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Chapter 1 

Introduetion 

In this monograph we study the equilibrium behaviour of two-dimensional Markov 
processes. Such processes are frequently used for the modelling of queueing problems. At 
present several teclmiques for the mathematieal analysis of two-dimensional Ma:rkov processes 
are available. Most of these techniques are based on generating funetions. A classieal example 
is the analysis of the symmetrie shortest queue problem. Kingman [44] and Flatto and McKean 
[23] use a unifonnization technique to detennine the generating tunetion of the equilibrium dis
tribution of the lengtbs of the two queues. From this generating tunetion they obtain valuable 
insights in the asymptotic behaviour as wellas in the speeltic fonn ofthe equilibrium probabili
ties. A similar uniformization approach bas been used by Hofri to analyse a multiprogramming 
computer system with two queues involved (see Hofri [37] and Adan, Wessels and Zijm [1] for 
additional infonnation) and by F1atto and Halm [24] to analyse two M IM 11 queues with cou
pled arrivals. There are more general approaches regarding the analysis of generating functions 
of two-dimensional Marlmv processes. The workof Iasnogorodski and Fayolle [19,20,40] an<l 
Cohen and Boxma [14] shows that the study of the generating tunetion of fairly general two
dimensional Ma:rkov processes can be reduced to that of a Riemann type boundary value prob
lem. With some minor modifications this approach also proceeds for the time-dependent case. 
However, none of the approaches mentioned leads to an explicit characterization of the equili
brium probabilities, or can easily be used for numerical purposes. 

A numerically-oriented metbod bas been developed by Hooghiemstra, Kean and Van Ree 
[38]. This metbod is based on the calculation of power-series expansions for the equilibrium 
probabilities as functions of the traffic intensity and applies to fairly general exponentlal multi
dimensional queueing systems. For selected problems. the coefficients in these expansions may 
be found explicitly, see De Waard [58] who derives explicit relations for the coefficients in the 
power-series expansion for the equilibrium probabilities of the symmetrie coupled processor 
problem. Blanc [10-12] reports that this approach works numerically satisfactory for several 
queueing problems. The theoretical foundation of this method, bowever, is still incomplete. 

The main objective of the present monograph is to contribute to the development of tech
niques for the analysis of the equilibrium behaviour of Markov-processes with a two
dimensional state spaee. Our research was initiated with the analysis of the symmetrie shortest 
queue problem. For this queueing problem we developed an approach to the characterization 
and ealeulation of the equilibrium probabilities. The essence of this approach is to characterize 
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the set of product fonn solutions satisfying the equations in the interlor points and then to use 
the solutions in this set to construct a linear combination of product fonn solutions which also 
satisfies the boundary oonditions. This construction is based on a oompensation idea: after intro
ducing the ftrst tenn, tenns are added so as to altemately oompensate for errors on the two 

boundaries. This explains the name oompensadon approach. Keilson also developes a oompen
sation metbod in his book [43]. Keilson's method, however, bas not much afftnity with our 
method. The compensation approach leads to an explicit characterization of the equilibrium 
probabilities, and therefore extends the workof Kingman [44] and Flatto and McKean [23]. 
Our results can easily be exploited for numerical analysis and lead to efficient algorithms with 
the advantage of tight error bounds. 

As a ftrst attempt to investigate the scope of the oompensation approach, we apply these 
ideas to Markov processes on the lattice in the positive quadrant of JR2• We oonsider processes 

for which the transition rates are constant in the interlor of the state space and also constant on 
the two axes. To simplify the analysis, we assume that the transiûons are restricted to neigh
bouring states. This class of processes is sufficiently rich in the sense that all queueing prob
Ieros mentioned in the previous paragraphs can be modelled as Markov processes of this type. 
We derive oonditions under which the compensation approach works. It appears that the essen
tlal condition is that transidons from interlor states to the north, north-east and the east are not 
allowed. The symmetrie shortest queue problem and the problem of multiprogramming queues 
can be formulated as Markov processes satisfying this oondition. However, the other two queue
ing problems, mentioned in the previous paragraphs, vlolate this oondition. Consequently, the 
oompensation approach does not work forthese two problems. 

The oompensation approach can be extended in various directions. Some of the possibili
ties are investigated in this monograph. The approach can easily be extended to the shortest 
queue model with a threshold-type jockeying. This rneans that one job jumps from the longest 

to the shortest queue if the difference between the lengtbs of the two queues exceeds some 

threshold value. For this model the main term already satisfies the boundary conditions. Thus no 
compensation arguments are required. Gertsbakh [29] studies this model by using the matrix

geometrie approach developed by Neuts [51]. The relationship between these two approaches 
bas been investigated in [8], 

It appears that the compensation approach also works for the asymmetrie shortest queue 
problem. This problem can be formulated as a Markov process on two adjacent quadraniS of 
ll2 with different stochastic properties in each quadrant. The compensation approach leads to 

an explicit characterization of the equilibrium probabilties. Although in this case the solution 
structures are rather complicated, our final results can easily be exploited for numerical pur
poses. Fayolle and Iasnogorodski [19,401 and Cohen and Boxma [14] show that the analysis of 
the generating fitnetion can be reduced to that of a simultaneous Riemann•Hilbert boundary 
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value problem. This type of boundary value problem, however, requires further research. 1be 
oompensation approach fluther yields satisfactory results for the silonest delay problem Wtth 

Erlang servers. This problem can be modelled as a Markov process for which transitloos are not 

restricted to neighbouring states only. This processis not skipfree l9 the south, wNch is a_l_>asic 

assumption for the models studied in the book of Cohen and Boxma [14]. For the two probieros 

mentioned no other analytical results are available in the literature. 

In the following sections we give a short review of the different problems, which will be 

treated in the subsequent chapters, and a sketch of the solution approaches showing the kind of 

arguments that will be used. In the next section the oompensation ·approach is outlined for the 

symmetrie shortest queue problem. This section does not contain rigorous proofs. but is 

intended to sketch the basic ideas. Section 1.2 is devoted to an extension of the approach to a 

wider variety of problems. 1be next section briefty oomments on several possibilities to further 

extend the approach. The oompensation idea bas an interestlog analogue in the field of classical 

electrostatics, which is known as the method of images. This analogue is described in section 

1.4. Finally, the oontents ofthe subsequentchapters is summarized insection 1.5. · 

1.1. Introduetion to the compensation approach 

In this section we analyse the symmetrie shortest queue problem. Our interest in this 

problem arose from problems in the design of flexible assembly systems. 1be final section in 

chapter 6 will be devoted to a short description of these problems (see also [2, 7]). 

1be symmetrie shortest queue problem is characterized as follows. Consider a system 

with two identical servers (see tigure 1.1 ). Jobs arrive according to a Poisson stream with rate 

2p where 0 < p < 1 On arrival a job joins the shortest queue, and, if queues have equallength, 

joins either queue with probability 1/2. 1be jo~ reqwte ex~ntially distributed ~,rvice 

times with unit mean, the service times are supposed to be independent 

This problem bas been addressed by many authors. Kingman [44] and Aatto and McKean 

[23] analyse the problem by using generating functions. They show that the generating tunetion 

of the lengtbs of the two queues is a meromorphic function. By partlal fraction decomposition 

of the generating function they can express the equilibrium probabilities as an infinite sum of 

produelS of powers. However, the decomposition leads to cumhersome expressions. An alterna

tive approach can be found in Cohen and Boxma [14] ánd Fayolle and Iasnogorodski 

[ 19, 20, 40]. They show that the analysis of the functional equation for the generating function 

can be reduced to that of a Riemann-Hilbert boundary value problem. None of these 

approaches however, leads to an explicit characterization of the equilibrium probabilities or 

closes the matter from a numerical point of view. 
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2p 

Figure 1.1. 
The symmetrie shortest queue model. Arriving jobs join the shortest queue and in 
case of equal queues, join either queue with probability l/2. 

In this section we show bow the empirical finding that the asymptotic product fotm for the 

equilibrium probabilities (see theorem 5 in Kingman [44]) is already a good approximation at a 

shon distance from the boundaries, can be exploited to develop a tecbnique by which the proba

bUities can be found efficiently. This technique leads to an explicit characterization of the pro

bahilities and therefore extends the results of Kingman [44) and F1atto and McKean [23). 

Moreover, our results can be easily exploited for numerical calculations. The purpose of this 

section is not to provide rigorous proofs, but to illustrate the basic ideas. 

The queueing system can be represenred by a. continuons-time Markov process, wbose 

natural state space consists of the pairs (i, j) where i and j are the lengtbs of the two queues. 

Jnstead of i and j we use the state vaiiables m and n where m =min( i, j) and n = j - i. So m is 

the length of the shottest queue and n is the difference between the queue lengths. Let [p".,,. J be 

the equilibrium distribution. The transition-rare diagram is depicted in tigure 1.2. The rates in 

the region n ~ 0 can be obtained by reflection in the m-axis. By symmetry p".,,. = Pm....,.. Hence 

the analysis can be restricted to the probabilities Pm.n in the region n 2: 0. 

The equilibrium equations for lPm.n} can be found by equating for each state the rate into 

and the rate out of that state. In the equations below we have eliminared the probabllities Pm. 0 

from (1.2) and (1.4) by substituting (1.5) and (1.6). This is done to simplify the presentation. 

The analysis can now be restricted to the probabilities Pm,n. with n > 0. These probabilities 

satisfy equations (l.l)-(1.4). The equations (1.5)-(1.6) are funher treated as definition for p".,0 • 

Pm.n2(p + l) = Pm-1,~~+12P + Pm.n+l + Pm+l,11-l , m > 0, n > l (1.1) 

Pm. 12(p + 1) = Pm-1,22P + Pm. 2 

1 _e_ 
+(Pm,t2P+Pm+t,t)p+l +(Pm-t.J2P+Pm,t)p+l, m>O (1.2) 
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n 

1 

~ 
1 2p 1 2p 

p 1 p 

Figure 1.2. 
Transition-rare diagramtor the symmetrie shortest queue model in figure 1.1. 

Po,,.(2p+ l)=po ... +l +Pt,n-1, 

1 
Po,I(2p+ l)=Po,2 +(Po,t2P+Pu) p+ l +Po,t • 

Pm.o<P+ 1)=Pm-t,12P+Pm,t, 

Po,oP = Po,t · 

n > 1 (1.3) 

(1.4) 

m > 0 (1.5) 

(1.6) 

Numerical experiments show that the probabilities Pm.n behave as a product Ka"'~" 

already at a short distance from the boundaries. This feature is mustrared in table 1.1 for the 

case p = 0.5 by displaying the ratios Pm+t,11 I Pm.11 and Pm.n+l I Pm.11 • Actually we calculared 

approximations for Pm.n by solving afinite capacity system exactly, that is, by means of a Mar

kov chain analysis. In the example we calculated the probabilities for a system where each 

queue bas a capacity of 15 jobs, which, for p = 0.5 approximates the infinite capacity system 

quite well. In table 1.1 we see that for almost all m and n the ratios Pm+t,n I Pm.n and 

Pm.11+tl Pm.11 are constant, which suggests that for some constant K, 

Pm,ll- Ka"'~" I (n > 0, m --+ oo). (1.7) 

where c:x = 0.25 and ~ = Q.l for the case p = 0.5. The first question that arises is: what are c:x and 

(i in genera!? To obtain c:x, consider the process on the aggregate states k where k is the total 

number of jobs in the system. An approximation of the transition-rate diagram is depicted in 

tigure 1.3. 



i 6 0.19 0.24 0.25 0.25 0.25 025 
n 5 0.19 0.24 0.25 0.25 0.25 0.25 

4 0.19 0.24 0.25 0.25 0.25 0.25 
3 0.19 0.24 0.25 0.25 0.25 0.25 
2 020 0.24 0.25 0.25 0.25 0.25 
1 0.28 0.25 0.25 0.25 0.25 0.25 

0 

0 1 2 3 4 5 

The rattos Pm+l,nl Pm.n 

Table 1.1. 
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i 6 0.10 0.10 0.10 0.10 0.10 0.10 
n 5 0.10 0.10 0.10 0.10 0.10 0.10 

4 RIO Q10 Q10 QlO QlO 0.10 

3 0.10 0.10 0.10 0.10 0.10 0.10 
2 0.11 0.10 0.10 0.10 0.10 0.10 
1 0.15 0.11 0.10 0.10 0.10 0.10 
0 

0 1 2 3 4 5 
m-+ 

The ratios Pm.n+ll Pm.n 

The ratios Pm+t,nlPm,n andp".,,.+!l p".,"for the case p =0.5. 

