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Summary 

In many forrning processes contact phenomena play an essential role with respect to 

needed process farces, induced mechanica! stresses in tools and workpiece, resulting 

workpiece geometry and surface condition. For a dimensioning of tools and choice of 

lubricants in the design stage, it is of importance to have the disposal of roodels 

which describe the mechanical interaction with enough accuracy. Well-known 

phenomenological roodels for this interaction are the friction model of Coulomb, the 

Von Mises model and the elasto-plastic analogies developed the last decade. This 

thesis conaiders a number of tools to evaluate the applicability of such contact 

roodels and to quantify contact parameters appearing in these models. 

After an introduetion and a description of the field of investigation in chapter 1, a 

thermodynarnical continuurn framework for the contact behaviour in forming 

processes is presented. The above mentioned mechanical contact roodels fit within 

this framework under quite general conditions. Therefore experiments are needed to 

specify useful contact roodels in more detail. 

Chapter 3 conaiders possible experimental set-ups and measuring methods, 

resulting in the choice to investigate in situ the upsetting process of axisymmetric 

workpieces. Chapter 4 presents an experimental-numerical method to analyse 

forrning processes taking measured boundary conditions into account, besides the 

influence of the measuring accuracy upon the calculated results is studied. Using this 

method the upsetting process with different sets of boundary conditions is analysed. 

It turns out that measurement of the normal stress and, if possible, the shear stress 

in the contact area between tool and workpiece is necessary to obtain reliable valnes 

for contact quantities suitable to evaluate the contact behaviour. The accuracy of 

the contact quantities can be increased by taking also the displacements of the 

unloaded surface into account, provided these are measured accurately enough. 

In chapter 5 a contactless photogrammetric displacement measuring methad is 

presented and evaluated. Experimental research learns that the theoretically 

predicted accuracy is not reached, due to several deficiencies in the modelling. The 

influence of some of these can be reduced by an improved set-up. When severe 

surface roughening occurs it will be doubtful whether the needed accuracy can be 

established. Measurement of the displacements remains of importance for 

determining the dimensions of the contact area, which is an input value for the 

method to quantify the contact stresses according to chapter 6. That chapter 

describes the design and analysis of a contact stress measuring tooi for upsetting 



experiments. Measurement of the elastic strains within the tooi combined with a 

numerical model, delivers the values of the contact stresses between tooi and 

workpiece. The strains are measured with thin film strain transducers. A model is 

obtained for such transducers. The experimental evaluation of this model is started 

and an experiment is indicated to evaluate the predicted behaviour of the measuring 

tooi. 

Finally chapter 7 presents a number of conclusions with respect to the present 

study and recornrnendations for a continuation. 

x 



Notation 

Quantities 

a 

a 

Operations and functions 

-1 -1 a ,.G 

ac 

3 re 4alc 4ac 
a ' ' 

a 

a• 
V 
a 

;'b, ab, a6 
.. 1 .. 
a.o, a.b, a.b 

;xb 
cd 

tr(.G), tr( a) 

det(.G), det( a) 

v 

scalar 

vector 

second, third, fourth order tensor 

column 

matrix 

transposition 

inversion 

conjugation 

right, left, central conjugation 

deviatoric part 

material time derivative 

surface time derivative 

objective time derivative 

dyadic product 

inner (dot) product 

outer (cross) product 

double inner (double dot) product 

trace 

determinant 

gradient operator 



E(a) 

p(a) 

p(a:b) 

exp(a) 
10log(a) 

min(a,b} 

lal 
11;11 

Miscellaneous 

<a> A 

Q, 9., 0 
4 I, I, I 

expected value 

probability density function 

likelibood lunetion 

exponential function 

logarithm to the base 10 

minimum value 

absolute value 

magnitude 

quantity betonging to the initialor relerenee state 

invariant quantity or estimate 

surface average 

zero column, zero matrix, zero tensor 

unit matrix, unit second order, unit lourth order tensor 



1 Introduetion 

This thesis presents an investigation of the mechanica! contact behaviour, occurrlng 

between die and workpiece in forming processes, in particular the contact in an 

upsetting configuration. The research is a continuation of the work by Baaijens 

(1987), which dealt with the numerical simulation of mechanica! contact problems. 

For such simulations constitutive equations for the contact interaction are needed. 

In this thesis constitutive principles for the contact stresses are considered and an 

experimental metbod to quantify the constitutive equations is developed. Although a 

restricted class of contact problems is focussed on bere, extension of the present 

work toother cases is possible. 

In the past, for calculations on forming processes, mainly the easy to use friction 

roodels called after Coulomb and Von Mises were applied to describe the mechanica! 

interaction between deforming material and die or punch. These roodels cover 

experimental results to a certain extent only. However, more sophisticated roodels 

were hardly siguificant, because of the absence of appropriate numerical techniques 

to insert them on the one hand, and a lack of measuring techniques to quantify 

model parameters on the other hand. Advanced numerical tools for complex contact 

phenomena are available nowadays, referred is to developments by, among others, 

Fredriksson {1976), Klarbring (1985) and Baaijens (1987). Together with the 

numerical tools, extended friction roodels have been proposed, thus increasing the 

need for techniques to assess the applicability of such models and to quantify them. 

After theoretica! considerations with respect to friction models, an experimental

numerical technique is described bere. lts potentiality is partly investigated and 

results attained thus far are reported. Before further exposing this work and its 

purpose and scope in paragraph 1.2, the class of contact probieros a priori aimed at 

is described in the next paragraph. 

1.1 Tbe restricted class of rontact probieros 

The class of contact probieros investigated is defined by a set of restrictions, 

mentioned pointwise in the sequel, to be characterized as quasi-static mild cold 

forming conditions. 

- Quasi-static and isothermal processes at room temperature. Deformation 

veloeities and contact slip veloeities are small. lnertial effects and velocity 

dependendes are negligible. Absence of high flash temperatures and large 

1 Introduetion 1 



temperature changes due to dissipative processes or external sources. 

- Moderate relative displacements between the contact partners. Slip distances in 

the order of the dimensions of these partners are considered. Effects at large run 

distances are not dealt with, thus focussing on the behaviour during running in. 

- No wear or fretting. Wear particles or conditions of grave material transference 

between the contact partners are avoided, resulting in only two body contact 

situations. 

- Moderate forming contact pressures. Only one of the contact partners shows 

large, irreversible deformations. 

- Non-agressive physical and chemical surrounding conditions. 

- Initial homogencity at the contact surface. The conditions of lubrication and 

roughness are equal at all contact points before toading is applied. Dynamic 

lubrication is irrelevant. 

1.2 Purpose and scope of the present research 

In many forming processes contact occurs between different physical bodies, 

interacting mechanically and thermally. These interactions partly define the process 

energy needed and the resulting state of the product, with respect to shape, surface 

condition and internal stresses. Important factors influencing the interactions are for 

instanee artificial surface layers, lubricant, initial condition and preparation of the 

surfaces, temperature, chemical and physical condition of the surroundings such as 

air composition and humidity. Experimental results may easily be misinterpreted 

because of the amount of possible interlering factors. Furthermore the success of 

combining results, obtained under strongly differing conditions, by one particular 

model for some chosen material combination, is very doubtful. For that reason the 

restrictions, as given in the previous paragraph, are presupposed. For that very 

restricted class of contact situations it might be expected that they could be 

described by one phenomenological model but for the time being this is not the case. 

As stated in the previous paragraph, the Coulomb and Von Mises model nevertheless 

are, despite known deficiencies, commonly used. 

In the last decade mechanica! contact models, analogous to roodels for 

elasto-plastic material behaviour, have been formulated by different authors. Those 

roodels can describe both the Coulomb and the V on Mises behaviour. They deserve a 

nearer investigation to examine the applicability for the class of contact probieros 

indicated. Before the methods for this purpose are described, some explanation 
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abo~t the general strategy is needed. 

In tribology research different classifications can be made. Here only the 

distinction into research on a local and on a globallevel is made. Investigations from 

a local point of view concentrate on microscopie phenomena such as contact at 

microscopie or even molecular smalt contact spots, in order to define 

micromechanical contact models. A disadvantage of applying such models for 

calculations of forming processes is the need to translate them, introducing 

continuurn quantities, however insight is gained in the actual contact interactions. 

Research on a global scale directly aims at models formulated in continuurn 

quantities. Such models are applicable for calculations, without translation. This 

global point of view is also taken in this thesis. 

A theoretica! requirement for continuurn contact models is their thermodynamical 

validity. This is discussed in chapter 2 where continuurn contact quantities, balance 
laws, dependent and independent variables and constitutive equations for the 

dependent variables are considered. It is shown that the mentioned elasto-plastic 

friction laws are consistent with the thermodynamic theory described. In order to 

quantify contact parameters and functions of the elasto-plastic friction model, but 

of other friction models as well, experiments are essential. Chapter 3 reviews possible 

experimental set-ups and techniques. The upsetting test is selected for further 

investigation. A hybrid experimental-romputational procedure, which enables the 

determina.tion of all contact quantities of interest, is described in chapter 4. This 

procedure is based on a. numerical metbod for simulating the forming process using 

measured boundary data, taking the accuracy of these data into account. Chapter 5 

presents a photogrammetric metbod to obtain the current positions of material 

contour points of the workpiece, thus enabling in situ measurement. This metbod is 

evaluated by upsetting experiments. As the knowledge of contour displacements only 

is not sufficient for reliable results for the contact quantities, chapter 6 proposes a 

technique to measure the contact stresses. In fact these stresses could be calculated 

from the elastic strains of the upsetting punch, in situ measured by thin film strain 

transducers. Use of this stress data, and possibly the contour data, in the simulation 

of the forming process should offer a useful metbod to quantify the contact 

behaviour. Future research is necessary to verify this statement. Finally chapter 7 

coneindes with comments. on the strategy of the present research and the results 

obtained. 
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2 Constitutive equations for contact behaviour 

For the theoretica! validation of constitutive equations for contact behaviour a. 
thermodynamica! continuurn theory for contact regions is used. Not only the 

formulation of balance laws is needed but also a consideration of independent 

variables and constitutive principles. In literature these aspects are not often treated 

simultaneously, see e.g. the elaborate workof Zmitrowicz (1987). 

In this chapter the thermodynamica! validity of the Maxwell friction models as 

developed by Fredriksson (1976), Peterssou (1977), Michalowski & Mróz (1978), 

Cheng & Kikuchi (1985), Baaijens et al. (1986) is shown. For this purpose at first 

the modelling of contact regions within continuurn theory is discussed and balance 

laws are formulated. The complexity of these laws is reduced by the introduetion of 

some simplifying assumptions and by the specialization to the class of contact 

processes, restricted to in chapter 1. Distinction between independent and dependent 

variables and application of some constitutive principles lead to a set of constitutive 

contact equations. In order to derive the Maxwell friction laws internal variables and 

evolution laws for these variables are introduced in such a way that thermo

dynamica! requirements are obeyed. Experiments are needed to investigate their 

applicability in practice, an aspect the rest of this thesis is focussed on. 

2.1 The description of contact regiollB in oontinuum theory 

In literature the description of real contact phenomena by means of two smooth 

body surfaces, possibly via an intermediate surface or layer, is mostly introduced 

more or less intuitively (Oden & Martins 1985, Ruina 1985). In this paragraph the 

concept of averaging volumes is used to support this intuitive process 

rnathematically. So better understanding is obtained with respect to the validity of 

the particular modelling of contact regions. 

CollBidered are two contacting bodies, see figure 2.1.1, mechanically and 

thermally loaded. Different phenomena occur internally, between the bodies and the 

surroundings and the bodies mutual. It is assumed that the insides of the bodies may 

be modelled as continua. In the transition region between the bodies capricious 

contact results from the roughness of both bodies. In this region chemical and 

physical different components are present such as oxide layers, Iubricant and wear 

particles (Rabinowicz 1965). The resulting macroscopie behaviour, due to the 

interaction on a microscopie scale, can be ascribed to a fictitious smooth contact 
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layer between the two bodies. Phenomena such as slip, contact stiffness and 

frictional heat can he described using such a layer (Oden & Martins 1985, 

Zmitrowicz 1987). 

Figure 2.1.1 Two contacting bodies B+ and IT 

It is noticed that the roughness of the bodies is smoothened but the influence of it 

will he represented in the layer's behaviour. A comparable statement can he made 

for lubricational effects. 

Although studying the microscopie behaviour is not necessary, definition of the 

contact layer and the ascription of continuurn quantities to it, starts at this scale. 

Instantaneously a smooth non-unique midplane S, situated in the transition region 

between the bodies, is appointed and elementary averaging volumes V E are 

introduced (Whitaker 1969, Huyghe 1986). The smoothness is defined with respect 

to local i.e. microscopie fluctuations. This will he quantified in the sequel. 

Figure 2.1.2 Elementary averaging volume with a part of the contact region 
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The points of the midplane S are uniquely identified by two locational parameters 11
1 

and 112, composing a column !!· For every point of S, denoted by !!• a cylindrical 

averaging volume VE with diameter DE and thickness tE is defined, see figure 2.1.2. 

This volume is oriented such that the centre of V E coincides with the point !! of S 

and the axis of V E is perpendicular to S at that point. The contact layer is defined 

as the inside of the envelope of the averaging volumes for all points !1· The curvature 

of S inaide of V E is neglected, demanding that DE is much smaller than a 

characteristic radius of curvature of S. The thickness of the contact layer equals tE 

by approximation this way. 

Considered is a quantity cp which is defined for each material component in the 

transition region as a function of the position (and time). The surface average <cp> A 

is introduced by 

(2.1.1) 

and is defined at each point !!· At some time t, <cp> A can he considered as a 

function of !f. DE and tE . To quantify the requirements for DE and tE , the 

characteristic behaviour of <cp> A for some !1 and t, as a function of DE and tE, is 

visualized in figure 2.1.3. 

<cp> A 

0 0 

Figure 2.1.3 The averages as functions of the diameter and thickness of the 

averaging volume 

Strong fluctuations occur below some D~in and t~in. 'fhese fluctuations result from 

the roughness of both bodies and the distribution of components with strongly 

differing valnes of cp through the transition region. In that lower range the averages 

are useless as Cdntinuum quantities. Above some ~ax and t~ax the averages are 
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smooth but diverge from the values, which would occur for homogeneons 

thermomechanicalloading conditions. This results from variation of cp of one or more 

components influenced by global conditions. In order not to filter out this global 

behaviour also the upper range for the averaging volume dimensions is not useful. 

The averages basedon volumes VE with dimensions in the range between D~in, t~in 

and D~ax, t~ax can be used as local continuurn quantities. If such a range cannot be 

indicated a continuurn approach is not possible. For engineering contact problems 

however generally such a range can be appointed. Suitable choices follow from 

(2.1.2) 

where d is a characteristic distance for fluctuations in the local contact areas and L a 

characteristic distance for global variations. 

Before deriving balance laws for the contact layer in the next paragraph, some 

kinematic relations are treated first. In figure 2.1.4 a cross section of a part of the 

contact layer is sketched. The points momentarily coinciding with the boundary 

surfaces st" and s- are identified uniquely by surface coordinates ~+ and ç-. 

I 

--s 

Figure 2.1.4 The contact layer with definitions of quantities 

A point Pof S with coordinates !1 is associated with the points p+ and r of s+ and 

s- respectively. These points are located on a line perpendicular to S at P. In this 

way coordinates ~+ and ç- are instantaneously related to each !1· The position in .. .. 
space of point 11 of S at time t is indicated by the vector x = x (fl,t) or equivalently 

- s s -
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-+ "*+-+-+ A 
x = x ( Ç ,t) or x = x ( ç-,t). In the sequel only choices for the coordina.tes q, ~" 

8 8- 8 s- --

a.nd ç- are considered, such tha.t i is continuous in 11 a.nd t, ç+ and t respectively ç-
- 8 - - -

-+ .. 
a.nd t. The natural a.nd reciprocal surface base veetors c a.nd "' follow from 

-8 -s 

-+ -+T 
c ."'f = I 
-8 -s -

-+ .. 
"'f.n -s s 0 (2.1.3) 

Since S is a smooth surface the unit normal vector ~ to S is a continuous a.nd s 

differentiable function of 'f/· The surface gradient operator V is defined by 
- 8 

.. 
The surface velocity u is the velocity of point 'f/ through space 

s -

.. ... 
u= x 

8 s 

where the dot • denotes the time derivative operator fel'!!. 

2.2 General balance law and specific formulati0118 

(2.1.4) 

(2.1.5) 

In this paragraph the bala.nce laws for mass, momentum, moment of momentum, 

energy and entropy are considered for the class of contacts as defined in chapter 1. 

These laws are special cases of the general bala.nce law for some (mass associated) 

quantity <p. For notational convenience 1.p is supposed to be a scalar quantity. To 

derive this general formulation for <p, the qua.ntity Q, defined for the averaging 

volume V E belonging to some point '!!• is considered 

(2.2.1) 

where pis the mass density. The quantity Q may be identified physically as e.g. the 

total mass of the material within VE, basedon the choice cp = 1. In that case the 

8 2 Constitutive equations for eontact behaviour 



resulting balance la.w will be the law of mass conservation. Simplifica.tions, valid for 

the restricted class of cantacts are indicated in the sequel. Essential assumptions, to 

simplify the ba.lance laws further, are discussed in the next paragraph. 

The time derivative Q• of Q is composed of contributions, caused by material 

flow (convection), immaterial flow (flux) and sources, subsequently to be reviewed. 

1) Material flow through the border oVE of VE . 
.. 

The local material velocity is indica.ted by v. The decrea.se of Q per unit of time 

due to convection then equals 

.. .. ... f ptp{ rr-u ) . ndA 
av s 

E 

(2.2.2) 

... 
where n denotes the unit ontward normal vector. For the whole boundary avE a 

.. 
uniform velocity u is assumed. Formally this is incorrect in case the orientation 

s 
of VEinspace changes in time. Because of (2.1.2) these rotational effects may be 
neglected. 

2) Flux through the boundary oV E . 
.. 

The local flux is indicated by '1/J. The decrea.se of Q resulting from fluxes is 

(2.2.3) 

3) Sourees within VE. 
Only the case of a distributed mass associated cp-production q; is considered. 

The increa.se of Q equals 

(2.2.4) 

Combination and etaboration of these three contributions result in the following 

general balance law, see appendix 2.2.1 
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(2.2.5) 

The superscripts + and - indicate bulk continuurn quantities at the + and - side of 

the contact layer. Equation (2.2.5) is only valid if the conditions (2.1.2) for the 

dimensions of the averaging volume are satisfied. 

Some of the terms in (2.2.5) may be neglected or reformulated for the restricted 

class of contacts. Firstly all sourees may be neglected. The mechanica! sourees are 

negligibly small whereas the thermal ones are not present. Secondly all fluxes in the 

plane of the layer are omitted. These inplane fluxes are dominated by the fluxes 

perpendicular to the layer. Finally the exclusion of severe wear induces only small 

mass flow from the bulk surroundings into the contact layer. The corresponding 

convection terms vanish from (2.2.5) by adopting s+- and !) as material bulk 

surfaces, with material coordinates ~+ and ç-, and surface averages, defined with a 

changing thickness tE, locally defined as the distance between the two material bulk 

surfaces. It shows easily that (2.2.5) then becomes 

(2.2.6) 

while the surface averages should be interpreted as averaged quantities using a 
.. + .. 

variabie thickness. The change of the unit normal veetors n and n- is a second 

order effect and therefore these veetors may be taken perpendicular to S . .. 
Special choices for lP and 1/J in (2.2.6) lead to the specific balance laws for the 

mass, moment urn, moment of momentum, energy or entropy of V E • 

Mass: with substitution of lP= 1, the quantity Q represents mass 

(2.2.7) 

.. .. 
Momentum: lP is replaced by the material velocity v, and 1/J by the opposite of the 

conjugate ,,c of the Cauchy stress tensor u. Only non-polar media are considered so 

"c = IT. Neglecting the momentum, being only interested in quasi-static processes, 
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the static equilibrium equation results in 

.. + + .. _ .. 
n .u +n .u-= 0 (2.2.8) 

This equation represents the law of action and reaction between the two bodies. 

Moment of momentum: this yields for non-polar media the static moment 

equilibrium equation 

.. 
0 (2.2.9) 

Use of (2.2.8) in {2.2.9) offers a not trivially fulfilled equation. Because tE<< L this 

remaining equation describes a secoud order effect. As the first order effect is 

automa.tically satisfied by the static equilibrium equation, the static moment 

equation is not considered further. 

Energy: the relevant material coupled energy is the internal energy e, the kinetic 

energy is negligible for quasi.static processes. The flux consists of a mechanica! part 
.. .. 

-v.u and a thermal part q, equal to the heat flux in the case considered. A balance 

equation for the internal energy is obtained 

.. + .. + .. + + .. _ .. _ ... _ -
= -n .(q -v .u )-n .(q -v .u ) (2.2.10) 

The bulk of the bodies exchanges heat with the contact layer, but also doesworkon 

it, which is used for deformation in thickness and shear direction. The latter results 

in macroscopie slip between the bodies, the work needed for this will be dissipated 

almost completely as frictional heat in the contact layer. 

Entropy: with the general balance law tormulation a Clausius-Duhem equation 

for the entropy production sis derived 

• ;t. ... 
<ps> A= <ph> A+(v,.u)<ph> A+ 

.. ... .. ... .. ..+ .. + ..... 
+V .[(1-n n ).(<vph>A-u <ph>A)]+n .w +n-.w-

s s s s 
(2.2.ll) 
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.. 
where h is the entropy a.nd w the entropy flux. The second law of thermodynamica 

postuiatea <ps> A = 0 for all allowable reversible contact processes a.nd <ps> A > 0 

for all thermodynamical allowable irreversible contact processes. Thermodynamical 

allowable indicates that the processes do not violate other thermodynamic concepts 

such as e.g. the bala.nce of internal energy. 

2.3 Simplifying assnmptions 

For some qua.ntities in the equations, as formulated in the previous paragraph, 

assumptions are introduced, to simplify the balance laws further. 

First the flow terms are considered. Opposed to the flux terms in the previous 

paragraph, the flow terms in the plane of the contact cannot simply be neglected. 
... ... .. ... .. 

Choosing the surface coordinates '9 such that (I-n
8
n).(<vp> A-u

8
<p> A)= 0 the 

.. ... .... .. .. 
term V .[(I-n n ).( <vp>A-u <p>A)J disappears from the balance of maas. The s s s s 
simHar terms in the balances of energy a.nd entropy vanish with. the assumption 

... ... .. ... .. .. .. .. ... 
(I-n

8
n

8
).(<vpe> A-u

8
<pe> A)~ (I-n

8
n).(<vph> A-u

8
<ph> A)~ 0. 

A second assumption concerns the entropy fluxes ~+ and ~-. These fluxes are 

taken equal to (q/T)+ respectively (q/T)-, a well-known result from bulk 

thermodynamica (Müller 1985). 

The remaining contact layer quantities <p> A' <pe> A' <ph> A and <ps> A in the 

balances of mass, internal energy and entropy provoke the definition of mass 

weighted contact layer quantities 

(2.3.1) 

i.e. the mass density, internal energy, entropy and entropy production of the contact 

layer respectively. With the (non-mass) weighted contact layer temperature 

T = < T>A the contact layer free energy 1 = e - T h is defined. Then the balances s s s s s 
of mass, moment urn, energy and entropy result in 

12 

. ~ .. 
p+pv.u =0 s s s s (2.3.2) 

(2.3.3) 
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• ..+ ( .. + .. + +) .. _ ( .. _ .. _ ;"j 
p e = -n . q -v .u -n . q -v .u 1 $ s 

2.4 Independent variables and constitutive equations 

(2.3.4) 

(2.3.5) 

In this pa.ragraph constitutive quantities, constitutive relations for these quantities 

and the independent variables appearing in these relationships are considered. 

Constitutive principles induce restrictions with respect to the initially general 

constitutive relations (Hunter 1976, Müller 1985). 

In continuurn thermodynamics the temperature and position vector, as functions 

of material coordinates and time, are generally accepted as independent variables in 

constitutive equations. Characteristic for the independent variables is that, if they 

are known as functions of location and time, all other quantities of interest can be 

calculated. For the contact layer it is assumed that the following variables may be 

chosen as the set of independent variables, being functions of !! and t 

.. ...+ .. ,..,.!-x , x , x-, T , 1 · , 'T 
s s 

(2.4.1) 

The contact layer mass density p is omitted as independent variabie because it can 
s .. 

be expressed in x using the mass balance. 
s . 

In the remairring thermodynamica! balances a set of quantities is present for 

which constitutive equations are needed. These dependent variables are 

f h + - .. + .. _ 
s ' s ' qn ' qn ' q ' q {2.4.2) 

where the normal heat fluxes q+, q- are defined by q+ = i+.'Q+ respectively 
n n n 

.. _ .. _ .. + .. _ .. + .. + + .. _ .. _ -
q- = n .q , and the stress veetors q , q by q = n .u respectively q = n .u . 
n 

The normal heat fluxes are related to each other by the energy balance, the stress 

veetors by the action and reaction law. Therefore a constitutive equation is neerled 

only for ~+ and q+, while ~- and q- are dictated by the mentioned balance laws. 
n n 

To arrive at constitutive equations, the principles of determination, equipresence 
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and local action are applièd. These result in the statement that each of the variables 

of {2.4.2) can be expressed in the history of the deformational quantities F, F, Y", s 
.. 1--1- .. .. .. + .. ,.,-1-
ê , o · and c, and the thermal quantities g

8
, g , g -, T , 1 · and T. The 

8 s 

deformation tensors F, p+ and r, defined by 
11 

.. 
Öz T .. 

