

A saturated tree network of polling stations with flow control

Citation for published version (APA):
Beekhuizen, P., & Resing, J. A. C. (2009). A saturated tree network of polling stations with flow control. (Report
Eurandom; Vol. 2009055). Eurandom.

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/2b37f88e-7463-4212-a5c4-abd1cd903d0f

A saturated tree network of polling stations with flow control

Paul Beekhuizen Jacques Resing

December 8, 2009

Abstract

We consider a saturated tree network with flow control. The network consists of two lay-
ers of polling stations, and all polling stations use the random polling service discipline. We
obtain the equilibrium distribution of the network using a Markov chain approach. This equi-
librium distribution can be used to efficiently compute the division of throughput over packets
from different sources. Our study shows that this throughput division is determined by an
interaction between the flow control limits, buffer sizes, and the service discipline parame-
ters. A numerical study provides more insight in this interaction. The study is motivated by
networks on chips where multiple masters share a single slave, operating under flow control.

1 Background

Primarily motivated by networks on chips, we study a saturated concentrating tree network of
polling stations with flow control. Networks on chips are an emerging paradigm for the connection
of on-chip modules such as processors and memories. Such modules are traditionally connected
via single buses, but because these buses cannot be used by multiple modules simultaneously,
communication difficulties arise as the number of modules increases. Networks on chips have been
proposed as a solution (see [8]). In networks on chips, routers are used to transmit packets to
their destination, so that multiple links can be used at the same time and communication becomes
more efficient.

We are in particular motivated by a network on chip with multiple masters (e.g., processors)
sharing a single slave (e.g., memory). Packets travel from the processors to the memory over a
number of routers. Each router has several queues sharing a single link connecting that router to
the next. Because the link can be seen as a server attending multiple queues, the router can be
seen as a polling station, and the network of routers as a concentrating tree network of polling
stations.

Open concentrating tree networks of polling stations (i.e., without limitations on the number
of packets from the same source) were previously analysed in [4, 5]. Networks on chips, however,
also implement flow control [14]. Networks with flow control operating under heavy loads resemble
networks with a fixed number of packets (i.e., closed networks); flow control limits the number
of packets from the same source to a maximum, and heavy loads imply that packets are quickly
replaced by new packets once they leave the network, which is modelled by keeping the number
of packets from the same source fixed.

Consequently, we analyse the throughput in a closed network of polling stations in this paper.
It can relatively easily be argued that the total throughput in our closed network of polling stations
is fixed. One of the functions of flow control, however, is to achieve fairness [11]. We therefore
study the division of throughput over packets from different sources, which depends on flow control
limits, buffer sizes, and service disciplines.

Pioneering work on closed queueing networks in the context of networks with flow control was
done by Reiser [16]. He modelled a computer network operating under window flow control as a
closed queueing network and devised an efficient heuristic to compute throughput figures for large
networks. Many other studies where networks with flow control are modelled as closed queueing
networks have since been performed, see, e.g., Baccelli and Bonald [3], and Garetto et al. [10].

1

Besides the studies in [4,5], open networks of polling stations have been analysed in [6,7,12,15].
Altman and Yechiali [1] study a closed single-station polling system. In this system, after a packet
has been served, it moves from queue i to queue j with a probability that depends on both i and j,
regardless of the history. The analysis of Altman and Yechiali was later extended to a polling
system with a combination of a fixed population and external arrivals by Armony and Yechiali [2]
and to a polling system with breakdowns by Dror and Yechiali [9].

This paper is organised as follows: We describe the network in more detail in Section 2. In
Section 3 we describe how the network can be modelled as a Markov chain, and we derive its
equilibrium distribution. This equilibrium distribution is used to obtain throughput results in
Section 4. We perform a numerical analysis of the throughput in Section 5. We draw conclusions
in Section 6.

2 Model

We consider a concentrating tree network consisting of two layers of polling stations with flow
control, as displayed in Figure 1. Node 0 is the last node of the network, and has N queues. Some
of those queues are connected to other nodes and some are not. If queue i of node 0 is connected
to another node, then that node is called node i. Node i, i > 0, has Ni queues.