2p 2p 2p 2p 

~ ~ 
1 2 2 2 

Figure 1.3. 

Approximation of the transition-rare diagram for aggregated stat es k whert k is the 

total number of jobs in the system. 

In fact, this is the transition-rate diagram for the M I M 12 system with arrival rate 2p and 

service rate 1 for both servers. It is an approximation for the shortest queue, since the average 

service rate in state k > 1 is less than 2 due to the fact that one of the servers can be idle. Intui
tively it will be obvious that the average service rate tends to 2 as k tends to infinity, so the 

approximaûon is better for large k. From the transition-rate diagram we obtain for the equili

brium probabilities Pt. that for largek 

Pt.=Cpt., (1.8) 

forsome constant C. On the other hand, from (1.7) and using that empirically ~<a, for largek 

weget 

t. k ~21-1 .. p21-1 
Pz.t-t=2~ PA:-1,21-! =2Kat~ _1 =2Kat~ _1 • 

1=1 /:1 u; 1=1 u; 
(1.9) 
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ReJalions (1.8) and (1.9) suggest that 

wbich agrees with the empirical value a= 0.25 for p = 0.5. The parameter p can be found by 
observing that if the product (1.7) describes the asymptotic behaviour as m -+co, then it bas to 

satisfy equations (1.1) and (1.2) for m > 0. Inserting Ka"'W' into (1.1) and then dividing by the 
common factor K a"'-1 p .. -t leads to a quadràtic equation fora and p. 

Lemma 1.1. 

The product Ka"' IJ" satisjies ( 1.1) if anti onty if 

ap2(p + 1) = p22p + apl +al . (1.10) 

Substituting a= p2 in (1.10) leads to a quadratic equation in p with roots p = p and 

IJ = p2 1 (2 + p ). The first root yields the asymptotic solution p".,,. - K p2m p" for some K. 

conesponding to the equilibrium distribution of two independent M IM 11 queues. each with 
wolkload p. The queues of the shortest queue model, however, are strongly dependent. There

fore, the only sensible cboice is 

_ __L_ 
13- 2+p. 

which agrees with the empirical value IJ= 0.1 for p = 0.5. It can easily be verified that forthese 
values of a and p equation (1.2) is also satisfied. Hence, we find that for some K 

p".,,.- Ka3'JJ3, (n > 0, m-+ oo) (1.11) 

with 

_ __e:_ 
ao=pz, ~- 2+p. 

Actually, Kingman ([44], Theorem 5) and Flatto and McKean ([23], Section 3) gave rigorous 

proofs for this asymptotic result. We now come to the important question of how to exploit this 

asymptotic result to obtain better approximations. The product aö'P3 does not describe the 
behaviour near the vertical axis m = 0, as cao be seen in tabU: 1.1 for p = 0.5. Indeed a3'(33 

violates equation (1.3) fot m = 0. The idea to improve the initia! approximation a3'(33 is: 

Try to find c 1, a. p with a. IJ satisfying ( 1.1 0) such that 

aö'l38 + c 1 a"'l3" satisfies (1.3). 
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Inserting this linear combination into (1.3) yields the condition: 

A(ao. Po>fl3-t +ctA(«. P>w·-t =0' n > 1 (1.12) 

witb 

A (x, y) =y(2p + 1)-y2 -x. 

Since A ( ao. fJo) ~ 0 and condition ( 1.12) must hold for all n > 1, we have to take 

P=Po 
andtbus 

a.= «t ' 

where. «t is the second, smaller root of (1.10) with p =Po (the other root being Qo). The 

coefficient ct can now be solved from (1.12) witb p = f!o, yielding 

A(ao. Po> fJo(2p+ t)- p~ -ao 
Ct=- A(O.t, fJo) =- fJo(2p+l)-j:l~-a1 . (1.13) 

Since ao and O.t are roots of (l.l 0) for P = f!o, we have 

ao +at= f!o2(p + 1)- p~, 

so (1.13) can be simplified to 

O.t-Po 
Ct=- . ao-Po 

Fortbis choice of c 1 the sum a8'P8+c 1ampn satisfies (1.3) and, of course, also (1.1). This 
procedure can be generallzed as follows. 

Lemma 1.2. 

Let Xt and x2 be the roots ofthe quadratic equation ( l.JO)for fixed p. Then the linear combina
tion xT P" + ar P'* satisftes equations ( 1.1 J and < 1.3 J if c is given by 

xz-P c=---. (1.14) 
Xt -P 

For the case p = 0.5 we display in table 1.2 the same ratios as in table 1.1 for the approxi

mation a8'P8 + Ct«TJ:l8. Comparing tables l.l and 1.2 we see tbat a8'P8 + c,a.TP8 also 
describes the behaviour of tbe probabilities near the boundary m = 0. Hence, we find 

Pm.n- K(a.3'J:l8 +Ct a.TJ:l3), (n > 0, m + n-+ oo), 



t 6 0.19 0.24 0.25 0.25 0.25 0.25 
n 5 0.19 0.24 0.25 0.25 0.25 0.25 

4 0.19 0.24 0.25 0.25 0.25 0.25 
3 0.19 0.24 0.25 0.25 0.25 0.25 
2 0.19 0.24 0.25 0.25 0.25 0.25 
1 0.19 0.24 0.25 0.25 0.25 0.25 
0 

0 1 2 3 4 5 

Table 1.2. 
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i 6 0.10 0.10 0.10 0.10 0.10 0.10 
n 5 0.10 0.10 0.10 0.10 0.10 0.10 

4 0.10 0.10 0.10 0.10 0.10 0.10 
3 0.10 0.10 0.10 0.10 0.10 0.10 
2 0.10 0.10 0.10 0.10 0.10 0.10 
1 0.10 0.10 0.10 0.10 0.10 0.10 

0 

0 1 2 3 4 5 
m-+ 

The ratios Pm+1,11 I p".,,. and Pm.n+ll p".,,.for the approximation 
p".,,. =«3'P3 +c,a.ffl8 andthe case p =0.5. 

for some K. In fact, Flatto and McKean ([23], section 3) proved this statement, which is 

stronger than (1.11). We added c 1 a.'i'fl3 to compensate for the error on the vertical boundary 

· m = 0 and by doing so introduced a new error on the horizontal boundary n = 1, since this term 

vio1ates condition (1.2). Since a.1 < exo. the term c 1 a.Tfl8 is very small compared to «3'N 
even for small m. Therefore its disturbing effect near the horizontal boundary is neglegible. 

However, we èan compensate for the error of c 1 a.Tfl3 on the horizontal boundary by again 

adding a term: 

Try to find a. p, d 1 with a., P satisfying (1.1 0) such that 

c 1 a.TP8 + d 1 c 1 a."'fl" satisfies (1.2). 

lf we succeed, then the total sum «3'133 + c 1 a.'i'fl8 + d 1 c 1 a.Tfl11 satisfies (1.2) by linearity. 

The procedure to find a. fl, d 1 is analogous to the one used for the vertical boundary. To satisfy 

(1.2) for all m > 0 we are fm-eed to take · 

and thus 
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where Pt is the second, smaller root of (1.10) with a= at (the other root being J'o). Inserting 
c 1 aTP3 +ct d 1 aTP? into (1.2) and dividing by c 1 ar-t leads to an equation tor d 1 which is 

solved by 

Since Po and P1 are the roots of the quadratic equation (1.10) for tixed a= a1 we have 

PoPt (2p + at) = ai . 
This equality reduces (1.15) to 

a1 +p 
-~t--(p+l) 

d1= __ :....:_ ___ _ 

at +p -(p+ I) 
Po 

This procedure cao be generalized as follows. 

Lemmal.3. 

(1.15) 

Let Yt and yz be the roots ofthe quadratic equation (l.JO)for fixed a. Then the Unear combi

nation a"'yf + da."'y~ satisjies (1.1) and (1.2) ij d isgiven óy 

~-(p+l) 
Yz · d =- ___;__:____ __ _ 

~-(p+l) 
Y1 

(1.16) 

We added dtCtaTP? to compensate for cta'rfl3 on the horizontal boundary and in 

doing so introduced a new error, since dtc 1 aT~1 violates the vertical boundary conditloos 

(1.2), so we have to add again a term, and so on. lt is clear how to continue: the compensation 

procedure consists of adding on terms so as to compensate alternately for the error on the verti

cal boundary, according to lemma 1.2, and for the error on thé horizontal boundary, according 

to lemma 1.3. This results in the infinite sum depicted in ligure 1.4. Each term in the sum in 

tigure 1.4 satisfies (1.1), each sum of two terms with the same P-factor satisties (1.2) and each 

sum of two terms with the same a-factor satisfies (1.3). Since the equilibrium equations are 

linear, we cao conetude that the sum in tigure 1.4 formally satisfies the equations (1.1)-(1.3). Let 

us define x..,,. as the infinite sum of compensation terms, so for m ~ 0, n > 0, 
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H H H 

V V 

Figurt 1.4. 

Thejinal sum ojcompensation terms. By dejinition co= do= 1. Sums oftwo terms 

with the same P..factor satisfy the vertical boundary conditions (V) and sums of two 
terms with the samea-factor satisfy the horizontal boundary conditions (H) . 

... 
x~~~,,. = 1: d;(c;o.'r + c;+t a~1)(31 (pairs with the same j3-factor) • (1.17) 

i•O .. 
= codol33cx3' + l: ci+t (d;(31 + di+tP?+t)«~t (pairs with the same a-factor). (1.18) 

i•O 

Below we fonnulate the recursion relations fora;, (3;. c; and d;. 

For the initial values «o = p2 and (3o = p2 I (2 + p ), the sequence 

ao / l3o ""' a. / Pt ""' a2 / 132 ""' ... 

is generated such that for all i;;:: 0 the numbers a; and ai+t are the roots of (1.10) for fixed 

(3 = (3; and the numbers (31 and Pï+t are the roots of (1.10) for fixed a= a;+t· The generation of 

a; and (3; is graphically mustraled in ligure 1.5. 

{c;} is generaled such that for all i the tenn (c1a'r + c;+1 a~1 )(3? satisfies (1.3). Applica

tion oflemma 1.2 yields that Ci+l can be obtained from c; by 

a;+l - (3; • 
Ci+l =- R. C; , l ;;:: 0 , a;-..,; 

where initially 

c0 = 1. 

{d;} is generated such that for all i the term (d;(37 + d;+t 137+t)a~1 satisfies (1.2). Appli
cation oflemma 1.3 yields that d;+t can be obtained from d; by 

(<l;+t +p)/J};+t-(p+l) 
di+l =- R d; , i ;;:: Û , 

(a;+l + p)/p;- (p + 1) 

where initially 
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1.2 

Figure 1.5. 
The curve: JJ22p + a(J2 + a.2 - a.JJ2(p + 1) = 0 in the positive quadrantlor the case 
p =0.9. This curve generates {«;} and {J}i} for the symmetrie shortest queue 
problem. 

do=1. 