F=( 11
) 1 

11 Of -sO (2.4.3) 

take the non-material inplane deformation of the contact layer and the material 
.. ..+ .. 

deformation of the bulk surfaces into account. Here lsO' 1o and 1~ are the reciprocal 

vector bases in some reference state, betonging to the surfaces S, s+ and fJ 

respectively. The deformation veetors 6 , 6+ and 5-, defined by 
s 

(2.4.4) 

account for thickness deformations and slip, which may be considered as extreme 

shear deformation of the contact layer. The time integrations start at time t
0 

assigned to the reference state and end at the current time t. Finally the 
.... + .. 

temperature gradients g , g and g- are defined by 
s 

.. ~ .. + ~ ,.,-!- .. _ ~ 
g=vT, g =v1·, g =vr s s s s s 

(2.4.5) 

Ristory variables, also called hidden variables, are introduced to take the history of 

the independent variables into account. The time derivatives of these variables are 

given by evolution laws, in which only the current values of the independent 

variables and the bidden variables appear, basedon the principle of equipresence. In 

analogy with the foregoing, history variables H ( TJ, t) of the contact layer and history 
- s-

variables !_t"{Ç",t), !! (Ç-,t) of the surfaces s+ and fJ respectively, are introduced. 
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Resnming, each constitntive qnantity C{!J,t) of (2.4.2) is assumed to be a function 

of the actual valnes of the independent variables (2.4.1), betonging to contact layer 

point !!• augmented with the actnal valnes of the history variables belonging to !! (to 

which always a ~+ and Ç are associated, see paragraph 2.1) 

.....!- -+ 1+ -+ -+ .. + .. _ ,..+ rri-
C= C(F ,1' .. ,r,6 ,o· ,IJ,g ,g ,g ,T ,1 · ,r,H ,n· ,Ir) s s s s ~s ~ ~ 

(2.4.6) 

For the history variables' evolntion laws, the following types of equations will apply 

• 
H 
- s 

• ;,+ 
H (F , ... ,li) , n· 
- s 8 -

. {)lil . 
li = -nT- r = li(F , ... ,Ir) 
- u~ ., - s -

(2.4.7) 

For an analysis of contact behavionr in the restricted class, it seems unnecessary to 

cope with all independent variables in (2.4.6) and (2.4.7). It is assumed that only 

independent variables of the contact layer together with r+ and r are relevant to 

construct constitutive equations. It is also assumed that for the layer's coordinate 

system !!• the coordinate system of the surface of the irreversible deforming body 

may be chosen without conflicting with paragraph 2.3. So the equations (2.4.6) and 

(2.4.7), choosing B+ arbitrarily as the deforming body, simplify to 

+ .. .. ,..+ + .. + C(Ç ,t) = C(F ,6 ,g ,T ,r ,F,H) , CE {f,h ,q ,<J } 
- s s s s -s s s n 

(2.4.8) 

. + fJH I . .. .. 
H(( ,t)=~ ,+=H(F,6,g,T,r,r,Hî -s- Ub ., -s s s s s -s' (2.4.9) 

Before the implications of the above on the entropy inequality are stndied in the 

next paragraph, a last constitutive principle is applied, i.c. the principle of 

objectivity. It states that constitutive eqnations should be invariant for observer 

transformations. Part of the principle is the assnmption that mass density, stress 

vector, heat flux vector, internal energy, entropy, temperatnre and heat sourees are 

objective qnantities. Elaboration of the principle may be done by the introduetion of 
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two different observers with the same notion of time and distance (see e.g. Müller 

1985 or appendix 2.4.1). To obey objectivity for the constitutive equations, invariant 

or corotational quantities (Van Wijngaarden 1988) can be used. In appendix 2.4.1 a 

non-singular second order tensor A, only depending on the kinematics of s+, is 

introduced to transform objective quantities into invariant quantities. Also the 

choice for A is considered there. It turns out to be convenient to introduce the 

4 4 
invariant stress vector o-+ and deformation vector é by 

s 

~+ psOA-1 .. + 
0' = p .0' 

s 
(2.4.10) 

Instead of F the invariant contact layer right Cauchy-Green tensor C = F.F can 
s s s s 

be used in the constitutive equations, besides suitable invariant history variables ÎJ 
~ c .. 

and g ;;:; A .g. This results in 
s s 

(2.4.11) 

k = k (C ,Î ,~ ,T ,rt,r,Îll -s -s s s s s -tl 
(2.4.12) 

2.5 The entropy inequality 

In this paragraph the implications of the entropy inequality, using the results of the 

previous paragraph, are studied. With the invariant quantities it follows from 

equation (2.3.5) 

• • p T -rt T -T ~ ~ 
-psO(l+T h '+ -?{psO q+ ;.r +q- 8 )+o-+.é > 0 

s s tl s n n r s-
(2.5.1) 

As usual it is assumed that a decomposition into the inequalities 

(2.5.2) 
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T -rt T -r 
q+ s +q- s > 0 

n rt n r - (2.5.3) 

is allowed. The second inequality restricts the poasible heat fluxes perpendicular to 

the contact layer. Simple constitutive expressions for q+ and q- are given by n n 

Use of (2.4.11) and {2.4.12) in (2.5.2) leads to the restrictions 

of 
od=O 

s 

ofs ~+ of .. 
' -=q ' _s=O 

~ !t 
Ob og 

s s 

of -wr:= -h ' u~ s ' s 

(2.5.4) 

(2.5.5) 

(2.5.6) 

where ® is an operator deterrnined by the character of the different constituents 

of H+. The result (2.5.6) states that f is independent of the inplane deformations of 
~ s 

the contact layer and consequently that the contact stresses are not influenced by 

these deformations. This is felt as a lack in the presented theory. Deformations of 

the surface of the formed body cause roughness changes, affecting the stiffness of the 

contact layer and the frictional behaviour. In order to deal with such influences 

inplane contact layer stresses (a flux, neglected in paragraph 2.2) unequal zero are 

needed, a case which is not elaborated bere. The result (2.5.6) for the contact 

stresses ;+ is valid only if k is independent of Î. This will be the case in the 
~s s 

sequel. The history parameters are restricted further by the remaining inequality of 

(2.5.6). 

2.6 Maxwell friction models 

In this paragraph a special choice for the history variables leads to a constitutive 

equation for the contact stress vector resembling the constitutive equation for 

elasto-plastic material behaviour. This metbod was described for bulk material 

behaviour by Van Wijngaarden {1988). The resulting equations are analogous to the 

2 Consütutive equat;ions fot contaA:t behaviour 17 



equations given by e.g. Cheng & Kikuchi (1985) and Baaijens {1987). 

The contact layer's free energy is given by 

-+ -+· 
1 = 1(6 -6'r T H H) 
s s s s ' s' t' n 

(2.6.1) 

~· 
in which Ht and H are scalar history variables. The vector quantity 61

r is the 
n s 

irreversible contact layer deformation vector, a first order history variable. In (2.6.1) 

4 4 ~. + 
it is assumed that only the reversible part êr ê -ó1r of 6 is of interest for the free 

s 8 8 s 
energy. This assumption is simHar to the elastic (reversible) and plastic 

(irreversible) deformation decomposition in bulk roeebanies (Lee 1969, Sidoroff 

1973). Note that in normal and in inplane (or slip) direction reversible and 

~. " 
irreversible deformation of the contact layer is possible. Evolution laws for ó:r, Ht 

.. ~ +· ... 
and H as function of ê -ó1r, T, H

1 
and H are needed. For ó'r it is assumed that a 

11 s s s n s 

~ ~~ ~+ 
potential tp lP( 6 -ê , T ,H

1
,H ) or equivalently a poten ti al tp = lP( q , T ,H

1
,H ) 

s s ·S n s 11 

exists such that 

(2.6.2) 

~ 
where the invariant tangential or frictional stress vector r, normal or compressive 

• 4· 
stress vector p, irreversible tangential displacement or slip vector ó:r and irreversible 

~· 
normal displacement or compression vector ê'r are defined by 

n 

. . . 
Îir = Îir_Îir 

n s t 

(2.6.3) 
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In a.n isotropie case (2.6.2) ca.n be simplified to 

.. 4 • 4 

'>{jir- T !l!2_ Îi r- 1!. !l!2_ - ,,.J T H H ) 
t - T 1fi ' n - p Oji ' tp - 'fl\ T,p, 81 t' n (2.6.4) 

'> 4 
with T = llrll a.nd p = IIPII· It is supposed that 1 is given by 

8 

1 4 r 4 r 4 r 4 r 1 =!I o,.st.o1+c .c s )+tfJ(T ,Ht,H) 
8 2' n n n 8 n (2.6.5) 

where s, a.nd sn denote a constant stiffness tensor a.nd scalar respectively. 

Combination of (2.5.6) a.nd the above equations delivers a constitutive Maxwell 

relationship for the invariant ta.ngential and normal stress vector 

{2.6.6} 

{2.6.7) 

If A is a rotation tensor a.nd s, = sl the above relationships can be formulated as 

(2.6.8) 

1 .. . -1 .. p 8 .. i! !l!2_ - p sO -1 .. f-<
0 

p+A.(A ).p-p p)+sn p Oji- (p) s/in 
8 s 8 

(2.6.9) 

. . . . . .. ...+ ... + ... + .. ...+ .. .. ...+ .. + .. .. 1. .. 
with T =(I-n n ).a , p = a -r, ct= (I-n n ).ê a.nd c = o -c,. With the mass s n s 

.... + 
bala.nce, p I p can be replaced by the surface magnification rate V . v while p .r.l p 

~ s 8 w s 
can be indentified as the surface magnification factor with respect to the reference 

state. The combinations ~+A.(A-1).~ and ;+A.(A-1).p are objective rates of~ a.nd 
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.. 
p respectively. Identification with such rates in literature is possible, see appendix 

2.6.1. 

As for constitutive equations for metals, the history variables Ht and H
11 

introduce hardening (or softening). Irreversible work hardening is considered as an 

example. In that case Ht is identified as the irreversible frictional work and H
11 

as 

the irreversible compressive work 

(2.6.10) 

For their evolution laws it follows with (2.6.2) 

H = T!!!P_ ' H = . 8 . ~ 
t Or '1l 'P 

(2.6.11) 

The restrietion of (2.5.6) results in 

8! 8f 
(7JIÎ-.-1)Tf/r + (w--1)~ ~ 0 

t p 
(2.6.12) 

If the deformation of the contact layer in thickness direction is unimportant or 

negligible, the normal part of the deformation vector disappears as a variabie in the 

.; 
constitutive equations. It may be replaced by the normal stress vector p for which 

the constitutive equation then cancels. Consideration of the entropy inequality 

+ ~ 
results in the statement that f. has to be independent of p. The only influence of p 

s 

.. 
upon T then remaining is through cp, which is not restricted in any way. Hence, 

reversible shear behaviour cannot be influenced by the normal stress and the same 

remarks as with respect to (2.5.6) in paragraph 2.5 can be made. 
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2. 7 Concluding remarks 

In this chapter contact behaviour in a continuurn formulation is discussed. 

Mechanica! constitutive contact equations are derived, which are consistent with the 

formulated thermodynamica! theory. Coulomb and Von Mises like friction laws are 

not rejected, as they are special cases of these constitutive equations (Baaijens 

1987). To obtain more severe restrictions for the constitutive equations, the different 

thermodynamica! quantities have to be specified in more detail. For such a 

specification, not nearer investigated in this thesis, results from structural modeHing 

of the real contacts (e.g. Francis 1977, Landheer et al. 1980, Tangena 1988) may be 

used. As for such an approach contact models on a microscopie scale are needed, also 

results from research on the microscopie physical behaviour of contacting surfaces 

are indiapensabie to obtain more restrictive statements. 

The constitutive equations given are derived after a lot of simplifications and 

assumptions. Whether such equations can describe real contact behaviour should be 

evaluated by experiments. For that reason the rest of this thesis deals with 

experimental procedures. 
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3 Experimental set-up and quantification 

In this chapter the experimental set-up and methods for quantifying contact roodels 

are considered. With respect to the type of experiment, the upsetting of cylindrical 

test specimen is judged to be useful for the class of contacts as described in 

chapter 1. An experimental-numerical metbod is proposed which enables the 

determination of the in situ value of all contact quantities needed. 

In the first paragraph the choice for the upsetting process is motivated. 

Thereafter it is elucidated that, for the contact processes considered, determination 

of the in situ contact situation is desirable. Of course the measurement procedure 

may not influence the contact processes. A hybrid experimental-numerical metbod is 

presented accommodating these demands. It combines in situ measurements with a 

numerical simulation of the forming process in order to determine quantities which 

are not measurable in situ. Different aspects of this metbod are indicated and 

elaborated further in subsequent chapters. Finally some approximate calculations 

serve to dimension the set-up and to quantify process parameters, .in order to fulfil 

the requirements of the class of contacts considered. 

3.1 Choice of the experimental set-up 

In the past many experimental methods are developed for the investigation of 

contact behaviour in forming. Examples are the upsetting of ring-shaped test pieces 

and the drawing of sheet material (Grä.bener 1981). In these tests only global 

quantities, such as external loads, reaction forces, process veloeities and dirneusion 

changes, are measured. Assumptions about the contact behaviour are used to 

translate these measured valnes into one contact characterizing parameter value i.c. 

the coefficient of friction of the Coulomb model or the interface friction factor of the 

Von Mises model. This translation is performed with calibration curves of an output 

quantity as function of a chosen input quantity, calculated for various parameter 

values. If experimental data fits with such a curve, it is decided that for the given 

case the assumed friction model applies, with a parameter value conesponding to the 

curve. If none of the curves is actually fitting, the friction model is rejected, or the 

parameter is supposed to be non-constant. Such conclusions are not satisfactory. In 

the first case the question arises whether there may be other frictional roodels 

resulting in the same curve. For the second situation, one would like to quantify the 

change of the parameter as a function of contact quantities. To overcome these 
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probieros it is necessary to appoint (intuitively) the contact quantities of importance 

and to determine the local values. An extra complication is that only very few 

experimental methods are available to perform direct measurements in the contact 

regions occurring in forming processes. A short review of these methods is given in 

the next paragraph. It is concluded that a direct evaluation of the contact stress 

distribution and the relative displacements in the contact region is still an unsolved 

problem. To evade from this problem, in the next paragraph an indirect measuring 

metbod is described and elaborated in subsequent chapters for the case of the 

upsetting of cylindrical test pieces. The upsetting test is chosen because of its simple 

geometrical properties, thus excluding complications of geometrical source. As the 

metbod may be extended to other types of tests, the small range of contact 

conditions covered by the upsetting test, is not essential. 

3.2 A hybrid method 

Before the hybrid procedure, combining the capabilities of numerical and 

experimental research to quantify the contact behaviour, is described, some available 

experimenta.l techniques for obtaining directly in situ data at contact regions are 

review ed. 

Experiments collect in situ data if results are obtained without influencing the 

process the object of interest is subjected to. For the contact processes considered 

bere, such in situ techniques are preferable. The running in behaviour is known to 

show sometimes bad reproducibility (Schey 1983), mainly due to the difficulty to 

generate equal initial contact conditions for different experiments. For 

measurements during one intermitted experiment, it is impossible to restore the 

contact conditions after releasing the forming product, while besides effects of 

relaxation will interfere. To circumvent these probieros bere, only in situ techniques 

are considered, delivering data more or less continuously during one experiment. 

Reproducibility of the contact behaviour then becomes a phenomenon which can be 

stuclied afterwards, instead of being a disturbing factor. This however will not he 

treated further in this thesis. 

Being interested in stresses and displacements at the contact region between tool 

and workpiece, only techniques for measuring these quantities are focussed on bere. 

With respect to stresses some available tecbniques may be mentioned. Examples are 

techniques using the stress dependent fluoresence wavelength shift of ruby (Brouha 

et al. 1979) or light interference such as eaustics (Theocaris & Razem 1979). They 
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require special tooi material, combined with an appropriate design. Besides this 

disadvantage, the first metbod is unable to deliver the normal and the friction stress 

independently. Other stress measuring techniques such as stress sensitive film 

(Timothy et al. 1987) or diffraction techniques like neutron diffraction (Stacey et al. 

1985) are not suitable for in situ application. The only known in situ technique 

applied in forming, delivering both normal and friction stress, employs pin pressure 

sensors (Van Rooyen & Backofen 1960, Vater & Nebe 1965, Tuncer & Dean 1987) 

with high sensitivity and reliability. Unfortunately the contact behaviour is 

influenced in an unknown way at the tooi surface, resulting from the discontinuities 

in surface and stiffness. Further only a limited set of pins can be applied because of 

their size. With respect to displacement measurements even less possibilities are 

available, all of them only applicable in a limited way. Examples are measurements 

with grids (Lange 1985), not applicable in situ, or with rubies as used for stress 

measurements (Brouha et al. 1979), needing special tool materials and suffering from 

an unknown influence of the rubies on the local contact behaviour. 

As proceeds from the previous, no satisfactory methods are available for a direct 

measurement of the contact stresses and displacements. A metbod for the 

determination of these quantities is therefore searched for in an inverse analysis of 

the mechanical behaviour of the formed body. The term inverse analysis is used bere 

to indicate an analysis opposite to a direct analysis, solving a field problem with 

knowledge (Kubo 1988) of the 

- boundary, enclosing the domain, 

- field equations, 

- boundary conditions for the whole boundary, 

- initial conditions for time dependent problems, 

- material properties, 

- distributed sourees in the domain. 

For a direct analysis of static isothermal problems in continuurn mechanica the 

above can be roughly translated to the 

- boundary of the body under consideration, 

- equilibrium equations and constitutive equations for the stresses, 

- three independent boundary conditions for stresses or displacements, 

- initial stress state, 

- mechanical material properties occurring in the constitutive equations, e.g. elastic 

moduli and flow stress, 

- distributed forces acting on the body. 
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Lack of one or more of the data required leads to an inverse problem. For the 

upsetting process this inverse problem concerns the identification of the unknown 

stresses and displacements at the contact surfaces of the formed body. To perform 

this identification, extra information is needed to compensate for the lacking 

boundary conditions. 

It is assumed that the cylindrical test pieces remain axisymmetric and symmetrie 

with respect to their midplane. In figure 3.2.1 a quarter of the cross section of an 

upsetting test piece in some deformed state is sketched. Indicated are the domaio B 

of the body, contact boundary oB , the visible outer boundary oB , the symmetry 
c 0 

plane boundary oB and the one-dimensional centre line boundary oB 1. 
s c 

z I oB 
c ~ upsetting direction 

{)Bel oB 
0 

0 aB r 
s 

cc 
Figure 3.2.1 Right upper quarter of the cross section of an upsetting test piece 

The boundary conditions on the parts oB and oB 1 are completely prescribed. The 
s c 

conditions on contact part oB are incompletely defined as only the axial 
c 

displacement is known. To compensate the incompleteness, the displacements of oB 
0 

are measured during upsetting. Therefore the conditions on oB become overdefined 
0 

as then normal and shear stress are known, as well as axial and radial displacement. 

The photogrammetric metbod used for the displacement measurement is described in 

chapter 5. 
Inverse problems of this kind are ill-posed. So the solution for contact stresses 

and radial displacements on oB may be ill-conditioned. Simulations in the next 
c 

chapter, where the procedure is described to solve the inverse problem, iudeed reveal 

this fact. To overcome this problem a contact stress measuring tooi is designed 

which is indirectly used to measure the normal and shear stress at the contact 
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boundary. The stresses follow from the solution of an inverse problem with respect 

to the tooi, oomparabie to the above posed problem. A detailed exposition is given in 

chapter 6. The stresses measured may be introduced as boundary conditions at the 

contact boundary lJB , which causes the condition on this boundary to be 
c 

overdefined and transfarms the inverse problem into an overdetermined direct 

problem. The salution procedure presented in the next chapter also enables to deal 

with this type of problems, taking into account the accuracy of the different sets of 

measured boundary conditions. This metbod is of a hybrid character, as it combines 

numerical techniques with experimental data. It is therefore further termed an 

experimental-numerical method. 

3.3 Estimations for the process conditions 

The process conditions for cylindrical test pieces of commercially pure aluminium 

with an initial diameter D0 and initial height h
0 

of 60 mm are estimated. An 

approximate value for the maximum allowed forming velocity, in order to satisfy the 

isothermal conditions as indicated in chapter 1, is resulting. With respect to the 

chosen diameter it is noticed that the minimum contact area of the test pieces for 

which reasonable stress data can be obtained is limited by the size of the sensors of 

the stress measuring tooi. Because the robustness of the strain sensors in the 

application of the measuring tooi is a priori unknown, aluminium is chosen as a first 

test material because of its low yield stress and despite sametimes awkward 

behaviour in forming. In a later stadium other materials can be used. 

z 

26 

0 
cc 

r 

Figure 3.3.1 Some definitions of mechanica! quantities 
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An elementary plasticity analysis of axisymmetric upsetting offers an estimate of 

the mechanica} conditions (e.g. Lange 1985). Stresses and displacements are assumed 

to he independent of the axial coordinate z. As usual in this kind of analyses the 

influence of the friction stress r at both sides of the upsetting cylinder is taken into 

account by a volumetrie radial force -2rfh. The only non-trivia! equilibrium 

equation is given by 

(3.3.1) 

Applying the Levy-Von Mises flow ru1e and the proportionality of the radial 

velocity with r, the radial stress o rand tangential stress o
1 

turn out to he equal. The 

Von Mises yield criterion relates o and o as z r 

o-o = Y r z {3.3.2) 

where Y denotes the relevant yield stress. Assuming a V on Mises friction model with 

a constant friction factor m (0 5 m 5 1) implies 

y 
lrl = m-;rr 

and supposing the yield stress to be independent of r, it follows that 

o = -Y(l+ m D-2r) F 
z l'J-n:- , p 

(3.3.3) 

(3.3.4) 

with F the upsetting load. With Y = 90 N/mm2 and m = 0.1, a maximum absolute 
p 

value of the axial stress of about 100 N /mm2 and an upsetting load of about 0.5 MN 

are found. 

To approximate the temperature rise to be expected, the upsetting cylinder and 

the press are modelled one-dimensionally. Because of symmetry with respect to the 

cylinder midplane, only the part z ~ 0 has to be considered. For 0 5 z 5 h/2 a 

homogeneons heat souree H, equal to the sum of the local deformation power and the 

frictional power averaged over the volume, is assumed 
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(3.3.5) 

For z > h/2 (in the upsetting tool, tool holderand press) the cross section area A(z) 

increases for increasing z. Neglecting the contact heat resistance between the domain 

parts, it follows as the steady state solution from Fourier's la.w 

(3.3.6) 

with aT the temperature rise at the origin and >. , >. the heat conductivities of the c p 
cylinder and press material respectively. Combining (3.3.5), (3.3.6) a.nd assuming 

(3.3.7) 

to achleve fl. T < aT with aT the maximum allowable temperature rise. An 
- max max 

acceptable value for fl.T is 25 K, as the change of yield stress for aluminium is 
max 

then about 5% (~~ ~ 0.002 K-1
, derived from data of Brandes 1983). Taking 

>. = 200 W fmK, >. = 40 W fmK, a = -100 N fmm2 results in c p z 

(3.3.8) 

So for forming veloeities smaller than 0.6 mm/s the upsetting process may be 
supposed to be isothermal. 
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4 An experimental-numerical metbod 

A methad is described for the salution of history dependent non-linear mechanica! 

continuurn problems with exactly prescribed as well as not exactly prescribed or 

measured boundary conditions. An etaboration is presented for the axisymmetric 

case and rigid plastic material behaviour, in order to analyse the contact problem 

between die and upsetting workpiece as described in the previous chapter. 

In the first paragraph a detailed description of the continuurn problem with exact 

and measured boundary conditions is given. A distinction is made between the 

formulation of the meehamcal behaviour and the incorporation of stochastic 

boundary conditions. The last necessitates for an estimation strategy. For the 

analysis of the mechanica! behaviour the incremental finite element method is 

chosen. As estimation strategy the discrete maximum likelibood method is applied. 

An estimate according to this method maximizes the so-ealled likelibood function. 

Because of structural and geometrical non-linearity, this maximization has to be 

performed iteratively. Some aspects of the numerical implementation of the 

experimental-numerical metbod are discussed. The last paragraph deals with 

simulations of the upsetting process. These show that use of geometrical data of the 

visible surface of the workpiece does not suffice to achieve reliable results for stress 

and relative displacements at the contact surface, which supports observations as 

reported in literature (Herbertz & Wiegels 1981 ). Accounting for the measured 

upsetting force as extra input impraves the results insignificantly. Measured contact 

stress data however introduce a tremendous improvement. If it is not possible to 

measure the contact stresses accurately or only partly, the displacements of the 

unloaded surface can imprave the calculated contact quantities, provided they are 

measured with a high accuracy. 

4.1 Introduetion 

Considered is an irreversible behaving body B enclosed by a boundary 8B, with a 

known initial state at some reference time t
0
• Both the body and its boundary 

consist of an invariant set of material points. Due to mechanical loads the 

displacements of the material points are large, which causes geometrical non

linearity. Thermal effects, inertial effects and mass distributed loads are supposed to 

be so small that they may be neglected. 

The deCormation of the body is considered during a time interval t
0 

$ r $ t. At 
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any time rand at any internal point of the body, local equilibrium requires for the 

Cauchy stress tensor q to satisfy 

v.(T = o (4.1.1) 

The initia! value of the stress tensor is denoted by q
0

, the actual value of qat timet 
depends on the history ( t

0 
$ r $ t) of the right Cauchy-Green tensor C, expressible 

by means of a constitutive functional S 

1 
q= q 0+ S [G\r)] 

r=to 
(4.1.2) 

Mechanica! properties figuring in S should be known for the material under 

consideration. With three independent boundary conditions at each point of oB, 
explicitly described during t

0 
$ r $ t, equations (4.1.1) and (4.1.2) define a direct 

problem as indicated in the previous chapter. The solution can be approximated by a 
straightforward analysis using a numerical scheme such as the finite element 

method. In physical reality however sometimes boundary loads or positions are 

implicitly described, their valnes are not known or can only be measured with 

limited accuracy. To solve the problem for such cases with some wanted reliability, 

sufficient information of other quantities at the boundary or at interior points bas to 

be supplied and taken into account in the calculation. 

For the continuurn problem a discretized approach is adopted. It is much easier to 
indicate a well-posed problem in a discretized approach than in a continuurn 

approach. Extension of the set of discretization points in time and space increases 

the accuracy of the approximation. Measurements however are only possible in a 

limited number of materlal points, thus restricting the calculational capabilities. 

In paragraph 4.2 the discretized strategy with respect to the salution of the 

equations (4.1.1) and (4.1.2) is discussed. An incremental finite element formulation 

is chosen. The material behaviour is assumed to be rigid plastic. In paragraph 4.3 

the discretized estimation strategy for the incremental position field of the body 

with partly uncertain boundary conditions is elaborated. Information with respect to 

the uncertainty of the position field and derivable quantities can be obtained. The 

estimation strategy used is the maximum likelibood metbod which takes the 
stochastic behaviour of the different boundary conditions into account. 
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Many research bas already been performed to combine numerical techniques for 

field problems such as the finite element method, and stochastic theories. A rough 

distinction is made into developments mainly supported by probability analyses and 

those supported by estimation theory. The first category focusses on the prediction 

of statistica! properties, resulting from variations in applied loads, material 

properties and so on (e.g. Handa & Andersson 1981, Drewniak & Pawicki 1985, Liu 

et al. 1987). Results are useful for reliability studies and risk analyses. The second 

category involves the prediction of the behaviour of a structure or of uncertain 

parameters, given a set of observations (e.g. Contreras 1980, Kunisch & White 1986, 

Mura et al. 1986). An application to contact problems, combining the non-linear 

finite element metbod and estimation theory is not known to the author, however for 

the linear casesome examples are available (e.g. Oda & Shinada 1987). Because of 

the resembienee with the linear analysis of the stress measuring tooi in chapter 6, a 

detailed discussion is postponed to that chapter. 