Packets in node i and packets in queue i of node 0 are called type i packets. Type i packets
are further subdivided into type i,j packets, j = 1, . . . , Ni, such that the sub-type of the packet
denotes the source of the packets (see Fig. 1). If queue i of node 0 is not connected to another
node (i.e., if node i does not exist), we define Ni = 1.

The network we consider is saturated, which means that as soon as a type i,j packet leaves
the network, another type i,j packet immediately arrives. The number of type i,j packets in the
network is thus fixed and we denote the number of type i,j packets by Li,j . We furthermore define
Li = (Li,1, . . . , Li,Ni

).
We assume that the network operates in discrete time. All packets and time slots are of unit

size and packet departures and arrivals occur at the end of time slots, with departures before
arrivals. The queues of node 0 are finite, and the size of queue i of node 0 is denoted by Bi. If
queue i of node 0 is full, packets from node i are blocked. When node 0 transmits a type i packet,
a new packet from node i is allowed to enter node 0 at the same time. Queue j of node i is large
enough to store all type i,j packets.

All nodes in the network, including node 0, use the ‘random polling’ service discipline. With
this service discipline, every queue has a fixed probability of being served, i.e., every time slot the
server of node i, i = 0, . . . , N , serves queue j with probability Pi(j), regardless of what happened

Node 0

i,1 i,2 i,3

type i

Node i

Figure 1: A tree network of polling stations with flow control. Due to saturation, the number of
packets inside the dashed box is fixed.

2

in the past. The random polling service discipline was introduced by Kleinrock and Levy [13]. If
some of the queues of node i are empty, we assume that the probability that queue j is served is
proportional to Pi(j), i.e., queue j is served with probability Pi(j)/

∑
l∈Vi

Pi(l), where Vi is the
set of non-empty queues at node i. Within queues, packets are always served in FIFO order.

3 Markov chain analysis

In this section, we describe how node i and node 0 together can be modelled as a Markov chain
and we obtain the equilibrium distribution of that Markov chain. This equilibrium distribution is
used in Section 4 to determine the throughput of different sub-types of packets.

An important observation is that all nodes always try to transmit one packet per time slot
if there is one. In particular, this implies that many packets may arrive to node 0 every time
slot, but only one packet may leave. In stationarity, there will thus be as many type i packets
in queue i of node 0 as possible, restricted by the buffer size Bi and the sum of the flow control
limits

∑
j Li,j .

In the sequel, we consider only those i for which node i exists; if node i does not exist, all type i
packets are type i,1 packets. Moreover, in this case, type i,1 packets are served by node 0 with
probability P0(i) because all queues of node 0 are always non-empty. The throughput of type i,1
packets is hence also equal to P0(i).

Suppose for a moment that queue i of node 0 is large enough to store at least all type i packets
except one, i.e., Bi ≥

∑
j Li,j − 1. Because all type i packets (except maybe one) are always

in queue i of node, and this queue is served in FIFO order, all type i packets pass through the
network in a cyclic manner; once an ordering of packet sub-types has been chosen, the sub-types
will always be served in that order. The steady-state behaviour of the network thus depends on
the initial configuration of packets and its equilibrium distribution is not unique. Moreover, in this
case, the throughput can be calculated straightforwardly, as will be demonstrated in Section 4. In
the sequel we therefore assume Bi <

∑
j Li,j − 1.

If Bi <
∑

j Li,j − 1, the state of queue i of node 0 only changes when the server is serving
that queue; a new type i packet may only enter queue i of node 0 if another one leaves. For the
computation of the throughput, we may thus disregard the times at which the server is at the
other queues. We can determine the throughput in a network where node 0 is always serving
queue i, and multiply that throughput by the fraction of time node 0 is actually serving queue i.

If node 0 is always serving queue i, node i and node 0 together form a closed tandem network
with two nodes and unit service times, as displayed in Figure 2. The first node uses the random
polling service discipline and has buffers large enough to store all packets, and the second node
has a FIFO queue with a buffer of size Bi.

Polling FIFO

i 0

Figure 2: The closed tandem network.