{Xm,11 } is a forma/ solution of (1.1)-(1.3), including (1.4) due to the dependenee of the 
equilibrium equations. 1be fina1 problem is to prove the convergenre of {X".,11 ). It can be shown 
that Xm.11 converges absolutely for fixed mand n (absolute convergenre guarantees equality of 

(1.17) and (1.18)), that X".,11 > 0 for allmand n and that the sum of Xm,11 over allmand n con
verges (so nonnalization i$ possible). Now it can be concluded from a result of Foster (see 
appendix A) that the shortest queue problem is ergodic. Since the equilibrium distribution 

lPm.n} of an ergodie system is unique, the normali zation of (Xm,11 } produces lPm.a}. 

1be parameters «; and Pi and the normalizing constant can be solved explicitly, so {Xm,11 } 

provides an explicit characterization of lPm." } • It can also be shown that the tenns 
di(ci«7' + c;+t a.f+1)JJ7 in (1.17) are altemating and monotonically decreasing in absolute 
value. Moreover, the convergence is exponentially fast. 1berefore the series Xm.a is suitable 
from a numerical point of view, since the error of each partlal sum can be bounded by the 
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absolute value of its final term and a few terms suffice due to the exponentlal convergence. All 

details of this approach have been worlc.ed out in [3}. 

This conetudes the treatment of the symmetrie shortest queue problem. We exploited the 

feature that p".,,. behaves asymptotically as a product «"P" to develop a technique to deter

mine p".,. efficiently. We now give two queueing models for which p".,,. bas a more complex 

asymptotic Qehaviour involving factors m-112 or n-112• This suggests that the compensation 

approach does not work. forthese problems. 

The first queueing model is characterized as follows. Consider a system with two identical 

parallel servers. The service times are exponentially distributed with mean 11-1• Costomers 

arrive according to a Poisson stream with rate 1. On anival a customer generates two jobs 

served independently by the two servers. This model bas been studied by Flatto and Hahn [24) 

(actually, they analyse the model with nonidentical servers). By using a uniformization tech

nique they determine the generating function of the stationary queue length distribution [p".,,.}. 
From the generating function they are able to show that (see theorem 7.2 in [24]) 

K Pm.a - 112 , (m ~ oo , fixed n ;;:: 0) , 
m 11"' 

forsome constant K. This suggests that the oompensadon does not work for this problem. More

over, the analogue of the quadratic equation (1.10) is 

1 + a;Zp + ap2 - ap(l + 211) == 0 . 

The curve in the <XP-plane with this equation generates the sequences {IX;} and { !}; } • Since tbis 

curve does oot pass through the origin, these sequences cannot converge to zero. Hence, appli

cation ofthe oompensadon approach leads, most likely, toa divergent series in case infinitely 

many terms ~ be required. 

The model above with general service time distributions bas been studied by Klein [45]. 

He considers the worlc.load process and shows that the functional equation for the Laptace

Stieltjes transfarm of the stationary distribution of this process can be reduced to a Fredholm 

integral equation. 

The secoud model is the symmetrie coupled processor. This model is characterized as fol

lows. Consider a system with two identical parallel servers. At each queue jobs arrive accord

ing to a Poisson stream with rate p. An aniving job generates an exponentially distributed 

worlc.load with unit mean. lf both servers are busy, the service rate of each server is 1. If one of 

the servers is idle, the service rate of the busy one is 2. This model has been studied by 

Konheim, Meilijson and Melkman [47] and more general versions by Fayolle and Iasno

gorodski [20] and Cohen and Boxma [14]. For the stationary queue length probabilities Pm,o it 

bas been shown that (see e.g. De Waard [58]) 



p"..,o- Kf(,;, (m~-). 
", 

-14-

forsome constant K. This suggests that the compensation does not work for this problem. More
over, the analogue of the quadratic equaûon (1.1 0) is 

flp + ap + a.2~ + ap2 - aj32(p + 1) = 0. (1.19) 

1be curve with this equation passes through the origin. However, it does not enter the positive 
quadrant at this point. 1be part of this curve lying in the positive quadrant, is depicted in ligure 
1.6. 

1.2 

~I 

---r--------~--------~--~r---<X 

Figure 1.6. 
The curve: pP + ap + a.Z~ + ap2 - a.~2(p + 1) = 0 in the positive quadrOlU jor the 

case p = 0.5. F or each initial pair ao, l3o the sequences { <Xi} and { ~;} generared by 
this curve are cycling. This is illustratedjor ao = l3o = p. 

By using a;a;+l = ~;~;+1 = p for all i, it follows that for each initial pair ao. l3o the curve with 
equation (1.19) generates the cycle 

ao -+ l3o -+ a., = _e_ -+ ~~ = .1!.. -+ a.z = ao -+ 132 = l3o ~ · · · ao . l3o 

1be compensation approach works if the four tenns a.S'~S. a.TPS. a.TPT and a.S'PT would 
suffice. Indeed, the compensation approach constrocts a linear combination of these four tenns 
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satisfying all equilibrium equations. This construction only fails in the two cases ao = Po = p 

and ao = ~ = 1. However, for each initial pair ao. ~ at least one of the ao. ~. a.1 or fl1 bas 
absolute value larger than or equal to one. So the solutions found by the compensation approach 

are not useful, since they cannot be normalized. 

1be compensation approach worles for the shortest queue problem, but fails for the two 

problems mentioned above. Now the question arises: what is the scope of this approach? This 

is the subject of the following section. 

1.2. The compensation approach applied to two-dimensional Markov processes 

To investigate the scope of the compensation approach we study in chapter 2 a class of 

Marlc:ov processes on the lattire in the positive quadrant of JR 2 and explore under which condi

tions the approach worles. We consider proresses for which the transition rates are constant in 

the interlor points and also constant on each of the axes. To simplify the analysis, we assume 

that the transitloos are restricted to neighbouring states. The transition rates are depicted in 

figure 1.7. 

This model can be analyzed by the fairly general approach developed by Fayolle and 

Iasnogorodski [19,20,40] and Cohen and Boxmà [14]. They show that the analysis ofthe func

tional equation for the generating function can be reduced to that of a Riemann type boundary 

value problem. However, this approach doesnotlead to the explicit determination ofthe equili

brium probabilities and requires non-trivial algorithms for numerical calculations. It appears 

that the compensation approach worles fora subset of these models only. On the other hand, our 

results lead to a fairly explicit characterization of the equilibrium probabilities and can be easily 

exploited for n"\)lllerical pull'Oses. 

For the Marlc:ov processin figure 1.7 we obtain the quadratic equation (cf. (1.10)) 

a.flq = CX
2
q-l,l + Clqo,l + ql,l + flql,O + fl2ql,-1 + o.fl

2
qo,-1 + CX

2
fl

2
q-l,-1 + 0.

2
flq-l,O · 

The curve in the o.fl-plane with this equation generates the sequenres { CX;} and { fl;}. To aid con

vergenre of the series of product form solutions obtained by application of the compensation 

approach, we require that these sequences converge to zero. This requirement directly bas 

consequenres for the transition possibilities. By considering the relations for a.;a.i+l and 

ex;+ o.i+l and the similar ones for fl;fli+l and fl; + fli+l it is easy· to show that the condition 

qo,l =q1,1 =q1,o =0 

is necessary for convergenre to zero of o.; and fl;. It appears that this condition is the crucial 

one to be imposed in order to sucressfully apply the compensation approach. Other conditions 

in chapter 2 are either notrelevant (but imposed for convenience only) or imposed to eosure 
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n 

Vo,t Vt,l 

ro.t rt,t h-1,1 ho,t h 1,1 

Figure 1.7. 

Transition-rate diagram for a Markov process with constant rates and transitions 

restricted to neighbouring states. qi,j is the transition rate from (m, "n) to 

(m+i, n+j) with m, n > 0 and a simi/ar notation is usedfor the transition rates on 

each ofthe axes. 

ergodicity. Th.e compensation approach now has the following new features. Depending on the 

boundary conditions, it is possible that more than one initia! product fonn solution exists, each 
generating a series of compensation tenns. Hence, the probabilities Pm.,. are represented by a 
ünear combination of series of product fonn solutions. Moreover, it is possible that this series 
of product fonn solutions diverges for small m and n. 

In chapter 3 we give a complete treatment of the symmetrie shortest queue problem as an 
application of the general theory developed in chapter 2. In this treatment special attention is 
devoted to extra properties, which are exploited for numerical-purposes. In chapter4 we apply 
the general theory of chapter 2 to a queueing model for a multiprogramming computer system 
involving two queues. This model bas originally been studied by Hofri [37]. He analyses this 
model by using generating functions. 
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1.3. Extensions 

1be oompensadon approach can be extended in several direclions. Below we oomment on 
several possibilides. 

a. Tbe shortest queue problem with threshold jockeying 

In chapter 3 we shall also consider the shortest queue problem with a threshold-type jock
eying. This means that a job jumps from the longest to the shortest queue as soon as the dirter
enee between the lengtbs of the two queues exceeds some threshold value T. Due to the jockey

ing. the state space is restricted to the pairs (m, n) satisfying In I ~ T. It appears that the oom
pensadon approach also works for this model. In fact, the main term already satisfies the boun
dary conditions, so no oompensadon arguments are required. 

'lbere are several othertecbniques to analyse this model. 1be form ofthe statespace sug

gests to apply thematrix-geometrie approach developed by Neuts [51]. Actually, Gertsbakh 
[29] studies the threshold jockeying model by using this approach. In [8] the reladonship 
between our approach and the matrix-geometrie approach bas been investigated. It appears that 

our approach suggests a state space partitioning which is definitely more useful than the one 
used by Gertsbakh [29]. In [4] it is shown that the matrix-geometrie approach can also be used 

to analyse the threshold jockeying model with c parallel servers. The results in this paper 
emphasize the importsnee of a suitable choice of the state space partitioning. Another approach 
to the jockeying model with cparallel serverscan be found in Grassmann and Zhao [63]. They 

use the concept of mooified lumpability for continuoos-time Marlcov processes. 1t is finally 

mentioned that the instantaneous jockeying model (T = 1) bas been addressed by Haight [34] 

for c = 2 and by Disney and Mitchell [17], Elsayed and Bastani [18], Kao and Lin [42] and 

Zhao and Grassmann [31] for arbitrary c. 

b. Tbe asymmetrie shortest queue problem 

1be Marlcov processin tigure 1.7 is restricted to the first quadrant. In chapter 5 it will be 
shown that extensions with respect to this form of state space are possible. The subject of 

chapter 5 is the analysis ofthe shortest queue problem with non-identical servers. This problem 

is called the asymmetrie shortest queue problem and can be modelled as a Markov process on 
the pairs of integers (m, n) with m :<?: 0 and n free, which has different properties in the regions 

n > 0 and n < 0. It appears that the compensation approach worles for this problem and leads to 

a series of product form solutions for the equilibrium probabilties p".,,. in the region n > 0 and a 
similar series for p".,,. in the region n < 0. The construction of these series, however, is more 
complicated than for the symmetrie case. The interaction between the regions n > 0 and n < 0 
gives rise to a binary tree structure of the sequences {a;} and { ~;} and a related structure of the 
series for the probabilities Pm,11 • The binary tree structure of the sequences {a;} and {~;} is 
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depicted in figure l.S. These sequences are generated by using the different quadratic equations 

in the two regions n > 0 and n < 0. 

