊂O ′ for which the above a ion is identical have bounded index [O ′ : O ].
– emethodofE andL () computesEnd(A )ℓ in ℓ

O(1) time.

– e norms of reduced ideals are as smooth as random integers.

e rst assumption is a helpful heuristic, the third comes from B (), and
the second deliberately rules out cases where the local lattice of orders is deep. ey were all
largely veri ed in the range of pra ical problems that we considered, except in certain rare
cases.



..  

We also require the ability to draw points at random fromA and other varieties of its
isogeny class; for g = 2, this is always the case using Weierstrass forms, to which any variety
can be put using the method of M (). erefore we additionally impose g = 2.

Under all these assumptions, the expe ed runtime is, as we mentioned before:

L(q)g
p

3g/2+o(1)

O

LetA be the input polarized abelian variety, given as the Jacobian variety of a hyperellip-
tic curveC de ned over the nite eld with q elements. First, we compute the chara eristic
polynomial χπ of its Frobenius endomorphism π, which the algorithm of P () does
in polynomial time. In pra ice, we relied on the point-counting routines of the M
() computational algebra system, which use the techniques of G and H
(); larger base elds could be reached using the state-of-the-art implementation and op-
timizations of G and S ().

In the lattice of orders, we nd End(A ) from below using the following algorithm from
Chapter —we also proposed away of nding End(A ) from abovewhich is suited to vari-
eties constru ed via the complex multiplication method (rather than at random, as below);
however, at the time of thiswriting, only abelian varietieswithmaximal endomorphism rings
can be generated in this way, except in the one-dimensional case.

Algorithm ...
I: A simple ordinary principa y polarized abelian vari yA over a nite eld Fq.

O: An order omorphic to its endomorph m ring.
. Compute e Frobeni polynomial χπ(x) ofA .
. Fa or e d criminant Δ and constru e order O ′ =Z[π,π].
. For orders O dire ly abo e O ′:
. If O ⊂ End(A ) s O ′←O and go to Step .
. R urn O ′.

To determine whether a eci c order O is contained in the endomorphism ring ofA ,
we sele ed several relations of it (typically logarithmically many in the number of orders of
containingZ[π,π], although doubly logarithmically many should theoretically be enough),
and checked whether these relations hold in the isogeny graph. e latter step requires us to
evaluate isogenies and is the bottleneck of the whole algorithm.
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F . Galois groups of the complex multiplication elds tower.

D  S P

To study the litting pattern of rational primes ℓ in complex multiplications eld K, let
us rst present the setting towhich eorem.. can be applied. We aremostly interested
in the litting of primes in the re ex eld Kr of the eld by which our variety has complex
multiplication, but it makes no difference for this analysis.

Denote by K any complex multiplication eld of degree 2g, and write Kc for its normal
closure. Similarly, denote by Kc

+ the normal closure of its totally real sub eld K+. is gives
a tower of elds as di layed on Figure .

In the typical case of non-Galois number elds, D () established the iso-
morphismsGal(Kc

+/Q) ASg andGal(K
c/Kc

+) A (Z/2)ν for some integer ν in {1,… , g}, and
described the a ion of the former on the latter so that we have an explicit description of the
Galois stru ure of Kc/Q as

Gal(Kc/Q) A (Z/2)ν⋊Sg.

Note that, when a principally polarized abelian varietyA is absolutely simple (as we assume
here), its complex multiplication eld K is primitive and we have ν = g. In dimension g = 2,
the Galois group of Kc/Q is then isomorphic to the dihedral group D4 = Z/4⋊Z/2, and
we obtain the densities of Figure  as a consequence.
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  (1,1, 1, 1) (1, 1, 2) (1, 3) (2, 2) (4)
   1/8 1/4 0 3/8 1/4

F . Density of rational primes p litting in a xed non-normal quartic complexmul-
tiplication eld as

∏
pi with pattern (N(pi)).

F R

Finding relations is a quite standard step. We have already mentioned that the com-
putability of the algebraic stru ures we deal with has been well studied. Here, in fa , we do
not even need to compute the polarized class group of Shimura: since we are restri ed to us-
ing isogenies which arise under the re ex type norm, we are in fa seeking for relations of the
class group ofO r. To obtain a subexponential asymptotic runtime, we use the generalization
of the algorithm of H andMC () by B ().

Remark. As a pra ical optimization, since evaluating isogenies is so costly, more timemay
be dedicated to nding a shorter relation. For the range of input sizes we considered, it was
well worth using the exponential algorithm below which is essentially a baby-step giant-step
approach borrowing ideas of C, D  D, and O () for the effe ive
ideal arithmetic; it nds the shortest possible relation, therefore improving greatly the eed
of the isogeny step, and reducing the overall runtime.