We describe the state of this closed tandem network by a finite Markov chain. A state of this
Markov chain is a length Bi + 1 vector x = (x1, . . . , xBi+1). Here, xk, for k = 1, . . . , Bi, describes
the type of the packet at position k of the buffer of node 0, i.e., x1 = j if the first packet is a
type i,j packet, and so on. The last element xBi+1 describes the type of the packet that is going
to be served by node i and will enter node 0 in the next time slot.

It is easily verified that this process is indeed Markovian: Node 0 always serves the first packet
in the queue and the probability that node i serves queue j depends only on which queues are
empty, which can be derived from x using the fact that there are Li,j type i,j packets in the
network in total.

3

The state space of the Markov chain is given by:

Ωi =
{
x ∈ {1, . . . , Ni}

Bi+1 : kj(x) ≤ Li,j
}

, (3.1)

where kj(x) is the number of j’s in x. The condition kj(x) ≤ Li,j reflects that there are at most
Li,j packets in the buffer of node 0, and, moreover, if there are indeed Li,j packets in that buffer,
the next packet served by node i (i.e., element xBi+1) must be of a different type.

We can now determine the equilibrium distribution of this Markov chain, denoted by πi(·):

Lemma 3.1. Suppose Bi <
∑

j Li,j − 1. Recall that kl(x) is the number of l’s in x. Then, for all

x ∈ Ωi,

πi(x) =
1

Ci(Bi, Li)

Ni∏

l=1

(Pi(l))
kl(x), (3.2)

where Ci(Bi, Li) is the normalisation constant, given by

Ci(Bi, Li) =
∑

x∈Ωi

Ni∏

l=1

(Pi(l))
kl(x). (3.3)

Proof. The equilibrium distribution is given by the unique normalised solution to the balance
equations of the Markov chain:

πi(x) =
∑

j∈Vi(x)

πi(j, x1, . . . , xBi
)

Pi(xBi+1)∑
k∈Vi(x)

Pi(k)
, x ∈ Ωi, (3.4)

where Vi(x) is the set of non-empty queues of node i in state x. The balance equations can be
obtained by observing that every transition of the Markov chain consists of shifting packets at
node 0 one buffer position ahead and by choosing the queue that will be served by node i in the
next time slot. In other words, in state (j, x1, . . . , xBi

), the vector (x1, . . . , xBi
) is shifted towards

positions 1 through Bi of the buffer. The probability that a type i, xBi+1 packet is served at node i
is given by the rightmost factor of (3.4).

Substituting Equation (3.2) in the right hand side of (3.4) yields

πi(x) =
1

Ci(Bi, Li)

∑

j∈Vi(x)

Ni∏

l=1

(Pi(l))
kl(x) Pi(j)

Pi(xBi+1)

Pi(xBi+1)∑
k∈Vi(x)

Pi(k)

=
1

Ci(Bi, Li)

Ni∏

l=1

(Pi(l))
kl(x)

∑

j∈Vi(x)

Pi(j)∑
k∈Vi(x)

Pi(k)

=
1

Ci(Bi, Li)

Ni∏

l=1

(Pi(l))
kl(x)

,

which completes the proof.

Example 3.2. Consider the situation with Bi = 2, and Li = (2, 2), and write Pi(1) = p1

and Pi(2) = p2. In this case, the state space Ωi consists of the following six states: (1, 1, 2),
(1, 2, 1), (2, 1, 1), (2, 2, 1), (2, 1, 2), and (1, 2, 2). In state (1, 1, 2), two type i,1 packets occupy
the two buffer positions and a type i,2 packet will move to the last buffer position in the next
time slot. The first three states all have probability p2

1p2/Ci(Bi, Li), and the last three all have
probability p1p

2
2/Ci(Bi, Li). Because the sum of all probabilities is 1, it follows that Ci(Bi, Li) =

3p2
1p2 + 3p1p

2
2 = 3p1p2.