~I 

+ a, 

~ 
P3 ~4 

+ + 
CXIJ «4 0<') 

A A A 
P-7 ~8 PS! ~10 13u 13tz . . . . •' 

. . . . . . 

Figure 1.8. 
The bi1111ry tree structure of {ad and {IJ;} for the asymmetrie slwrtest queue 
problem. These sequences are generated by using the different quadratic equations 
in the two regtons n > 0 and n < 0. 

Although the solution structures are more complicated, our final results can easily be exploited 
for numerical purposes and lead to efficient algorithms for the calculation of the probabilities 

Pm." or other quantities of interest, with the advantage of tight error bounds. 

Fayolle and Iasnogorodski [19,40] and Cohen and Boxma showed that the analysis ofthe 

generating function can be reduced to that of a simultaneous Riemann-Hilbert boundary value 

problem. This type of boundary value problem sterns from the coupling between the regions 
n > 0 and n < 0 and requires further research. For the asymmetrie shortest queue problem no 

further analytical results are available in the literature. 

c. The symmetrie shortest delay problem for Erlang servers 

To simplify the analysis in chapter 2 we considered Mark.ov processes with transitloos res
tricted to neighbouring states. This restrietion does not seem to be essential. However, the boun
dary conditions for processes with more transition possibilities become definitely more compli

cated and therefore a general treatment of this type of processes may rise severe complications. 
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Por some special cases the approach is tractable. The first case is the symmetrie shortest delay 

problem withErlang servers. This problem is characterized as follows . 

. Consider a system with two identical parallel servers. The service times are Erlang-I dis

tributed with mean 1. Jobs anive according to a Poisson stream with rate :V... To ensure that the 
system can handle the offered load, we assume that ').J < 1. An aniving job can be tbought of as 

a batch of l identical subjobs, where each subjob requires an exponentially distributed service 

time with unit mean. Aniving jobs join the queue with the smallest number of subjobs, where 

ties are broken with probability 1/2. This routing policy is called shortest delay routing. 

The problem can be modelled as a Marlcov process on the pairs of integers (m. n) where m 
is the number of subjobs in the shortest queue and n is the difference between the number of 

subjobs in the two queues. Por this model fonnulation transitions are not restricted to neigh

bouring states, as, for instance, can be seen for state (m, n) with n > 0 for which a transition is 

possible to state (m+l, n-1) with rate 2Ä (since an arriving job generates a batch of I subjobs). 

Moreover, the process is not skipfree to the south, which is a basic assumption for the models 

studied in the hook of Collen and Boxma [14]. It appears that application of the oompensadon 

approach leads to a series of product fonn solutions for the equilibrium probabilities Pm.,.. In 

fact, the probabilities Pm.,. can be expressed as a linear combination of series of product form 

solutions, each with the structure of an l-fold tree. A paper on the detailed analysis of this prob

lem is forthcoming. Some of the features of the approach will be sketched in chapter 6. To our 

knowledge, no further analytical results for the shortest delay problem are availab1e in the litera

ture. 

The next oomment is devoted to a second case for which the compensation approach is 

tractable. 

d. Tbe MIEr Ie queue 

The MIE, I c queue can be fonnulated as a Markov process on the states (n0 , n 1, .... n.:) 

where n0 is the number of waiting jobs and ni is the number of remaining service phases for 

server i, i= 1, ... , c. Por this model formulation transitloos are not restricted to neighbouring 

states, as, for instance, can beseen for state (no. l, n2 .... ,nc) with no > 0 from which a transi

tion to (no-l. r, n2, ... ,nc) is possible due to a service completion of server 1. Moreover, the 

form of the state space is special. lt is bounded in each direction, except in the n 0-direction. 

The M IE, I c queue bas been extensively studled in the literature. We mention the workof 

Mayhugh and McCormick [49] and Heffer [36]. They use generating functions to analyse this 

problem. Their analysis, bowever, does not lead to an explicit determination of the equilibrium 

probabilities. Shapiro [57] studied the MI E 2 1 c queue for which a simpler formulation of the 

state space is possible. His analysis bas some affinity with our approach. 
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Our approach first tries to cbaracterize the set of solutions of the fonn a"•pj' · · · p:
satisfying the equilibrium equations in the interlor points, that is, the points with n0 > 0. It 
appears that this set consists of jinitely many solutions. However, the set is sufficiently rich, 
since it is possible to construct a (non-trivia!) linear combination of the product fonn solutions 
in this set also satisfying the boundary conditions. Similar to the solution of the model under 
point a, this construction is not of a compensation-type. A detailed description of the results can 
be found in [59]. 1be analysis can be extended to the Ek IE, I c queue. A paper on the analysis 
of the Ek I Er I c queue is forthcoming. 

In tbe next section we briefty outline an interesting analogue of the compensation 
approach in the field of electrostatics. This analogue was communicated to us by Prof. P. J. 
Schweitzer. 

1.4. Metbod ofimages 

Many probieros in electrostatics concern the detennination of the potential in an arbitrary 
point P in a region involving boundary surfaces on which the potentlal or surface charge density 
is specified. A special approach to these probieros is the metbod of images (see e.g. Maxwell 
[48] and Jackson [41]). The metbod of images deals with the problem of a number of point 
charges in the presence of boundary surfaces, such as, for example conductors held at fixed 
potentials. Usually, the sum ofthe potentials ofthe point charges does not satisfy the boundary 
conditions. Under favourable conditions it is possible to place a number of additional point 
charges outside the region of interest. such that the sum of the potendals of the point charges 
inside and outside the region satisfies the boundary conditions. The charges placed outside the 
region are called the image charges and the reptacement of the original problem with boun
daries by an enlarged region with image charges and no boundaries is called the metlwd of 
images. The image charges muSt be extemal to the region of interest, since their potentials must 
be solutions to the I.aplace equation inside the region. The particular solution to the Poisson 
equation inside the region is provided by the sum of the potendals of tbe charges inside the 

region. 

Figure 1.9 shows a simpte example where a point charge is located in front of an infinite 
plane conductor which is held at fixed potential ct> = 0. It is clear that this problem is equivalent 
to the problem of the point charge together with an equal but opposite charge which is Iocated at 
the mirror image point on the other side of the plane. Let P be any point in the space at the right 
side of the infinite plane conductor, whose distance from the charges q and -q is r 1 and r2 

respectively. Then the value ofthe potential at Pis given by 

ct>= ..!L- ..!L. 
'• r2 



Figure 1.9. 

• 21. 

~p 
-q I q 

I 
I 

Solution by the method of images. The original potentlal problem on the left is 

equivalent with the image problem on the right. 

1be next example clearly illustrates the analogue with the compensation approach demon

straled in secdon 1.1. 'Ibis exarnple is work:ed out in more detail in the appendix to chapter XI 

in Max.well's hook [48]. 

Consider two non intersecting conductlog spheres, whose centers are A and B, their radii a 

and bandtheir potentials <IJ., and 0 respectively. Suppose that their distance of centers is c (see 

tigure 1.10). Below it is shown that the potential <IJ at any point P cao be found by producing an 

infinite sequence of image charges. 

c 

W=O 

Figure 1.10. 

Problem of two conducting spheres A and B held at fixed potentials W4 and 0 
respectively. 

lf the spberes did not inftuence each other (c = ""), then the potential <IJ is that of the image 

charge ao = aW4 located at A. However, since c is finite, that potential does not vanish on the 

spbere B. To compensate for that error we place inside the sphere Ba new image charge l3o at 
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distance c0 from Bon the ray AB, and try to choose 1\, and c0 such that the sum ofthe poten
tials ofthe charges ao and 1\, vanishes on the sphere B.lndeed, the sum of these potentials van
ishes by taking 

b b2 

Po=--ao. co=-. c c 

We now added a charge Po inside the sphere B to compensate for the error of the potentlal of 
charge ao on the sphere B. At the same time, the charge 1\, alters the potendal on the sphere A. 

To keep that potentlal unaltered we place inside the sphere A an image charge Ut at distance d 1 

from A on the ray AB, and try to choose Ut and d 1 such that the potendal of Ut and Po vanishes 
on the sphereA (sothe sum ofthe potentials ofa.o. a.1 and 1\, equals <1>., on A). Thatleads to 

a a2 

Ut =---Po • d1 =-- · c-co c-co 

We now compensated for the error on the sphere A, but in doing so, we introduced a new error 
on the sphere B, since the potentlal of the new image charge a.1 does riot vanish on the sphere B. 

1t is clear that we can continue by adding on image charges inside the spheres A and B so as to 
altemately satisfy the boundary conditions on these spheres. This results in an infinite sequence 
of image charges. Let a.; and d; be the charge and di$tance from A of the ith image charge inside 
the sphere A on the ray AB, and let 13; and c; be the charge and distance from B of the ith image 
charge inside the sphere B on the ray AB. Then we obtain for all i ~ 0 the following recursion 
relations for a;, 131• c; and d;. 

where inidally 

do=O. 

These recursion relations can easily be solved explicitly. Once the image charges and their dis
tances are known, the value of the potential at any point P in the space outside the two spheres 
is given by the sum of the potendals of the image charges. 

The analogue with the approach in section 1.1 will be clear: in the example above point 
charges are subsequently added so as to alternately satisfy the boundary conditions on the two 
spheres, whereas in section 1.1 product form solutions are subseijuently added so as to alter
nately satisfy the boundary conditions on the two axes. 
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l.S. Summary ofthe subsequent chapters 

In chapter 2 we consider a fairly general class of two-dimensional Markov processes. 1b.e 
object in that chapter is to investigate under what conditions these processes have a solution in 
the fonn of a series of products of powers which can be found by a compensation approach. In 

chapter 3 the symmetrie shortest queue problem is treated as an application of the theory in 
chapter 2. For this problem some special properties are worleed out in detail and used for numer
ical purposes. In chapter 4 the general theory is applied to a queueing model for multiprogram
ming queues. In chapter S the compensation approach is further extended to the asymmetrie 
shortest queue problem. Chapter 6 is devoted to conclusions and comments. In particular, the 
approach will be sketched for the symmetrie shortest delay problem with Erlang servers and the 
M IE,Icqueue. 
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Chapter2 

The compensation approach applied to 
two-dimensional Markov processes 

In section 1.1 we have seen for the symmetrie shortest queue problem how the feature that 

the equüibrium probabilities p".." behave asymptotically as a product of powers can be 
exploited to develop an approach to find the probabilities p"..,. explicitly and efficiently. We 
forther mentioned two other queueing problems, that is, the coupled processor problem and the 
problem of two M I M 11 queues with coupled arrivals, for which the probabilities p"..,. have a 
more complicated asymptotic behaviour involving extra factors m-112 or n-112• 'Ibis suggests 
that the approach does not work: for these problems. Now the question arises: what is the scope 

of the compensation approach? In this chapter first attempts are made to answer this question. 