Notation. Recall that bx(f(x)) may denote any fun ion satisfying the inequalities f(x) <
bx(f(x)) < f(x)1+o(1) and computable in essentially linear time in f(x).

Algorithm ...
I: An order O of d criminantΔ in a number eldK.

O: Rel ions of O .
. L B cons t of a prime ideals wi norm up to bΔ(12 log2 |Δ|).
. Cre e a h h bleH.
. Compute e produ a of a random subs ofB.
. L b be an LLL redu ion of a.
. IfH h an entry for b, outputH(b)− a.
. O erw e, s H(b)← a and go back to Step .

Step  means that b is the ideal generated over O by an LLL basis of the ideal a, where
the LLL redu ion can be computed along any dire ion as described by C, D 
D, and O (). e ideals b a as class representatives and we do not require



  

that they are unique: it is enough that they are small so that, by the pigeonhole principle,
classes are identi ed a er a few more trials than what would be required otherwise.

e use of such an exponential algorithm also has an additional bene t: it allows us to
choosewhich primeswewant to include in our relations, which subexponential smoothness-
based methods do not permit.

For instance, we can choose to only use primes which lit as pp, hence allowing for a
cardinality-based approach and aring the need to compute the chara eristic polynomial
of the Frobenius polynomial a ing on the kernel of the isogeny. is is not a tremendous
improvement since our current isogeny-evaluating technique a ually requires computing the
kernel, but it would be helpful if a modular-polynomial-based method was used.

More importantly, we can restri to primes which are congruent to one modulo four;
this avoids the need for an additional quadratic extension to compute torsion points, and
lowers the complexity of level-change formulas from ℓ2g+o(1) to ℓg+o(1).

. Computing Isogenies

To determine the endomorphism ring of a principally polarized abelian variety by ex-
ploiting the complex multiplication a ion, we need to evaluate the isogeny φa corre ond-
ing to a prescribed ideal a. In dimension one, this uses the formulas of V () and
Stage  of the algorithm by G, H, and S ().

e work of R () was interpreted by B and M () to com-
pute isogenies of type (Z/2)2 between Jacobian varieties of genus-two hyperelliptic curves.
Later, C, K, and L () obtained relations describing pairs of abelian
surfaces related by an isogeny of type (Z/3)2; this was implemented and publicly released in
the E () package.

is se ion gives a brief overview of the evaluation of general isogenies between abelian
varieties as implemented in the library of B., C, and R (); for most of the
mathematical a e s, we refer to L and R () and C and R
(). We evaluate φa in four steps: we rst nd its kernel, convert it into theta coordi-
nates, then perform the a ual isogeny computation, and nally express the result as absolute
invariants.

F K

Kernels of isogenies of type (Z/ℓ)g that re e the polarization are maximal isotropic
rational subgroups ofA isomorphic to (Z/ℓ)g and de ned over an algebraic closure of the
base eld Fq.
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Since each has order ℓg, is rational over the base eld, and contains the neutral element,
they are all de ned over an extension of degree e′(ℓ) at most ℓg − 1. We will thus simply
enumerate all such subgroups of the ℓ-torsion group ofA (Fqe′(ℓ)) and then nd which one
corre onds to the ideal a as mentioned above.

To nd these, rst compute a basis of the ℓ-Sylow subgroup ofA over the extension
eld, which we denote by

A
�
Fqe′(ℓ)

�
[ℓ∞];

for this, we use the method of C () which we have discussed before: it
amounts to taking random points ofA (this is easy, for instance, when it has a Weierstrass
form), multiplying them by the cofa or of ℓ∞ in #A (Fqe′(ℓ)), and “li ing” these points along
each other until a basis of the ℓ-torsion group is obtained.

We then derive a symple ic basis ofA (Fqe′(ℓ))[ℓ] for theWeil pairing. For simplicity, x

an ℓth root of unity and consider the problem additively under the corre onding logarithm
log : μℓ(C)→ Z/ℓ. On the basis we are looking for, (the logarithm of ) the Weil pairing is
given by the matrix �

0 Ig−Ig 0

�
.