4

Remark 3.3. The network studied in this section can also be seen as a variant of a classical
urn problem: Consider Ni urns such that urn j contains Li,j balls, for j = 1, . . . , Ni. Suppose
that Bi + 1 balls are drawn from different urns, and a ball from urn j is drawn with probability
Pi(j)/

∑
l∈Vi

Pi(l) where Vi is the set of non-empty urns. After Bi + 1 balls have been drawn,
the first ball is placed back in its original urn and a new ball is drawn. Then the second ball is
placed back in its urn and a new ball is drawn, and so on. The equilibrium probability that, at
an arbitrary point in time, the Bi +1 most recently drawn balls originate from urns x1, . . . , xBi+1

is given by πi(x).

The normalisation constant Ci(Bi, Li) can be computed efficiently using the following recur-
sion:

Ci(b, (Li,1, . . . , Li,n)) =

Li,n∑

k=0

(
b + 1

k

)
(Pi(n))kCi(b − k, (Li,1, . . . , Li,n−1)), (3.5)

for any nonnegative integer b ≤ Bi, and any positive integer n ≤ Ni, with
(
b+1

k

)
:= 0 for k > b+1.

This recursion can be obtained by conditioning on k, the number of type i,n packets in a
system with buffer size b and flow control limits (Li,1, . . . , Li,n). In that system, there are

(
b+1
k

)

states with k type i,n packets, each of which induces a factor (Pi(n))k. Furthermore, given that
there are k type i,n packets in a certain state x, the remaining b + 1 − k vector positions of x are
filled with remaining packet types, restricted by their flow control limits. This leads to a factor
Ci(b − k, (Li,1, . . . , Li,n−1)), where

Ci(−1, (Li,1, . . . , Li,n−1)) := 1,

i.e., if k = b + 1, there are no remaining vector positions to be filled, and a factor 1 is required.
It might happen that b − k ≥ Li,1 + . . . + Li,n−1. In this case, the b + 1 − k remaining vector

positions have to be filled with at most Li,1 + . . . + Li,n−1 < b + 1 − k packets. In other words,
there are more positions in the vector than elements to fill the vector with, so we define:

Ci(b, (Li,1, . . . , Li,n)) = 0, for b ≥ Li,1 + . . . + Li,n, and all n.

Finally, the behaviour on the boundary n = 1 follows from the definition of Ci(·, ·) (Eq. (3.3)):

Ci(b, (Li,1)) = (Pi(1))b+1, for b < Li,1.

4 Throughput computation

In this section, we determine the throughput of type i,j packets. As we argued in Section 3, this
throughput is equal to the throughput in a network where node 0 always serves queue i, multiplied
by the fraction of time node 0 is actually serving queue i. Because all queues of node 0 are always
non-empty, node 0 serves queue i with probability P0(i), so we obtain:

γi,j = P0(i)γ̃i,j , (4.1)

where γ̃i,j is the throughput of type i,j packets in a network where node 0 is always serving
queue i.

It thus remains to determine γ̃i,j . First, we argued in Section 3 that if Bi ≥
∑

j Li,j − 1, all
packets move cyclically through the network without any change in their ordering. This implies
that the fraction of time a type i,j packet is served is equal to the fraction of type i packets that
are of type i,j, i.e., γ̃i,j = Li,j/

∑
k Li,k. Hence:

Proposition 4.1. If Bi ≥
∑

j Li,j − 1,

γi,j = P0(i)
Li,j∑

k

Li,k

. (4.2)

5

If Bi <
∑

j Li,j − 1, the throughput of type i,j packets can be determined using the results of
Section 3:

Proposition 4.2. If Bi <
∑

j Li,j − 1,

γi,j = P0(i)Pi(j)
Ci(Bi − 1, Li − ej)

Ci(Bi, Li)
, (4.3)

where ej is a vector of which all elements are zero, except the jth, which is 1.

Proof. The throughput of type i,j packets is given by the probability that a type i,j packet is
served by node 0:

γ̃i,j =
∑

x∈Ωi

x1=j

πi(x) =
1

Ci(Bi, Li)

∑

x∈Ωi

x1=j

Ni∏

l=1

(Pi(l))
kl(x). (4.4)

For all x over which the sum is taken, the first element is a j. The remaining elements are restricted
by the flow control limits, but are otherwise chosen arbitrarily. We thus obtain:

γ̃i,j =
1

Ci(Bi, Li)
Pi(j)

∑

x∈Ωi

x1=j

Ni∏

l=1

(Pi(l))
kl(x2,...,xBi+1)

=
Ci(Bi − 1, Li − ej)

Ci(Bi, Li)
Pi(j).