To investigate the scope of the compensation approach we apply this approach to a class 
of Mark:ov processes on the lattice in the positive quadrant of R 2 and investigate under which 
conditions the approach work:s. We consider processes for which the transition rates are con
stant in the interlor points and also constant on each of the axes. To simplify the analysis, we 
assume that the transitions are restricted to ne!ghbouring states. The class of processes is 
sufficiently rich in the sense that all problems mentioned in the previous paragraph can be for
mulated as Mark:ov processes of this type. The class of models fits into the general framework 
developed by Fayolle and Iasnogorodski [19,40] and Cohen and Boxma [14]. They show that 

the analysis of the functional equation for the generating function can be reduced to that of a 
Riemann type boundary value problem. Moreover, with some minor modifications the 

approach also proceeds for the time-dependent case. However, this approach does not lead to 
an explicit determination of the probabilities and requires non-trivial alg01ithms for numerical 
calculations. In this chapter it will be investigated under what conditions the compensation 

approach work:s. The essence of the approach is to characterize the set of product form solu
tions satisfying the equatiollS in the interlor points and then to use the solutions in this set to 
construct a linear combination of product form solutions which also satisfies the boundary con
ditions. This construction is based on a compensation idea: after introducing the first term, 

terms are added so as to altemately compensate for errors on the two boundaries. 1t is pointed 
out that the compensation approach first tries to satisfy the condi9ons in the interlor and then 
tries to satisfy the boundary conditions, whereas generating function approaches combine these 
conditions into a functional equation for the generating function. The compensation approach 
leads to formal, possibly divergent solutions of the equilibrium equations. Therefore we shall 
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explore under whicb condilions the approach leads to convergent solutions. 1be essenlial con
dition appears to be that transitloos from the interlor points to the north. north-east and east are 
not allowecl. Hence. the compensation approach works for a subclass of models only. On the 
other hand, our results lead to a fairly explicit characterization of the equilibrium probabilities 
and can be easlly exploited for numerical purposes, due to the algorithmic nature of the 
approach. A new feature ofthe approach is that, depending on the boundary conditions, possibly 
more than one inilial product form solution exists, each generating a series of compensation 
terms. Hence, the equilibrium probabilities can be expressed as a linear combination of series of 
product form solulions. Furthermore, it is possible that this series di verges near the origin of the 
state space. 

1be organizalion in this chapter is as follows. In the next section we formulate the model 
and the equilibrium equations. In section 2.2 the compensation metbod is outlined and the 
resulling formal solutions x..,"(ao. !Jo) are defined. Section 2.3 introduces the convergence 
requirements and analyzes its consequences with respect to the transition structure in the inte
rlor of the state space. The next three sections are devoted to the denvation and interpretation 
of conditloos for the existence offeasible initial pairs ao. !J0• Insection 2.7 it is shown that the 
formal solutions x...,"(ao, !Jo) simplify for feasible pairs ao. !Jo. It is investigated insection 2.8 
whether the construction of these solulions can fail. In the next two sections the absolute con
vergence of these solutions is treated. In section 2.11 we prove that the solutions x".,,.(O(), !Jo), 
with feasible ao and !Jo, are linearly independem. In section 2.12 we prove our main result, stat
ing that on a subset of the state space the equilibrium probabilities can be expressed as a linear 
combination of the solutions x...,,.(ao, !Jo) with feasible ao and IJ0 • Insection 2.13 we oommem 
on a condition, which arose out ofthe analysis insection 2.8. Section 2.14 treats some patholog
ical cases, which are initially excluded in section 2.1. The final section is devoted to conclu
sions. 

2.1. Model and equilibrium equations 

We shall consider a Markov process on the pairs (m. n) of nonnegative integers, which is 
cbaracterized by the property that transitions are restricted to neighbouring states and that the 
transition rates are constant on the set of all pairs (m, n) of positive integers and also constant 
on each of the axes. 1be transition rates are depicted in tigure 2.1. Let {p...,,. } be the equili
brium distribution, which we suppose to exist Furthermore, we assume that the Markov process 
is irreducible. 1be following assumption is made to initially exclude some pathological cases. 
In section 2.17 we oomment on these cases. 
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n 

Vo,t Vt,l 

ro,t r1,1 h-t,t ho,1 h 1,1 

Flgure2.1. 
Transltion-rate diagram for a Markov process wtth constant rates and transitions 
restricted to neighbouring states. qi,i is the transition rate from (m, n) to 

(m+i, n+j) with m, n > 0 and a similar notation is usedfor the transition rates on 
each ofthe axes. 

Assumption 2.1. 

(i) qt,1+q1,o+q1,-1>0 

(ii) q-1,1 + q-1,0 + q-1,-1 > 0 

(iii) q-1.1 +qo,l +q1,1 >0 

(iv) q-1.-1 + qo,-t + q t,..:.t > 0 

(V) Vt,l + Vt,O +V 1,-1 > 0 
(vi) h-1,1+ho,1+ht,t>O 

(there is a rate component to the east); 
(there is a rate component to the west); 
(there is a rate component to the north); 

(there is a rate component to the south); 
(rejlecting n-axis); 
(rejlecting m-axis). 

The equilibrium equations for {p~~~,"} can be found by equating for each state the rate int.o 

and the rate out of that state. These equations are fonnulated below. The equations in (1, 1), 

(0, 1), (1, 0) and (0, 0) are left out, since they will appear t.o be of minor importance t.o the 
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analysis. 

p".,,.q = Pm+1,tt-1 q -1,1 + Pm,n-1 qo,1 + Pm-1,tt-1 q 1,1 + Pm-1,,.q 1,0 + Pm-1,tt+1 q 1,-1 

m > 1, n > 1 (2.1) 

P1,,.q =pz,,.-1q-1,1 +P1,n-1qo,1 +Po,,.-1v1,1 +Po,,.v1,0 +Po,n+1v1,-1 

+P1,n+1qo,-1 +P2.n+1q-1,-1 +pz,,.q-1,0, 

Po,,.v =P1,n-1q-1,1 +Po,n-1V0,1 +Po,n+1V0,-:-1 +P1,tt+1q-1,-1 +P1,nq-1,0, 

Pm, 1q =Pm+1,oh-1,1 + Pm,oho,1 +Pm-1,oh1,1 +Pm-1,1q1,0 +Pm-1,2q1,-1 

+p".,zqo,-1 +Pm+1,2q-1,-1 +Pm+1,1q-1,0, 

p"., oh = Pm-1,oh 1.0 + Pm-1,1 q 1.-1 + Pm. 1 qo,-1 + Pm+1,1 q -1,-1 + Pm+1,oh-1,o , 

where 

v=vo,1 +v1,1 +v1,o+v1,-1 +vo,-1' 

h =h-1,1 +ho.1 +h1,1 +h1,o +h-1.0. 

2.2. The compensation approach 

n>1 (2.2) 

n>1 (2.3) 

m> 1 (2.4) 

m>1 (2.5) 

(2.6) 

(2.7) 

(2.8) 

In this section we develop the compensation approach. This approach constrocts aformal 
solution to the equilibrium equations (2.1 )-(2.5) by using linear combinations of products 

a"'fi" satisfying equation (2.1) in the interlor of the state space. Inserting a"' W' into (2.1) and 

then dividing both sides of that equation by the common factor am-1 w·-1 leads to the follow

ing characterization (cf.lemma 1.1 insection 1.1). 

Lemma2.2. 

The product a"'~,. is a solution of equation (2 .1) if and only if a and ~ satisfy 

~=a2q-1,1 +aqo,1 +q1,1 +~1.o+~2q1,-1 

+ ~2qo,-1 + a2~2q-1.-1 + al~q-1,0 · (2.9) 

Any linear combination of products a"'W' with a, ~ satisfying the quadratic equation 

(2.9), is a solution of (2.1). We now have to find a linear combination satisfying the boundary 
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conditloos (2.2)-(2.5). Consider an arbitrary product «3'(38 with complex ao. Po satisfying 

(2.9) and soppose that a3'(38 violates the vertical boundary conditloos (2.2)-(2.3). Tbe idea to 

satisfy these conditloos is: 

Try to find a, (3, c 1 with a, (3 satisfying (2.9) such that · 

aS' PS + c 1 a"'(3" satisfies the boundary conditloos (2.2)-(2.3). 

Inserting this linear combination into (2.2)-(2.3) yields two conditions of the fonn: 

A(Qo, fio)(38-1 +c1A(a, (3)(3"-1 =0, n >I, 

B(Qo, fio)(38-1 +ctB(a, (3)(3"-1 =0, n > 1, 

(2.10) 

. (2.11) 

where at least one of the A (0{), Po> and B ( 0{), Po> is nonzero. To satisfy (2.10) and (2.11) for 

all n > 1 we are forced to take 

~=Po 

andthus 

«=«t' 

where a 1 is the other root of the quadratic equation (2.9) with ~ = fio. Dividing (2.10) and 

(2.11) by the common factor ps-t leads to two line.ar equatioos for c 1, which have, in general, 

no solution. Therefore, we introduce an extra coeffient by considering 

a3'P8 +ct«TP8 for m > 0, n > 0, 

eoP8 for m=O, n >0. 

lnserting this fonn into the boundary conditions (2.2)-(2.3) and then dividing by the common 

factor ~8-1 leads to two linear equations for c 1 and e0, which can readily be solved using 

Cramer's rule. Tbe resulting expressions for c 1 and e0 can be simplified by using (2.9). Tbis 

procedure is generalized in the following lemma (cf.lemmas 1.2 and 1.3). Part (ii) fonnulates 

the analogue for the horizontal boundary. 

Lemma2.3. 

(i) Let Xt and x2 be the roots ofthe quadratic equation (2.9)/or fixed Pand let 

{
xfP" +cxrP" for m > 0, n > 0, 

z".,,. = eR" fi 0 0 "' or m= ,n>. 

Then z".,,. satisjies (2.1), (2.2) and (23) ijc and e are given by 

P2
vt,-t+l3vt,o+Vt,l (32 (3 ..:.._......:....:.._...;._....:,__....:,_ + Vo I + Vo -I - V 

X2 ' ' 
(2.12) 
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(2.13) 

(iî) Let y 1 and yz be the roots of the quadratic equation (2.9) for fixed a and let 

{ 

o!"yf + do!"y~ for m > 0, n > 0, 

w".,,. = fa!" for m > 0, n =0. 

Then w".,,. satis.[res (2.1), (2.4) and (2.5) if d andf are given by 

filh-t,t +aho.t +ht,t __ :..:..:.... _ ___.:.:..:..__:..:..:.... + h t.o + a 2h-t.o- ah 
d =- ---::----'Y....:2:....._ _________ _ 

filh-1,1 +aho,t +h1.1 _ ___.:.:..:..:.... _ ___.:.:..:....__:.:..:.... + h 1,0 + a2 h_1,0 -ah 
Yt 

(2.14) 

[ ciq_tt +WJot +q••J [-
1 
--

1 
] 

' ' ' Y2 Yt 
f=-~--------------~----~-

a2h-tt+ahot+htt 2 · · · + h 1 o +a h-t o -ah 
Yt ' ' 

(2.15) 

We added c 1 af ~3 to compensate for the error of a3' ~3 on the vertical boundary and by 

doing so introduced a new error on the horizontal boundary, since c 1 af~3 vio1ates these 

boundary conditions. To compensate for this error we add c 1 d 1 af~f where ~1 is the other 

root of (2.9) with a= a 1• The coefficient d 1 follows from lemma 2.3(ii). However, this term 

vîo1ates the vertical boundary conditions, so we have to add again a term, and so on. Thus the 

compensation of «3'~3 on the vertical boundary generates an infinite sequence of compensa

tion terms. An analogous sequence is generated by starting the compensation of a3'~3 on the 

horizontal boundary. This results in the sum of tenns depicted in figure 2.2. 

H H 

V V 

Figure 2.2. 

The final sum of compensation terms. By definition co = do = 1. Sums of two terms 

with the same ~-factor satisfy the vertic al boundary conditions (V) and sums of two 

terms with the samea-factor satisfy the horizontal boundary conditions (H). 
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Each tenn in the sum in figure 2.2 satisfies (2.1), each sum oftwo tenns with the same P,.factor 

satisfies the vertical boundary conditions (2.2)-(2.3) and each sum of two tenns with thè same 

a-factor satisfies the horizontal boundary conditiOilS (2.4)-(2.5). Since the equilibrium equations 

are linear, we can conclude that the sum in ligure 2.2 fonnally satisfies the equations (2.1)-(2.5). 