To obtain such a basis (e1,… , eg, f1,… , fg) satisfying
logΨWeil(ei, fj) = δij
logΨWeil(ei, ej) = 0
logΨWeil(fi, fj) = 0

we use an elementary, orthogonalization-like algorithm, similar to the classical algorithm for
computing Smith normal forms.

is basis allows us to enumerate all symple ic subgroups easily and, amongst these, we
sele those that are rational, that is, stable under the Frobenius endomorphism, and nd
which is a ed upon with chara eristic polynomial u (given by the ideal a).

Note that when ℓ is congruent to onemodulo four, nding randompoints ofA is faster
by a fa or of two since computing the square root of the Weierstrass polynomial evaluated
at x in order to get the y-coordinate simply amounts to a modular exponentiation.



  

M  T C

Recall that ifA ACg/(Zg+ΩZg) is a complex torus with period matrix Ω inHg, then
the set of theta fun ions

ΘAa,b : z �Cg 7¹→ ∑
(u+a)�Zg

exp
�
iπ
�
1
nbuΩu+2bu�z+ b

���
,

where a = 0 and b is a ve or of 1
n (Z/n)g, forms the a coordin e system of level n. It

is a coordinate system for abelian varieties (and also incorporates information about the n-
torsion), but can represent points of such varieties too. It has an algebraic counterpart which
is applicable to varieties de ned over nite elds.

e points P of the kernel of the isogeny we wish to evaluate, as output by themethod of
C (), are expressed inMumford coordinate on aWeierstrass model for the
hyperelliptic curveC : y2 = f(x) of whichA is the Jacobian variety. As a rst step towards
mapping these points to theta coordinates, we extend the base eld so as tomake f lit com-
pletely; then, by a homographic transformation (also known as Möbius transformation) of
the x coordinate, we derive its Rosenhain normal form

y2 = x(x− 1)
2g−1∏
i=1

(x− ai)

which might require working in an extension of the base eld.
e formulas of T (), then give theta coordinates of level two or four corre-

onding to the varietyA = Jac(C ). In order to map points fromMumford representation
to theta coordinates, we need equations derived by W ().

Note that theta coordinates of level two a ually represent the Kummer surface of an
abelian variety, that is, identify a varietyA = Jac(C : y2 = f(x)) with its twist Jac( eC : ωy2 =
f(x)) where ω is a non-quadratic residue in the base eld. is is not too much of an issue for
us since the isogeny class ofA is identi ed by the chara eristic polynomial of its Frobenius
endomorphism, so there is no ambiguity on which of an abelian varietyB or its twist an
isogeny φa with domainA maps to.

However, for a cleaner approach, we prefer to use level four theta coordinates which
identify the varietyA uniquely; this comes at the expense of eed, but the slow down is
minor, e ecially as nding the ℓ-torsion remains the overall bottleneck.

I  L C

L and R () described isogenies as proje ions from higher-level theta
coordinate systems to lower-level ones; they also described the associated machinery (addi-
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F . Evaluating isogenies of type (Z/ℓ2)g via two theta level changes.

tion laws, etc.) required to make effe ive use of this result. Before discussing how it applies
to our setting, let us brie y recall their result.

eorem ... L H be a subgroup omorphic to (Z/ℓ)g of an abelian vari yA of
dimension g, and l n be any integer coprime to ℓ. e a fun ions of level n onA /H are
a subs of e a fun ions of level ℓn onA .

is introduces an change of level; to address this, L and R () noted
that subsets of the Fourier transform of theta fun ions of level ℓn onA corre ond to theta
fun ions of level n for abelian varieties obtained by dual isogenies of degree ℓ; this allows
them to compute isogenies of type (Z/ℓ2)g between abelian varieties expressed by level-n
theta fun ions; see Figure .

Our framework for computing endomorphism rings can be adapted to this setting: rela-
tions can be constrained to only involve squares of ideals, so that the associated isogenies are
all of type (Z/ℓ2)g. However, this implies loosing all the information regarding the 2-torsion
of the re ex class groupC(O r). C and L () showed that class groups typ-
ically have a large 2-torsion subgroup, so it is not likely that all pairs of class groups that are
identical up to 2-torsion can be distinguished efficiently using the local method of E-
 and L ().

C and R () then derived from earlier work of K () and
K () formulas which allow tomap points from level-ℓn theta coordinates to level-
n theta coordinates, avoiding the need to evaluate an additional isogeny. ey apply these
formulas to evaluating isogenies of type (Z/ℓ)g between abelian varieties expressed in theta
coordinates of level n.
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In order to determine whether a relation holds in the isogeny graph of an abelian variety
(to eventually determine its endomorphism ring), we need to compose many isogenies of
type (Z/ℓ)g for various primes ℓ. We have explained how to compute an isogenyA →
A ′ of prescribed kernel whereA is given in Weierstrass form and A ′ is given as theta
coordinates of level n. To iterate this constru ion, it remains to explain how we can obtain
aWeierstrass equation forA ′.