4.2 Stra.tegy for the non-linear behaviour 

A well-known strategy to determine approximate solutions of differential equations 

is based on the metbod of weighted residuals. The equilibrium equation ( 4.1.1), 
.. 

weighted over the domain B by a weighting vector field w, in the weak formulation 

reads 

f(V~)c:udV = f ~.bdA (4.2.1) 
B IJB 

.. 
with b the external boundary load vector. Substitution of the constitutive equation 

( 4.1.2) delivers an integral equation for the position field of the material points of 

the body for any r, t
0 

5 r ~ t. Elaboration of that equation depends on the nature of 

the constitutive equation. Here rigid plastic material behaviour~ obeying the 

Levy-Von Mises flow rule presupposing isotropie hardening, is chosen 

u 2 y 1 ( ) .: (2 ~J. -pi+ 3" -:D , p = - 3tr u , f. = 3v :D1 
2 (4.2.2) 

(, 

D is the deformation rate tensor and Ë is the equivalent plastic strain. Equation 
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{4.2.2) supposes D to be unequal to 0. The stress tensor u satisfies the Von Mises 

flow criterion 

(4.2.3) 

The yield stress Y for many metals under cold forming conditions in non-cyclic 

processes only depends on the history parameter(. At elevated temperature and for 

complex deformation processes, more history parameters and modified expressions 

for (4.2.2) and (4.2.3) are needed (e.g. Frost & Ashby 1982, Meyer-Nolkemper 1982, 

Chan et al. 1988). Elastic effects are not modelled by (4.2.2), as they may be 

neglected for large plastic strains. This is quite convenient as will beseen in the next 

paragraph. In the constitutive model the pressure p occurs as an extra unknown. 

This pressure should result from the requirement of incompressibility, tr(D) = 0. 

This requirement is taken into account, weighted over B with a scaJar weighting 

field q 

J tr(D)qdV = 0 
B 

(4.2.4) 

The time domain t
0 

$ r $ t is discretized in finite steps eaJled increments. The 

deformation rate tensor Dis assumed to be constant during an increment D..t. For 
.. 

small incremental displacements u, the tensor D can be approximated by 

(4.2.5) 

where the gradient operator V is defined with respect to the configuration at the end 

of the increment. From ( 4.2.2) and ( 4.2.5) it follows 

(4.2.6) 

with €6 the equivalent plastic strain at the beginning of the increment and provided 

A :f 0, while insteadof (4.2.4) can be required 
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J tr( A)qdV = 0 
B 

(4.2.7) 

The equations (4.2.1) and (4.2.7) should hold at the end of each increment for 

arbitrary allowable weighting fields, ~ and q respectively. Besides, (4.2.6) should be 

satisfied. Substitution of (4.2.6) in (4.2.1) results in 

-+-+ 2 Y('f b +&€) .... 
J(Vw)c:(-pl+J _ A)dV=Jw.bdA 
B &E U 

{4.2.8) 

The domain B is divided into finite subdomains, called elements. A Lagrangian 

approach is adopted bere, so the elements are material elements. In the elements the 

displacements, the pressure and the weighting fields are interpolated between the 

nodal points. In case of a Galerkin approach for the element assembly holds 

.. n ...... n .... m .. m .. 
tt= E cp1

tt
1 

, w= E cp1w1 
, p = E 1/J]l , q= E 1/lt{ (4.2.9) 

i=l i=l j=l j=l 

with n, m the number of interpolation functions, for the displacements and pressure 

respectively. Applying the principle of weighted residuals, i.e. requiringsatisfaction 

of (4.2.8) and ( 4.2.7) for all allowable weighting fields, results in a set of vector 

equations (related to equilibrium) and scalar equations (related to volume 

invariance) for each increment. With respect to some vector base these equations 

formally can be written as 

(4.2.10) 

where ~ and f are composed of the nodal valnes of the displacements and pressure. 

As the set (4.2.10) is non-linear in the displacements and pressures, necessitating an 

iterative solution procedure, the iterative changes 

(4.2.11) 

are of interest. This relation will be applied for the numerical elaboration. 
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When displacement and pressure fields are known, the stresses at an arbitrary 

point of B can be calculated using ( 4.2.6) and the interpolations per element. It is 

noticed that the equivalent plastic strain must be interpolated also, as it is only 

known in a discrete number of points per element at the start of a partienlar 

increment. The stresses calculated this way are generally discontinuons over the 

element boundaries. Because in reality these fields are continuous, some smoothing 

technique is usually applied. Here a straightforward unweighted averaging of stresses 

in the nodal points at the element boundaries is used. In the linear case of chapter 6, 

an alternative formulation is applied to reach continuity. If stress data occur as 

boundary conditions, the iterative stress may be needed for the salution procedure. 

The iterative column Otz with stress components at some point of B can be written as 

(4.2.12) 

The matrices I!. and E. depend on !: and l!· For spatial fixed boundary points they 
differ from the matrices for material fixed boundary points because of the influence 

of convective terms. 

4.3 Strategy for the state estimation 

In the previous paragraph the behaviour of a body of rigid plastic material is 

approximated with a discretized incremental formulation. Assuming the initial 

conditions and material behaviour to be known, the mechanical condition of the 

body after the first increment is described by n+m nodal unknowns, composed of n 

displacement degrees of freedom and m pressure degrees of freedom, in the previous 

denoted by !! and l! respectively. The n displacements arbitrarily can be replaced by 

n nodal locations in the sequel. For some A;<-,th increment the condition of the body 

at the end of the increment depends on n location degrees of freedom and m pressure 

degrees of freedom more than its condition at the begin of the increment. These 

nodal degrees of freedom are gathered in the column ~(k), forther called the 

incremental state of the Hh increment. After k increments, the total of (n+m)k 

unknowns is gathered in the accumulated state ~K. In this way the accumulated 

state 

( 4.3.1) 
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is the combination of the incremental states ~(1) to ~(k). 

To quantify the accumulated state ~N, betongingtoa deformation process over a 

time period divided into N increments, at least ( n+ m) N values ofrelevant quantities 

with respect to the condition of the body during the time period have to be known. 

A part of these quantities will be exactly known, the rest of them measurable with 

only a limited accuracy. As relevant quantities not only the nodal degrees of freedom 

have to be thought of, but also quantities like stresses, strains and forces. The 

relevant quantities h (k) and h (k) of the k-th increment can uniquely be expressed 
~e Nm 

in the accumulated state ~K, so 

(4.3.2) 

where e and m indicate that the values of these quantities are exactly known 

respectively measurable. The quantities h ( k) are called the exact state dependent 
-e 

quantities, h ( k) the measurable state dependent quantities. The actual data values 
-m 

for h (k) compose the column z (k), the exact observation data, and the actual data 
-e -e 

values for h (k) the column z (k), the measured observation data. Per increment, -m Nm 
the incremental exact observation data z (k) are equal to h (k), whereas the 

-e -e 
incremental measured observation data z (k) are supposed equal to h (k) to which Nm ~m 

an unknown stochastic column ,!(k) with incremental observation errors is added 

(4.3.3) 

With the sameconvention as for the state, accumulated columns ~e,K, ~m,K, :e,K 

and :m,K are defined using the incremental columns ~e(k), ~m(k), :)k) and ~m(k). 
So it can be stated for the accumulated exact and measurable state dependent 

quantities 

h = h fs ) , h = h fs ) Ne,K -e,J(INK Nm,K Nm,J(I-K (4.3.4) 

The incremental observation errors of k increments combine into the accumulated 

observation error column !K. 
The problem to be solved for the deforming body, over a time period divided into 

a total of N increments, can now be stated as searching that solution ~N for ~N 

wbich obeys 
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z = h ts ) 
-e,N -e,N"-N (4.3.5) 

and satisfies some criterion with respect to 

z N ' h N' "N , 8N -m, ... m, - .... 
(4.3.6) 

The above formulation constitutes a static non-linear estimation problem with 

constraints. The salution ~N, hopefully close to the unknown true accumulated 

state, is called the estimate and the algorithm or expression leading to it the 

estimator. For ma.ny estimation problems estimators that are optimal in the sense of 

some criterion are known (see e.g. Schweppe 1973, Norton 1986, Jansen 1987'). 

Before the above stated constrained problem is elaborated, some estimators for 

static non-linear estimation problems without constraints are reviewed. 

In this intermediate consideration all measured observation data are gathered in 

!• measurable state dependent quantities in 0· observation errors in !! and the state 

in ~· These columns are related by 

(4.3.7) 

If no extra information about the observation errors is available, a least squares 

method can be applied. This metbod proposes as estimate for the state ~· that 

solution ~. which minimizes the quadratic form (z-0)T(z-~). A weighted least 
squares method takes knowledge about relative accuracy of the measurements into 

account. The expression (!-~) T HX!-0) with a positive definite weighting matrix W 

is then minimized, to reach that more accurate data influence the solution stronger 

than less accurate data. Statistica! properties as the mean and covariance are used 

by minimal covariance estimators, also called Markov estimators. To define these 

statistica! properties, the expected value operator E is of importance. The operator 

E provides the expected value of the operand g(J!), which is some function of the 

random variables !!· The random variables E are supposed to have a (multivariate) 

probability density function p(J!)· It holds by definition 

(4.3.8) 
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witb l tbe number of random variables i.e. tbe lengtb of !!· Tbe integrations in 

(4.3.8) are over tbe entire domain of!!· Tbe mean column I! and covariance matrix~ 

of v are defined as 

(4.3.9) 

wbere tbe expected values are assigned per component of tbe operand. Tbe 

mentioned minimal covariance estimators generally suppose tbe mean and 

covariance matrix of tbe errors as known, according to 

(4.3.10) 

Tbe estimate ~ follows from requiring a minimum for some norm of tbe covariance 

matrix of ~· For tbe linear case sucb an estimator is given in paragraph 6.2.3. The 

supposition of zero mean in (4.3.10) reflects the absence of systematic errors with 

respect to the observation data and of model errors for tbe state dependent 

quantities. If not only (4.3.10) is known but moreover tbe probability density 

function p(J!), a maximum likelibood estimate for ~ is possible. It maximizes for tbe 

actual observation data : tbe likelibood function with respect to ~· Tbe likelibood 

function is defined as tbe probability density function P(z:~) of tbe observation data 

~ given some state ~· For non-linear estimation problems tbis estimate is asymptotic 

unbiased and asymptotic efficient under fairly general conditions. An explanation of 

these properties is given in appendix 4.3.1. 

Returning to tbe estimation problem defined for tbe deforming body a reliable 

estimate ~N can be obtained witb a maximum likelibood estimator. For measuring 

errors generally a Gaussian probability applies. For !!N witb zero mean, the 

probability density function tben reads 

(4.3.11) 

witb IN tbe lengtb of !!N and EN its covariance matrix. Replacing !!N by 

Zm,N-~m.JsN) in (4.3.11) yields the likelibood function p(:N :~N). Maximizing tbis 
function for tbe actual observation data ~m,N under the constraints ( 4.3.5) delivers 

tbe wanted estimate ~N. 
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A disadvantage of this metbod is of computational origin. To obtain a reasonable 

approximation of the non-linear behaviour of body B, the incremental state columns 

with each n+m nodal degrees of freedom bas to be relatively large, as well as tbe 

total number of increments N. This results in an accumulated state column ~N of 

length ( n+m)N. To deal with this column in a maximization process of the function 

p(:N :~N)' depending on ~N in a complex way, would need large computation time 
and memory. For this reason, among others, in estimation theory for dynamic 

systems filtering techniques are developed to determine estimates for one time step 

instead of simultaneously for the total set of time steps. The estimation of the 

incremental state ~( k) for the k-th time step is tben based on momentary observation 

data and some estimate ~K-l for the accumulated state ~K-l' For the estimation of 
~(k) in the considered case a simple filter is proposed in the sequel, based on the 

previous incremental state estimate ~( k--1) and the in eremental observation data 

:{k). 
In the foregoing ~p;) and ~m(k) are expressed as functions of ~K, see (4.3.2), 

tbus of ~K-l and ~(k). Noting tbe partienlar history dependent material behaviour, 

as described in paragraph 4.2, these variables may be replaced by EJ(k), ~(k) and 

a~(k), with a~(k) the incremental state change defined by 

(4.3.12) 

and IJ(k) a column with the history variables resulting after the k-th increment i.c. 

the equivalent plastic strains at a discrete number of material points. The choice of 

the material behaviour enables that they can be expressed additively as 

{4.3.13) 

with diJ a non-linear function of ~(k) and a~(k). It is noticed that the incremental 

state change a~(k) contains the nodal displacements and the changes of the pressure 

degrees of freedom of the k--th increment. If an estimate ~(k-1) for the incremental 

state ~(k--1} is available, s(k--1) may be written as 

~(k-1) = ~(k-l)+ê~(k-1) (4.3.14) 

with errors ê~(k--1). Also errors êlJ(k--1) will apply for EJ(k--1). Assuming these 
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errors relatively small, for the quantities h ( k) holds 
-e 

where quadratic and higher order terms in the errors are neglected. A simHar 

relationship for h ( k) can he stated. The only unknown in the zero-tb order term of 
~m 

(4.3.15) and the zero-tb order term for h (k), is the incremental state s(k). If the 
~m ~ 

first order terms in the errors are negligible, a maximum likelibood estimate ~( k) for 

s(k) can be obtained in a straightforward way. If the first order terms are not 

negligible, the estimate ~(k) solely based on the zero-tb order term will contain an 

extra bias error, besides the bias error caused by the estimation method. The bias 

error ~( k) of the estimate ~( k) is defined by 

(4.3.16) 

with ~ik) the true incremental state, see also appendix 4.3.1. 

For the analysis of the upsetting experiment, for which the bias errors are 

expected to remain small, the maximum likelibood estimator using only the zer~th 

order terms is chosen. A part of the exact and measurable state dependent quantities 

consists of positions of boundary nodes, linear in ~(k). This contributes to a 

bonnding of the bias terms for two reasons. Firstly the maximum likelibood metbod 

delivers bias free estimates for models with only linear state dependent quantities. 

Secondly such state dependent quantities force the estimator to choose ~( k) close to 

the true incremental state ~t(k) despite possible bias errors in !f<k-1), caused by the 

maximum likelibood method. In that case the expression for the error covariance 

matrix, as given in appendix 4.3.1, offers a lower bound for the reliability of the 

resulting incremental state estimate. The estimation problem for the on~ 

dimensional tensionexperiment on elasto-plastic material, as investigated by Jansen 

(19872), indeed showed the bonnding of bias errors. 

Another aspect, highlighted in Jansen's work, is the consequence of sudden 

changes in constitutive behaviour. In elasto-plasticity such changes occur when, due 
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to local unloading, the material behaviour changes from elasto-plastic to purely 

elastic. For the case considered by Jansen, a satisfactory salution is found with a 

hypothesis testing method, see appendix 4.3.2. In a multidimensional situation, an 

implementation of this metbod would be highly combinatorial and hence 

computation time consuming. Here this implementation is avoided by assuming the 

material behaviour purely plastic according to paragraph 4.2. This assumption will 

lead to erroneous results or even no solution when a forming process is analysed in 

which large elastic zones occur. In the upsetting configuration under low or mild 

frictional conditions and with not too slender workpieces, elasticity exclusively 

occurs at the very beginning of the loading. For doubtful cases, the results can he 
checked by using them as input for a standard elasto-plastic analysis program 

(MARC 1988, DIANA 1988). 

4.4 Numerical implementation 

In this paragraph some aspects of the numerical implementation of the incremental 

state estimation are explained. Attention is paid to the chosen finite element 

discretization, the optimization metbod and the boundary conditions. 

Because of the promising numerical results for incompressible flow (e.g. Van de 

Vosse 1987), a triangular isoparametrie ~-P1 Crouzeix-Raviart element is applied 

for the numerical simulations. This element, with an extended quadratic 

interpolation for shape and position field and a linear pressure field discontinuons 

over the element boundaries, provides accurate results for quite coarse meshes. It 

further shows the capability of numerical smoothing in the neighbourhood of 

singular points. Such singularities can occur under sticking conditions at the outer 

edge of the contact boundary (Van Wijngaarden 1988). Tosave computation time, 

in (Eulerian) flow calculations the internat node veloeities and pressure derivatives 

can be eliminated on element level (Griffiths 1979). In the (Lagrangian) approach 

adapted bere the internal node positions and pressure gradient could he eliminated 

on element level using the absence of mass distributed loads and the local constraint 

of volume invariance. The optimization per iteration then can he performed on the 

remaining unknowns. However to maintain the local constraints during this global 

optimization, calculations on element level are continuously needed, resulting in only 

little or no savings on computation time. Elimination of constraints on element level 

is therefore not performed, resulting in a larger set of global unknowns, but a simpter 
optimization algorithm. 

40 4 An experimental-numerical method 



Various salution methods exist to tackle optimization probieros (see e.g. Gill et 

al. 1981, Schoofs 1987), many of them are commercially available in numerical 

libraries (IMSL 1987, NAG 1987). For the optimiza.tion considered here, the salution 

method has to minimize the following function 

( 4.4.1) 

with respect to the unknowns ~· with the non-linear equality constraints 

z = h (s) -e -e -
(4.4.2) 

The penalty function approach is a very elegant and comprehensible method to deal 

with the constraints ( 4.4.2). This method transfarms the constrained minimization 

of ( 4.4.1) into the unconstrained minimization of 

( 4.4.3) 

The penalty matrix K;/, not necessarily diagonal, may be interpreted as a fictitious 

inverse covariance matrix of the exact data z . This interpretation is helpful to 
-e 

choose reasonable valnes for Ee in relation to Em· Because of its robustness, the 

Newton method is used to perform the unconstrained minimization in an iterative 

manner. This search direction methad uses per iteration step the direction 

( 4.4.4) 

to determine a new approximation ~ for ~· such that along the search path ~ 

minimizes F{~). In (4.4.4), fl and 11 are the gradient column and Hessian matrix of 

F{~), respectively defined as 

( 4.4.5) 

For the function F{s) = J(s)TE.J(s) considered here, with E. composed of E-land 
- -- -- m 

E-l, neglecting the second derivative of g with respect to s yields 
e - -
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(4.4.6) 

where l. is the Jacobian matrix of the functions f with respect to the variables ~· For 

the one--dimensional optimization along the search direction, a golden section search 

is employed, needing only the evaluation of function values. 

In the upsetting experiment, different sets of boundary conditions can be 

distinguished. These will be kinematical, i.e. positions of boundary nodes, or 

dynamical, i.e. stresses or forces. These quantities sometimes can be considered as 

exact boundary conditions. In the interior of the body there are constraints of zero 

nodal farces and equations following from volume invariance. The exact boundary 

conditions ( except exact nodal point positions as these can be prescribed easily) and 

all constraints are included in the function f mentioned above. With use of the 

iterative equations of paragraph 4.2 and the quite trivial iterative equations for 

nodal point positions, the Jacobian matrix is analytically known. Therefore 

advantage can be taken of the structure of l. and H, resulting in savings in 

computation time and memory. 

Finally it is noticed that in the simulations of the next paragraph, differences in 

axial positions of contact points of the upsetting tooi are neglected. With a 

maximum contact pressure of the order of 100 N/mm2
, a maximum absolute value 

of the axial elastic strain near the centre line of about 5*10-4 ( elastic modulus E of 

the tooi taken 2.1*105 Nfmm2
) rnay occur. Over a distance of 100 mm this would 

cause a displacement difference of 0.05 mm, which is an estimation for the 

displacement difference between the contact points of the upsetting tooi near the 

centre line and the points at the outer edge of the contact area. With respect to the 

total dimensions and deformations of the test pieces, this is so small that the tooi is 

assumed to remain flat. 

4.5 Simulations of the upsetting experiment 

In this paragraph results of calculations for the upsetting test, based on the earlier 

described numerical procedure, are presented. The aim is to gain insight in the 

accuracy of the contact quantities . which can be expected for different sets of 

boundary conditions, i.e. different experimental set-ups. From this paragraph it is 

concluded that the quantities at the contact boundary of the upsetting test piece, 
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catmot be calculated accurately enough from the displacements of the unloaded 

outer surface. Measurement of the contact stresses ( or the radial displacements of 

points at the contact boundary) is necessary for a reliable quantification of the 

contact behaviour. However when it is not possible to measure these contact stresses 

accurately, the displacements of the outer sudace measured with a high accuracy 

can imprave the calculated contact quanti ties. 

The calculations are executed on a configuration as sketched in figure 4.5.1. 

0 
Cl 

30mm 

D 
2 

! upsetting direction 

30mm 

r 

Figure 4.5.1 The upsetting configuration in the reference state 

The yield stress Y as function of the equivalent plastic strain is taken as 

( 4.5.1) 

which results from a fit through data of a Rastegaev test on pure aluminium of Reiss 

& Pöhlandt (1985). In 10 increments of 3 mm upsetting each, the workpiece is 

upsetted to a remaining height of 30 mm. The non-trivial contact quantities of 

interest at boundary part fJB are the radial displacements with respect to the 
c 

reference configuration, the normal stress and the shear stress. For the boundary 

parts fJB and fJB the boundary conditions, used for the calculations, are varied as 
c () 

indicated in table 4.5.1. Results from case 1 will serve as input for the other 

calculations, which in fact should result in the same solution. The covariance 

estimates according to appendix 4.3.1 are used to study for each case the reliability 

of this salution at the contact boundary. Case 3 serves to study the influence of the 

measured upsetting force as extra boundary condition with respect to case 2. 
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boundary condition case 1 2 3 4 5 

OB measured axial displacement x x x x x 
c 

Von Mises friction model x 

measured normal contact stress x x 

measured upsetting force x 

OB stress free x x x x x 
0 

measured displacements x x x 

Table 4.5.1 The boundary conditions of the 5 cases considered 

Case 5 aims to investigate whether measured displacements of the outer unloaded 

surface contribute to an impravement of the contact quantities accuracy as resulting 

from case 4. For all cases the standard deviation of the axial displacement at the 

contact boundary is supposed to be 0.01 mm, which is quite accurate. All measured 

quantities are supposed to be mutual independent. The experiences obtained from 

the different problem formulations are discussed sequentially. 

Case 1 The boundary conditions as specified in table 4.5.1, together with the 

trivial boundary conditions along OB 
1 

and OB stated in chapter 3, constitute a 
c s 

direct problem. For the constant friction factor mof the V on Mises model, a value of 

0.1 is applied. The standard deviation of the friction stress calculated with this 

model is assumed to be 0.1 N/mm2
. 

cc r CC r 
(a) (b) 

Figure 4.5.2 Deformed meshes alter 3 mm (a) and 30 mm (b) upsetting 
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In figure 4.5.2 the deformed meshes after 3 mm upsetting (a) and 30 mm upsetting 

(b) are shown. In the sequel the results will be presented always for these two 

upsetting stages. The distribution of the contact quantities at these stages, the 

radial displacement ~r = r-r
0

, the normal stress u n and the frictional shear stress r 

are given in the figures 4.5.3, 4.5.4, and 4.5.5 respectively. The displacement is 

considered as a function of the reference radial position, the stresses as a function of 

the actual radial position. 

~r(mm) 

UlO 

0.80 

~r(mm) 

14.0 

(a) (b) 

Figure 4.5.3 The radial displacement ~rat the contact surface 
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(a) 
r(mm) 

(b) 

Figure 4.5.4 The normal stress u at the contact surface n 

r(mm) 
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20.0 30.0 40.0 so.o 

(a) 
r(mm) 

(b) 
r(mm) 

Figure 4.5.5 The friction stress r at the contact surface. 

The irregula.r behaviour of the normal stress nea.r the centre line is_ partly caused by 

the applied stress interpolation. Further it is noticed that the height of the friction 

hill in the high upsetting range is in fair accordance with the value predicted by 

equation {3.3.4). As a measure for the reliability of the contact quantities a 

dimensionless standard deviation s tl is introduced, which is comparable with the 

coefficient of varlation from statistics. 

0 \ . 
' . . 

-1 ,\ q 
~ , ........ ~~-.......................... ..... n .......... -.. -.................... -·-=~"-.. -::f'. 'f·:C 

-2 

5.0 10.0 15.0 20.0 25.0 30.0 

(a) 

' 
-1 \ 

\ 
\\ 
\\ ,;I ............................ ........................................... , ... 

-2 .,. .................................................................. ... 
T 

(b) 

Figure 4.5.6 The dimensionless standard deviations for case 1 
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For each contact quantity s d is defined as a function of the position at the contact 

surface by 

(4.5.2) 

with p the maximum of the absolute estimation of the quantity along the contact 
. m 

surface, and s the locally estimated standard deviation. It can be interpreted as a 

relative error. The advantage of this definition is that the accuracy of the contact 

quantities, with mutually very different ranges, can be compared. The calculated 

values of s d for the radial displacement, normal stress and friction stress after 3 mm 

and 30 mm upsetting are given in figure 4.5.6 as a function of the reference radial 

position. 

Case 2 In the secoud case, the knowledge of the contact model is not taken into 

account. For compensation the measured axial and radial displacement of the outer 

surface with a standard deviation of 0.01 mm are used as boundary conditions. It is 

noticed that for each iocrement the measured displacements are referenced to the 

original state, so no accumulation of measuring errors occurs. This secoud problem 

shows to be very ill~onditioned. Due to this, lack of convergenre occurred in the 

calculation when it was started for each iocrement from a first guess for the solution 

too far from the actual solution. 

~ I ~ " 
" f\ " " .. :: 

1\ . ' .. . . . . 
20.0 25.0 30.0 

(a) 
r
0 

(mm) 
(b) 

Figure 4.5. 7 Dimensionless absolute differences of case 2 with respect to case 1 
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Therefore the incremental first guesses are taken equal to the incremental solutions 

of the direct problem of case 1. The solution then calculated shows differences 

(increasing per increment) from the salution of the direct problem. To illustrate this, 

figure 4.5. 7 shows the dimensionless absolute differences A.
21 

between the sol ut ion of 

the current case and the solution of case 1. The metbod to make the differences 

dimensionless is equal to the one used in equation (4.5.2). The differences are caused 

by the truncation of the displacements of the outer surface calculated for case 1, 

before they are used as input boundary condition in the current case. In fact these 

truncation errors act as very small measuring errors. The ill-conditioning is also 

illustrated by the resulting dimensionless standard deviations of the contact 

quantities, given in figure 4.5.8. 

·l 

·2 

-3 

-4 .u-_,.__ _ _.__~....,..-~~~~~-
0.0 5.0 10.0 15.0 20.0 25.0 30.0 

(b) 

Figure 4.5.8 The dimensionless standard deviations for case 2 

The accuracy of the measured displacements at oB should be increased beyond 
0 

physical possibilities to obtain acceptable accurate contact quantities. 

~ With respect to case 2, the extra input of a measured upsetting force is 

used. It is supposed that this force (in the order of 0.1 MN) is very accurately known 

with a standard deviation of 100 N. To achieve converganee of the solution process 

the same procedure as for the previous case was necessary. The dimensionless 

standard deviations beoome smaller, see figure 4.5.9, however not enough to reach 

usefulness. 
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0 
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(b) 

Figure 4.5.9 The dimensionless standard deviations for case 3 

~ Insteadof the knowledge of the contact model of case 1, the measured 

normal stresses serve as boundary conditions at the contact surface. The standard 

deviation of this stress is very conservatively supposed to be 10 N/rnm2. The 

resulting dimensionless standard deviations are given in figure 4.5.10. The large 

value of s d for the friction stress r is caused by the small absolute val u es of r. 