Let us define x~~~,11(Qo, Po> as the infinite sum of compensation tenns. For all m > 0, n > 0 set .. 
x".,"(Qo, Po>= E d;(C;fl.'/' + Ci+l CX~t>Jl1 (pairs with same P..factor), (2.16) 

i=-• .. 
= E Ci+l (d;J}f + d;+l P7+t)a~l (pairs with same a-factor). (2.17) 

i=--

The pairs in (2.18) and (2.17) reileet the compensation on the vertical, respectively horizontal 

boundary. The compensation on these boondarles requires the introduetion of new coefficients 

for the tenns in x0,"(Qo, Po> and Xm, o(Qo, f3o). For all m = 0, n > 0 set 
.. 

xo.~~(ao. f3o) = E d;e;P1 • (2.18) 
i·--

andforallm >O,n=O .. 
x".,o(ao. f3o)= I: c;+tfi+ta~,. (2.19) 

i=--oo 

Note that we do not definex0,o(Qo, f3o), since in the first place the equations in (1, 1), (0, 1), 

(1, 0) and (0, 0) are not considered and in the second place it is not clear whether xo,o(Qo, .f3o) 
should be defined by the series (2.18) with n = 0 or by the series (2.19) with m = 0. Below we 

fonnulate the recursion relations fora.. J}1, c1, d1, e; and fi. 
For the initial roots <Xo and f3o of the quadratic equation (2.9) the sequence 

is generaled such that for all i the numbers a; and ai+! are the roots of (2.9) with fixed p = J}; 
and J}; and Pi+t are the roots of (2.9) with fixed a= O:i+t· 

{ c;} and { e;} are generated such that for all i the terms (c;a'[' + c;+t CX~t >P? and e;P7 
satisfy the vertical boundary conditions (2.2)-(2.3). Initially set 

c0 = 1. 

Application of lemma 2.3(i) yields that c1+1 and e; for i ;;:: 0 can be obtained from c; by 

Prv 1 .• -t + tl;v t,o + v. 1,1 R2 R 
tv. + Vo,t + 1-'i vo.-t - ..,;v 
""Ï+l 

Ci+l =- ---,,...------'-.:..:..---------- C; , i ;;:: 0, 
Prv 1,-1 + IJ;v t.o + v 1,1 Jl2 p ..:..__...:....;__....:....----'----''- + vo 1 + · vo -I - ·v 

(Xi • I • I 

(2.20) 
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; ~o. 

i <0, 

i <0. 

{d;} and lfi} are generated such that for all i the tenns (d;~7+d;+1~7+t)a.~1 and 

fi+t a.~1 satisty the horizontal boundary conditloos (2.4)-(2.5). lnitlally set 

do=l. 

Applicatlon of lemma 2.3(ii) yields that d;+t andfi+t for i<:: 0 can be obtained from d; by 

i ;;::o, (2.21) 

[ a.~+1q-1,1 +a.;+tqo,1+Qt,J [ ~1~1 - ~;] 
ii+l ==- ~=--------------"-----"--- d; • 

a.~+th-11 +a.;+tho 1 +h11 2 • (i; ' ' +ht,o+a.i+th-t,o-CX;+th 

i ;;::o, 

and analogously d; and fi+I for i < 0 can be obtained from d1+1 by 

(2.22) 
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This conetudes the definition of x~~~,,.(ao. (Jo). Each solution x"",.(ao. fJo) has its own, 
sequence {a;, flil depending on the initial values ao and fJo, and its associated sequence of 
coefficients {c~o d;, e;, jiJ; For any pair ao. Po satisfying equation (2.9) the series x"",.(ao, fJo) 
fonnally satisfies the equations (2.1)-(2.5). In the next section it will be investigated for what 

ao. Po the series x~~~,,.(ao, (Jo) converges. 

Remark2.4. 

If the rates on the vertical boundary are the truncation of the rates in the interlor points, 
that is, v 1i = q1i• then e; = c; + c;+t for all i and thus the series (2.18) is identical to (2.16) with 
m = 0. An analogous remark holds if hi 1 = qi 1• 

2.3. Analysis of the sequence of a. and Pt 
Under favourable conditions x...,,.(ao. (Jo) reduces to ajinite sum. This happens if c1 or d; 

vanisbes for some i ~ 0 and for some i s 0, which means that from tilere no more compensation 
is needed (all subsequent coefficients vanish; cf. (2.20)-(2.22)). A simple example is that of two 
independent M IM 11 queues, each with worklo~ p. For ao =Po = p no compensation is 
neededat all, so x...,,.(p, p) reduces to 

x...,,.(p, p)=pmp". 

Conditloos for getting such product fonn solutions are well-known (see e.g. [9)). 

Under unfortunate conditions compensationfails. This happens if forsome value of i the 
equation (2.9) with fixed p = fl; or fixed «= «i+l reduces toa linear equation, so the necessary 
second root does not exist If the second root is equal to the first one, then it CaiJ. be verified that 
the oompensadon procedure constrocts the null solution. Furthennore, oompensadon fails if for 
some value of i the denominator in the definition of the coefficients vanishes ( cf. (2.20)-(2.22)). 

Let us suppose in this section that for the initial ao. Po in at least one direction infinitely 
many compensation tenns are needed and that oompensadon is always possible. We want to 
know under what conditions the infinite sum x .... ,.(ao, (Jo) converges. To aid convergence of 
x"",.( ao. fJo) for jixed m and n we require that «; and !}; tend to zero as I i I tends to infinity. To 
aid convergence of the sum of xm,,.(<Xo. Po> over all values m and n (necessary for nonnaliza
tion) we require that I «d < 1 and I Pd < 1 for all i. 
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Conv~gence requirements l.S. 

(i) a; and Pi tend to zero as I i I tends to infinity; 

(ü) la;l <landiPil <lforaUi. 

Below we invesûgate the implications of these convergence requirements for the transi

tion possibilities in the interlor of the state space. Numerical evidence suggests that the 

behaviour of a; and 13; when q1,t + qo,t + q 1,0 > 0 is essentially different from the behaviour 
of a; and 131 when q 1.1 + qo,1 + q 1,0 = 0. This is illustrated in the figures 2.3 and 2.4. 

3 

-20 20 

Figure 2.3. 

The behaviour qf la; I for <Xo = (l + Ci)/2 and rates q1,-1 = 2, Q-1.-1 = q-1.1 = Qo,-1 = 1, 
q-1,0 =Oandqt,1 =0, qo,1 =qt,o = 1/2. 

The behaviour of I a; I for an exantple with ql,1 +qo,1 +q1,0 > 0 is depicted in figure 
2.3. Por that example a; does not converge to zero as I i I tends to infinity, and in fact demon
strates an oscillating behaviour. Numerical experiments suggest that this is a typical feature of 

a; when qt,t +qo,J +qt,o > 0. 

The behaviour of I a;l for an exantple with q 1,1 + q 0,1 + q 1,0 = 0 is depicted in figure 
2.4. Por that exantple a; converges to zero very fast as I i I tends to infinity, with a single trip 
outsidl: the open unit disk. Numerical evidence suggests that this is a typical feature of a; when 

q1,t +qo,t +q1,o=O. 

Below we try to prove these features. Since a; and a;+1 are the roots of the quadratic 
equation (2.9) with 13 = 13; we have 
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la;l 

2 

---------------------- ----------------------lal =1 

-20 20 

Figure2.4. 

The behmliour of I ad for <Xo = (1 + ...CÏ)/2 and rates q1.-1 = 2, q-1.-1 =q-1.1 =qo,-1 = 1, 
q-1,o=Oandq1,1 =qo,l =q1,o=O. 

J3fq1,-1 + J3;q1,0 +q1,1 
«X;<Xi+1 = + • p, q-1,-l + !Jiq-1,0 +q-1,1 

(2.23) 

J3;q- qo,l -p~qo,-1 
a; + <Xi+l = 2 • 

i};q-1,-1 + ji;q-1,0 +q-1,1 
(2.24) 

and acoordingly IJ; and Pi+ I are the roots of (2.9) with a= a.;+1 and therefore satisfy 

A.A. _ O.f+1q-1,1 +<Xi+lqO,I +ql,l 
t'W1+1- 2 

O.j+lq-1,-1 +O.i+lq0,-1 +ql,-1 
(2.25) 

2 
A A O.i+1q-ql,0-0.i+lq-l,O 
t'i+t'i+1 = 2 

(Xi+1q-1,-1 + a.i+lq0,-1 + ql,-1 
(2.26) 

If a; and i}; converge to zero as I i I tends to infinity, then wededuce from (2.23)-(2.26) that 

q1.1 =qo,l =qt,o=O. 

This condition is necessary for convergence to zero of a; and (3;. The case of two independent 
M IM 11 queues mentioned at the beginning ofthis section violates this condition and therefore 
the oompensadon approach would not work. Fortunately, in this case no oompensadon is 
needed at all. In other cases violating this condition, like two M IM 11 queues with coupled 
anivals (cf.[24,45]) and the coupled processor problem (cf. [14,20,47]), oompensadon is 
needed, but it would not work. lndeed, the solutions are essentially more complicated in these 
cases. We suppose from now on that the condition above is satisfied and moreover, to exelude 
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pathological cases, that there is a rate oomponent to the soutb-west (cf. assumption 2.1). 
; 

Assumption 2.6. 

(i) q 1,t =qo,t = qt,o-=0 (there is no rate component to the north, north-eastand east); 

(ii) q-t.o + q-1,-t +qo,-t > 0 (there is a rate component to the south-west). 

Note that assumption 2.6(i) and assumptions 2.1(i) and 2.1(iü) imply that 

qt,-t>O, q-t,t>O. 

We now investigate whetber assumption 2.6(i) guarantees convergence for any starting pair of 

roots ao. Po of equation (2.9) satisfying I ao I < 1 and I Po I < 1. By assumption 2.6(i) the 

equation (2.9) simplifies to 

(2.27) 

For each fixed a or fixed fJ equation (2.27) has two roots, except when (2.27) reduces to a linear 
equation, but then it is sensible to define oo as second root. We state the following lemma for 

the roots of equation (2.27) .. To prove the lemma we use Rouché' s theorem, rather then the 

explicit fonnulas for the roots of equation (2.27). Rouché's theorem reads as follows. Let the 

bounded region D have as its boundary a closed Jordan curve C. Let the functionl(z) and g(z) 

be analytic both in Dandon C, and assume that 1/(z)l < lg(z)l on C (so automatically 

I (z) + g (z) ':1: 0 on C). Then I (z) + g (z ~ has in D the same number of zeros as g (z ), all zeros 

counted according to their multiplicity. 

Lemma2.7. 

Foreachjixed asatisfying 0 < lal < 1, equation (2.27) has exactly 

oneroot~withO< 1~1 <lal andoneroot~with 1131 >lal. 
The smne holds with a and fJ interchanged. 

Proof. 

Dividing equation (2.27) by o?- and using the new variabie z =~I a, we obtain the follow

ing equation for z, 

Let 

l(z)=z2(crq_,,-l +aqo,-t +qt,-t) • 

g(z)=-z(q-aq_t,o)+q-1,1 · 

(2.28) 
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Reeall that q is the sum of the qi/S (see (2.6)). Then for all I z I = 1, 

1/(z)l Sq-1,-1 +qo,-1 +qt,-1. 

lg(z)l2:q ... t,-l +qo,-1 +qt,-1 • 

where, by assumption 2.6, at least one of the inequalities is strict. Now the lemma follows by 

applying Roucbé's theorem to/(z) and g(z) above and the unitcircle forC. 0 

Lemma 2. 7 leads to the following properties of the sequences {a;} and {Po). Note that in the 
formulation of corollary 2.8 the case 1 > I Po I = I a.o I > 0 is not possible by lemma 2.7. 