Equation (4.3) follows by combining the above expression with (4.1).

In case the buffer sizes are small enough, we can reduce Equation (4.3) to a much simpler
expression:

Proposition 4.3. If Bi < Li,j for all j,

γi,j = P0(i)Pi(j). (4.5)

Proof. If Bi < Li,j for all j, the number of j’s in (x1, . . . , xBi+1) can never exceed Li,j . The
restriction that kj(x) ≤ Li,j can thus be removed from the definition of Ωi, the state space of the
Markov chain. It then follows from Newton’s binomium that Ci(Bi, Li) = (

∑
j Pi(j))

Bi+1 = 1,
and likewise Ci(Bi − 1, Li − ei) = 1. Equation (4.3) then yields γi,j = P0(i)Pi(j).

A more intuitive explanation is the following: The throughput of type i,j packets, γ̃i,j , is also
given by the probability that node i serves queue j. If Bi < Li,j for all j, queue i of node 0 is
too small to store all type i,j packets, for any j, so all queues of node i are always non-empty.
Queue j is thus served by node i with probability Pi(j).

Using these throughput results, the mean total sojourn time and the number of packets in
queue i of node 0 can be found easily using Little’s law. As there are Li,j type i,j packets in the
network, the total mean sojourn time is equal to

E[Ti,j] =
Li,j

γi,j
.

Furthermore, every type i packet spends on average Bi/P0(i) time slots in queue i of node 0, so
the mean number of type i,j packets in that queue is given by

E[Q
(0)
i,j] = γi,j

Bi

P0(i)
= Biγ̃i,j . (4.6)

6

5 Numerical analysis

The analysis of the previous sections illustrates that the division of throughput is determined by
an interaction between the flow control mechanism and the service disciplines: For small buffers,
the throughput division is determined by the service disciplines, for large buffers by the flow
control mechanism, and for intermediate buffers by a mix of the two. For intermediate buffers the
throughput division can be determined using Equation (4.3). This equation by itself, however,
offers little insight in the precise interaction between the flow control limitations and the service
disciplines. In this section, we therefore study how the throughput depends on the different
parameters through a numerical study.

We consider a network in which node i has four queues. We focus on the throughput given that
node 0 is always serving queue i, i.e., on γ̃i,j . The actual throughput in the network can easily
be found by multiplying that throughput by the probability that node 0 is serving queue i. The
running example of this section has the following parameters: Bi = 32, Pi = (0.1, 0.2, 0.3, 0.4),
and Li = (20, 16, 12, 8). We vary one of these parameters at a time, and study how this affects
the throughput division.

First, we show the throughput division in Figure 3 for Bi ranging from 1 to 64. This figure
clearly illustrates that the throughput is determined by the service disciplines for small buffers,
and by the flow control mechanism for large buffers. However, the transition from the small buffer
regime to the large buffer regime does not occur monotonously; the throughput of some packet
types first increases and later decreases.

We can explain this phenomenon by looking at the number of packets in queue i of node 0.
As the buffer size grows, the number of type i,j packets in queue i of node 0 gets closer to the
maximal number allowed by flow control. The flow control restrictions thus cause some queues to
remain empty and the throughput of corresponding packet types to decrease. If some queues are
empty, the other non-empty queues are served with a higher probability and the throughput of the
corresponding packet types will increase. As the buffer size grows even further, the flow control
restrictions on these packet types will become stronger as well, which can cause their throughput
to fall again.

For example, if Bi is equal to twelve, the mean number of type i,4 packets in queue i of node 0
is roughly five (see Equation (4.6)), out of eight allowed by flow control. On the other hand, the
mean number of type i,3 packets in queue i of node 0 is roughly four, out of twelve allowed. The
flow control restrictions on type i,4 packets are thus more severe than those on type i,3 packets.
As the buffer size Bi increases further, the throughput of type i,4 will hence decrease and that of
type i,3 will grow.