4 
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3 
3 

2 
T ,................. _ .... -........ . ..... - ... ... / -- ............ · .... ... 
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................................................................... J/1 

(1 -3 -1 
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Figure 4.5.10 The dimensionless standard deviations for case 4 



Case 5 In this case it is considered whether the estimates of case 4 can be 
improved by measured contour data. As in the cases 2 and 3, a standard deviation of 

0.01 mm is supposed for the displacements of the contour points. In figure 4.5.11 

improvements can be established, especially for the high upsetting range and near 

the outer radius. 

4 

3 

(b) 

Figure 4.5.11 The dimensionless standard deviations for case 5 

In contrast to the reliability of the radial displacement and normal stress, the 
reliability of the friction stress is unsatisfactory. This bas to be improved before 

calculated results for the friction stress can be used for quantifying contact models. 

Three ways are mentioned to reach this improvement. At first the standard 
deviation of the normal stress is taken quite large in the above calculation. 
Measurement of the normal stress with a higher accuracy will reduce the standard 

deviation of the friction stress. Secondly use can be made of the smoothness of the 

contact stress pattern. Decrease of the number of contact stress unknowns will result 

in a higher accuracy for the contact quantities. This strategy is also applied for 

calculations with respect to the stress measuring tool in chapter 6. In that chapter it 

turns out that the friction stress can be measured tagether with the normal stress, 

thus offering a third way for raising the reliability of the friction stress. The fitting 
quality of the, with a reduced number of contact stress unknowns, estimated contact 

stress pattem can be judged by using the reached minimum value of F{~) according 
to equation (4.4.3). A statistkal test, resulting a quantitative measure for the fitting 

quality, is the i-test, which is nearer described in paragraph 5.4. 
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From the previous it is concluded that the use of measured displacements of the 

contour, the upsetting displacement and the upsetting force only cannot lead to a 
successful estimate of the contact quantities. Measurement of the stresses at the 
contact area is necessary. Improverneut of the results calculated from contact stress 

data may be obtained if additively quite accurate contour displacements are 

available. This is one of the reasons to consider displacement measurements in more 

detail. There is another reason why contour displacements remain of interest. An 

often used strategy to quantify the constant friction factor of the Von Mises model 

or the Coulomb friction factor, already indicated in chapter 3, is basedon fitting the 

calculated upsetting force to measured values. In this way no indication is available 

whether the fitted model is indeed valid. This indication can be obtained by 
oomparing the calculated contour displacements to the measured ones. Furthermore 

they give a possibility to extend this metbod of parameter quantification to models 

with more than one parameter. Nevertheless the main condusion of this chapter is 

that a metbod to measure the contact stresses in situ in the contact region is of great 

importance. As an impulse to solvè this problem a design of a contact stress 

measuring tool is presented and analysed in chapter 6. An important input variabie 
for the application of this tool is the dimension of the contact area, which also 
results from the displacement measurement described in the next chapter. 
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5 Photogrammetric contour measurement 

In this chapter the photogrammetric method, applied to measure the contour of 

workpieces during upsetting in situ, is described. For this purpose the workpieces are 

provided with marks at their cylindrical surface before upsetting. During upsetting 

single images are recorded of a workpiece together with a set of calibration marks. 

Image processing delivers the image coordinates of the eentres of the calibration and 

workpiece marks. Calibration of the relationship between object space coordinates 

and image coordinates is executed for each image separately, using the calibration 

mark data. Although only single images are recorded, the three-dimensional space 

coordinates of the workpiece marks can be calculated supposing an axisymmetric 

contour shape. 

In paragraph 5.1 the choice for a photogrammetric technique is motivated. The 

procedure roughly indicated above is outlined in more detaiL The relationship 

between three-dimensional object space coordinates and two-dimensional image 

coordina.tes is subject of para.graph 5.2. In this relationship parameters appear whose 

values depend on the optical system. The metbod to calculate these parameters for 

each image, given the calibration mark data, is indicated. Paragraph 5.3 describes 

the reconstruction of the space coordinates of the workpiece marks from the image 

coordinates using the axisymmetry of the workpiece. Thereafter in paragraph 5.4 

some aspects of the possible accuracy of the calibration and the three-dimensional 

coordinates reconstruction are indicated. A short description of the numerical 

implementa.tion of the calibration and reconstruction algorithms is presented in 

paragraph 5.5. Results of simulations, also presented in paragraph 5.5, establish the 

usefulness of these algorithms. An evaluation of the metbod is performed in 

paragra.ph 5.6 by a set of upsetting experiments. It shows that the accuracy obtained 

is mainly limited by the violation of assumptions a bout the physical behaviour of the 

workpiece. 

5.1 Introduetion 

One of the aims, formulated in chapter 3, is todetermine during upsetting in situ 

the spatial positions of material points on the initially cylindrical surface of a 

workpiece, bere shortly described as determining the contour of that workpiece. 

Some contour measurement techniques are mentioned bere. Although with shape 

measuring techniques material surface points are not followed, some of these 
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methods are also reviewed in the sequel as far 3.'3 they can easily be adopted for 

contour measurement. Direct and indirect methods for contour meMurement can be 

distinguished. Direct methods make use of mechanical sensors, shadow images or 

photogrammetric position determination of surface marks. Indirect methods 

primarily concentrate on surface stra.in measurements. An example of a direct 

metbod using mechanical sensors is the measurement of the diameter at different 

locations on an axisymmetric upsetting test piece, as performed by Rasmussen et al. 

{1984). To follow material contour points an adaptation of the sensing elements is 

needed. A disadvantage is that only a very limited amount of data can he gathered 

this way, due to the voluminous mechanica! construction. The determination of the 

radius in the necking zone of a tensile bar, as reported by Galenkamp & Van 

Wijngaarden (1985), is an example of a shadow image technique. Use of grooved 

workpieces enables point tracking. Both methods presuppose axisymmetry. A 

photogrammetric metbod was for example recently developed by Peters (1987) for 

the measurement of displacement fields in soft tissue. It appeared to he suited for 

large stra.ins and displacements, characteristic also for the case considered bere. 

With respect to the indirect measurement procedures, examples are Moiré, speekte 

methods {KobayMhi 1987) and use of stra.in gauges. Assuming axisymmetry, the 

displacements of the contour points may he calculated. A major drawback is the 

restrietion to small stra.in cMes. 

Based on the previous considerations it is decided to modify Peters' stra.in 

measurement tool into a version able to determine the three-dimensional positions of 

marks on the workpiece. These positions are reconstructed from images recorded 

during upsetting. In general such a reconstruction is possible if at least two 

simultaneously recorded images from different positions are available or if the three

dimensional coordinates of the material points obey some known relationship. As it 

is supposed that an axisymmetric workpiece remains axisymmetric during upsetting, 

simultaneons recording of two or more images is not necessary. Therefore only single 

images are used to reconstruct the contour of the workpiece. 

Before upsetting, the cylindrical surface of a test piece is provided with marks. 

During upsetting, images of the deforming test piece together with a calibration 

frame are recorded. On the eaUbration frame marks are located whose three

dimensional positions are accurately known with respect to some coordinate system. 

With the calibration marks the actual relationship between three-dimensional object 

coordinates and two-dimensional coordinates of the resulting image is determined. 

The reMon to perform this calibration for each image separately is twofold. At first 
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the medium used for recording and ana.lysing is photographic film. For several 

reasons, the image on the photo to be analysed may differ, partly in a stochastic 

manner, from the ideal image. Therefore for each photo a quantification of the 

distortion is needed. Secondly the camera is, because of practical reasons, not rigidly 

connected with the eaUbration frame which is attached to one of the upsetting tools. 

To avoid a laborious procedure in order to obtain a well-known camera position, the 

eaUbration mark data are also used to determine this position afterwards. 

The photos are digitized by a scanner and the output data are processed by 

Peters' data analysing program, resulting in the two-dimensional image coordinates 

of the eentres of eaUbration and workpiece marks. With the calibration mark image 

coordinates the camera position and image distortion are calculated for each photo. 

The workpiece mark data of the first photo of an upsetting experiment, with the 

workpiece in undeformed state, are used to identify material points on the 

cyllndrical surface. For all subsequent pbotos the three-dimensional coordinates of 

the material points identified are reconstructed from the workpiece mark data, using 

axisymmetry. 

5.2 Central projection, distartion modeland calibra.tion 

In this paragraph the equations descrihing the transformation of object space 

coordina.tes to image coordinates are considered. At first this transformation is 

modelled by the theory of the central projection. Modifications are neerled to 

account for various systematic errors. Finally the calibration procedure with the 

resulting equations is discussed. 

Figure 5.2.1 The transformation of the object space to the film image plane 
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Using a camera with a set of linea.r lenses, the transformation of a point P{;) in 

the three-dimensional object space into a point P' in the two-dimensional film image 

plane is visualized in figure 5.2.1 (Arnold et al. 1971). It is assumed that the film 

image plane is flat a.nd perpendicular to the so-ealled optical axis with unity 
.. 

direction vector e . On the optical a:xis the principal nodal points H
1 

a.nd H are 
a r .. 

situated, H
1 

the front lens node with position vector x
0 

and Hr the rear lens node. 

The conneetion lines · PH
1 

a.nd HrP' are parallel. Within the film image pla.ne a.n 

orthonormal two-dimensional vector base {~À,~ 
1
J a.nd distance measuring 

coordinates (A,tt) are introduced. The centre of projection or principal focal point Q, 
i.e. the intersection point of the film image pla.ne a.nd the optical axis, is arbitrarily 

chosen as the origin of the film plane coordinate system. The coordinates (A,Jt) of P' 
.. 

are related to the position vector x of P by 

{5.2.1) 

with d the principal distance, i.e. the distance of H to the film image plane. Prints 
r 

of the recorded film images are analysed by use of a scanner, which assigns distance 
.. .. 

measuring coordinates (p,q) to points of the print. The unity veetors e and e 
p IJ .. 

parallel to the coordinate axes of the scanner may be imagined to coincide with eÀ 

.. ... ... .. ... 
and e , thus e, = e and e = e . The coordinates p and q are assumed to be linear 

p ... p p IJ 

in A and Jt according to p = p0 +m>.f d and q = q0 +mttf d where mis a magnification 

factor a.nd (p0,~) are the print image coordinates of the centre of projection, so 

p (5.2.2) 

.. .. .. 
As the veetors e , e and e compose an orthonormal base, the relations (5.2.2) 

P IJ a 
contain 9 independent parameters. 

In reality the equations (5.2.2) will not be exactly obeyed, due to different 

systematic and stochastic error sources. Systematic errors originate from lens 
aberration, film and print deformation and scanner deficiencies. To correct for such 
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errors a metbod closely related to the one described by Peters (1987) is applied. It is 
basedon the use of isoparametrie coordinates (Zienkiewicz 1977, Bathe 1982). With 

n eaUbration marks as nodal points, the coordinates (p,q) are transformed into 

isoparametrie coordinates (Ç;q) using shape functions tp.(Ç,fJ) and the coordinates 
I 

(p .,q .) of the corresponding ealibration marks 
I I , 

n n 
p = E tp.(Ç,fJ)p. , q = E tp.(Ç,'f/)q. 

i=l I I i=l I I 

(5.2.3) 

In this way for each point (p,q) within the area considered unique isoparametrie 

coordinates (Ç,q) are defined. With respect to the relations (5.2.2) it is assumed that 

these can be adopted for systematic errors as follows 

(5.2.4) 

where the correction functions !:J.p and il.q obey relationships equivalent to (5.2.3) 

n n 
!:J.p= E tp.(Ç,'fl)il.p. , !:J.q= E tp.(Ç,fJ)il.q. 

i=l I I i=l I t 
(5.2.5) 

in whieh !:J.p. and !:J.q. are the coordinate corrections for calibration mark i. Because 
· I I 

with respect to the image coordinates (p,q) the corrections il.p and il.q can describe 

arbitrary translation, rotation and magnification, which are already represented by 

other parameters, four (independent) valnes for il.p and !:J.q may be prescribed. 

Improverneut of error corrections can be obtained by increasing the number n of 

calibration marks. 

By introduetion of the correction functions, the number of independent 

parameters in (5.2.4) is increased with respect to (5.2.2) from 9 to 9+2n-4. Together 

they compose the parameter column y. To determine 1 for a partienlar image at 

least 3 extra calibration marks are needed besides the number (n) to quantify the 

systematic error correction. Extraction of the parameter values from the calibration 

mark data is performed by a maximum likelibood estimator. Therefore it is supposed 

that the print image coordinates (z ,z) of the centre of some (calibration or 
p q 

workpiece) mark, as measured by the scanning device, obey the relationships 
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z = p+Llp+v , z = q+Llq+v p p q IJ 
(5.2.6) 

with p+Llp and q+Llq according to (5.2.4) and (5.2.5), and stochastic errors v and 
p 

v . Some of the properties of these stochastic errors, due to the discrete nature of the 
q 

scanning device, are investigated by Peters (1987). For (5.2.6) it is assumed that the 

centre of a mark on the print corresponds with the centre of that mark in the object 

space. Errors introduced by this assumption are subject of paragraph 5.4. The 

measured scanner coordinates of the eentres of the eaUbration marks oompose the 

column z . With the foregoing it can be stated, supposing that the positions of the 
-c 

eentres of the caBbration marks in the object space are exactly known, that 

z =h(1)+v -c -c - -c 
(5.2.7) 

with v a column containing stochastic errors and h a column function in which 
-c -c 

only the column 1 occurs as unknown. The stochastic errors v are supposed to have 
- -c 

a (multivariate) Gaussian probability density function p according to 

(5.2.8) 

with n tbe total number of calibration marks and E( v ) 0, E( v vT) E. where E 
c -c - -c-c c 

is the expected value operator. Replacing v by z -h (i) in (5.2.8), the likelibood 
-c -c -c -

function p(z =i) can be obtained. The maximum likelibood estimate 1 is defined as 
-c- -

the solution 1, that maximizes p(z :1) for the partienlar set of measurement data z, 
- -c - -c 

or equivalently, minimizes the function 

(5.2.9) 

As h ( 1) is non-linear in 1, an iterative solution procedure is needed to calcula.te :y. 
-c - - -

Some details of the numerical implementation of this procedure are given in 

paragraph 5.5. 
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5.3 Reoonstruction of the three-dimensional ooordinates of the workpieoo marks 

Subject of this paragraph is the determination of the contour of a workpiece from the 

image ooordinates of the marks. For this purpose first the positions of the marks on 

the undeformed workpiece have to be established. In some deformed state the three

dimensional positions of these marks are reconstructed, supposing preservation of 

axisymmetry. An approximation for the position of an arbitrary surface point is 

obtained by a special interpolation using orthogonal polynomials. 

For the experiments described in paragraph 5.6, it is chosen to provide the 

workpiece with marks by hand, using a stencil and felt-tipped pen as marking 

medium. This metbod is easy to perform and the marks pattem wanted cao be 

changed in a simple way. The reauiting pattem on a workpiece will bowever show 

irregularities with respect to tbe ideal pattem according to the stencil. In order to 

correct for these irregularities the image of the undeformed state of eacb workpiece, 

recorded just before upsetting, is employed. Tbe position of the centre of such a 

workpiece in a ooordinate system attached to the calibration frame ( origin 0, .. .. .. .. 
orthonormal base { e

1
,e

2
,e

3
}) is indicated by the position vector s

0
, see figure 5.3.1. 

I 
I 

Figure 5.3.1 A workpiece in undeformed state just before upsetting 

Tbe orientation of the workpiece is described by a material fixed orthonormal base 
.. ... ... ... 

{ e xO' e 00, e {0} with origin at s
0
• Material points cao be uniquely identified by the 

cylindrical ooordinates (p0,~0,(0). The position of the centre of each mark i on the 

workpiece is given by (R0,~~,(~), as for all marks the radial position is equal to the 
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initia! workpiece radius R
0

• The coordinates cp~ and (~ for the centre of mark i are 

considered as a label to identify the mark and are called the material coordinates of 

mark i. The position vector;~ of a mark i can be denoted as 

(5.3.1) 

The intended axial and circumferential coordinates (z~,z~0) of the marks on the 

stencil in general differ from the real values ( cp~,(~) on the object. The relations can 

be denoted by 

(5.3.2) 

with stochastic errors v~ and v~. The equations (5.3.2) for the intended coordinates 

of all workpiece marks are written as 

(5.3.3) 

with the real coordinates ( cp~,(~) gathered in the column §~· 

The measured image coordinates (z;,z~ of mark i will obey the relationships 

(5.3.4) 

with pi+!::.pi, i+t::.qi according to (5.2.4) and (5.2.5), and stochastic errors vi, vi. 
p q .. 

Applying (5.2.4) in (5.3.4) the position vector x bas to be replaced by the position 

vector ;~ of mark i according to (5.3.1). The relations (5.3.4) for the image 

coordinates of all workpiece marks together are concisely denoted as 

(5.3.5) 

The functions in the column ~iO are non-linear in the calibration parameters 1 and 

the column §. which is composed of the real coordinates §~ and six variables for the 

position and orientation of the workpiece. Supposing that the calibration parameters 
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1 are exactly known, witb (5.3.3) and (5.3.5) a maximum likelibood estimate § for § 
can be derived. Therefore tbe stocbastic errors are assumed to have a Gaussian 

probability density function 

witb nm tbe number of workpiece marks, E(!!ui)) = E('!!iO) = Q, E('!!ui)!'~) = Eui) 

and E('!!iO'!!ro> = EiO. It is obvious tbat tbe stochastic errors '!!ui) and '!!iO are 

independent, so E(!!ui)!!ro) = Q. The likelibood function p(!~~ ~rolT:§) follows 

from (5.3.6) by replacing '!!ui) and '!!io by ~ui)-§ui)(§) and ~iO-~iO(J,§) respectively. 
Maximization of this function is identical to minimizing the function 

G( é) = (z ..... -ê .. J\( é))TE~!(z . .r.-6 .... ( 6))+(zi0-h.
0

( r,é))TK0
1(z .0-hiO(r,é)) 

• -wv -wv- wv -wu -wv- - -1 -- I -1 - -- (5.3.7) 

and delivers the :maximum likelibood estimate §. An iterative solution procedure is 

needed to calculate §, because of non-linearities. 

After evaluation of tbe calibration parameters and tbe real coordinates ( cp~,(~) of 

the workpiece marks in the undeformed state, the remaining problem is to calculate 

tbe object space positions of the eentres of the marks for the workpiece in some 

deformed state. If the deformation of a mark i itself is more or less uniform, its 

centre may be assigned to the samematerial surface point with material coordinates 

(ft?~,Ç~) in eacb state. Tbus the actual contour is determined by the object space 

positions of tbe eentres of all marks. To reconstruct the three--dimensional position 

for eacb workpiece mark i tbe measured image positions (z;,z~ according to (5.3.4) 

are available. Supposing the calibration parameters and coordinates (cp~,(~) of all 

workpiece marks to be known, there are only 2n measurement data for 3n 
m m 

unknowns. Preservation of axisymmetry has to be used to calculate the unknowns. 

In some deformed state tbe position and orientation of the workpiece in the object 
.... ... ..... 

space is described by a vector s and tbe orthonormal material base { ex,e0,e,} witb 
+ + 

its origin at s, see figure 5.3.2. The vector s is the position vector of the intersection 
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point of the centre line of the workpiece with the plane through the surface points 

with material coordinate (
0 
= 0. This plane is not assumed to be a symmetry plane 

a priori. The centre of mark i will have the position ii according to 

(5.3.8) 

with (pi,c/,ci) the cylindrical coordinates of mark i. 

Figure 5.3.2 A workpiece insome deformed state 

Because of axisymmetry it may be written for (pi,c/,(i) 

(5.3.9) 

with R and Z functions of (
0
• These functions can be discretized by a set of functions 

with corresponding parameters. The variables to be determined are the position and 

orientation of the workpiece and nR+nz parameters for the interpolation of Rand Z. 

These variables however are not independent. The workpiece imaginary shifted in 

the direction of the optical axis and proportionally changed in its dimensions, results 

in the same image. Therefore an extra assumption with respect to the position or 

dimensions of the real workpiece is needed. c Here it is assumed that the workpiece is 

volume invariant which introduces a dependency between the parameters of the 

approximations for Rand Z. A set of nR+nz-1 parameterscan easily be introduced 
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by using Legendre polynomials as is described in appendix 5.3.1. To determine the 

remaining variables, gathered in the column ~· again the maximum likelibood 

metbod is adapted. With (5.3.4) the measured image coordinates of the workpiece 

marks z can be expressedas 
-m 

z = h ( f)+v -m -m- -m 
{5.3.10) 

Supposing a Gaussian probability density function for v with zero mean and 
-m 

covariance matrix B. , delivers the maximum likelibood estimate (, i.e. column f 
m - -

that minimizes 

(5.3.11) 

The solution is calculated iteratively. 

5.4 Asped8 of accuracy 

In this paragraph attention is focussed on the obtainable accuracy of calibration and 

three-dimensional coordinate reconstruction. The influence of the stochastic errors is 

studied by numerical simulations, presented in paragraph 5.5. A few statistkal 

quantities used in that paragraph are reviewed bere. Thereafter the influence of 

systematic measurement errors, neglected in the previous, is estimated. They show 

to be negligibly small. Finally systematic errors due to the assumption of volume 

invariance are considered. 

One of the statistic quantities considered in the next paragraph is the covariance 

matrix of the resulting estirnates. Approxirnations for the covariance matrix of the 

maximum likelibood estimates j, § and ~ can be given as indicated in chapter 4 and 

appendix 4.3.1. Further it is known from statistles that (see e.g. Sokal & Rohlf 

1969), supposing Gaussian probability density functions for the measured data, the 

functions F(j), G(§) and H(!) are l-distributed. The resulting minimum valnes can 

therefore be used todetermine the fitting quality of the measured data with respect 

to the resulting estirnated model. Here the fitting quality is defined by the 

prohability P F that a partienlar x2 value as finally reached, could occur by chance. 

Valnes larger than 0.1 make the fit reliable. Valnes larger than 0.001 may be 
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acceptable if the errors are non-normal distributed or underestimated, or if the data 

show outlier points. An extra statistical metbod used to check the results is the 

Kolmogorov-8mirnov test to compare the assumed Gaussian distrlbutions with the 

resulting estimated data. The test delivers the probability P KS that differences 

between the assumed distribution and the estimated data larger than the observed 

differences occur by chance. As significanee level a value of about 0.01 is reasonable. 

For a small data set P KS becomes meaningless. 

For the positions of the calibration marks, systematic errors, neglected in the 

previous, may occur due to temperature changes of the calibration frame. The frame 

used in the experiments is constructed of aluminium with a thermal coefficient of 

linear expansion of about 24 ttm/mK. A typical dimension equals 100 mm. Thus for 

a temperature change of 1 K, a. maximum error is introduced of about 2.4 J.LID. 

Although this is quite small, hea.ting of the frame, due to the presence of light 

sourees needed for the image recording, has to be avoided. Intermitted lighting and 

the conneetion of the frame to one of the tools contrlbute to this purpose. 

Some of the systematic errors in the three-dimensional positions of the workpiece 

marks are invoked by oblique orlentation with respect to the optical axis, the surface 

curvature and the change of surface strain over the marks. The magnitude of these 

errors can be estimated from simple considerations of geometrical nature. Without 

going into details the results of these considerations will be presented. 

For a flat non-deforming workpiece mark with its normal direction parallel to the 

optical axis, the centre of the image of the mark will coincide with the image of the 

centre of the mark in the object space, if photogrammetric distortional errors are not 

present. If the angle between the normal direction of the mark and the optical axis is 

unequal zero, the centre of the image of the mark will not correspond to the image of 

the centre in the object space. It can be proved that for the distance deviations Ä , 
Q 

referred to the object geometry, holds 

(5.4.1) 

with d a significant dimension of the mark and l the distance of the mark to the 

front lens node. With e.g. d 2 mm and l = 1000 mm the error will be smaller than 

1 pm, which is extremely small with respect to the influence of stochastic errors. If 

besides the oblique orientation the surface is curved with curvature radius R, an 

extra shift Ä may occur, satisfying c 

5 Pbotogrammetric contour measurement 63 



2 
~ < 0.1 !L 

c 1l 
(5.4.2) 

With d = 2 mm and 1l 30 mm, ~ beoomes 13 pm. As this maximum value only 
c 

occurs for a few marks or even no mark at all on a partienlar image, this error can 

also be neglected. If a non-uniform surface strain with characteristic value g for the 
E 

gradient is present for a flat mark, an error ~ 
s 

(5.4.3) 

is introduced. So for d = 2 mm and g < 0.002 mm -l this error is smaller than 1 pm. 
{ 

In principle these three errorscan be corrected for, as the obliqueness, curvature and 

strain are approximately known during the calculation of the contour. However, 

because the errors are smal!, they are simply neglected. 

Finally systematic errors related to the use of volume invariance are considered. 

Due to elastic deformation of the workpiece, the volume will change approximately 

by an amount !1rUh~ with D diameter, h height, p the average hydrastatic pressure 

and 1> the OOmpression modulus. The reconstruction algorithm will estimate the 

workpiece further away from the camera than in reality is the case. From this an 

overestimate of the height and diameter will result. With p = 40 N/mm2
, 

D = 85 mm, h = 30 mm and "'= 70000 Njmm2 a maximum radius error of about 

5 f.Jffi occurs. A camparabie error is caused by neglecting the elastic indentation of 

the tools. 

5.5 Numerical implementation and simulations 

In this paragraph shortly the 'optimization method, used in the implementation of 

the calibration and reconstruction estimators, is considered. Numerical simulations 

establish the usefulness of the estimators and the attainable accuracy. It is shown 

tbat this accuracy is not sufficient to improve the results of the calculations 

according to chapter 4. The next paragraph will show that also the behaviour of the 

test pieces interferes with the calculation of more reliable results this way. 

To perform the optimizations as formulated in the paragraphs 5.2 and 5.3 a 

routine (E04GBF) from the NAG-library (1987) is used. This routine combines the 
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Newton metbod with a quasi-Newton metbod for the unconstrained minimization of 

non-linear functions Q(~) in the unknowns ~of the type 

(5.5.1) 

Besides a subroutine for the evaluation of g(~) for some ~' also a subroutine for the 

calculation of the Jacobian matrix of g(~) is expected by the NAG-routine. The 

functions to be minimized, presented in the paragraphs mentioned above, can easily 

be reforrnulated according to (5.5.1) and the Jacobian matrices can be derived 

analytically. 

To evaluate the estimators a Monte Carlo strategy is adapted, i.e. fictitious 

values are assumed for the non-stochastic quantities somehow close to the values 

occurring in an experiment. These quantities are 

- calibration mark positions in the object space, 

camera position and orientation, 

- magnification factor, 

print image coordinates for the principal focal point, 

- distartion errors for all images within one experiment, 

- stencil pattern, 

- position and orientation of the workpiece, 

contour development. 