In fa , this can be done elementarily by inverting the formulas of T ().
However, the theta coordinates ofA that we used in the isogeny computation are de ned
over a large extension of the base eld which contains the roots of the Weierstrass polyno-
mial of the curve, certainn-torsionpoints (recall thatn = 2or4) and certain ℓ-torsionpoints;
the theta coordinates ofA ′, and therefore also its Weierstrass equation that we derive, are
consequently de ned over that large extension.

When we know thatA ′ is a ually de ned over the base eld (for instance, because the
chosen isogeny is rational), we recover a rationalWeierstrass equation by rst computing the
absolute invariants ofA ′ and then using the algorithm of M () to reconstru a
curveC ′ whose Jacobian variety Jac(C ′) isA ′.

As an optimization to the algorithm for nding the ℓ-torsion of the new curveA ′ and
then compute the next isogeny step, R noticed that part of the ℓ-torsion ofA can
be reused: indeed, we haveA [ℓ] A (Z/ℓ)2g and the isogenyA →A ′ only kills half of it;
therefore, we can map the remaining points all the way fromA toA ′ and start the search
for a basis ofA ′(Fq′(ℓ))[ℓ] knowing already half the solution. is can eed up the search
for rational torsion subgroups of type (Z/ℓ)g by a fa or of two.

Abelian varieties of dimension stri ly greater than two are not necessarily Jacobian va-
rieties of hyperelliptic curves, and from dimension four on they might not even be Jacobian
varieties at all. erefore, two of our building blocks fail:

– the sele ion of random points (to nd a basis forA [ℓ]);

– the method of M () (to reduce the eld of de nition ofA ′).

e former can easily be addressed by assuming that our abelian varieties come equippedwith
an efficient algorithm for obtaining random points. e latter is a more delicate issue: the
isogeny computation requires working in an extension eld, and for g > 2 we do not know
how to go back to the base eld a erwards.
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F . Average time for nding the ℓ-torsion of an abelian variety of dimension two
over the eld with 251 elements, for ℓ � {2,3, 5, 7, 11,13,17,19} and all possible e′(ℓ).
. Pra ical Computations

All computations were realized using the library of B., C, and R ().

F T

e bottleneck of our algorithm is typically to nd a basis for the ℓ-torsion subgroup of
A over an extension where all points of rational subgroups of type (Z/ℓ)g are de ned. e
cost is twofold:

– computing over an extension of degree e′(ℓ) of the base eld;

– multiplying points by the cofa or of ℓ∞ in #A (Fqe′(ℓ)) ~ qge′(ℓ).

In the worst case, e′(ℓ) can be as large as ℓg − 1, so that the overall complexity is ℓ2g+o(1)

disregarding logarithmic fa ors in q, which quickly becomes prohibitive. As argued before,
exponential methods for nding relations offer the advantage that eci c primes ℓ can be
chosen for which e′(ℓ) is small.

Figure  shows the time it takes, on average for 10 randomly chosen abelian surfaces
de ned over the eld F251, to compute the ℓ-torsion over an extension of degree e′.
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F . Number of iterations the latter algorithm requires before nding a relation in a
quartic complex multiplication eld with certain class number (also known as Picard num-
ber). e lines plot y = x and y =

p
x.

As can be expe ed, this runtime is slightly more than linear in the extension degree, and
does not highly depend on ℓ. However, we observe that for a prescribed ℓ the torsion of
varieties with a certain e′(ℓ) is sometimes faster than those of varieties with a smaller e′(ℓ);
this is likely due to the internal representation of the extensions as tower elds in M
(), and also possibly to ecial features of the varieties.

F R

We implemented inM () the simple baby-step giant-stepmethod that we de-
scribed above and found that it behaveswell: inmost cases, the number of iterations required
to nd a collision is not so far from the

p
h (where h denotes the class number) that would

be expe ed if each ideal class contained a unique reduced ideal.
Figure  shows the number of iterations our algorithm goes through before the rst

relation is found; we use the order O = Z[π,π] for a thousand Jacobian varieties of random
hyperelliptic curves of genus two. e class number di layed is a ually the approximationp|Δ|/R given by the Brauer–Siegel theorem.

We observe that the iteration count lies somewhere in between
p
h and h. Although in
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some cases this number went slightly above the class number, the runtime was always accept-
able: it was never more than two seconds when the class number was less than a thousand,
and always less than a hundred seconds in our range of parameters.