When Bi is twenty-five, there are on average roughly eight type i,3 packets in queue i of node 0,
out of twelve allowed. Flow control restrictions have thus become more severe for this type, and
its throughput will decrease again.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5
Type i,1
Type i,2
Type i,3
Type i,4

Bi

γ̃
i
,j

Figure 3: The division of throughput for various buffer sizes.

7

j = 1 j = 2 j = 3 j = 4

Pi(j) 0.1 0.2 0.3 0.4
Li,j 20 16 12 8
γ̃i,j 0.1512 0.3016 0.3198 0.2274

E[Q
(0)
i,j] 4.84 9.65 10.23 7.28

E[Q
(0)
i,j]/Li,j 0.24 0.60 0.85 0.91

Table 1: Parameters and performance measures of the running example.

That some packet types benefit from the flow control restrictions on other packet types is
especially clear for type i,1 packets. Queue 1 of node i is served with a 0.1 probability, and
only when the other queues are frequently empty due to the flow control restrictions, type i,1
packets will receive a more significant part of the throughput. Figure 3 clearly illustrates this:
The throughput of type i,1 experiences a sharp increase when the throughputs of all other types
decrease.

We consider again the running example, i.e., we set Bi = 32. In Table 1, we show E[Q
(0)
i,j],

the expected number of type i,j packets in node 0, as well as E[Q
(0)
i,j]/Li,j , the expected number

of type i,j packets in node 0 relative to its maximum. Based on the discussion above, the latter
can be seen as a (rough) measure for how strong the flow control restrictions are; the closer to 1,
the stronger the flow control restrictions. Table 1 reveals that type i,1 packets are not strongly
restricted by flow control, but type i,4 packets are; the expected number of packets in node 0
relative to its maximum is 0.24 and 0.91 for type i,1 and type i,4 respectively.

We proceed by investigating the sensitivity of the throughput of these packet types on changes
in the flow control limits and service disciplines for the running example, i.e., we vary one of the
values of Li,j and Pi(j) for j = 1, 4. Here, the value of Pi(j) is varied for one specific j, while
maintaining the ratios between the other values of Pi(k), for k 6= j, and maintaining a total sum
of 1.

Figures 4a and 4b show the throughput of type i,1 packets as a function of Pi(1) and Li,1,
respectively. For both figures, a vertical line marks the value on the x-axis corresponding to the
running example. Clearly, the throughput of type i,1 packets is not sensitive to a change in its
flow control limit but it is sensitive to a change in the service discipline; the throughput hardly
changes if the flow control limit is changed but it does change if the service discipline is changed.

In contrast, Figures 5a and 5b show the sensitivity of type i,4 throughput on changes in its flow
control limit and the service discipline, where the running example is again marked by a vertical
line. The throughput of type i,4 is not sensitive to a change in the service discipline, but it is
sensitive to a change in the flow control limit.

These observations can be used to decide whether flow control limits or service disciplines have
to be adjusted when the throughput division over various packet types has to be changed. If a
packet type is strongly restricted by the flow control mechanism, the flow control limits should be
changed, and otherwise the service discipline of node i should be changed.

6 Conclusion

We modelled a saturated concentrating tree network with flow control as a closed network. The
equilibrium distribution of the Markov chain describing this network can be derived in closed form
for the random polling discipline. Using the results from the Markov chain approach, the division
of throughput over various packet types can be determined.

For small buffers, the throughput division over packet types is fully determined by the service
disciplines, and for large buffers by the flow control mechanism. For intermediate buffers the
throughput division is steered by an interaction between the two. We performed a numerical
study that provides more insight in the specifics of this interaction.

The numerical study showed that the transition from the small buffer regime to the large buffer
regime does not necessarily occur monotonously. If there are many packets of the same type in

8

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Type i,1

Li,1

γ̃
i
,
1

(a) Throughput as a function of Li,1.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Type i,1

Pi(1)

γ̃
i
,
1

(b) Throughput as a function of Pi(1).

Figure 4: The type i,1 throughput as a function of Li,1 and Pi(1). The vertical line corresponds
to the ‘running example’.

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Type i,4

Li,4

γ̃
i
,
4

(a) Throughput as a function of Li,4.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Type i,4

Pi(4)

γ̃
i
,
4

(b) Throughput as a function of Pi(4).