Next all stochastic errors are simulated by drawing random numbers from 

appropriate distributions. Thus random Gaussian deviations are generated for 

- scanning errors in the calibration mark image coordinates, 

- scanning errors in the workpiece mark image coordinates, 

- workpiece mark pattem errors. 

This results in simulated sets of image coordinate data for the marks. With these 

data the caBbration and reconstruction are performed and the results for the 

geometry are compared to the known original data. This procedure is executed a 

number of times. The acquired results are supposed to be representative for the 

general behaviour. 

In figure 5.5.1 the mutual positions of the different parts of the set-up are 

schematically indicated along the optica! axis. Point Q is the principal focal point on 

the film, Hr and H
1 

the rear and front lens nodes. The principal distance d has a 

value of about 216 mm. The calibration frame has calibration marks in two parallel 

planes with a mutual distance dfr of 20 mm. 
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Figure 5.5.1 Some positions and distances of importance 

The 16 marks of the front plane at position F
1 

are used for the error corrections 

according to paragraph 5.2, the rear plane at position F contains 6 extra marks. 
r 

The distance dF of the front calibration plane to the front lens node is about 

1200 mm, the distance de of the workpiece center C to the rear calibration plane 

equals approximately 75 mm. All distances mentioned resembie the actual valnes in 

the set-up used for the experiments of the next paragraph. In figure 5.5.2 two typical 
pictures of simulated scanned image coordinates are given. In picture (a) the 

workpiece is in the reference state and in picture (b) the workpiece is upsetted until 

the height approximately equals 20 mm. A magnification factor m, see paragraph 

5.2, of 1150 is used. The camera is oriented such that the optica! axis is 

approximately perpendicular to the calibration planes and through the centre of the 

front caBbration plane marks (A). The valnes of the image distortional errors are 

taken smaller than 0.005 mm. 
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Figure 5.5.2 Image coordinates of calibration (A, 'V) and workpiece (o) marks 
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In the initial state the workpiece is provided with 6x6 marks, in axial direction in 

rows with mutual distance 10 mm and in tangential direction in equidistant columns 

over a total angle of 90• . The standard deviation of the row and column distance is 

conservatively chosen 0.1 mm. To estimate the standard deviation of the scanned 

image coordinates to be expected, a formula of Peters (1987) is used which expresses 

the varianee (in mm2) in the scan resolution p (in pixelsfmm) and a characteristic 
SC 

mark image size d (mm) 

(5.5.2) 

The scan device applied for the experiments bas a value for p equal to 9.45 

pixelsfmm. For circular calibration marks with an image diameter of 3 mm a 

standard deviation of 0.004 mm results while this deviation is 0.006 mm for circular 

workpiece marks with an image diameter of 1.5 mm. 

With these data simulations are performed of the upsetting of the workpiece to a 

final height of 20 mm. A typical (symmetrie) example of a contour development 

which can be described by the interpolation for R and Z with Legendre polynomials 

according to appendix 5.3.1, is given in figure 5.5.3. 

( (mm) 
30.0 

20.0 

10.0 
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-20.0 

·30.0.L--.......... ~~--,.L--_,_ _ __,_ _ __. 
0.0 10.0 20.0 30.0 40.0 so.o 60.0 

p{mm) 

Figure 5.5.3 An example of a contour development described by the volume 

invariant interpolation using Legendre polynomials 

The results obtained with respect to the eaUbration can be summarized as follows. In 
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general the 9 parameters figuring in equation (5.2.2), i.e. camera position a.nd 

orientation, coordinates of the principal focal point (on the image) and magnification 

factor, are quite welt estimated. The dista.nce dF of the front lens node to the front 

calibration plane is estimated within 5 mm, for the magnification factor a maximum 

absolute error about 5 is obtained. Rotational errors of the camera are within 0.05·, 

errors in the position of the principal focal point on the image within 2 mm. These 

errors are partly compensated by the correction factors IJ.pi and IJ.i, which 

completely differ from their original values. Therefore the resulting minimum 

function value F(}) is only seldomly disappointing, as P jF(})) is normally greater 

than 0.01. Also the norma.lity of the resulting estimated image coordinates is only 

rarely rejected by a P KS va.lue smaller than 0.01. 

The position and orientation of the workpiece in the reference state are within 

2 mm respectively 0.02· correctly estimated. The material coordinates are estimated 

within 0.04 mm close to the original values. The reached minimum value G(§) is 

satisfying, as well as the normality of the material coordinates. The momentary 

position and orientation are of the same accuracy as in the reference calculation. 

(mm) 
4.0 •1o·2 

1.50 z 
1.00 

0.50 

0.00 

• 20.0 -10.0 0.0 
-6.0 "::-":-"~=--:-~:'::-'::-~-:-:-~~=-------.:':--:--~ 

30.0 ·30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 

(a) (b) 

Figure 5.5.4 Axial (Z) and radial (R) displacement errors for the low (a) and 

high (b) upsetting range 

In figure 5.5.4 an example of the axial and radial coordinate errors is given as 

function of (
0

, for the low and high upsetting range. 

For the low upsetting range axial and radial coordinate errors typically are about 
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0.01 mm and about 0.03 mm near ç
0 

= 30 mm and Ç
0 

= -30 mm. For the high 

upsetting range the axial and radial coordinate errors become typically about 

0.02 mm and 0.06 mm near the top and bottorn of the workpiece. In all cases the 

reached H('f) values give a P F smaller than 0.001. Also the normality checks on the 

calculated image coordinates regularly deliver a P KS smaller than 0.001. This is 

caused by the supposition of exactly known calibration parameters and material 

coordinates of the workpiece marks in the reconstruction of the momentary axial and 

radial coordinates. Nevertheless the displacement accuracy is not disappointing. The 

results however are too inaccurate to improve significantly the quality of the 

calculated contact quantities according to chapter 4. The next paragraph will show 

that a more accurate contour measurement cannot be performed by the present set

up, due to the physical phenomenon of surface roughening and the violation of 

axisymmetry resulting from inhomogeneons deformation. 

5.6 Eva.luation of the photogra.mmetric contour mea.'!urement 

In this paragraph the photogrammetric metbod is evaluated by a number of 

upsetting experiments. It appears that the predicted accuracy is not reached due to 

several reasons. An improverneut of the accuracy is possible, but is hardly relevant 

for the quantification of contact morleis according to chapter 4, as the obtainable 

accuracy is limited by surface roughening. The dimension of the contact area can be 

measured accurately enough to apply it in calculations with the stress measuring 

tooi, presented in chapter 6. 

A number of upsetting experiments is performed on soft annealed extruded 

aluminium Al 99.0 (AA 1050) workpieces with an initial diameter and height of 

60 mm. The aluminium had an înitial hardnessof 21.5 N/mm2 HB 5 and an average 

grain size of 0.125 mm2 (ASTM 0). After a last fine turning process, the workpieces 

were sandblasted. The resulting egg-shell surface finish sufficed to prevent 

inconvenient light reflections on the photographs. Before upsetting, the workpieces 

were provided with 12><12 black marks of 2 mm diameter each. The axisymmetric 

upsetting tools (tooi steel X210Cr12) had a hardnessof 56 HRC. After fine grinding 

an average surface roughness value R resulted of approximately 0.2 p;m. A 2 mm 
a 

thick circular plate, of equal material and surface finish as the tools and with a hole 

of 3 mm diameter at the centre, was glued to one of the tools using a thin epoxy 

resin adhesive layer of about 5 p;m thickness. A small pin in the hole centred the 
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workpieces during upsetting. The workpieces are upsetted on a hydraulic press in 10 

steps of about 3 mm upsetting each to a final height of 30 mm. The average 

upsetting speed was 0.02 mmjs. After each step upsetting was interrupted in order 

to take a photograph of the calibration frame and workpiece, and to measure the 

upsetting force and the relative displacement of the tools. The displacement was 

registrated by an L VDT (linear variabie differential transfarmer) and corrected 

afterwards for elastic deformation of the tools. 

The results of three upsetting experiments are discussed. Experiment R is a 

Rastegaev test with a workpiece as sketched in figure 5.6.1, using lanoline as (solid) 

lubricant. For the experiments L and D workpieces without recesses are used, in 

experiment L a liquid lubricant, lpro 134, is applied, in experiment D tools and 

workpiece are degreased thoroughly. 

4 
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Figure 5.6.1 Rastegaev workpiece and reconstructed contour 

Analysis of the photographs resulted in contour reconstructions as given in figure 

5.6.1 and figure 5.6.2. For the radial function R( (
0

) as well as the axial function 

Z( (
0

), 6 Legendre polynomials (0-th until 5-th degree) are used. Of experiment L 

and D only the contours are presented for the deformation stages for which all 

workpiece mark data were available (for higher upsetting stages workpiece marks 

disappeared into the contact areas with the tools). The contour of the Rastegaev 

workpiece remained straight besides some disturbance, due to the lips of the 

recesses. For Land D bulging occurred. 
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Figure 5.6.2 Reconstructed contours for the conventional workpieces 

To investigate the accuracy of the contours reconstructed, the heights following 

from the L VDT data are subtracted from the heights as calculated from the 

photogrammetric data. The results are reported in figure 5.6.3. as functions of the 

upsetting displacement h
0
-h. 
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Figure 5.6.3 Height differences between photogrammetric and LVDT data 

Before discussing these it bas to he mentioned that the L VDT data in general 

underestimate the actual height of the workpieces, due to offset errors in the 
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reference LVDT output value used. This reference value should be the output value 

of the LVDT as both tools are in contact with the undeformed workpiece. Figure 

5.6.3 shows that the accuracy as predicted in the previous paragraph is not reached. 

For the Rastegaev workpiece the height error is maximally 0.16 mm in the low 

upsetting range. Besides the offset error, two reasans for this can be indicated. First 

the distartion correction was nat so successful in practice for the set-up used. The 

distartion errors were much larger at the image position of the calihration marks 

near the image edges than near the centre, resulting in an overestimation of the 

distartion for the centre part of the image. Secondly errors are introduced by 

deviation of the initial diameter and height of the workpiece from the assumed 

values. This results in errors in the reference coordinates of the workpiece marks, 

affecting all subsequent calculated contour data. A rednetion of the errors in the low 

upsetting range is possible. A more sophisticated photogrammetric system or an 

alternative distartion correction will rednee errors caused by the distartion of the 

images. Use of the initial diameter and height, and a more refined metbod for 

supplying the workpiece with accurately positioned marks will also render smaller 

errors. 

In the high upsetting range increasing errors occur for the Rastegaev experiment, 

which are caused hy the disturbance of axisymmetry due to the inhomogeneity of the 

workpiece and to the increase of the surface roughness. With the present set-up the 

errors due to the vialation of axisymmetry can he made smaller by taking 

interpolation functions also dependent on the tangential coordinate. Another 

possibility is to choose for a set-up with more than one camera to obtain the three

dimensional contour displacement without assumption of axisymmetry or volume 

invariance. Use of such data for the quantification of contact models as in chapter 4 

requires a three-dimensional numerical analysis. The influence of the surface 

roughness may he reduced hy applying a larger set of smaller marks or by applying 

larger marks. In the first case the influence is reduced hy averaging over more 

marks, in the second case hy the intrinsic averaging over each mark. In order to he 

ahle to apply a sufficîent number of large marks, unfilled marks may he used, such 

as e.g. circles. Correction for surface strain gradients is needed for large marks. Use 

of models for the roughening and application of complex roughness characteristics 

(Klimczak et al. 1988) can guide the optimization of the mark pattem and mark 

design. As surface roughness always occurs in the high upsetting range, it sets an 

upper-bound to the obtainable accuracy for the contour displacements. It is therefore 

not to he expected that the accuracy, needed for these displacements to be useful in 
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the sense of chapter 4, can be established in the high upsetting range for workpieces 

of material with a relatively large average grain size. Despite of the errors in the 

height of the workpiece, the diameter of the contact surfaces is measured accurately 

enough for application in the calculations with the stress measuring tool as described 

in chapter 6. For ç
0 
= -30.0 mm, the diameter resulting photogrammetrically is 86.4 

mm and the average diameter measured afterwards 86.8 mm. For Ç
0 
= 30.0 mm, 

these values are 84.5 mm and 86.3 mm respectively. This quite significant difference 

is caused by a very local disturbance near this edge, too small to be detected with 

the number of marks used. 

For the experiments L and D much larger and increasing errors are found for the 

height. This is caused by the disappearance of the visible surface into the contact 

zone. This error can be suppressed by assuming a fixed position of the axis of the 

workpiece in the object space instead of assuming volume invariance. Another 

possibility is of course to use a set-up with at least two cameras. The size of the 

visible surface, disappeared into the contact surface, can be determined by using the 

independently measured mutual displacement of the tools or a suited marks pattem. 

These possibilities are not further investigated in the present study. 
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6 Design and analysis of a stress measuring tooi 

From the previous the need raised for a measurement metbod to determine the 

surface loads on a workpiece in the upsetting test. In this chapter the design and 

analysis of a stress measuring tooi are presented. lt is based on the fact that the 

normal and shear stresses in the contact region cause elastic deformation of the 

upsetting tooi. Use of strain transducers embedded in the tooi in the neighbourhood 

of the contact area give insight in this elastic deformation, from which the surface 

stresses can be caiculated. The advantage of such a procedure with respect to the 

very few other contact stress measuring methods is that it enables .in situ 
measurement without influencing the contact behaviour. 

The first paragraph conaiders the design of the stress measuring tooi according to 

the above strategy. To come to a description of the behaviour of the tool, three 

modelling steps are used. The first considers the defomtation of the tooi due to the 

contact stresses, the second the transfer of this deformation to the strain transducers 

and the third the change of the electrical output signals of the transducers resulting 

from their strain. These steps are dealt with in paragraphs 6.2, 6.3 and 6.4 

respectively. In paragraph 6.5 these steps are combined into a model for the 

behaviour of the measuring tooi, offering the possibility to estimate the contact 

stresses from measured strain transducer signals. Calculations indicate the feasibility 

of the tool. In paragraph 6.6 experiments for the evaluation of the model of the 

strain transducers are discussed and the remaining steps in order to apply the tooi in 

upsetting experiments in the future are considered. 

6.1 Design aspects of the stress measuring tool 

In this paragraph the design of the stress measuring tooi is discussed. First 

considerations of feasibility and requirements for use of a tooi, suited for local stress 

measurements, are given. A choice is made for the type of strain transducer to be 

applied. The steps in the analysis of the measuring tooi, mentioned in the 

introduetion above, become concrete and are explained. 

The Iayout of the measuring tooi, used as an upsetting tooi, is restricted with 

respect to various aspects. In the sequel a number of considerations is presented with 

respect to the determination of the reiationship between (transducer) output signals 

and surface Ioads, the size and position of the transducers and the transducer 

behaviour. 
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Theoretically the relationship between output signals and surface loads may be 

determined in various ways. One possibility would be to subject the tooi to a series 

of calibration loads. A practical difficulty however is the generation of a variety of 

well-known surface loads. To avoid this problem a simpte design of the tool is 

adapted. This makes it possible to describe the relationship between surface stresses 

and transducer output signals by combining a number of plain models. A separate 

evaluation of these models can be performed. In the geometrical layout of the tooi 

ingenious constructions may help to fulfil general wishes like high sensitivity. 

However, these constructions usually introduce other difficulties, theoretically or 
practically. 

The dimensions of the strain transducers preferably should be small. A large size 

limits the number of transducers to be used. Furthermore in the case of strain 

gradients, a relatively large size makes it difficult to identify the material point to 

which the measured strain applies. The minimum size of the sensing part of the 

transducers has to be one order of magnitude larger than some Iimiting physical 

dimension. This may be a characteristic length of the grains of the tool steel applied. 

The strain transducers should be positioned such that the desire for a high 

sensitivity is realized. A sufficient variation of the output signals in the range of the 

surface loads is needed for accuracy reasons. To accommodate this demand the 

transducers are located in the neighbourhood of the contact area. Further the output 

signals have to be insensitive to unknown or only partly known influences, e.g. the 

deformational behaviour of the support of the tool. These influences may be 

neglected if strains are measured at a sufficient large distance from . these 

disturbances. 

The mechanical and physical behaviour of the strain transducers has to be known 

in order to avoid the difficult calibration of the measuring tool. However it is 

unavoidable to perfarm some measurements on a simpter configuration in order to 

trace this behaviour. The loads in such cases can be prescribed or measured easier. 

In the ideal case a strain transducer wollid generate a signal only depending on one 

strain component. For all known transducers the output signa! however depends on 

more than one strain component. This dependency should be known. Also the 

influence of temperature changes on the output signal of the transducer has to be 

known, in order to predict and suppress disturbances by heating. Furthermore the 

mechanical interaction of the transdurers with their surrounding is of importance. 

Application of transducers, based on some well-known physical principle and easily 

to calibrate, are therefore favoured. 
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According to the previous considerations a measuring tool design is proposed and 

further investigated. A sketch is given in figure 6.1.1. 

4> 180 

80 tool body 

} connecting leads 

4> 100 
glue layer & transducers 

Figure 6.1.1 The stress measuring tool design 

The strain transducers are positioned on one side of a thin disc (lay-on plate). At 

this side the lay-on plate is glued to the tool body, thus direct contact between 

transducers and workpieces is prevented. No special constructions are designed near 

the transducers, in order to prevent quantitatively not well-known mechanica! 

behaviour as well as to maintain stiffness and strength. Applicable transducers 

generate an electdeal output signal from piezoelectrical, piezocapacitive or 

piezoresistive origin. Consirlering strength, measuring range, application properties 

and calibration, piezoresistive transducers are preferred. An example of this type is 

the strain gauge. Application in three-dimensional stress situations are not common 

(Hoffmann 1987). To obtain reliable results special attention has to be paid to the 

glueing of the gauges. The influence of the strain in the direction perpendicular to 

the gauges grid may be non-linear and is only qualitativily understood. Useful 

application therefore can only be achieved by compensating the influence of the 

strain in this perpendicular direction through dummy gauges, which is quite easy in 

e.g. hydrastatic pressure situations but almost impossible in all other three

dimensional situations (Andreae 1974). The problem is caused by the complex 

geometry of the gauges and the characteristics of the glue layer, which connects the 

gauge to the substrate. Such a glue layer is not present using thin film transducers 

evaporated onto the substrate. The substrate strain is transmitted to these 

76 6 Design and analysis of a stress measuring tooi 



transducers via a very thin cera.mic layer. It is therefore to be expected that, in 

contrametion to gauges, such transducers with a simple geometry show a linear . 

relation between the reaiatanee and the substrate strains. 

A part of a typical transducer suited for four-wire resistance measurement is 

aketched in figure 6.1.2. The active part of the transducer has a thickness much 

smaller than its inplane dimensions i.e. length and width. 

transducer 
0.1 Jtiil :f==::pr:~ji·~~ÇC\3:Ç:ZÇIII(I~ 
1.5 Jtlll 

+-~~~~~~~~~ 

(a) 

leads 

0.05 mm 

2mm 

active part leads 

(b) 

Figure 6.1.2 A typical four-wire thin film transducer in cross section (a) and top 

view (b) 

Active is that part of the thin film of which the resistance changes are registered. 

Some typical dimensions are indicated in the figure. The electrical insulation from 

the substrate is realized by the ceramic layer. Successful applications of such 

transducers in elastohydrodynamic lubrication show a mechanical strength not 

rejecting application in the stress measuring tooi (e.g. Schouten 1973, Peeken & 
Köhler 1979). As will be seen in the sequel a high stiffness is required for the glue 

layer which connects the lay-or~ plate to the tooi body. Due to the relative low 

elastic modulus the layer thickness has to be small. This demand benefits the layer's 

strength. 

As already mentioned, the determination of the relation between surface stresses 

and strain transducers' output signals by performing just calibrating measurements 

on the assembied tooi is only a theoretica! possibility. A feasible procedure is created 

with a combination of a number of separate analysis steps. These steps, elaborated 

in the following paragraphs, are successively indicated. A quite simple experiment 

with the assembied tool can evaluate this metbod with its underlying assumptions. 

- Analysis of an elastic body with stochastic boundary conditions. 
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The measuring tooi is first considered as a homogeneons body of which a part of 

the boundary conditions is disturbed by measuring errors, oomparabie to the 

situation described in chapter 4. In paragraph 6.2 a metbod is described to 

calculate the influence of these errors on stresses and strains. 

- The strain behaviour of thin layers. 

The stress and strain state of the thin film transducers are calculated in 

paragraph 6.3 from the solution for the homogeneons elastic body. This 

calculation is based on the assumption that the transducers can be modelled as 

infinitely thin inclusions. The disturbance of the global stress and strain field of 

the body is negligibly small. The influence of the thin glue layer is studied by 

numerical analyses in paragraph 6.5. 

- The resistance change of the transducers due tostrain and temperature changes. 

Many metals show an electrical resistance behaviour which is linear over a large 

strain and temperature range, which is expected also to hold for evaporated thin 

films. This behaviour is discussed in paragraph 6.4 and combined with results 

from paragraph 6.3 for the strain interaction of the transducers with the 

surroundings. 

- Combination of the previous steps offers a metbod to calculate the behaviour of 

the tooi. Paragraph 6.5 presents results and shows some characteristics and 

accuracy aspects. 

- The transducer model for the relation between resistance and strain can be 
evaluated through experiments with the transducers under defined strain 

conditions. Paragraph 6.6 discusses the experimental set-up and some premature 

results. 

- The behaviour of the assembied measuring tooi may be evaluated by Rastegaev 

upsetting tests. Details are dealt with in paragraph 6.6 also. 

6.2 Analysis of the inflnence of stochastic boundary conditions 

In this paragraph a metbod is described for taking uncertain boundary conditions 

into account for linear elastic mechanics' problems. These conditions generally occur 

if data originates from experiments. The results calculated are estimates for the in 

fact unknown real values. Knowledge of the statistica of the experimental data can 

be used todetermine the reliability of these results. 

In paragraph 6.2.1 the tooi is modelled as a linear elastic body. Considerations 

with respect to the measured and exact boundary conditions are presented. 
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Paragraphs 6.2.2 and 6.2.3 describe the strategies with respect to the discretized 

linear elastic behaviour and the varied set of boundary conditions. In the last 

paragraph 6.2.4 some attention is paid to the numerical implementation and the 

accuracy of results. 

6.2.1 Description of the problem 

Considered is a linear elastic body B, with boundary DB. Both the body and its 

boundary consist of an invariable set of material points. Displacements of the 

material points are caused by mechanica! loads to which the body is subjected. The 

displacements in the loaded situation with respect to the unloaded reierenee state 

are denoted by the vector field ~- For all toading cases the displacements will be 

small enough to neglect geometrical non-linearities. Thermal effects, inertialloads 

and distributed loads are neglected. 

The material behaviour is supposed to be isotropie linear, according to the 

generalized Hooke's law 

(6.2.1) 

with u the Cauchy stress tensor, e the linear strain tensor, G the shear modulus and 

v the Poisson's ratio. In static problems, at each internat point of the body local 

equilibrium of forcesis satisfied 

.. .. 
V. u= 0 (6.2.2) 

The equations {6.2.1) and (6.2.2) theoretically can be solved if a complete set of 

boundary conditions is supplied. As indicated in chapter 3, in physical reality it can 

occur that applied boundary loads or displacements are only known implicitly. To 

calculate for such cases a displacement field with some wanted accuracy, sufficient 

information of other quantities at the boundary or at interior points has to be 

determined and used in the calculation. This information ma.y be measured with a 

limited accuracy or may be known exactly. In the application of the stress measuring 

tooi, the lack of information at the contact boundary is replaced by strain data 

measured in the neighbourhood of the contact area by strain transducers. 

From literature, analyses of compara.ble problems are known, some to be reviewed 
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bere. Kibara et aL (1983) describe the inverse application (in the sense of cha.pter 3) 

of the boundary element metbod to evaluate tbe unknown tractions across tbe 

contact area between tooi and workpiece in upsetting. Tbe information 

compensating for the lack of tbe boundary conditions consists of surface strains of 

tbe upsetting tooi outside tbe contact region. Tbe influence of measuring errors is 

not considered, so no reliability of the results is available. Oda. & Sbinada (1987) 

describe an inverse finite element metbod combined witb a least squares metbod to 

calculate tbe unknown interaction in the contact region between two elastic bodies 

and tbe size of tbe contact region. Tbe compensating data consist of boundary node 

forces at tbe supported boundary part. As all boundary conditions are considered 

exactly known, no reliability of the results obtained is given. A pbotoelastie-fini te 

element bybrid technique is developed and examined by Chambless et al. (1986). 

Pbotoelastically measured stress data are imposed as constraints on finite element 

problems by a penalty metbod in order to account for uncertainties in boundary 

conditions applied. A oomparabie technique, combining the boundary element 

metbod and a least squares metbod to enforce tbe influence of experimental digital 

image correlation data on the solution, is described by Turner et al. (1988). Botb 

methods show a large rednetion of the influence of erroneous boundary conditions, 

but give no indication bow strong the experimental data should be weighted or 

about tbe reliability of tbe results. Here it is chosen to combine the finite element 

metbod and a minimum covariance estimation tecbnique to account for measured 

data at boundary or interlor points, tbus offering a metbod to choose the weighting 

of the measured data as well as a reliability estimate for the results calculated. 

In the next paragraphs, tbe following points are discussed. The strategy with 

respect to tbe behaviour of tbe elastic body, as applied in the numerical examples 

later on, is sbortly indicated in paragraph 6.2.2. A mixed finite element tormulation 

is used. In paragraph 6.2.3 tbe estimation strategy for the displacement field of the 

body B is explained. Measures for the uncertainty of the displacement field and 

otber derivable quantities as stresses and strains can be given. Tbey can be used to 

optimize experimental set-ups. Finally some aspects of tbe numerical 

implementation and tbe solution strategy are considered in paragrapb 6.2.4. 

6.2.2 The descriotion of elastic bodies 

A well-known strategy to solve differential equations approximately is the metbod of 

weighted residuals. The equilibrium equation (6.2.2) weighted over tbe volume B by 
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... 
the weighting vector field w reads in the weak formulation 

.... c 
J(Vw) :udV 
B 

.. 