B-C S

Let us rst present an example where our algorithm performsmuch better than all other
alternatives. e condu or gap is the largest prime fa or of the index [OK : Z[π,π]]; here,
we consider a case of large condu or gap, which makes the method of E and
L () impra ical. Unfortunately, we were unable to compare our method with
that ofW (), as we did not have an implementation of the latter at our di osal.

To nd an abelian variety with a large condu or gap, we generated genus-two hyperel-
liptic curves at random until one whose Jacobian variety has the desired property was found;
we obtained the hyperelliptic curve with equation

y2 = 80742x5 +56078x4 +76952x3 +134685x2 +60828x+119537

de ned over the eld with 161983 elements; letA denote its Jacobian variety. e charac-
teristic polynomial of its Frobenius endomorphism is

z4− 144z3 +10368z2− 144 · 161983z+1619832

and it de nes a quartic complex multiplication eld K =Q(π) in which the ring of integers
contains the minimal orderZ[π,π] with prime index ℓ = 156799.

Since the full ℓ-torsion ofA lies in an extension of degree e(ℓ) = 78399, it is challenging
to try to compute End(A ) using the method of E and L ().

However, the Picard group ofM = OK has order 460; this is not surprising as a large part
of Δ = disc(π) contributes to the condu or gap so little is le to build up disc(K). It is thus
easy to nd relations in the associated polarized class group C(OK). For instance, one easily
veri es that the element (a, 3) has order 115, where a can be any ideal of norm 9 (there are
just two such elements, inverses of each others).

e a ion of (a, 3)115 onA is computed easily, as the 3-torsion ofA lives over an
extension of degree 8. Using just one core of an Intel Xeon E processor clocked at 2.83
GHz, our humble Magma implementation computes it in just over four minutes. Since it
nds that φ(a,3)115A ≠A , we deduce that End(A ) = Z[π,π]. Note that, since the a ion

of OK on AVOK(k) is always faithful, and there are only two orders in the lattice, this result
holds unconditionally regardless of the assumptions.
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F . Lattice of orders with OK on top and Z[π,π] at the bottom; lines indicate that
the order below is contained in the order above with index the label right off the line.

W-C S

Now let us consider an abelian variety that is expe edly suited to the method of E-
 and L (), namely, one for which the condu or gap [OK : Z[π,π]] is
short. We take the Jacobian varietyA of the hyperelliptic curve

y2 = 2987x5 +1680x4 +3443x3 +1918x2 +2983x+489

de ned over the eld with 3499 elements. e chara eristic polynomial of π is

z4 +48z3 +1152z2 +48 · 3499z+34992

and we nd that there are 24 orders containing (or equal to) Z[π,π]; their indices in the
maximal order divide 132 · 37 · 79 as di layed on Figure .

We use αℓ = (aℓ, ℓ) � C for ℓ � {3,5, 7} where aℓ is an arbitrary ideal of norm ℓ2; the
full ℓ-torsion is de ned over an extension of degree 8, 24, and 24, re e ively, so it takes on
average 1, 3.5, and 5.5 seconds to evaluate one ℓ-isogeny.

We used the relation α53α
7
7 = 1 for the yellow square order, α105 = 1 for the blue triangle

order, and α23α
16
5 α−27 = 1 for both the red circle and green diamond order. Checking these

relations in the isogeny graph took only slightly more than twominutes, and since none was
found to hold, our algorithm returned that End(A ) =Z[π,π].

Even in this case, which would a priori favor themethod of E and L
() (the full 37 and 79-torsion are de ned over extensions of degree 1332 and 948, re-
e ively), our algorithm performs well while still leaving some room for improvement.



..   

. Isogeny Volcanoes

Let us now x a prime ℓ and study the stru ure of the conne ed component of the
graph of isogenies of type (Z/ℓ)g containing a prescribed principally polarized simple ordi-
nary abelian varietyA de ned over some nite eld.

G S

K () and later F  andM () depi ed the stru ure of such
graphs in dimension one as volcanoes, containing a cr er formed by varieties whose endo-
morphism ring is locally maximal. Horizontal isogenies arrange these varieties in a (possibly
degenerated) circle, and from each vertex on it hang complete ℓ-ary trees; their number and
depth are entirely determined by ℓ and the isogeny class.

In dimension twoormore,most eci c details are lost, but the generalstru ure remains
the same; most important for our algorithms is that craters are still Cayley graphs.