Corollary 2.8. 

Let a.o and Po be roots of equation (2.27) satisjying 1 > I a.o I > I Po I > 0. 
Then there exists a negative value of i for which I a; I ;:: 1 or I Pi I ;:: 1 and 

1 > l«t+tl > IPï+tl > · · · > la.ol >I Pol> l«d >liJd> · · · J.o. 

A simtlar reslilt holds if a.o and Po satisjy 1 > I Po I > I «o I > 0. 

Proof. 

The monotonicity follows directly from lemma 2.7. To prove that tilere exists a negative 

value of i for which I«; I ;:: 1 or I!}; I ;:: 1, we also need information about the IJ-roots of equa
tion (2.27) for fixed a. with I «I = 1. 

For fixed a. with I «I = 1 and a. ;r. 1, -1 it follows by applying Rouché's theorem, simi
lady as in the proof of lemma 2. 7, that equation (2.28) has one root z with 1 z 1 < 1 and one root 

z with 1 z 1 > 1. The same result holds fora. =-1 if at least one of the rates q_1,0 and q0,_1 is 

posiûve. For fixed «= 1 and, if q_1.o=qo,-t =0, also for a.=-1 equatiop (2.28) is solved by 

z = 1 and z =q-t,tl(q-1,-1 +qo,-t +ql,-t), respectively. 

Hence, if q-1.1 < q-1,-1 +qo,-1 + q1,-1t we cao define z(a.) astheroot of (2.28) for fixed 
a. with 1«1 S 1, which satisfies z(a.) < 1. Since z(a.) is conûnuous, the maximum of lz(«)l for 

I «I s 1 exists and is less than one. So I !}; I a;l = I z (a; )I s max 1 a.l s t1 z (a) I < 1 as long as 
I a; I < 1. This proves that I ex; I and I !}; I decrease exponentially fast to zero as i teltds to 
infinity, and that I ex; I ;::1 or I IJ; I ;:: 1 forsome negative value of i. 

If q-1.1 2:q-1,-1 +qo,-1 +q1,-t. then from assumption 2.6(ii) we obtain the inequality 
qt,-1 <q-1.-1 +q-t,o+q-1,1· Hence, we cao repeat the arguments above by considering the 
roots of equation (2.27) for fixed p instead of fixed a.. 0 



~ · tbe sequence of a; and Ji; is started with roots ~ and Po of (2.27) satisfying 
0< I~ I< 1 and 0< I Pol< 1, then I~ I< I Pol or I~ I> I Pol by lemma 2.7 (equality is 
oot possible). Hence, by corollary 2.8, I ai I and I Ji; I decrease to zero in at least one direction. 
In tbe opposite direction I a; I and I Ji; I increase and eventually I a; I ~ 1 or I Ji; I ~ 1 forsome i. 
Therefore we cannot meet the convergence requirements in that direction, unless in that direc
tion c; or d; vanishes for some i before I a; I ~ 1 or I Ji; I ~ 1. After renurnbering tbe terms this 
amowtts to the requirement that the initial product aii'P8 fits the horizontal boWldary condi
tions (d_1.= 0) if I~ I > I Po I or otherwise the vertical boundary conditions (c 1 = 0). In such a 
case we have to generate compensation tenns in the decreasing direction only. Pairs ~. Po 
satisfying these requirements will be calledfeasible pairs. 

Definition 2.9. 

A pair ~. Po will be called feasible if: 

(i) aoandJioarerootsof(2.27)with0< laol <1and0< IPol <1; 

(ii) laol > IPol•d-t=O; 
(rli) 1~1 < IPol=t>Ct =0. 

Condusion 2.10. 

For convergence the following two conditions are crucial: 

(i) The Markov process has to satisfy Qo,l =Ql,l =q1,0 =0; 

(ii) We have to initialize x~~~,"(flo, Po) with a feasible pair flo, Jio. 

We end this secdon with a theorem stating that flo, Jio, a 1, P1, ... can be solved explicitly 
if 1 > laol > IJiol. The same result holds for Po. ao. li-~t a_., ... if 1 > IPol > laol (cf. 
lemma 3 in Kingman [441). 

Theorem 2.11 (Explicit solution of a; and Ji;). 

Let ao and Po be roots of equation (2.31) with 1 > I ao I > I Po 1. 
Then there exist complex numbers a and b, tiepending on ao and Po, such that for i ~ 0 

_!__=A + ..f.Y<aA.i + - 1
-. ) , 

a; a"A.' 
(2.29) 

_!__ =B +..fi(b"A.i + -~-.) 
Pi bA.' ' 
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where 

A
_ QQ-t,o + 2qo,-tQ-t,t 
- 2 ' 

q ~4ql,-1Q-1,1 
(2.30) 

B
- QQ0,-1 +2q-1,oql,-l 
- 2 ' q -4q1,-1Q-l,l 

Y= A
2
q1,-!Q-l,l + Q-t,IQ-t,-1Q

2 
:q;1,lQO,-t(Qq-1,0 +Q-1,1QO,-t) 

q q (q -4q1,-1Q-I,t) 
(2.31) 

3
_ B2

Qt,-JQ-1,t + Qt,-tQ-1,-1Q
2 

+qt,-tQ-t,o(qqo,-1 +Qt,-JQ-t,o) 

- q2 q2(q2 -4q1,-IQ-1,1) ' 

À.= q-"'q
2

-4q1,-1Q-l,l 

. q+"'q2
-4q1,-iQ-1,1 

(2.32) 

Proof. 

We prove the expressions for 11 a;. The expressions for 1/ ~; can be obtained similarly 
(replace Qii by Qji). By corollary 2.8 the numbers a; and ~; are nonzero for i ~ 0, and equation 
(2.27) does not reduce to a linear equation for fixed ~ = ~; or a= a;+t• so the denominator in 
(2.23)-(2.26) does not vanish for i ~ 0. Then, from (2.23) and (2.24) we obtain for i ~ 0 tbat 

(recall that Q1,1 =qt,o = 0), 

_1 +-1-=_!__L_ Qo,-t . 
a; a;+l P; q1,-1 Qt.-t 

Adding this relation to the one with i replaced by i+ 1 yields for i ~ 0, 

_1 +-2-+_1_=[_!_+_1_]_L_2 qo,-t. 
a; a;+t a;+z Pi Pi+1 · q 1,-1 q 1,-1 

From (2.25) and (2.26) we obtain for i ~ 0 the analogue of (2.30) for 1/ Pi• 
_!_+_1_=_1 _ _L_ q-1,0. 

Pi Pî+t a;+1 q~t.1 q-1.1 

Inserting this equality into (2.34) gives for i ~ 0 

_1 +-2-+_1_=[-l _ _L_ Q-I,O]_L_ 2 Q0,-1. 
a; ai+t a;+2 ai+1 q-1.1 Q-1,1 Qt,-t Q1,-t 

(2.33) 

(2.34) 

This is a second order inhomogeneons recursion relation for 1/ a;, the solution of which is 
givenby 
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1 . . 
- =A +a 1 À.1 + a2Ä.'"" , <Xï . (2.35) 

where A and À. are given by (2.30) and (2.32) (not.e that by assumption 2.6(ii) the denominator 
q2 -4q1,_1q_1,1 is positive), and at and az are complex constants, wbich follow from the ini

tial values 1/ 0o and 1/ Ut. To establish (2.29), with a= a 1t..f.i, it remaiDS to prove that 4t and 

4t4:z =y. 

First note that (2.23) is equivalent to 

1 = Q-1,1 _1_ + q-1,0..!.. + q .. l,-1 . 

<Xï <Xi+l ql,-1 JJ1 Ql,-1 (:}; ql,-1 
(2.36) 

Eliminating 1/ fiï from (2.33) and (2.36) leads to 

( 2-2 2 )_!__1_ 
QJ, .. fq ql,-lq-1,1 IV ty, 

""Î ""Ï+l 
(2.37) 

=Q-t,-tq2 + qo,-t(qq .. t,o + q .. t,tQo,-t) 

+ [ qt,-t(qq-1,0 +Q-t,tqo,-t)+qo,-tq-t,tql,-t] [ ~ + uL
1

] 

By inserting the expression (2.35) for 1/ ao and 1/ u1, equation (2.37) reduces to the identity 

D 

Remark 2.12. 

Assumption 2.6(ii) excludes the special case that all qii• except q .. 1,1 and q 1,_., are zero. 
The results in this section and in the following secdons are essentially still valid for this special 

case (except when q .. 1,1 = q t,-1), and often simplify. In particular, in this case equation (2.27) 

further sintplifies to 

(u-~)(a.q .. ,,1 -fiq1,-1)=0, 

for wbich it is easy to prove, if ao = ~. that for all i 

a;= [q1,-t] 'ao, Pï = [qt,-t J iPo. 
q .. J,l q .. l,l 

The generation of u; and f};, and consequently the compensation metltod, fails if q .. 1,1 = q 1, .. 1• 
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2.4. On tbe existence ot feasible pairs 

One of the questions that now arise is how many feasible pairs of c:xo. ~ exist and whether 
these pairs are realor complex. Another question concerns conditions for the existence of feasi
ble pairs. In this section we show, by considering a Markov process closely related to the origi
nal process, that the number of feasible pairs directly follows from the transition structure at the 

boundaries and that all tilere pairs are real. In the next section we derive conditloos for the 
existence of feasible pairs. The analysis is restricted to the feasible pairs with respect to the hor

izontal boundary. This means that we only consider roots c:xo. flo of equation (2.27) with 
1 > ICXo I > I~ I > 0 satisfying d_1 = 0. Feasibility with respect to the vertical boundary can 
be treated similarly. 

We first treat the case that h1, 1 > 0 and consider an irreducible Mark:ov process on the set 
{ (m, n)lm +n > 0, n ~0} v { (-1, 0), (0, 0) }. The transition rates from states with 
m + n > 0 are given by h1i if n = 0, and by q;i if n > 0. We assume that from states with 
m + n = 1 and n > 0 transitions are possible to (-1, 0) and (0, 0) with rate 
(q-1,o + q-1,-1 +qo,-1)/2 toeach ofthe two states. From (-1, 0) and (0, 0) the Markov process 
can reenter the set of states with m + n > 0 with rates hii· The transition-rate diagram is dep
icted in figure 2.5. 

The equilibrium equation in state (m, n) with m + n > 0 is given by (2.1) for n > 1, by 
(2.4) for n = 1 and finally, by (2.5) for n = 0. The equations in (-1, 0) and (0, 0) are different 
from (2.5), which is mainly due to the incoming rates from states with m + n = 1. Now define 
for each CXo and ~. 

{

«3'133 for m+n > 0, n > 0; 

Zm,,.(CXo. flo) = /oalr for m :!: -1, n = 0. 