... .. 
f w.u.ndA 

as 
(6.2.3) 

with n the unit ontward normal vector on oB. For discretized continuons 

displacement fields, etaboration of (6.2.3) and the constitutive equation (6.2.1) via 

the finite element method leads to a formulation resulting in general in 

discontinuons stress and strain fields. Because these fields are known to be 

continuons in reality, a smoothing technique can be applied to obtain unambiguous 

stress and strain values at all material points. Instead of this technique it is chosen 

here for a mixed finite element formulation. An advantage of the mixed formulation 

is that accurate results can be obtained with quite coarse meshes. Furthermore 

smooth stress and strain fields, desired for the analysis of the measuring tooi, are 

directly calculated by the method. Disadvantage is the relative large computation 

time needed, which is reduced by substructuring in the present study as indicated in 

paragraph 6.2.4. In the mixed formulation, besides the nodal displacements, the 

nodal stresses are considered as independent variables. The constitutive equation 

(6.2.1) is weighted separately by asecondorder tensor field W 

I W:~(v;+(V;)c)dV-J W:40.udV = o 
B B 

(6.2.4) 

with 4C= ld4I - 1 ~vll) such that e = 4 0.u. The displacement and weighting 
vector field in (6.2.3) and the stress and weighting tensor field in (6.2.4) are 

discretized using nodal quantities. The principle of weighted residuals can be 
.. 

elaborated with appropriate choices for wand W. With respect to some vector base 

this leads to equations for the nodal displacement column !f of length n and the 

nodal stress column ~ of length m, to be denoted as 

[~ ~][~] = [~ 
(6.2.5) 

with!! the zero matrix, Q the zero column, L1 and fiT nxm matrices and Q an mxm 
matrix. The column f can be interpreted as the column with nodal forces. 
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Continuity of the stresses along element boundaries may be assured using a suitable 

discretization of the stress field. The stress nodal points are not necessarily 

coinciding with the displacement nodal points. Appropriate discretization results in 

a regular matrix C. So unique expressions for ~ and fin ~ are given by 

(6.2.6) 

where -A Q"""1JJ. is a stiffness matrix. 

6.2.3 Strategy for the state estimation 

In the previous it is shown that the condition of body B is totally described by tbe 

displacement column ~· further called the state. To calculate for a given loading case 
the state ~ of length n, the values of at least n kinematica! or dynamical relevant 
quantities of the body have to be known. These data values may contain measuring 

errors. Also relatively very accurate data or exactly known data may occur. The 

data values are called the (exact or measured) observation data, tbe corresponding 

quantities observed are called the (exact respectively measurable) state dependent 

quantities. 

The state dependent quantities considered bere are linear in ~, e.g. stresses, 

strains, displacements, forces or linear combinations. Gatbering the exact 

observation data in the column z the following n relations are supposed to hold 
~e e 

z =Hu -e -e~ 
(6.2.7) 

with He a constant matrix which expresses the relation of the (exact) state 

dependent quantities to the state u of body B. The n measured observation data 
- m 

are supposed to equal the measurable state dependent quantities disturbed by an 

additive column witb observation errors v 

z = H u+v -m -m- -
(6.2.8) 

where Hm relates the (measurable) state dependent quantities to the state of 

body B. It is assumed for the random column !! that the mean and the symmetrie 

covariance matrix are known 
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(6.2.9) 

Equations (6.2.9) express that systematic and model errors are negligibly small. 

In the foregoing the state column !! is considered deterministic, contrary to the 

stochastic error column v. The observations are alllinear in this state u. In literature - -
such a statistic model is indicated as a static linear Fisher model (see e.g. Schweppe 

1973). For the unknown state u an estimate û, linear in z and z , will be derived 
- - -e -m 

û=Wz+Wz - -e-e -m-m (6.2.10) 

The constant matrices We(nxne) and Wm(nxnm) define the estimator for !!· This 

estimator is required to be unbiased 

E(~) =!! (6.2.11) 

Then the matrices We and W m of the estimator are related by 

(6.2.12) 

The estimator is considered to be optima! if it minimizes some norm of the 

covariance matrix I; of the state estimate 

(6.2.13) 

A suitable norm is the trace. For all possible measuring results it demands the 

estimate ~ to be in the neighbourhood of the real but unknown state !!· For tr(I;) 

holds 

(6.2.14) 

Miniruizing tr(I;) with respect to We and W m under the constraints (6.2.12) may be 

transformed to miniruizing 
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(6.2.15) 

with respect to the estimator matrices and the Lagrange multipliers A. From this, 

after identifying !!_ with -~ can he derived 

(6.2.16) 

With (6.2.10) and W according to (6.2.16), û may be written as 
-m -

(6.2.17) 

Again with (6.2.16) an explicit expression for ~ follows 

(6.2.18) 

In appendix 6.2.1 it is shown tha.t result (6.2.18) also follows from (6.2.7), (6.2.8) 

and (6.2.9) as a maximum likelibood estimate if !! is assumed to be normal 

distributed. In that case the estimate û is normal distributed with covariance matrix 

~ and expected value ~ 

For the measuring tooi, the state !!' itself, containing all nodal displacements, is 

hardly interesting. Interesting quantities are for instanee normal and tangential 

surface stresses, to be considered as linear expressionsin !!· The statistical behaviour 

of these output quantities with respect to measured input quantities such as the 

signals of the strain transducers is of importance. The input and output quantities 

can be gathered in the column q according to q = M u with constant matrix M . 
- - -q- -q 

The estimate q simply follows from replacement of u by û. The cova.riance matrix E 
- - - -q 

of ~ is related to ~ by 



Notice that g is an unbiased estimate because ~ is unbiased. 

6.2.4 Numerical implementation 

In tbis paragraph some aspects of the numerical implementation, used for 

calculations on tbe measuring tooi design, are discussed. 

A six-node axisymmetric isoparametrie element witb quadratic interpolation for 

tbe displacements and stresses is applied. According to Zienkiewicz et al. (1986) tbis 

element is stabie and consistent. In order to be able to cboose tbe distribution of the 

elements in the mesh for the tooi calculations, some simple calculations are 

performed for evaluating the accuracy of tbe element. A too coarse mesh results in 

relatively large modelling errors of the discretized model with respect to the 

continuons linear elastic theory. Mesh refinement results in smaller model errors but 

increases computational effort. Model errors one order of magnitude smaller tban 

measuring errors are acceptable. The calculations showed that a relative high 

accuracy can be obtained witb the mixed element for quite coarse element meshes. 

A disadvantage of the mixed metbod is given by tbe structure of the resulting 

equation (6.2.5). In ordertosave computing time special salution procedures may be 

used, see Zienkiewicz et al. (1985). For tbe measuring tooi many different 

calculations with equal configurations are performed. The technique of 

substructuring seemed advantageous. In practice it showed iudeed useful to obtain 

reasanabie program execution times. 

6.3 Tbe mechanical behaviour of thin elastic films 

In tbe design of the measuring tooi as presented in paragrapb 6.1 some thin films can 

be appointed. The glue layer and the insulating ceramic layer can be mentioned, but 

also the active part of the transducers and the connecting leads. For tbe evaporated 

parts tbe thickness in comparison to inplane dimensions is so small that serious 

problems can be expected in a numerical analysis of tbe stress and strain state using 

the finite element method. Therefore an analytica! approach, according to Eshelby 

(1957), is used, consiclering the mechanical behaviour of an infinite elastic matrix 

with an elastic inclusion. In paragrapb 6.3.1 this metbod is resumed and extended 

witb tbermal influence. Tbe special case of an inclusion witb very small thickness 

with respect to length and widtb, i.e. a layer, is derived in paragraph 6.3.2. An 

alternative analysis confirma the formulas found. The translation to the situation of 

6 Design a.nd analysis oC a slre&s measuring trol 85 



the evaporated parts of the measuring tooi is given. In the last paragraph the 

influence of some disturbances, not contained in the theory, is established. 

6.3.1 Eshelby1s metbod for çalculating theelastic hehaviour of a matrix with 

inclusion 

In this paragraph Eshelbyls approach is reviewed and extended to account for 

thermal effects. These effects are of importance for thin film transducers. 

The purpose of Eshelbyls analysis is to describe the stress and strain fieldsin an 

infinite body, consisting of a linear elastic matrix with a linear elastic inclusion 

whose material characteristics differ from the matrix. The material of the matrix as 

wellas the inclusion is supposed to be homogeneous. The loading of the infinite body 

is such tha.t the stress and strain field would be uniform, if the body was totally 

homogeneous. To determine the desired stress and strain fields of matrix and 

inclusion, Eshelby uses three artificial steps, to he described in the following. Two 

extra steps are needed to determine the stress and strain fields due to thermal 

loading. 

1) Considered is an unloaded homogeneons linear elastic body with material 

86 

behaviour according to Hooke1s law (6.2.1) with material tensor 4L . A part of 
m 

this body, further called the homogeneity, is cut out and removed from the rest 

of the body, called the matrix in the sequel. For the homogeneity a uniform 

transformation strain eT is induced, due to some fictitious physical process not 

to he specified. This process is such that the homogencity remains stress free and 

its material behaviour does not change. By a surface load the original shape of 

the homogeneity is restored in order to replace it in the matrix. After conneetion 

this load is relaxed. An unloaded system results with an inhomogeneons strain 
.. 

field eJ..x) with respect to the original state, caused by eT. This "constrained 11 

.. .. 
strain field eJx) at a position x in the matrix or homogeneity can, according to 

the theory of linear elasticity, be written as 

(6.3.1) 

The fourth order tensor 4 M, as specified in appendix 6.3.1 for arbitrary shaped 
.. 

homogeneities, can be calculated numerically for arbitrary x. The strain field 
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.. 
eJz) of the matrix fades out rapidly with increasing distance from the 

homogeneity and is not considered bere further. For an ellipsoidal homogeneity, 

to which the rest of this pa.ragraph is restricted, analytica! results can be given. 

The strain e
0 

in an ellipsoirlal homogeneity is uniform and given by 

(6.3.2) 

The constant components S , p,q,r,s E {1,2,3}, of 4S with respect to the 
pqrs 

orthonormal vector base defined by the principal axes of the ellipsoid, are 

unequal zero for p=q A r=s, p=s A q=r, p=r A q=s. The non-trivia! components 

of 4S depend on Poisson's ratio and the lengtbs of the principal axes of the 

ellipsoid. Explicit relations are given in appendix 6.3.2. 

2) A uniformstrain field eA is applied to the assembly of matrix and homogeneity 

as remaining after step 1. The resulting strain field is the superposition of e
0 

and eA. Theshape of the homogeneity is then determined by the strain e0+eA. 
The stress u in the homogeneity follows from the generalized Hooke's law 

u::::= 
4
Lm:e with substitution of e ::::= e0+eA-eT. 

3) The homogeneity can be replaced by an inhomogeneity or inclusion with 

material tensor 4 L. , without transformation strain, and unloaded of the same • 
size as the untransformed homogeneity at the beginning of step 1. This 

reptacement is performed such that the state of the matrix is not changed. The 

requirement for this is that by the strain e
0
+eA of the inhomogeneity the same 

stress u is generated as present after step 2. Continuity of displacement and 

stress at the inclusion-matrix interface is then guaranteed. The mathematica! 

formulation reads 

(6.3.3) 

With (6.3.2) and (6.3.3) the desired relation e0 = eJ eA) between applied strain 

e A and constrained strain e
0 

for ellipsoirlal inclusions can be determined. The 

resulting strain field e0+eA is caused by loads, which induce a uniform strain 

field eA in a totally homogeneons body. The equations (6.3.2) and (6.3.3) are 

presented with respect to the previously defined orthonormal vector base, 

coinciding with the principal axes of the ellipsoid, in appendix 6.3.3. 
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4) The relation e0 = eJ e A) derived above is not yet suited when thermal strain 
occurs in matrix and inclusion. The steps 1 and 2 for the homogeneity are 

modified first. After isolating the homogeneity it is, together with the matrix, 

subjected to a temper at ure change .ó. T with respect to the reference state, 
m 

inducing the thermalstrain et• =ka .ó.T lwith a the thermal coefficient of ,.,m v m m m 
cubical expansion. The homogeneity also acquires the transformation strain eT, 

such that it remains stress free and the material behaviour does not change. The 

load needed for conneetion is again relaxed afterwards. In the homogeneity the 

reauiting strain is e0+eth,m with e0 = 4S:eT and the reauiting stress equals 

4Lm:(e
0
-eT). The tensor 4S is the same as in (6.3.2). On the strain field of 

matrix and homogeneity again the applied strain e A is superposed. This is 

generated e.g. by suppressing the thermal expansion of the matrix at a large 

distance from the homogeneity. The total strain in the homogeneity becomes 

e0+eA+eth,m and the stress 
4
Lm:(e0+eA-eT). 

5) The homogeneity is replaced by an inhomogeneity, characterized by the material 

properties 4L. and a., with thermal strain eth. = la..ó.T.I (.ó.T. is the 
I I ,1 v I I t 

temperature change with respect to the reference state) but without 

transformation strain. The dimensions of the inhomogeneity without thermal 

strain are equal to the original dimensions of the homogeneity. Maintaining the 

shape, prescribed by the strain e0+eA+eth,m' the difference between the strain 

e0+eA+eth,m and the strain eth,i generatea the stress 
4
Lé(e0+eA+eth,m -eth,i). 

Continuity of stress is guaranteed if 

(6.3.4) 

The expression for the contribution of the extra thermal difference strain 

eth,m-eth,i to e0 is given in appendix 6.3.3. 
Resuming, the uniform strain field e, t . of a linear elastic ellipsoirlal inclusion in an 

•0 1 1 

infinite linear elastic matrix equals e0+e A+eth,m with e0 according to (6.3.4). 

Furthermore, the uniform stress field is given by 4L.:(et t .-et• .). In the next 
1 o,z ,.,, 

paragraph the above results are used to study the special case of infinitely flat 

ellipsoirlal inclusions. 
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6.3.2 Specia}ization of Eshelby's metbod to infinitely thin inclusions 

First the case of a thin inclusion is considered to derive the desired equations. An 

alternative approach is presented, which confirms the formulas found. This approach 

offers an extension with respect to the applicability of the theory. For a thin 

inclusion in a layer, repreaenting a model of a transducer on top of a ceramic layer 

on a substrate, results are obtained. 

Considered is the case of an ellipsoidal inclusion with a thickness 2a
1 

which is 

small in comparison to its width 2aw and length 2a1, i.e. atf aw < < 1 , atf a1 < < 1. 

The quantities a with p E { l, w,t} are equal to the lengtbs of the half principal ax.es 
p 

of the inclusion. Taking the limit of the integrals appearing in 4 S for atf a w and a/ a
1 

approaching zero, with appendix 6.3.2 explicit expressions for the components S , 
pqrs 

p,q,r,s E gw,t}, result. Only the following components appear to be unequal to zero 

V 

S 1 S =~ S =S =S =S = 1 
tttt = ' ttpp l-v ' pttp tppt tptp ptpt 2' 

m 
(6.3.5) 

with p E {l,w} and v Poisson's ratio of the matrix. For finite but small thickness, 
m 

(6.3.5) constitutes an approximation with relative errors of order ( atf apf 
In the sequel for a concise notation the components of a symmetrie second order 

tensor T are gathered in columns as 

(6.3.6) 

According to this convention, the strain column ~C,i is defined containing the 

components of e0 with respect to the thin inclusion and eA with the components 
~ ,m 

of the strain eA applied at the matrix. Substitution of (6.3.5) in (6.3.4) yields an 

expression for e,.., . as function of the strain eA and the temperature changes ~ T 
~v,l ~ ,m m 

and ~T. of the matrix and inclusion respectively, with respect to the reierenee state. 
I 

Assuming isotropie behaviour for matrix and inclusion it follows 

e,...=Q. eA +~. , C. = 
~v,l am~ ,m ~ tm -,m 0 0 0 0 

0 0 0 0 
cp cp x-l o 
0 0 0 0 
0 0 0 0 
0 0 0 0 
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G 1-2v. v v. 
'"- m 1 m 1 , X 
r- tT"I=2ill-v. -1-v. 

I m I I 

G 1-2v. 1-v G 
m 1 m •1, m 

tT" I=2i/1-v . ' '11 = tT" 
I m I I 

l+v. 1 1 
'fJ = ~l v'"~>a.L).T:- ... a D..T ) -.i)l Ji)m m 

(6.3.7) 
I 

where G , v and G., v. are the shear modulus and Poisson's ratio of the matrix 
m m 1 1 

and inclusion material respectively. The totalstrain ~tot,i of the inclusion equals 

(6.3.8) 

with 1 the unit matrix of rank 6 and eth a representation of eth according to 
- ,m ,m 

(6.3.6). The stress column q. in the inclusion follows from q. = L. .(et t .-eth .) with 
-1 -1 1-0,1-,1 

the isotropie linear elastic material matrix 

L.= ..\+2p ,\ ,\ -, 
,\ ..\+2p ,\ !! 
,\ ,\ ..\+2p (6.3.9) 2p 0 0 

9 0 2p 0 
0 0 2p 

with Lamé constauts >. = 2G.vj(l-2v.) and Jt = G .. 
I I I 

An alternative metbod can be foliowed to derive the equations (6.3.8). Considered 

is a thin layer in a matrix, both isotropie linear elastic. The generalized Hooke's law 

for the layer, extended forthermal strains reads 

(J • = L. .(et t :-eth .) 
-1 I - 0 ,1 - ,1 

(6.3.10) 

with L.i according to (6.3.9). Assumptions can be made with respect to the 

interaction between the matrix and a thin layer of large inplane dimensions, if the 

Lamé constants >. and Jt of the matrix material are of the same order as those of the 

layer. At first it is supposed that the layer does not influence the mechanica! 

behaviour of the matrix, while the matrix, also called the substrate, prescribes the 

strain in the plane of the layer 

(e .) =(e ) +~a !1T tot,z pp A,m pp i) m m 
(6.3.11) 
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with p,q E {l,w}, p -f q. Further, the stress and strain in the layer are supposed to be 

uniform over the thickness. At the layer-matrix interfaces the stress vector p. on the 
I .. 

layer is the opposite of the stress vector p on the matrix because of the law of 
m .. 

action and reaction. The components p of p are directly related to a by -m m -m 

a = L ( e -e ) -m -m -A,m -th,m (6.3.12) 

.. 
The components p. of p. are related to a. by 

-1 I -1 

p. = -[ (a.)tl (a.) t (a.)tt ]T 
-1 I I W I 

(6.3.13) 

The equations (6.3.10) through (6.3.13) combined with p = -p. deliver expression 
-m -1 

(6.3.8) for et t . as found by Eshelby's method. No assumptions about the particular 
- 0 ,1 

shape of the layer and the position with respect to the matrix are made in this 

second approach. Obviously, provided the elastic constauts of matrix and layer are 

of the same order, the results of Eshelby's metbod arealso valid for arbitrary shaped 

included thin layers and thin layers at the surface of a matrix (substrate). For 

surface layers the strain ~A,m obeys (6.3.12) with Pm the components of the external 

stress vector acting on the layer. 

Not only the case of one surface layer is of interest, but also the case of twofold 

surface layers. The top layer is for instanee a strain transducer, while the other layer 

can represent the intermediate ceramic insulator. It is assumed in this paragraph 

that Eshelby's formulas remain valid irrespective to the real geometrical situation. 

The next paragraph considers the validity of this assumption. The total strain 

~tot,i = ~C,i+~A,m +~th,m of the intermediate layer follows from the formulas 

presented before. The same applies to the totalstrain ~tot,o = ~c,o+~A,i+~th,i of the 
outside layer for which the intermediate layer acts as substrate. The strain ~A,i is 

the strain induced in the intermediate layer by the substrate, and is therefore equal 

to et t .-eth .. It results for e1 t - 0 ,t - ,t - 0 ,o 

e =(C +l)e +~ +e -tot,o -om - -A,m -om -th,m (6.3.14) 
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This result is analogous to the equations (6.3.8) for e
1 

t . with the quantities of the 
- o ,a 

inclusion replaced by those of the outside layer. The properties of the intermediate 

layer are not represented in (6.3.14). Reminding the alternative approach presented 

hefore this is obvious. The requirements the intermediate layer has to ohey for a 

transfer of stress and strain from the substrate, count also for the outside layer. 

Until now isotropy for the layers is assumed. Because of the production method of 

the layers, anisotropy may occur. Most likely the inplane behaviour of the layer will 

he isotropie while the hehaviour in the thickness direction may he different. The 

modified version of equation (6.3.7) for such a transversal isotropie case is given in 

appendix 6.3.4. 

As stated hefore, in the next paragraph some assumptions, made in the previous, 

will he considered with respect to the real geometry of the measuring tool. 

6.3.3 The influence of disturbances and the glue layer 

In this last paragraph on the mechanica! hehaviour of thin layers, it is discussed 

whether the modeHing of the active parts of the strain transducers, as described in 

paragraph 6.3.2, is allowed. Also the assumption that the glue layer is thin is 

regarded shortly. 

A typical layout of the active part of a strain transducer is sketched in figure 

6.1.2, which shows that the ceramic layer is very thin with respect to its inplane 

dimensions. The global strain variations of the substrate have a characteristic length 

in the order of these inplane dimensions. The strain of the substrate may therefore 

he considered uniform over a subarea of the ceramic layer, with dimensions much 

larger than its thickness. The same remarks can he made with respect to the 

transducer. The strain field for the active part can he assumed uniform. 

Disturbances may occur from the constrained strain of the leads of the transducers. 

This disturbing field however fades out over a short distance from the leads. This 

influence is negligible for transducers with large inplane dimensions with respect to 

the thickness of the leads. 

The glue layer, necessary to conneet the lay-on plate to the tool body, is very 

thin. The elastic properties of the glue however are so different from those of the tooi 

body, that only for extreme thin layers the alternative approach will he valid. As 

such thin layers cannot he realized in practice, the influence of the glue layer is 

studied numerically in paragraph 6.5. 
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6.4 The strain dependency of resistive strain transdurers 

A pbenomenological destription is given for the resistance change of the active part 

of thin film strain transdurers with strain and temperature variations. The 

dependency on strain and temperature change is supposed to be linear. Most of tbe 

metals, commonly used as transdurer material, exbibit such a linear dependency in a 

large area of application. The behaviour of a thin film strain transducer is 

camparabie to tbe bebaviour of tbe strain gauge, often used in experimental 

mechanica. The advantages of evaporated thin film transdurers over strain gauges 

for application in tbe measuring tooi are indicated. 

Changes of the strain and temperature of materials influence the pbysical 

properties. Piezoelectrical and piezoresistive phenomena may be observed as 

examples of this behaviour. Resistance change can be used to determine the strain at 

a surface with strain gauges or thin film transdurers of conducting or semiconducting 

material. In this paragraph a relation for the resistance as function of strain and 

temperature is derived for tbin conducting films, comparable to equations used in 

literature (see e.g. Barsis et al. 1970, Dössel1984), and combined with the results of 

paragraph 6.3, expressing the strain of a thin film transducer in the substrate strain. 

A theory for the resistanre strain temperature dependency is not needed to set up 

a pbenomenological description of tbis phenomenon. It is only stated bere tbat such 

theories predict non-linear relations for very thin transducers (e.g. Bedda et al. 

1986). This is in accordance with experimental data (e.g. Schouten 1973). Because a 

linear dependency is much more convenient, films of sufficient thickness, i.e. of the 

order 10-1 pm, will be used. Semiconductors and some partienlar conductors 

nevertheless show a non-linear characteristic, which are disapproved for application 

here. 

For many conductors the resistance behaviour is more pronounced than other 

pbenomena sucb as piezoelectricity. At a material point of such a conductor tbe 

generalized Ohm's law holds 

.. .. 
E=p.J (6.4.1) 

.. 
The electrical field vector (gradient of the electrical potential) is indicated by E, tbe 

.. 
vector of the electrical current density by J. In ( 6.4.1) these vector quantities are 

related by the symmetrie second order specific resistance tensor p. It is assumed bere 
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that significant change of p occurs only due to straining and temperature changes. 

Other influences are considered absent or negligibly small. As strain quantity the 

linear strain e with respect to some reference state is used. The temperature change 

.1. T is defined as the difference between the actual temperature T of the material 

and the temperature T
0 

at the reference state. Over some range of strain and 

temperature the change of p will be linear in e and Ll T 

(6.4.2) 

In (6.4.2) 4
:K is the fourth order piezoresistive tensor and f. the second order 

thermoresistive tensor. 

In order to derive from (6.4.1) and (6.4.2) a relationship between resistance 

change and strain and temperature change of the active part of the transducer, 

information about the strain, temperature, geometry and electrical boundary 

conditions is needed. The active part is the part of the thin film of which the 

resistance change is registered. Paragraph 6.3 showed that the strain field may be 

considered uniform over the active part. Because of its small dimensions also the 

temperature may be considered uniform. In a lengthy rectangular part of a thin film 

of quite uniform composition the vector of current density coincides with the 

longitudinal axis when an electrical potential difference is induced in that direction. 

Using an orthorrormal base {~1 '~w'~t} withindices for length, width and thickness 

direction, only the component J
1 

of i will be unequal to zero. With respect to the 

piezoresistive tensor it is noticed that it may be isotropie or transversal isotropie 
.. 

with et as direction of the symmetry axis. Transversal isotropy can be caused by the 
... 

production metbod of the thin film. If it is evaporated, e
1 

is the growth direction and 

in that direction therefore the material behaviour may be different from the 

behaviour in the inplane directions. For the interesting component E1 of the 
.. 

electrical field vector E in longitudinal direction, it can be shown that 

(6.4.3) 

for the transversal isotropie case, with p
0 

the reference specific resistance in 

longitudinal direction, 1r1 , 1r w and 1r
1 

piezoresistive characteristics for the 
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longitudinal, width and thickness direction, and c the relevant thermoresistive 

material parameter. For the isotropie case holds 1rw = 1rf Some materials show an 

even simpler strain dependency. The resistance change of such ideal resistors only 

occurs through volume strain and temper at ure change, thus 1r1 1r w 1rt = 1r. 

Assuming E
1 

uniform, integration of {6.4.3) over the volume of the a.ctive part can 

be performed easily. For the resistance of this part of length L and cross section area 

A it follows 

EflL 

(6.4.4) 

The assumption of a uniform E
1 

will hold globally for the active part. In the vicinity 

of the leads disturbances will occur, but the contribution to R is supposed to he so 

small that it may he neglected. 

The actual dimensions L and A of the transducer are determined by the strains 

(6.4.5) 

with L
0 

and A
0 

the length and cross section area in the reference state. The relative 

resistance change !J.Rf R
0 

with !J.R R-R
0 

and R
0 

the resistance in the reference 

state follows with (6.4.4) and (6.4.5) 

(6.4.6) 

For small strains linearization is allowed 

(6.4. 7) 

Equation ( 6.4. 7) expresses a linear dependency of the relative resistance change on 

the relevant strain components and temperature change. 

The strain components as used in (6.4.7) are those of the active part of the 

transducer. In the application as strain transducer, one is interested in the strains of 

its surroundings. It is therefore neerled to transfer the transducer strain e into the at 
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the surroundings applied strain eA . The relationship is derived in paragraph 6.3, 
,m 

where e
1 

t is used instead of e. Substitution of ( 6.3.14) in ( 6.4. 7) yields 
o,o 

AR (tri trt ) (trw 1rt ) 1rt 
~ = -p +1+(-p -1)<P (eA )11+ -p -1+(-p -1)<P (eA ) +(-p -1)x(eA )11+ 
LL 0 0 0 ,m 0 0 ,m ww 0 ,m 

( 
1rt ) ( 1rl 1r 1 1rt 1 ) + .L +(--l)q0 AT+ (-+~)'~'a +(--1)('~'a -qm) AT 

Po Po o Po Po<> m Po <> m m 
(6.4.8) 

where <P, x, qm and 77° are given by (A6.3.4.3). In general the value of the various 

material parameters of the transducer such as tr1 or e, differ from the usual bulk 

values as a result of the production method. Calibrating measurements are necessary 

to obtain the specific valnes of the multiplicatior; constauts for strain and 

temperature change in (6.4.8). 
For a strain transducer, all temperature influences have to be absent or 

compensated. In the case of small heat production by the electrical current, thus 

AT =AT . the transduceris self temperature compensated if o m' 

e 1rt 1 o m 1r l 1r 1 
- +(--1)(-a +q-q )+(-+~-a = 0 
Po Po 3 m Po p 0 3 m 

(6.4.9) 

For metals and ceramic materials a is of the order 10-5 K-1. The piezoresistive 
m 

1r 1r 1r 
parameters PI' p w and pt are of the order 1 for many metals. For temperature 

0 0 0 

fluctuations of substrate and transducer of about 10-l K the resistance change due 

to dilatational effects will be of the order of the change due to microstrains. The 

thermoresistive parameter P is only small for special alloys, which are often used for 
0 

commercial strain gauges. The resulting deviation from (6.4.9) can be compensated 

using bridge type measuring methods. 