Let G = 〈V,E〉 be such an isogeny graph: vertices V corre ond to abelian varieties and
edges E (a symmetric subset of V2) to isogenies of type (Z/ℓ)g between them. We start by
partitioningG into layersGO for each orderO aboveZ[π,π]: each layer contains the vertices
whose associated varieties have an endomorphism ring isomorphic to O .

Note that, in a conne ed component, certain layers can be empty as not all isogenous
varieties might be reachable by sequences of isogenies of type (Z/ℓ)g. We say that a layer GO
is maximal when there is no non-empty GO ′ with O ⊊ O ′; typically, this means that when
GOK is non-empty, it is the unique maximal layer.

Our observations of isogeny volcanoes will be lit in three parts:

– the core: the union of maximal layers and their horizontal isogenies;

– the branches: the vertical isogenies;

– the co ering: the horizontal isogenies in non-maximal layers.

O en, the graph has the familiar pi ure of a core, out of which branches hang, and there
is no covering. However, we will see that unusual phenomenons can occur, such as part of
the branches substituting to the core stru ure.

At any rate, we must warn the reader that our description of branches (which are the
key to understanding the relationship of ℓ-isogeny volcanoes and the stru ure of endomor-
phism rings locally at ℓ)will be short andqualitative, as this thesis focuses onusing horizontal
isogenies and does not pretend to add any insight on the stru ure of vertical isogenies.



  

C

Assume the core consists of a single layer GO (we will consider the case where there are
two or more below).

At least in the case thatO is amaximal order, the theory of complexmultiplicationproves
that the set of horizontal isogenies of type (Z/ℓ)g in GO corre onds to a certain subgroup
of C(O ) formed of ideals of norm ℓg. erefore, the core is a Cayley graph. We shall denote
by C(X|Y) the Cayley graph of X in the free abelian group generated by X with relations Y.

When g = 2, the order O is quartic, and the possible unrami ed litting patterns of a
prime ℓ in O are (1,1, 1, 1), (1, 1, 2), (1, 3), (2, 2), and (4). e third case never happens in
complex multiplication elds (it is incompatible with complex conjugation) and the latter is
that of inert primes which a trivially on the isogeny graph, so we disregard both.

In the second case where ℓ lits as ppq with N(q) = ℓ2 there are, in general, no ideals
a of norm ℓ2 such that aa is principal, which means there are no corre onding elements in
the polarized class groupC(O ) and no isogenies of type (Z/ℓ)g.

In the fourth casewhere ℓ lits aspp, bothp andp li toC(O ) as α = (p, ℓ) andβ = (p, ℓ).
e core of the isogeny graphGO is then theCayley graphC(α,β|αβ,αordα), where the orders

implied are those of the corre onding ideals as elements of the Picard group. is gives a
cycle stru ure as Figure  di lays.

In the rst case where ℓ lits as ppqq, there are four ideals of norm ℓ2 whose prod-
u with their conjugate is principal, namely pq, pq, pq, and pq; if we denote the corre-
onding elements of C(O ) by α, β, γ, and δ, we obtain that the core GO is the Cayley graph

C(α,β, γ, δ|αβ, γδ, αordα, γordγ); this is a quadrangulationof a torus, as canbe seenonFigure .
Although we were unable to compute a ual isogeny graphs for g > 2, primes ℓ which

completely lit as
∏

p�P pp (with #P = g) would then yield the 2g elements of C(O )

αF =

∏
p�F p

∏
p�F p, ℓ

g


for each subset F ofP; the core would then be the Cayley graph

C

 �
αF
�
F⊂P

�����
 ∏

F�GαF

!
,
�
αordαF
F

�
F⊂P

!
where the middle sequence ranges over all sets G of subsets ofP which satisfy #{F � G :
p � F} = #{F �G : p � F} for all p �P. Topologically, this is the 1-skeleton of a simplicial
complex homeomorphic to the g-torus (the produ of g copies of the 1- here).
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F . Graph of isogenies of type (Z/3)2 containing the Jacobian variety of the curve
y2 = 3x5 +15x4 +11x3 +3x2 +11x+12 over the eld with 19 elements.

F . Graph of isogenies of type (Z/7)2 containing the Jacobian variety of the curve
y2 = 106x6 +83x5 +18x4 +52x3 +49x2 +11x+41 over the eld with 109 elements.



  

Note that all the above holds over an algebraic closure, as not all isogenies corre onding
to ideals of norm ℓg of C(O ) need to be rational.