Figure 5: The type i,4 throughput as a function of Li,4 and Pi(4). The vertical line corresponds
to the ‘running example’.

node 0, flow control restrictions become stronger, which limits the throughput of that type. The
throughput that becomes available as a result is divided over the other packet types for which the
flow control restrictions are less severe, which causes their throughput to rise. If the buffer size is
increased even further, the number of packets of those types in node 0 also increases, which causes
flow control limitations to become stronger and their throughput to decrease again.

The expected number of packets of different types in node 0 provides insight in the extent
to which packet types are restricted by flow control, which in turn determines which parameters
should be changed if the throughput division has to be adjusted: If almost all packets of the same
type are in node 0, flow control plays a key role. Changing flow control limits will thus affect the
throughput of that type, but changing the service discipline parameters will not. On the other
hand, if not many packets are in node 0, service disciplines play a key role. Changing flow control
limits thus has little effect, but changing service discipline parameters has a large effect.

In this paper, we only analysed the network with two layers of polling stations with random
polling. The phenomena described above, however, occur in more complex tree networks as well;
additional simulations have revealed that they also occur in networks of three layers and networks
with the cyclic 1-limited service discipline.

9

References

[1] E. Altman and U. Yechiali, Polling in a closed network, Probability in the Engineering and
Informational Sciences 8 (1994), pp. 327–343.

[2] R. Armony and U. Yechiali, Polling systems with permanent and transient jobs, Stochastic
Models 15 (1999), no. 3, pp. 395–427.

[3] F. Baccelli and T. Bonald, Window flow control in FIFO networks with cross traffic, Queueing
Systems 32 (1999), no. 1, pp. 195–231.

[4] P. Beekhuizen, T.J.J. Denteneer, and J.A.C. Resing, End-to-end delays in polling tree net-

works, Proc. of ValueTools, 2008.

[5] P. Beekhuizen, T.J.J. Denteneer, and J.A.C. Resing, Reduction of a polling network to a

single node, Queueing Systems 58 (2008), no. 4, pp. 303–319.

[6] D. Bertsimas and J. Niño-Mora, Optimization of multiclass queueing networks with

changeover times via the achievable region approach: Part II, the multi-station case, Mathe-
matics of Operations Research 24 (1999), pp. 331–361.

[7] J.G. Dai and O.B. Jennings, Stabilizing queueing networks with setups, Mathematics of Op-
erations Research 29 (2004), pp. 891–922.

[8] W.J. Dally and B. Towles, Route packets, not wires: On-chip interconnection networks, Proc.
of the Design Automation Conference, 2001, pp. 684–689.

[9] H. Dror and U. Yechiali, Closed polling models with failing nodes, Queueing Systems 35

(2000), no. 1, pp. 55–81.

[10] M. Garetto, R.L. Cigno, M. Meo, and M. Ajmone Marsan, A detailed and accurate closed

queueing network model of many interacting TCP flows, Proc. of IEEE INFOCOM, 2001,
pp. 1706–1715.

[11] M. Gerla and L. Kleinrock, Flow control: A comparative study, IEEE Transactions on Com-
munications 28 (1980), no. 4, pp. 553–574.

[12] O.B. Jennings, Heavy-traffic limits of queueing networks with polling stations, Mathematics
of Operations Research 33 (2008), no. 1, pp. 12–35.

[13] L. Kleinrock and H. Levy, The analysis of random polling systems, Operations Research 36

(1988), no. 5, pp. 716–732.

[14] A. Rădulescu, J. Dielissen, K. Goossens, E. Rijpkema, and P. Wielage, An efficient on-

chip network interface offering guaranteed services, shared memory abstraction, and flexible

network configuration, Proc. of DATE, 2004, pp. 878–883.

[15] M.I. Reiman and L.M. Wein, Heavy traffic analysis of polling systems in tandem, Operations
Research 47 (1999), no. 4, pp. 524–534.

[16] M. Reiser, A queueing network analysis of computer communication networks with window

flow control, IEEE Transactions on Communications 27 (1979), no. 8, pp. 1199–1209.

10