For strain gauges the resistance strain temperature dependency is also given by 

equation (6.4.7). The strain of the substrate ( e A,m) 
11 

in the strain sensitive direction 

of the gauge, here called the length direction, is transmitted generally by a glue layer 

and a plastic carrier. Stress free contraction occurs in width and thickness direction, 

resulting theoretically in a simpler linear resistance strain dependency than for thin 
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film transducers. Due to the low stiffness of the glue, the substrate strain is in 

reality not completely transferred to the gauge, which would result in non-linear 

behaviour for simple strain gauge configurations. Special layouts are needed to 

obtain linearity. The glue layer also introduces non-linear behaviour for gauges 

under three-dimensional loading cases. This behaviour is difficult to quantify or 

compensate (Andreae 1974, Hoffmann 1987}. For this reason such gauges are not 

applicable in the stress measuring tooi. Evaporated transducers however are very 

suited because of the better resemblance of the elastic behaviour of matrix, strain 

transferring ceramic and transducer. 

6.5 Ana.lysis of the stress measoring tooi design 

In this paragraph the results previously derived are used to evaluate the design of 

the stress measuring tooi. After a description of the assumptions with respect to the 

different tooi parts, some calculations are performed to quantify the influence of 

systematic errors as well as stochastic errors. Systematic errors could be introduced 

by the unknown contact behaviour between the tool and tooi holder, and by the glue 

layer with only approximately known elastic behaviour and thickness. It is shown 

that these errors remain within 10 %in the present design. The stochastic errors are 

of importance for the reconstruction of the contact stresses from the measured strain 

data. A reliable prediction of the discretized contact stresses (see paragraph 6.2.2) 

turns out to be possible if the number of stress unknowns is taken considerably 

smaller than the number of transducers. 

In figure 6.5.1 the different parts of the construction are indicated. Also the 

element mesh for the tooi body is given. The body is constructed of a normal tooi 

steel (X210Cr12) with Young's modulus 2.12*105 N/mm2 and Poisson's ratio 0.28. 

The lay-on plate material may be constructed of some different material, in the 

present design also X210Cr12 is chosen. The thickness is restricted by the need for 

small systematic errors and a high sensitivity of the strain transducers. From 

calculations, of which some results are presented in the sequel, it followed that a 

thickness of about 2 mm is suitable. Before glueing the lay-on plate to the tool body, 

the plate should be provided with evaporated strain transducers, with the 

longitudinal axis of the active part in radial and tangential direction. A possible 

layout is visualized in figure 6.5.2. In the calculations it is supposed that 16 radial 

and 16 tangential transducers are used, with positions starting at a minimum radius 

of 2.5 mm and a mutual radial distance of 2.5 mm. 
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120 
tool holder 

cc cc 
Figure 6.5.1 The construction analysed and elementmeshof the tooi body 

Figure 6.5.2 Possible layout of the transducer pattem 

Because of the small temperature effects, as indicated in the previous paragraph, a 

suitable choice for the transducer material is Ni/Cr 80/20. For the time being the 

transducers are assumed ideal piezoresistive with isotropie elastic behaviour equal to 

the bulk behaviour of Ni/Cr 80/20. With the property values E = 2.19*105 N/mm2
, 

Q 

v = 0.29 and .!.._ = 1.66, from (6.4.8) can be derived 
o Po 
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AR 
-u-= 2.63( eA ) 11:+0.63( eA ) +0.62( eA ).. 
.n

0 
,m ,m ww ,m .. (6.5.1) 

with ( eA ) ,1 , ( eA ) and ( eA ) tt the strain components of the lay-on plate in the ,m ,, ,m ww ,m 
length, width and thickness direction of the transducer. The lay-on plate is glued to 

the tooi body by an epoxy resin adhesive, with an approximate Young's modulus of 

4*103 Njmm2 and Poisson's ratio 0.35. Calculations in which the glue layer is varied 

in thickness show that for a small influence of the layer on the response of the 

transducers a thickness smaller than about 0.01 mm is necessary. In the calculations 

the loading of the tooi is prescribed as visualized in figure 6.5.3. 
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Figure 6.5.3 The normal stress u and shear stress T at the contact surface 
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Figure 6.5.4 The theoretica! resistance changes 
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Assuming the tool holder to be rigid, no slip between tooi body and tooi holder and 

the absence of the glue layer, the theoretica! relative resistance change of the 

transducers with the longitudinal a.xis in radial (R) and tangential (T) direction is 

presented in figure 6.5.4. It appears that the resistance changes are very well 

measurable by bridge type methods. The responses in reality will be affected by 

systematic errors. Assuming frictionless slip between tooi and tooi holder results in 

the relative differences of the transducers responses with respect to the theoretica! 

resistance changes, as given in figure 6.5.5 (a). In figure 6.5.5 (b) the relative 

differences due to the assumption that the tooi holder has the same elastic behaviour 

asthetooi body, are shown. Relative response differences of about 2.5% result. 
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Figure 6.5.5 The relative response differences caused by frictionless slip between 

tooi and tooi holder (a) and by an elastic tooi holder (b) 

The relative response differences due to a glue layer of 0.01 mm thickness are given 

in figure 6.5.6. Maximum relative response differences of about 8% result. Although 

a thickness of 0.01 mm and even smaller can be established quite well, problems may 

occur with the insulation of the transducers to the tooi body. Therefore an insuiating 

coating or application of an insulating polycarbonate foil of for instanee 0.002 mm 

thickness is necessary. The above resuits indicate that an upper-bound for the 

systematic errors of about 10% is possible with the present design. For the sequel 

calculations in this paragraph these errors will be neglected. For future research it 

will he necessary to study their influence in more detail and to account for this 

influence in the prediction of the contact stresses. 
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Figure 6.5.6 Relative response differences due to a 0.01 mm thick glue layer 

Response data of the transducers are used as input to reconstruct the normal and 

frictional shear stress at the contact side. For this purpose the 32 responses are 

supposed to have a standard deviation of 1 *10--6. The number of stress unknowns at 

the contact side equals 30. As the response data are only disturbed by small 

truncation errors, the estimates calculated for the normal and shear stress appear to 

be equal to the initia! normal and shear stress values. 
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Figure 6.5. 7 95% Confidence intervals for normal and shear stress 
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The covariance estimates for the normal and shear stress, calculated according to 

paragraph 6.2.3, are used to produce 95% confidence intervals. The confidence 

intervals calculated for the current case are given in figure 6.5. 7. Reliable results are 

obtained only at the outer radius of the contact zone, which is quite unsatisfactory. 

In an attempt to improve the accuracy of the results, one may propose to take data 

of strain gauges at the tooi body or the total upsetting force into account. The first 

proposal is performed using 24 strain gauges with a standard deviation of 1 *10-6 for 

their relative resistance changes, the second with an assumed standard deviation of 

250 N. The total upsetting force in the current case is 245 kN. The first metbod 

delivers an insufficient improvement, the second almost none, as can be seen from 

the confidence intervals for the normal stress in figure 6.5.8. 
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Figure 6.5.8 95% Confidence intervals for the normal stress with application of 

strain gauges (a) ortheupsetting force (b) 

A large improverneut is obtained when the number of contact stress unknowns is 

reduced with respect to the number of transducers. The number of unknowns is 

reduced to 10, by demanding the normal as well as the shear friction stress to be 

polynomial expansions of fourth degree in the radial coordinate r along the contact 

zone. This is established by prescription of (linear) relationships between contact 

nodal stresses. The calculated estimates for the stresses then very closely resembie 

the original stress pattern and show a satisfying small 95% confidence interval, see 

figure 6.5.9. 
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Figure 6.5.9 95% Confidence intervalsfora reduced set of stress unknowns 

That the original stress pattem is well reconstructed is not surprising as the normal 

and shear stress, given in figure 6.5.3, are polynomial expansions of second and third 

degree respectively. The credibility of the estimated contact stress pattem in reality, 

when the real pattem is unknown, can be judged by the i -test with respect to the 
expression (A6.2.1.2). A nearer description of the application of this test is given in 

paragraph 5.4. 

Some calculations are pedormed with a reduced set of transducers. With 8 radial 

and 8 tangential transducers, equidistantly distributed in radial direction, the 

confidence intervals of figure 6.5.9 become approximately twice as large. However, 

with 16 equidistant tangential transducers only, the confidence intervals become 

much larger (about 40 N/mm2 for <1 and 20 N/mm2 for r). With 16 equidistant 
n 

radial transdoeers only, the confidence intervals remain smaller (about 20 Njmm2 

and 5 N/mm2 respectively). Although obviously the radial transducers deliver more 

information about the contact stresses than the tangential transducers, transdoeers 

in both orientations are necessary for a reliable reconstruction of the contact stress 

pattern. 

From the previous the following is concluded. In the present design the systematic 

errors are smaller than 10%, which can be improved in the future by taking their 

influence into account. A reliable reconstruction of the contact stress pattem seems 

possible if the number of stress unknowns is significantly smaller than the number of 
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transducer signals. A nearer investigation is needed to determine the optima! value 

of the ratio of stress unknowns to transducer signa.ls. 

6.6 Calibration of the transducers and the measuring tool 

In order to achleve a prediction of the hehaviour of the tooi a.ccording to the current 

design, the resistance strain dependency of the (Ni/Cr 80/20) transducers on the lay

on plate has to he established. Further it is needed, after assembly, to investiga.te 

the resulting tool response in order to evaluate the true influence of the neglected 

systematic errors. 

According to paragraph 6.4, the resistanre changes of the transdurers depend on 

three substrate strains. To establish the three relevant constants, see (6.4.8) 

7r 1 7rt 1r 'Kt 7rt 
- +1+(--1)'1' , ~-1+(--1)'1' , (--1)x 
Po Po Po Po Po 

(6.6.1) 

for ea.ch lay-on plate transdurer, in principle it bas to he subjected to three 

independent strain states. As this can not he performed, an alternative approach is 

proposed, based on two assumptions with respect to the constants in (6.6.1). The 

validity of these assumptions can he investigated by experiments in which the strain 

state of the transducers can he prescribed easily, and thereafter used to calibrate the 

lay-on plate tra.nsducers in one experiment. 

At first it is assumed tha.t for Ni/Cr 80/20 transdurers on a steel substrate the 

valnes of lP and x may he taken equal to the isotropie bulk values as given by 

equation (6.3.7). Assurning Young's modulus E = 2.12*105 N/mm2 and Poisson's 
m 

ratio v = 0.28 forthesteel substrate and E = 2.19*105 Nfmm2
, v = 0.29 for the m o o 

transducers it follows by approximation 

lP= -{).04 ' x = 0.94 (6.6.2) 

Secondly it is supposed that the transducers will be ideal piezoresistive, so 

1r1 = 1r 
10 

= 1rt = 1r. This will be true if no orientation in any direction of the thin film 

material occurs. A support for the above assumptions can he found in literature. For 

instanee Holland (1961) reports that the temperature coefficient of the resistivity of 

baked evaporated nichrome films indicates that the composition is similar to that of 
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the evaporated alloy. A substrate heated during evaporation to about 600 K will 

benefit the diffusion of the nickel and chromium in the thin film, thus producing a 

more uniform distribution of the components. Heating of the substrate further 

results in transducers showing no resistivity changes during aging. Otherwise 

artificial aging after evaporation is necessary to produce stabie resistivity levels 

(Belser 1957, Stein 1962). With the assumptions the resistivity strain dependency is 

simplified to 

~= (0.9~p11" +1.04)(eA )11+(p'lr -1)(0.96(eA ) +0.94(eA Lt) 
11.0 0 ,m 0 ,m ww ,m • 

(6.6.3) 

To investigate whether equation (6.6.3) is useful in practice, experiments with 

transducers on a substrate under uniaxial and uniform pressure are most easily to 

perform. Some premature results of such experiments indeed suggest that equation 

(6.6.3) is suitable to describe the true resistance strain dependency. In these 

experiments however no temperature compensation was applied which disturbed the 

results in an unknown way. Future experiments should be executed using a bridge 

measuring device e.g. according to Bolk (1982), thus enabling temperature 

compensation for a range of transducer resistances using reference transducers. With 

(6.6.3) the calibration of the transducers on the lay-on plate easily can be performed 

in a uniform pressure experiment, thus delivering a value for .!__per transducer. Such 
Po 

a calibration is needed as the reproducibility of equal thin film transducers still is 

somewhat disappointing nowadays (Bethe 1988, Meijer 1988). 

After assembly of the tooi an experiment is needed to compare the actual 

response to the predicted one. Very suited for this are Rastegaev experiments. With 

such experiments the tooi can be Ioaded with an almost uniform normal stress. It is 

recommendabie toperfarm such evaluating experimentsin the future using different 

diameters for the Rastegaev workpieces. 
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7 Conclusions and recommendations 

In this chapter conclusions which can be drawn from the research performed are 

presented and recommendations for the continuation are indicated. 

In this thesis theoretical and experimental tools are described with the aim to 

assess the applicability of extended friction roodels and to quantify them in the case 

of quasi-static mild cold forming contacts. These tools, successively considered in the 

sequel, include the thermodynamica! framework in chapter 2, the experimental

numerical metbod in chapter 4 and the measuring methods for contour 

displacements and contact stresses for the upsetting configuration in chapter 5 and 

chapter 6. With respect to the quantification of the contact behaviour in the 

upsetting configuration, it is expected that this will be possible by the use of the 

stress measuring tool. Improverneut of the tools, and extension of their applicability 

in the future is regarded. 

Maxwell friction roodels show to fit within the thermodynamical framework under 

restrictions that are easily accommodated. To obtain more severe restrictions for 

constitutive roodels it is needed to specify the different thermodynamical quantities 

in more detail. Results from structural modeHing of the real contacts may be used to 

arrive at such a specification. The main problem in a structural approach is that 

contact roodels on a microscopie scale are needed. Hence also results from research 

on the microscopie physical behaviour of contacting surfaces should be available to 

obtain more restrictive statements. 
The experimental-numerical metbod is an etaboration for the geometrical and 

physical non-linearities, based on the maximum likelibood metbod in combination 

with the finite element method. Simulations with this metbod of the upsetting 

experiment on cylindrical test pieces show that use of the upsetting displacement 

and measured displacements of the visible unloaded surface only, is insufficient to 

determine reliable contact quantity values. Taking the upsetting force into account 

also hardly improves the results. With the upsetting displacement and the normal 

contact stress distribution, assumed to be measured with a conservatively low 

accuracy, much better results are obtained, while accurate contour data further 

increase the reliability. To obtain useful results from the upsetting test on 

cylindrical test pieces for the quantification of contact models, an increase of the 

predicted reliability of the friction stress is needed. A possibility to reach this 

increase is the use of assumptions with respect to the contact stress pattern. The 

credibility of these assumptions can be determined by statistical tests. The 
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reliability of the friction shear stress further can be increased by the application of a 

measuring method, more accurate than assumed for the calculations, or by using a 

metbod for measuring the friction stress itself. The last two suggestions are further 

investigated. An interesting feature offered by the simulation metbod is the 

possibility to obtain specifications for upsetting tests, improved with respect to the 

measuring accuracy in a different way than indicated above. It may be possible that 

for special shaped workpieces, other than the cylindrical workpieces analysed, 

contour displacements result in a higher accuracy for the contact quantities. It can 

be thought of hyperboloidal or ring-shaped workpieces. Also workpieces with 

indented contact surfaces in combination with non-flat tooi contact surfaces may be 

considered. Also other forming processes can be examined in order to come to a 

specification of useful experimental set-ups. An example may be the hemispherical 

stretching. of sheet material. Extension of the experimental-numerical metbod to 

other than axisymrnetric configurations further widens the class of set-ups, e.g. the 

draw-bending experiment of sheet materiaL 

The photogramrnetric set-up for the measurement of the contour displacements is 

theoretically not able to deliver the accuracy as required from the upsetting 

simulations indicated above. Although improverneut of this accuracy is quite well 

possible by using a more sophisticated set-up and more optimal workpiece mark 

patterns and mark design, this is hardly significant for the upsetting test. 

Experimental evaluation shows that disturbances due to non-axisymrnetric 

behaviour and surface roughening {caused by global and local inhomogeneities) can 

occur, much larger than the required displacement accuracy. This does not reject the 

axisymrnetric upsetting test for quantification of contact models, as the deviations 

from axisymmetry for the contact stress pattem and radial displacement of contact 

points may be quite large before the influence is really disturbing. The contour 

displacement measurement remains of importance for assessing the dirneusion of the 

contact area with the tools. Further, an {improved) set-up can be used for measuring 

displacernents in a contactleas way in other forming processes such as sheet rnetal 

forming. 

The stress rneasuring tooi using embedded strain transducers is analysed by a 

numerical model of the rnechanical behaviour of the tooi and the rnechanical and 

physical behaviour of the transducers. Systematic errors of about 10 % are not 

imaginary, mainly cansed by the glne layer connecting the lay-on plate to the tooi 

body. These are so large that it is needed to study these errors nearer in order to 

rednee or cornpensate for their influence. For the rednetion of systematic errors 
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thinner glue Iayers are necessary. If the glue Iayer thickness and behaviour is well

known or can be measured, the influence of the Iayer can be accounted for. 

Otherwise Rastegaev tests with the tooi may quantify the layer's influence and the 

results can be used for compensation of the systematic errors. Neglecting the 

systematic errors, the contact stress pattern can be reconstructed with a satisfying 

reliability if the number of stress unknowns is significantly smaller than the number 

of transducer signals. Radial as well as tangential transducers are necessary for this 

reconstruction. The numerical method, by which the stress measuring tooi is 

analysed, may he used for the analysis of tools for measuring other quantities and 

withother application purposes than in the present study. It can be thought of force 

transducers as an example. For the stress measuring tooi an insulating ceramic layer 

or other non-conducting layer has to he applied to insulate the transducers from the 

tooi body. The most simple salution for this is to provide the transducers with a 

protective coating. The resistance strain dependency for Ni/Cr 80/20 transducers 

has to he examined further. A complicating factor may be that the composition of 

the transducer material cannot be maintained constant for different batches. It is 

therefore recommendable to study the influence of composition variations on the 

behaviour of the transducers and to incorporate this in the resistance strain 

dependency, in order to increase the calibration accuracy. 

The present research delivers a number of methods to investigate the mechanica! 

interaction between die and workpiece in forming processes further in the future. 

However, completion of the stress measuring metbod and application in experiments, 

extension of the methods to other set-ups than the upsetting test, as well as 

combination with results from associated tribological research, such as e.g. structural 

investigations, are indispensahle for a full understanding. Despite the extensive 

research in the past, considerable effort is still required befare the classification and 

quantification of the contact behaviour between two contact partners under well

defined lubrication conditions, will have become a standard procedure. 
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Appendices 

Appendix 2.2.1 The balance law for contact surfaces 

In this appendix the balance law (2.2.5) is derived forsome mass associated quantity 

cp. For that purpose the averaging volume VE betonging to a point Tj is followed. 

Consîdered is a quantîty Q defined on this volume 

(A2.2.1.1) 

with p the mass density. The change q• = A E<p<p> ~ of Q in time is caused by 

material flow (convection), immaterial flow (flux) and sources. 

1) Material flow through the border 8V E of V E . The local material velocity is 
.. 

indicated by v. The decrease of Q per unit of time due to convection then equals 

(A2.2.1.2) 

with ~+ and ~- the unit ontward normal veetors on VE at the gt and !T 
.. .. 

surfaces respectively, parallel to n , and v the unit ontward normal vector on the 
s 

cylindrical surface of VE, perpendicular to ~5• The convection term is 

decomposed into surface integrals for the surfaces gt and s- and for the 

cylindrical surface. The superscripts + and - indicate bulk continuurn quantities 

at the + and - side of the averaging volume V E . The continuurn quantities at 

gt and s- vary with characteristic length L along these surfaces. Therefore the 

integrals over A E may be written as 

(A2.2.1.3) 

The integral over the cylindrical surface of VE can (see appendix 2.2.2) be 
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replaced by 

(V .[{1-~ ~ ).<~pcp>A]}AE-; .(V .[(1-~ ~ '<pcp>A])AE 
8 88 s 8 ss' 

(A2.2.1.4) 

with ~ chosen equal to ~+ or ~- arbitrarily. The expression in (A2.2.1.4) may 
s 

be reformulated as 

(A2.2.1.5) 

.. 
2) Flux through the boundary {)V E . The local flux is indicated by 1/J. The decrease 

of Q resulting from fluxes is 

(A2.2.1.6) 

Similarly as before the right hand side integrals may be transferred to 

respectively 

.. n+.:i.+AE , n .. -.:i.-AE (V .. [(1 .. n n .. ) <:i·> ])A 
"' "' ' . - . "' A E s s s (A2.2.1.7) 

3) Sourees within V E. Only the case of a distributed mass associated rp-production 

(p is considered. For the increase of Q holds 

(A2.2.1.8) 

Combining the above relations results in the general balance law (2.2.5), an equation 

only valid if the conditions (2.1.2) for the dimensions of the averaging volume are 

satisfied. 
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Appendix 2.2.2 . A special surface integral 

In thls appendix surface integrala over the cylindrical surface of an elementary · 

averaging volume V E of the form 

(A2.2.2.1) 

.. 
are elaborated, with q a tensor of first or higher orderand v the unit ontward normal 

vector. By separating the integration over the surface into an integration over the 

thickness tE of V E and the circumference 1r DE , ( A2.2.2.1) can be reformulated as 

(A2.2.2.2) 

with h a coordinate in thickness direction and l a coordinate in circumferential 

direction. Assuming the integral of q over tE smooth, such that the divergence 

theorem on the surface may be applied, it follows 

J V .[(1-~ ~).J qdh]dA 
A s 8 t 

E E 

(A2.2.2.3) 

Because of (2.1.2) and the definition of <q> A according to (2.1.1) it results 

(A2.2.2.4) 

To derive (A2.2.2.4) a certain smoothness for the integral of q in thlckness direction 

was assumed. The result suggests that this is a too strong demand, as the right hand 

side of (A2.2.2.4) is already properly defined if <q> A is continuously differentiable. 

According to the considerations of paragraph 2.1, this demand for <q> A is 

guaranteed for all relevant cases. 

In the same way as above it shows for a scalar quantity q 

... ... ...... 
J vqdA =(V .[(I-n n )<q>A])AE 

D t 
s 8 s 

11" EE 

(A2.2.2.5} 
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Appendix 2.4.1 Some aspectsof objectivity 

In thls appendix the principle of frame indifference is shortly discussed. Considered 

are two observers 0 and V, each with an own orthorrormal vector base. The 

observers are supposed equivalent, i.e. with equal notion of time and distance. The 

time difference between 0 and V is arbitrarily chosen equal zero. Quantities 

observed by observer V are overstriked, quantities observed by 0 are not. As 

example the position vector of some point P in space as observed by 0 is indicated 

with ;, and as observed by V with ;. 

Figure A2.4.1.1 Two equivalent observers 0 and V 

.. 
The components of some vectorial quantity v with respect to the vector base of 0 

.. 
combine into the column E• called the column representation of v with respect to 

-+ ~ ... ... 
{ el'e

2
,e3}. Equivalently the components of v with respect to the vector base of V 

combine into the column representation ~- In the same way some second order 

tensorial quantity Thas a matrix representation .Xwith respect to {~1'~2,;3}, and "T 
:;- :; :; 

a matrix representation !with respect to { el'e2,e
3

}. 

The coordinates ! and ~ of some point P in space are related by Euclidian 

transformations. The transformation expressing ~ in ! reads 
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~ t) = ~ t):{ t)+~( t) (A2.4.1.1) 

with 7J a time dependent orthonormal tensor and ; a time dependent vector. For an 

.. 
arbitrary time t, 7J and u indicate the rotation and the translation respectively, of 0 

with respect to V. Physical quantities are called objective if they are related in a 

defined way. For scalar, vector and second order tensor quantities the defining 

relations are 

(A2.4.1.2) 

A physical quantity is called invariant if it is observed identical by two equivalent 

observers i.e. the representations for both observers are equal. A scalar objective 

quantity is also invariant. The principle of frame indifference states that constitutive 

equations should not change due to observer transformations. This is the case if they 

only contain objective or only invariant terms. Part of the principle is also the 

assumption that mass density, stress and force vector, heat flux vector, internal 

energy, entropy and heat sour~ are objective. It is noted that the balance laws of 

paragraph 2.3 do not change due to observer transformations, except for the part 
.. + + .. + .. .. .. + .. + .. n .u .v -n-.u-.v- which can be formulated as u .(v -v} using (2.3.3) and 

~+ = ~+.u+. The stress vector ~+is objective, the velocity difference is this only in 

a restricted sense. For this velocity difference the observations of V and 0 are 

related by 

(A2.4.1.3) 

Because tE<< L the first term in the right hand side is negligible, resulting in an 

equation satisfying objectivity. Only for transformations for which 'Q( t) = 0 
objectivity is exactly guaranteed. 

In paragraph 2.4 an invariant stress vector and contact layer deformation vector 

are introduced using some second order tensor A= A(~,t). With the foregoing it 

shows that second order tensors A can be used, obeying the relationship 
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(A2.4.1.4) 

In order not to conflict with the accepted independent variables of paragraph 2.4 

only tensors A containing kinematics of the surfaces S, s+ and s- are considered. An 

example of A, obeying (A2.4.1.4), is a Unear combination of the inplane deformation 
~ .. 

tensors F, p·, r and a contribution n n..n accounting for the rotation of the s 8 ~ 

direction normal to the contact layer, with the subscript 0 referring to the reference 

state chosen 

(A2.4.1.5) 

The coefficients a , a+, a- and {3 may he functions of the surface change factors 
s 

• • .. ·+ • ·- rrl-v .().x
8

, V 
80

.x and V 
80

.x . In the case only quantities belonging to the surface ::> · are 

considered of importance, legitimate choices are 

(A2.4.1.6) 

with n:t' such that p+ = R+. u+ with 

(A2.4.1.7) 
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Appendix 2.6.1 Objective ra.tes for vectorlal surface qua.ntities 

.. 
In paragraph 2.6 an objective rate for vectorial quantities q was resulting 

'i ~ . -1 .. 
q = q+A.(A ).q 

Baaijens (1987} introduced objective rates of the type 

(A2.6.1.1) 

(A2.6.1.2) 

with y+ an objective second order tensor. Considered is the identification of the 

rates (A2.6.1.2) with (A2.6.1.1) for three choices of A as suggested in appendix 2.4.1. 