B

Let us now consider two-dimensional ℓ-isogeny graphs in the case that ℓOK is not co-
prime with the condu or of Z[π,π]. Although our algorithms for computing endomor-
phism rings prefer to avoid such situations, they are an interesting application of our isogeny-
computing library.

Each gure contains two parts: the isogeny graph to the le , and the lattice of orders to
the right. Vertices of the isogeny graph are colored the same way as the endomorphism rings
of the corre onding abelian varieties are in the lattice of orders.

Recall that in dimension one, a certain number of complete n-ary trees of uniform depth
hang from each vertex of the core. is might also happen in higher dimension, but other
scenarios are possible. For instance, B,G, andL () observed
in their Example . that trees hanging from the core might have different depths. Figure 
shows the same phenomenon in a more generic-looking graph. is unbalance shows that
not all isogenies of type (Z/ℓ)g need be uniformly rational.

Figure  also features isogeny of type (Z/ℓ)2 between abelian varieties whose endomor-
phism rings have index ℓ2 in each other, more eci cally between the green diamond and
cyan o agon dots. is can lead to disturbing graphs such as that of Figure  where the en-
domorphism rings of varieties (Z/ℓ)2-isogenous to varieties withmaximal ones are the order
of index 32, some order of index 3, but not the maximal order itself. Going from one variety
with maximal endomorphism ring to another is however possible by rst going through a
non-maximal one and then going up again.

In such cases, the partitioning of the features of isogeny graphs into a core, branches, and
coverings is somewhat awed. Although with our de nition, the core of Figure  consists
of both curves with red circle (maximal) and yellow square (index 3) endomorphism rings.

is illustrates another obstru ion to climbing higher-dimensional volcanoes: some-
times, steps can only be climbed in pairs, which prevents one to fully enumerate an isogeny
class just by following isogenies of type (Z/ℓ)g. Naturally, we see (hypothetical) isogenies of
type (Z/ℓ) as the answer to this problem.

C

Wecall covering the outer layers of the isogeny graph; those are horizontal isogenies aris-
ing as complex multiplication “residues.” Although there are no ideals of norm ℓg in imagi-
nary quadratic orders whose condu ors are divisible by ℓ, this sometimes happen in higher
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F . Graph of isogenies of type (Z/3)2 containing the Jacobian variety of the curve
y2 = 44x6 +36x5 +48x4 +29x3 +3x2 +44x+34 over the eld with 61 elements.

3 3

3 3

F . Graph of isogenies of type (Z/3)2 containing the Jacobian variety of the curve
y2 = 13x6 +5x5 +37x4 +31x3 + x2 +5x+3 over the eld with 43 elements.



  

dimension; by complex multiplication, such ideals give rise to horizontal isogenies amongst
varieties with non-maximal endomorphism rings.

is was rst noted by B, G, and L () in their Exam-
ple . as an obstru ion to a straightforward generalization of the endomorphism-ring-
computing algorithmofK (). Indeed, the presence of cycles other than at the core,
such as seen in Figures  and , makes it difficult to obtain useful information about en-
domorphism rings by exploring the isogeny graph blindly.

In arbitrary dimension g, when a prime ℓ is completely lit in themaximal order, we have
argued before that the core of the isogeny graph is the 1-skeleton of a g-torus. In ordersO of
condu or not coprime to ℓ, since not all prime ideals of norm ℓ can be invertible (otherwise
ℓ itself would be), there are at most g− 1 of them. e constru ion of the covering as a
Cayley graph is then identical to the maximal case except for two differences:

– P now consists of g− 1 ideals at the most;

– its a ion on GO need not be transitive.

Since we de ned our isogeny graphs as being conne ed components, the subgraph of hori-
zontal isogenies in the core was always conne ed (in this case where we assume that ℓ com-
pletely lits and that all elements of C(O ) of norm ℓg arise as rational isogenies); however,
there is no reason for this to happen in the cover where we have a smallerP, which is the
reason for the second difference.

e graph of horizontal isogenies ofGO therefore has the topological stru ure of several
copies of the 1-skeleton of a simplicial complex homeomorphic to the uO -torus, for some
integer uO < g. Obviously, the integer uO is non-decreasing with re e to the orderO (for
the inclusion order).

In the case g = 2, when the subgroup generated by the invertible ideals of norm ℓ2 in
C(O ) is small, we obtain an isogeny graph such as that of Figure . On the other hand,
when it is large, its shape is similar to Figure .

To compute endomorphism rings, such ideals can be allowed in our relations as long as
they are invertible in Z[π,π]. Although this has no effe on the asymptotic complexity of
our method, it provides a valuable pra ical optimization: since computing isogenies is the
bottleneck, not using any ideal of norm ℓg just because some are not invertible would be a
loss, e ecially if the full ℓ-torsion conveniently lies in a small extension of the base eld.
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3 3

F . Graph of isogenies of type (Z/3)2 containing the Jacobian variety of the curve
y2 = 8x6 +3x5 +7x4 +5x3 +12x2 +5x+5 over the eld with 23 elements.

3 3

3 3

F . Graph of isogenies of type (Z/3)2 containing the Jacobian variety of the curve
y2 = 10x6 +18x5 +24x4 +3x3 +33x2 +26x+25 over the eld with 41 elements.
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Summary

E R  C

Modern communications heavily rely on cryptography to ensure data integrity and pri-
vacy. Over the past two decades, very efficient, secure, and featureful cryptographic schemes
have been built on top of abelian varieties de ned over nite elds. is thesis contributes
to several computational a e s of ordinary abelian varieties related to their endomorphism
ring stru ure.

is stru ure plays a crucial role in the constru ion of abelian varieties with desirable
properties. For instance, pairings have recently enabledmany advanced cryptographic prim-
itives; generating abelian varieties endowed with efficient pairings requires sele ing suitable
endomorphism rings, and we show that more such rings can be used than expe ed.

We also address the inverse problem, that of computing the endomorphism ring of a
prescribed abelian variety, which has several applications of its own. Prior state-of-the-art
methods could only solve this problem in exponential time, andwe design several algorithms
of subexponential complexity for solving it in the ordinary case.

For elliptic curves, our algorithms are very effe ive andwedemonstrate their pra icality
by solving large problems thatwere previously intra able. Additionally, we rigorously bound
the complexity of ourmain algorithm assuming solely the extended Riemann hypothesis. As
an alternative to one of our subroutines, we also consider a generalization of the subset sum
problem in nite groups, and show how it can be solved using little memory.

Finally, we generalize our method to higher-dimensional abelian varieties, for which we
rely on further heuristic assumptions. Pra ically eaking, we develop a library enabling the
computation of isogenies between abelian varieties; using this important building block in
our main algorithm, we apply our generalized method to compute several illustrative and
record examples.



Research Pro e s

In this thesis, we effe ively exploited complex multiplication theory to compute the
endomorphism ring stru ure of a prescribed ordinary abelian variety de ned over a nite
eld. For elliptic curves, we were additionally able to rigorously analyze our algorithms, and

we believe their asymptotic complexity leaves little room for improvement.
Oh the other hand, although we described a pra ical method for varieties of dimension

g = 2, several topics remain to be explored for g C 2:

– Wedealtwith orders having identical Picard groups locally, using themethodof Eisen-
träger and Lauter. As its complexity is exponential in the valuation of the condu or
gap, this is however impra ical in certain cases. It would be interesting to address this
by developing a generalization of Kohel’s techniques to dimension two and more.

– Having adeeper insight on thestru ure of isogeny graphswould certainly help solving
the above, and we note that recent work on elliptic curves by Joux and Ionica offers
promising per e ives of developments on this matter in higher dimension.

– Besides the extended Riemann hypothesis, heuristics we relied on should be further
analyzed, such as the assumption that norms of LLL-reduced ideals are as smooth as
random integers, or that complex multiplication applies to non-maximal orders.

– e convenient stru ure of Jacobian varieties was used to draw points at random, and
to uniquely identify isomorphism classes. Using ourmethod beyond dimension three
would require to solely work in theta-coordinates, using theHeisenberg group for the
latter, and nding an efficient way of doing the former.

Closely conne ed topics include the computation of class polynomials and of modular
polynomials; it is only natural that they should bene t from further exploiting complexmul-
tiplication theory as well. For elliptic curves, this was done successfully for both problems
by Sutherland, and by Bröker, Lauter, and Sutherland, re e ively.

However, similar work remains to be done in higher dimension: although substantive
improvements have been made on it over the past few years, the computation of class poly-
nomials remains a topic of a ive study, albeit particularly unexplored in the case of non-
maximal orders. On the other hand, modular polynomials have not attra edmany research,
due to their prohibitive height; itwouldbe challenging to improve on this and computemore
such polynomials, as an alternative to explicit isogeny computation.

Finally,more of the codewritten during this thesis should be optimized, fully automated,
and cleaned up for inclusion in open so ware packages, as experimentation using efficient
computer routines becomes increasingly important to research a ivities in many elds.
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