At first A is taken equal to r +~+~-:;. Quite easily it follows 

(A2.6.1.3) 

Equality of the rates occurs if o+ ~+;+ is chosen. As A is not a rotation tensor, 

the constitutive equations formulated with the objective rate as in equations (2.6.8) 

and (2.6.9) will be more complex. This rateis a Truesdell rate type. A second choice 

forA is the rotation tensor R+ +~+~-:;. It then follows that 

(A2.6.1.4) 

and thus equality of the rates occurs for n+ = ~+~+-v ~+ +W.(R+t The 
s 

corresponding rate is a Dienes rate type. For his calculations Baaijens used n+ = 0, 
.. ..+ 

completely legitimate because only quantities q perpendicular to n were considered. 

For A then has to be chosen the non-regular tensor (1-~+~+).(F +~+~Ó) with its 

pseudo-inverse (F +~+n-:;)-1.(1-~+~+). 
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Appendix 4.3.1 The maximum likelibood estima.te 

In this appendix some notes with respect to the maximum likelibood estimate are 

given. At first two important concepts with respect to estimators in general are 

review ed. 

1) Bias : 

The bias b of an estimator for some state s is defined as - -

b = E(s)-s 
- - -t 

(A4.3.1.1) 

with the expected value operator E according to ( 4.3.8) and ~t the unknown true 

state. If ~ = Q the estimator is unbiased, otherwise biased. 

2) Efficiency : 

An unbiased estimator is called efficient if there exists no other unbiased 

estimate for which the error covariance matrix is smaller (i.e. the covariance 

matrix of some unbiased estimate subtracted from the covariance matrix of the 

efficient estimate is always positive semi-definite). 

As stated in paragraph 4.3, the maximum likelibood estimator is under fairly general 

conditions asymptotically unbiased and efficient. This means that the estimate 

beoomes unbiased and efficient if it is based on an increasing amount of observation 

data. 

An approximation for the state error covariance matrix ~ can he given if the 

estimate is assumed unbiased and not too far from the true state 

(A4.3.1.2) 

where Jm and Je are the Jacobian matrices of the measurable state dependent 

quantities h and exact state dependent quantities h respectively, belonging to the 
-m -e 

state ~· The columns of ze span the orthogonal complement of the space spanned by 

the rows of Je. The matrix Ze equals the unit matrix if no exact state dependent 

quantities apply. An approximate covariance matrix ~q for quantities !b non-linear 

in the state ~ such as stresses and forces, can he gained from 
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(A4.3.1.3) 

where q follows by reptacement of s by s in the expression for q. The matrices Z , 
- - - - e 

J. and M may be evaluated in s if s is not too far from s
1
• If s is biased, at least a 

m IJ - - - -

term ~~T could be added to the estimate for ~. Generally ~is however unknown. In 

that case, as well as for large errors in the measurements, a Monte Carlo simulation 

can be used to evaluate the estimator performance (Schweppe 1973). 
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Appendix 4.3.2 A strategy to dw with sudden changes in material behaviour in 

estima.tion problems 

In this appendix the method used by Jansen (19872) to deal with material showing 

sudden changes in mechanica! behaviour, is described. Jansen developed an 

estimator for reconstructing the deformation process during a uni-axial tension test 

on a test bar with known material properties. The input of the estimator consisted of 

paired measurements of tension force and elongation for a number of successive time 

steps. 

In the case of tension tests during which no unloading occurs, the real 

deformation process is very well reconstructed by a maximum likelibood estimator, 

for the elastic as well as for the elasto-plastic part of the process. This is the case for 

both small and large values of the observation errors with respect to the true 

changes of the state dependent quantities. No significant bias errors are established. 

Overestimation of the history parameter (i.c. the plastic or irreversible part of the 

strain), caused by measurement errors at some time step, is apparently corrected at 

succeeding time steps by the estimator. The transition from elastic to elasto-plastic 

is supposed to occur when the probability density of the measurements at a given 

time step is larger assuming elasto-plastic behaviour than assuming elastic 

behaviour. 

A tension test performed with alternating loading and unloading necessitates an 

extra decision algorithm to determine the time steps at which the material 

behaviour changes from elasto-plastic (loading) into elastic (unloading). If such an 

algorithm is not used, too frequently unloading would be assumed erroneously. A 

procedure delivering reliable results uses the likelibood ratio test to choose between 

the two material models. The procedure of Jansen is summarized in the sequel. 

1) At first it is assumed that a given time step is executed in the elasto-plastic 

region. The result based on this assumption further will be called an elasto

plastic estimate. If the probability density p
1
P of the elasto-plastic estimate for 

the next time step is larger than some critica! value (J
0

, that estimate is 

supposed to be an estimate for the true state of the tension bar. 

2) If however p1P is smaller than (J
0
, also an estimate supposing elastic behaviour is 

calculated, further called an elastic estimate. The probability density p
1

e of that 

estimate can be very high, as observed data can equal exactly the state 

dependent quantities. It is supposed that the tension test is performed such that 

there will be at least two time steps between changes from loading into 
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unloading and vice versa. A decision between elastic and elasto-plastic behaviour 

is postponed to the second time step. 

3) If the probability density p2P of the elasto-plastic estimate for the second time 

step is also larger than (3
0
, the elasto-plastic estimates are supposed to be 

estimates for the true states. If p
2
P is smaller than (3

0
, the probability density 

p2e of the elastic estimate on the unloading path for the elastic estimate of the 

first time step is calculated. With p2e and p
2

P the likelibood ratio .-\ 

(A4.3.2.1) 

is determined. This ratio originates from the theory of hypothesis testing and is 

in the case considered used to decide between the hypothesis of elastic and 

elasto-plastic material behaviour. If À is larger than some critica! value (J , the 
e 

elastic estimates are supposed to be valid and an improved unloading path with 

the measurements of the two time steps can be calculated. If À is smaller than 

some critical value (J , the elasto-plastic estimates are supposed to be valid. For 
p 

values of .À between (J and (J , the decision is based on data of a third time step. 
p e 

Choices for the critical valnes 1$
0

, IJ and IJ depend on considerations with respect to 
P e 

computation time, variances of the observation errors, magnitude of the changes of 

the true values of the state dependent quantities per time step, the loading and 

unloading frequency and measuring frequency. For details it is referred to 

Jansen (19872). To the above scheme indicated roughly, refinements can be made to 

improve the estimates. These refinements will not be discussed here. 

Appendices 119 



Appendix 5.3.1 Interpolation for the rontour functions 

The special interpolation for the functions R and Z as introduced in paragraph 5.3, 

preserving volume invariance, is described. First the dimensionless quantities (
0

, p 
and ( are introduced by 

(A5.3.Ll} 

with h
0 

and R
0 

the initial height and radius of the workpiece. The demand of volume 

invariance then can be stated as 

1 

1 f -p2 g_áÇ = 1 
~- 9 0 

Co=-1 "'"'o 
(A5.3.1.2) 

This demand is obeyed by applying (spherical) Legendre polynomials to approximate 

p2 andffl,_ 

&.o 

_
2 

n ffl,_ m 
P = ~ a.P.((o) ' = ~ fj.P.((.o) 

i=o ' ' &.o i=O ' ' 
(A5.3.1.3) 

where for P. holds 
t 

1 1 
f P({)P(e)d{=O , J Fl({)d{=7J , P(1)=1 

e=-1 q r {=-1 IJ q IJ 
(A5.3.1.4) 

with 1/IJ = 2!+l and q,rE {0,1,2, ... }, q-j r (see e.g. Abramowitz & Stegun 1965). 
Elaborating (A5.3.1.2) using (A5.3.1.3) and (A5.3.1.4) a rondition for the 

parameters a. and /3. appears to be 
t I 

(A5.3.1.5) 
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It is always possible to choose the interpolation such that a
0 

is unequal zero. In that 

case (3
0 

can be expressedas 

(A5.3.1.6) 
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Appendix 6.2.1 A maximum likelibood estimate for the linear elastic body 

The expression (6.2.18) for the estimate ~of the state '!!is derived as a maximum 

likelibood estimate. 

For the ohservation errors '!!a (multivariate) normal distribution density function 

with mean Q and covariance matrix E are supposed to hold. The likelibood function 

p(z :u) for tbe measured observation data given some state u, follows as 
~m- -

(A6.2.1.1) 

witb n the lengtb of z . The maximum likelibood estimate û for u is tbat 
m -m - -

partienlar u whicb maximizes p(z :u) for the actual measured observation data. 
~ -m-

Because tbe state u is constrained by z H u, the estimate û follows from 
-e -e- -

minimizing J according to 

(A6.2.1.2) 

witb respect to !' and the Lagrangian multipliers ~· It results 

(A6.2.1.3) 

Tbe solution for ~ from (A6.2.1.3) is in conformity witb equation (6.2.18). 
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Appendix 6.3.1 The constrained strain field for arbitrary homogeneities 

The relation (6.3.1) will be derived. This relation expresses the constrained strain 
.. .. 

eJ.x) at some position x inside or outside a homogencity in the transformation 

strain eT. .. 
At the boundary of the isolated homogencity a load qT .nis needed in order to 

restare the original shape, where the stress tensor q T is related to eT by the 
.. 

generalized Hooke's law, nis the unit outward normal vector. Hooke's law is written 

as q T = 4 L: eT while in the isotropie case 4 L is depending on the shear modulus G 

and Poisson's ratio v only. After conneetion this load is relaxed. 
.. .. 

The displacement u at some point x of an infinite, homogeneaus and isotropie 
.. .. 

linear elastic body, due toa point load Fwith the point of application y, is given by 

(Love 1944) 

.. .. .. .. .. .. 1 1( .... ) 
u(x,y) = A(x,y).F , A= l61rG{l-v) r (3-4v)l+H , 

(A6.3.1.1) 

.. .. 
With this relation the so-called constrained displacement u0 after relaxation of qT .n 

can be determined. lt follows, using the divergence theorem 

.. .. .. 3 .... 
uJ.x) =-I A.( (TT .n)dA =-I G(x,y)dV:eT , 

av v 

3 ~ 4 1 ( -+ -+ r -+ -+-+-+) G= v.A. L= 2 (1-2v)(It:+(Jt:) c-cl)+3fH 
11 811"(1-v)r 

(A6.3.1.2) 

with öV the boundary and V the volume of the homogeneity. Notice that the 
.. .. 

integrations over öV and V are performed with x fixed, while y is a Iocal variable. 

The gradient operator V has y as differentiation variable. For the constrained strain 
y 

eJ;) = l(v x~c+(V x~C)c) results 
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(A6.3.1.3) 

.. 
For large d, with d the distance of x to the centre of the homogeneity, e

0 
is 

proportional to d -3, so approaches 0. 
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Appendix: 6.3.2 The constrained strain field for ellipsoidal homogeneities 

The expression for 4 Sof equation (6.3.2) is derived for the case of an ellipsoidal 
... 

homogeneity. Forsome fixed point x inside an ellipsoidal homogeneity, the volume 

integrals in (A6.3.1.3) can be elaborated 

* ..... 
3 ... ... 3 * .. r (x,e) 3 *-+ * ... -+ 

J G{x,y)dV=J G(l)dw J dr=J G(l)r(x,t)dw (A6.3.2.1) 
V 4lr 0 411" 

An infinitesimal volume dV is taken as ? dwdr with dw an infinitesimal surface part 

.. 3 * of the unit sphere with its centre at position x. The third order tensor G , defined 

3 *( ... ) 3G( .... ) 2 * * ...... hy G t = x,y r-, is independent of r, r ::;; r (x,t:) is the distance between the 
.. .. 

point x and the point at the boundary of the homogeneity in the direction t:. 
Considered is the ellipsoidal homogeneity with its centre at the origin 0 and the 

.. .. ... 
principal axes coinciding with the orthorrormal base veetors { e

1
,e

2
,e

3
}. Positions 

.. * ... • .. 
r x+r tof points at the surface of the homogeneity obey 

(A6.3.2.2) 

with a
1
, a

2
, a

3 
the half principal axes lengths. Combination of the explicit expression 

* ..... 
for r (x,l), following from (A6.3.2.2), with equations (A6.3.2.1) and appendix 6.3.1 

yields an expression for ec 

.. 3 * ( -+ 3 * )lc e =4S:e 4S= 1 J(D.f)( G)+ (D.e)( G) dw 
C · T ' l61r(1-v) -+ -+ 

4"' t: .D. t 
(A6.3.2.3) 

Because 4S does notdepend on ;, the strain ec is uniform in the homogeneity. The 

components S with respect to {;
1
,;

2
,;

3
} are unequal zero for p=q A r=s, p=s A 

pqrs 
q=r, p=r A q=s. It can be written 

1 2 2) 1 ( ) S = S = lfQ( a +a J +nR J +J , 
pqqp pqpq ,t, p IJ PIJ ,t, P IJ 
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S = Qa2J +RJ S = Qa2J -RJ pppp p pp p ' ppqq IJ pq p 
(A6.3.2.4) 

with the coefficients Q and R only depending on Poisson's ratio v a.ccording to 

3 l-2v 
Q = 81i(1-v) ' R = 8ïï"(1-v) (A6.3.2.5) 

and the integra.ls J , J and J 
p pp pq 

(A6.3.2.6) 

..,. .. ... .... 
with f = t:.e, g = f.D.f and p,q E {1,2,3}, p 'I q. If the quantities a are mutual p p p 
different, the above integrals are elliptic of the first and second kind. More explicit 

results can he obtained if mutual equality occurs. For details it is referred to Eshelby 

(1957). 
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Appendix 6.3.3 The constrained stra.in components for ellipsoidal inhomogeneities 

The relationships between the strain components ( e
0

)
11

, ( e
0

)
22

, ( e
0

)
33 

and ( e A)
11

, 

( e A)22' ( e A)33 are 

(ec)u = s.*x-111 ( e A)ll +s.*x-lK,i 1J (A6.3.3.1) 

(ec)22 (eA)22 1J 

(eC)33 (e A)33 TJ 

where the matrix s.* contains the components of the fourth order tensor 4s of 

* appendix 6.3.2, such that S = S , p,q E {1,2,3}. For the components of the 
pq ppqq 

matrices I and 1l holds 

G.v. G v 3 v 
T = 2(G.-G )S +2( 1 1 

- m m ) I: S +2G m +2G Ó 
pq 1 m ppqq 1-211. 1-211 rrqq m I=2ï! m pq ' 

G v 
U - 2( m m 
pq- 1-211 

m 

1 m r=l m 

G.v. 
w)+2(G -G.)ó 

- i m I PIJ 
(A6.3.3.2) 

with p,q E {1,2,3} and ó the Kronecker delta so ó = 1 for p = q and ó = 0 for 
pq pq pq 

p "f q. The scatars K-. and TJ are defined by 
I 

1 1 TJ=-qa l:::.T -?';a.D.T . 
.>m m.>a 1 

(A6.3.3.3) 

If 11 = 0 no thermal effect results in the strains ( e0)11, ( e
0

)22 and ( e0)33. This is 

always the case for the shear strains 

2S ( G -G.) 
(e ) _ Pqq( m 1 {e ) 

0 PIJ- 2SG . -G )+ G A pq 
pqqp 1 m m 

(A6.3.3.4) 

with p,q E {1,2,3} , p "f q. 
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Appendix 6.3.4 The transveraal isotropie thin layer 

The results (6.3.14) are extended to a transversal isotropie layer. With the layer 

isotropie in its plane, Hooke's law reads 

q = ct c2 c3 (e - aT ó.T,) (A6.3.4.1) 
-o -tot,o 

c2 cl c3 0 aT 

c3 c3 c4 aL 
C1-C2 

0 0 0 

!} 0 q, 0 0 

0 0 cs 0 

The quantities aT and aL are the thermal coefficients of linear expansion in the so

called transversal and longitudinal direction respectively. The elastic constants C, 
p 

p E {1, ... ,5}, can be expressed in the longitudinal Poisson's ratio vL' elongation 

modulus ML' shear modulus GL and the transversal plane strain compression 

modulus KTand shear modulus GT 

(A6.3.4.2) 

The expression for e. t becomes equivalent to (6.3.12), however with modified 
-tO ,0 

constauts 111, x, 1/J, r,O and ,r 

(A6.3.4.3) 
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Samenvatting 

In veel omvormprocessen spelen contactfenomenen een belangrijke rol met 

betrekking tot de benodigde proceskrachten, optredende mechanische spanningen in 

gereedschappen en product, resulterende productgeometrie, restspanningen en 

oppervlaktegesteldheid. Om te komen tot een juiste dimensionering van 

gereedschappen en smeermiddelkeuze in de ontwerpfase, is het van belang om te 

beschikken over modellen welke de mechanische interactie voldoende betrouwbaar 

beschrijven. Bekende fenomenologische modellen voor het mechanisch contactgedrag 

zijn het Coulomb wrijvingsmodel, het Von Mises wrijvingsmodel en het in het 

laatste decennium ontwikkelde elasto-plastische analogie model. Dit proefschrift 

beschrijft een aantal gereedschappen om de bruikbaarheid van zulke contactmodellen 

te onderzoeken, alsmede de contactparameters uit deze modellen te kwantificeren. 

Na een inleiding en afbakening van het beoogde onderzoeksgebied in hoofdstuk 1, 

wordt in hoofdstuk 2 een thermodynamisch continuümsmodel beschreven voor de 

contactsituatie bij omvormprocessen. De bovengenoemde mechanische 

contactmodellen blijken onder tamelijk algemene condities binnen dit 

thermodynamische kader te passen. Experimenteel onderzoek is derhalve 

noodzakelijk om tot een nadere specificatie van bruikbare contactmodellen te komen. 

In hoofdstuk 3 worden afwegingen gegeven met betrekking tot mogelijke 

experimenten en meetmethoden, resulterend in de keuze om in situ het stuikproces 

op axiaalsymmetrische werkstukken nader te onderzoeken. Hoofdstuk 4 beschrijft 

een experimenteel-numerieke werkwijze waarmee gemeten randvoorwaarden in 

rekening gebracht kunnen worden bij analyses van omvormprocessen, alsmede hun 

invloed bestudeerd kan worden op de uiteindelijke resultaten. Met dit gereedschap is 

het stuikproces met verschillende sets randvoorwaarden geanalyseerd. Het blijkt dat 

meting van de normaalspanning, en eventueel de afschuifspanning, in het 

contactgebied tussen stempel en stuikproduct noodzakelijk is om enigszins 

betrouwbaar de contactgrootheden te bepalen ter evaluatie van het contactgedrag. 

Deze betrouwbaarheid kan vergroot worden als ook de verplaatsingen van het vrije 

buitenoppervlak, mits voldoende nauwkeurig gemeten, verdisconteerd worden. 

Hoofdstuk 5 presenteert een contactloze fotogrammetrische meetmethode voor de 

verplaatsingen van het vrije buitenoppervlak Experimentele evaluatie leert dat de 

theoretisch voorspelde nauwkeurigheid niet haalbaar is als gevolg van 

tekortkomingen in de fysische modelvorming. De invloed van een aantal van deze 

tekortkomingen kan met een verbeterde proefopzet gereduceerd worden. Bij het 
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optreden van ernstige oppervlakteverruwing is het echter twijfelachtig of de 

benodigde nauwkeurigheid bereikt kan worden. De verplaatsingameting blijft van 

belang voor de bepaling van de afmeting van het contactgebied, welke een 

invoervariabele is bij de kwantificering van de contactspanningen volgens 

hoofdstuk 6. Dat hoofdstuk geeft een ontwerp en analyse van een meetgereedschap 

voor de contactspanningen bij het stuikproces. Meting van de elastische rekken in 

het inwendige van het gereedschap, gecombineerd met een rekenmodelleidt tot een 

uitspraak over de contactspanningen tussen gereedschap en werkstuk. De rekken 

worden gemeten met dunne film rekopnemers. Voor deze opnemers is een fysisch 

model opgesteld. Een eerste aanzet is gegeven ter evaluatie van dit model alsmede 

van het voorspelde gedrag van het totale gereedschap. 

Tot slot geeft hoofdstuk 7 conclusies met betrekking tot het huidige onderzoek, 

alsmede adviezen voor een voortzetting. 
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Nawoord 

Bij deze wil ik mijn dank doen toekomen aan iedereen die heeft bijgedragen aan het 

tot stand komen van dit proefschrift. De vakgroep WFW zorgde met haar fijne 

werksfeer voor een aantal prettige onderzoeksjaren. De grote lijn in het onderzoek 

werd op stimulerende wijze door Jan Janssen bewaard. Marcel Brekelmans toonde 

zich, na overname van de begeleidende taak van Frans Veldpaus, een deskundig en 

inspirerend klankbord. Zijn inbreng op dit werk is van onschatbare waarde. Jaap 

Jansen droeg als afstudeerder zijn steentje bij aan het onderzoek. Het typewerk is 

gedeeltelijk verzorgd door Marleen van Boxtel. Hoewel dit uit de inhoud niet zo 

blijkt, is een behoorlijke tijd geïnvesteerd in experimenten. Met betrekking tot de 

realisatie van proefopstellingen zijn met name Theo van Duppen, Toon van Gils, 

Karel Koekkoek en Julius IJzermans te vermelden. Laatstgenoemde, alsmede Roei 

van de Brink en Leo Wouters waren behulpzaam bij het verzamelen en verwerken 

van experimentele gegevens. Bijdragen van buiten de vakgroep werden geleverd door 

Sjaak Cauwenberg, Rob König, Henk Meijer en Thieu Smeets. Door vele anderen, 

hier niet met naam genoemd, heeft dit werk gestalte gekregen. Mijn erkentelijkheid 

komt eveneens hen toe. Tot slot gaat mijn dank uit naar de achterban voor haar 

bewuste en onbewuste steun. Hierbij wil ik mijn ouders en naaste familie afzonderlijk 

vermelden. Hun steun en inzet heeft onmiskenbaar bijgedragen aan dit resultaat. 
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Stellingen 
behorende bij het proefschrift 

ON FRICTION IN FORMING 

1) Continuümsthermodynamica levert in het algemeen slechts nevencondities ten 
aanzien van constitutieve vergelijkingen. Theoretisch en experimenteel structureel 
onderzoek is onontbeerlijk voor een volledige modelvorming. 

- Dit proefschrift, hoofdstuk 2. 

- Rooya.ckers, H.F.L. 1988. A numerical implementation of the Schaperg model 
for nonlinear visco-elasticity. Proefschrift Technische Universiteit Eindhoven. 

2) Bij de cilinderstuikproef kunnen op basis van de verplaatsingen van het onbelaste 
buitenoppervlak van het proefstuk geen significante uitspraken worden gedaan met 
betrekking tot het contactgedrag ter plaatse van het belaste buitenoppervlak 

- Dit proefschrift, hoofdstuk 4. 

Herbertz, ll & H.Wiegels 1981. Ein Verfahren zur Verwirklichung des 
reibungsfreien Zylinderstauchversuches für die Ermittlung von Flie6kurven. 
Stohl und Eisen 101:89-92. 

3) Bij het ontwerp en de analyse van meetmethoden en de verwerking van meetdata 
binnen de experimentele mechanica vormen hybride experimenteel-numerieke 
werkwijzen waardevolle gereedschappen. 

Dit proefschrift, hoofdstukken 4 en 6. 

- Hybrid experimental computational methodology in solid mechanica. 
Hoofdstuk 48 in S.N.Atluri & G.Yagawa (eds.), Computational Mechanics '88. 
Proceedings of the International Conference on Computational Engineering 
Science. New York: Springer-Verlag. 

4) Resultaten van drukmeting in veel elastohydrodynamisch onderzoek moeten in 
twijfel worden getrokken, gezien het niet in rekening brengen van de verschillen in 

de relaties tussen druk en opnemerrekken voor de ijksituatie enerzijds en de 
meetsituatie anderzijds. 

- Dit proefschrift, hoofdstuk 6. 

Köhler, A. 1981. Die Entwicklung von aufgedampften Messwettaujnehmer und 
deren Anwendung zur Druck- und Temperaturmessung in geschmierten Walz
und Gleitkontakten. Proefschrift R WTH A ach en. 

5) Bij de bepaling van axiaalsymmetrische contactspanningsverdelingen met het in dit 
proefschrift beschreven meetgereedschap is gebruik van opnemers voor of alleen de 
radiale rek of alleen de tangentiale rek onvoldoende. 

- Dit proefschrift, hoofdstuk 6. 



6) Voor betrouwbare temperatuurmetingen met dunne film signaalopnemers is het 
nodig dat het thermoresistief gedrag domineert over het piëzoresistief gedrag of dat 
de piëzoresistieve effecten afdoende gecompenseerd worden. 

- Dit proefschrift, hoofdstuk 6. 

- Kannel, J.W., F.F.Zugaro &; T.A.Dow 1978. A metbod for measuring surface 
temperature between rolling/sliding steel cylinders. Joumal of Lubrication 
Technology 100:110-114. 

7) De waarde van een softwarepakket wordt vergroot door flexibele mogelijkheden om 
gegeveilJl uit te kunnen wisselen met andere softwarepakketten. 

- Vroom, R. 1988. Toepasbaarheid databases in techniek nog niet probleemloos. 
Ingenieur & Computernr.5, september 1988. 

8) Gezien de toenemende noodzaak om van het huidige economische groeimodel af te 
stappen is het aan te bevelen zogenaamd toekomstonderzoek als verplicht onderdeel 
in iedere academische studie op te nemen. 

- Stikker, A. 1988. De prijs van een wonder : naar nieuwe modellen voor onze 
toekomst. Amsterdam: Bres. 

- Groot Wassink, J. 1988. Vorming in het technisch universitair onderwijs. De 
Ingenieur 100(5):26-31. 

9) Vervolgonderwijs voor ingenieurs is wezenlijk en dient vooral gestalte te krijgen via 
part -time onderwijs door de (technische) universiteiten. 

- De Vree, J.H.P., J.D.Janssen & D.H.van Campen 1988. A new continuous 
engineering education programme for computational and experimental 
mechanica in the Netherlands. First European Forum for Engineering 
Education: L'Investissement dans l'Avenir. Najaar '88, Stuttgart. 

10) Een defensie zonder provocatie is een middel om een vreedzame wereldsamenleving 
te verwezenlijken. 

- Boeker, E. 1986. Europese veiligheid: alternatieven voor de huidige 
veiligheidspolitiek. VU Studies Vrede en Veiligheid. Amsterdam: VU Uitgeverij. 

11) Voor elke dienstplichtige zou de wijze van vervulling van de militaire dienstplicht 
een bewuste keuze moeten zijn. 

- Alles over dienstweigeren. Den Haag: Pax Christi, 1980. 

Frans Starmans, december 1988 