Then, for roots c:xo. flo of equation (2.27) with 1 > ICXo I > I ~ I > 0 satisfying d-1 = 0, the pro
duct zm,,. ( c:xo. flo) satisfies the equilibrium equations in all states wilh m +n > 0, and 

L I Zm,,.(CXo, flo)l < 00 • 

m+~t>O 

.. ~o 

(2.38) 

For each finite set of pairs c:xo. flo the corresponding products zm,,.(CXo. ~)are linearly indepen
dent on thesetof states wilh m+n > 0, which follows from the next lemma. Lemma 2.13 can 
easily be proved by using properties of the Vandermonde matrix and therefore is omitted. In 

fact, a generalization ofthis lemma to infinite sums will be proved later on. 



m+n=l 

Figure2.5. 
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n 

-1 O• 
I 
I 

Q-1,1 

·-··~ 
Q-1,-1 Qo,-1 Q1,-1 

ht,t h-t,t ho,t ht,t 

Transition rates for the Markov process in the proof of conclusion 2.13 on the set 

{(m. n)lm + n > 0, n ~ 0} u { (-1, 0), (0, 0) ). ft is assumed that ht,l > 0. 

Lemmal.13. 
I 

Let (ao, bo) •... , (a~o b,) be distinct. Then I: k;a'rbf = 0 (m ~ 0, n ~ 0) ~ ko = ... = kt = 0. 
i=O 

The first question is how many feasible pairs there are. Suppose that (clo, Po> and (Öo. Po> 
~ 

are feasible pairs. Then there exist nonnull coefficients k and k such that the linear combination 

kz".,,.(clo, Po>+ tz".,,.(ÖcJ, Po> satisfies the (homogeneous} equilibrium equation in state (0, 0). 

The rem~~ equation in ~ta«:_ (-1, 0} is also satisfied, since inserting this linear combination 

of z".,,.(ao, !Jo) and z".,,.(ao, !Jo) into the equations on the set of states with m + n ~ 0 and 

n ~ 0 and then summing these equations and changing summations, exactly yields the equili

brium equation in state (-1, 0). Changing summations is justitied by the absolute convergence 

in (2.38). So iz".,,.(clo. Po>+ kz".,,.(Öo. Po> is an absolutely convergent solution of the equili

brium equations of~ Marlcov p~ 0: tigure 2.5, and further, this linear combination is non

null, since z".,,.(ao. !Jo) and z".,"(ao. !Jo) are linearly independent. Hence, by a result of 

Poster (see appendix A), the Madcov process in tigure 2.5 is ergodie and normalization of 

iz".,,.(clo, Po>+ kz"",.(ÖcJ, Po> produces the equilibrium distribution. Since the equilibrium 
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distribution of an ergodie Markov process is unique and for different pairs of ao and Po the pro
ducts z~~~,,.(ao. Po> are lineady independent, we cao conclude that there exist at most twofeasi
blepairs. 

'The second question is whether there exist complex feasible pairs ao. Po· Suppose ao is 

complex. Then there exists a nonnull coefficient k such that the sum of kz~~~,,.(ao. Po> and the 

complex conjugate of this tenn satisfy all equations of the Markov process in figure 2.5. How

ever, for fixed n ~ 0 this sum is of lhe fonn 

KaS'+Kä~. 

which bas positive and negative valnes for m > 0 and lherefore cannot produce probabilities. 

Hence, ao must be real. By a simtlar argument, it follows that Po must be real and moreover, if 

there exist two feasible pairs, then at least one of the <Xo (and one of the Po> must be pasilive. 

It remains to consider the two cases ht,t =0, ho,t +ht,o > 0 and h 1,t =ho,t =h1,0 =0. In 

the fonner case there exists at most one feasible pair of (positive) ao and Po. This can be proved 

analogously to the case h 1,1 > 0 by considering the irreducible Markov process on the set 

{ (m, n)lm +n > 0, n ~0} v { (0, 0)} where the rate q-t,o +q-1,-t +qo,-1 from states with 

m + n = 1 and n > 0, which is split up between (-1, 0) and (0, 0) in figure 2.5, is now com

pletely directed to (0, 0). In case h 1,1 =h 0,1 =h 1,0 =0, it can easily be derived from the 

definition of d_1 that tilere exist no feasible pairs. 

The conc1usion is that we càn sèe directly from the transition structure at the horizontal 

boundary how many feasible pairs ao. Po lhere are at most and further, that all feasible pairs are 

real. 

Condusion 2.14. 

There áre at most two feasible pairs ao. Po with respect to the horizontal boundary. These pairs 

are always real. The maximum number of feasible pairs depends as follows on lhe transition 

structure at the horizontal boundary: 

(i) lf h 1,1 > 0, then there are at most two pairs. If there are indeed two pairs, then at least one 

ofthe <Xo (and one ofthe Po> must be positive; 

(ii) If h 1,1 = 0 and ho,t + h 1,0 > 0, then tilere is at most one pair. These roots are positive; 

(iii) If h 1,1 = ho,t = h 1,0 = 0, then there are no pairs. 
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2.5. Conditloos for the existence of feasible pairs 

We now proceed to derive conditions for the el!iistence of roots ao. Po of equation (2.27) 

with 1 > I ao I > Po I > o satisfying d_1 = o, that is, by definition (2.22), 

aäh-t,t +aoho,t +ht,t +h + 2h _ h _ 0 A 1,0 <Xö -•.o ao - • 
P-1 

(2.39) 

aäh-t,t +aoho,t +ht,t +h ·+ 2h h 0 Po 1,0 <Xö -•.o - ao ':f: • (2.40) 

1be roots Po and P-1 wil1 be regarded asfunctions ofao. By condusion 2.13 the analysis can be 

restricted to real ao. It is readily verified that inequality (2.40) is always valid for nonzero 

aoe(-1, l)satisfying (2.39). To analyse (2.39) we insert the explicit fonnula fortheroot !Lt. 
for which we first derive some useful properties. 

For fixed a equation (2.27) is solved by 

q- C1Jl-1 0 + -./(q- C1Jl-1 oi- 4(crq_l -1 + C1Jl0-1 + ql -l)q-1 1 
X+(<X)=<X ' - ' ' ' ' ' (2.41) 

- 2(crq_•.-• + C1ilo.-1 + q•.-•> 

The denominator in (2.41) may vanish forsome a< 0. For such an a, X_(a) and x;1 (a) can be 

extended by taking X_(a) =C1Jl-1,11(q- o.q_1,0) and x:;1 (a) =0, thus X+(a) =oo. Let Y :!:(Jl) 

be the roots of (2.27) for fixed p. We now prove the following monotonicity properties. 

Lemmal.lS. 

ForallO <a< 1 

(i) the ratio X+(a) I a is decreasing and X _(a) I a is increasing; 

(ii) IX+(-«) I ~X+(«) > a > X_(a) ~ -X_(-a) > 0. 

The sameproperties holdfor Y :!:(~). 

Proof. 

For all-1 <a< 1 the discriminant D (a) in (2.41), defined by 

D(a) = (q- C1il-t,oi -4(«2q-t,-t + C1ilo,-t + qt,-t)q_t,t • 

is positive, which follows by using the fact that D (a) is decreasing fora~ 0, so for 0 Sa< 1 

D(-a) ~D(a) > D(l)=(q-t,-1 +qo,-1 +q1,-1 -q-1,d ~ 0. 

Hence X_(a) and X+(a) are real for-1 <a< 1. 

Since X+(a)/ a is decreasing forO <a< 1 we obtain forO <a< 1 
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From (2.41) follows 

i.e., 

X+(l)= q-1,-1 +qo,-1 +q1,-1 +q-1,1 ± lq-1,-l +qo,-t +qt,-1 -q-1,1 I , 
- 2(q-t,-1 +qo,-1 +q1,-t) 

X+(l)= 1 if q-t,-t +qo,-1 +q1,-1 ~q-1,1; 

> 1 otherwise. 

Hence, from (2.42) we can conetude that for 0 < a < 1 

IX+(-a)l x.(a) 

I I 
~-->1. 

-a a 

Tile root X_(a)/ a can be rewritten as 

. 2tvn 11 
X_(a) = ""{- · 

q- tlq-1,0 + ..J(q- tlq-1.o'f -4(alq_t.-t + tlqo,~t +qt,-1>q-1.1 

Hence, for all 0 <a< 1 the ratioX_(a)/a is increasing, so 

0 < X_(-a) S X_(a) < X_(l) S 1 . 
-a a 

This completes the proof of lemma 2.15. 

Using lemma 2.15 we can refine corollary 2.8 as follows. 

Lemma%.16. 

Let «o and ~ be roots of equation (2.27) satisfying 1 > I «o I > I~ I > 0. 
lfO < «o < 1, then 

«o > X_(«o)=~ > Y_(~)=a1 > X_(at)=~t > · · · > 0, 

and if-l < «o < 0, then 

«o < X_(«o)=~ < Y-(~)=at < X_(a1)=~1 < · · · < 0. 

Since I «o I > I~ I it follows that I «o I < I ~-tl, so by lemma 2.15 we can set · 

~-1 =X.(«o) 

(2.42) 

(2.43) 

0 
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(and Po =X_(Oo)). Substituting this identity into equation (2.39) and rearranging tenns we 

obtain that ao bas to be a root ofthe equation (h is the sum of the h;j's. see (2.8)) 

«2h-11 +a.ho 1 +h11 2 a.h = • ( ). • + a. h-1 0 + h 1 0 . x+ a. . • (2.44) 

Denote by LH(a.) the lefi-hand side of (2.44) and by RH(a.) the right-hand side. Figure 2.6 

shows LH(a.) and RH(a.) for the case q-1.1 = qo,-1 = h-1,0 = 2, q1,-1 = h 1,1 = 1 and all other q;i 

and h;i are zero. 

Figure2.6. 

The left-hand side LH (a.) and the right-hand side RH (a.) of equation (2 .48) for the 

case q-1,1 =qo,-1 = h-1,0 =2, q1,-1 =h1,1 = 1 and all other q;i and h;i are zero. 

Figure 2.6 suggests the following lemma. 

Lemma2.17. 

The right-hand side RH (a.) of equation (2 .44) is strictly convex for 0 < a. < 1. 

To prove lemma 2.17 we need the following elementary convexity properties. 
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Convexity properties: 

(i) lf f(x) and g(x) are positive, nondecreasing and convex, then f()c)g(x) is convex, and 

strlctly convex iff (x) or g(x) is strlctly convex; 

(ii) /f f (x) and g (x) are convex, then f (x)+ g(x) is convex, and strlctly convex if f (x) or 
g ()c) is strictly convex; 

(iii) lf f (x) is posltive and strictly concave, then ll f (x) is strictly convex; 

(iv) lf f ()c) is positive, decreasing and strlctly concave on (0, 1), then xf (x) is strictly concave 
on (0, 1). 

Proof of lemma 2.17. 

By inserting the fonnula (2.41) forX+(<X) into RH(cx) we obtain 

2(crq_•.-• +cxqo,-t +qt,-tXcrh-t,t +<Xho,t +ht,t) 2 RH(cx) = _ r::::-:-:-: +ex h_t o + h 1 o , (2.45) 
<X(q -<Xq-t,o +"'~D(cx)) ' ' 

whereD(cx) is the discriminant in (2.41). We first prove that q -cxq_1,0 +..JD(cx) is positive, 

decreasing and strictly concave for 0 < ex < 1. The first and second property are easüy verified. 

To establish the third property it suffices to show that for 0 < ex < 1 

This second derivative is given by 

[~] "= 2D"(«)D(«)- D'(cx)2 

( ) 4D(cx)312 

where 

D'(<X)=-2( Q-1.o(q -cxq-1,o)+2q-t,t(2cxq_t.-t +qo.-t>). 

D"(<X) = 2q:l,O - 8q-1,1q-1,-l · 

(2.46) 

Hence, if D"(cx) S: 0, then (2.46) follows directly. lf D"(cx) > 0, then (2.46) follows by using 

0 < D(cx) < (q- <Xq-t.oi, 0 < D"(cx) S 2q:t,o , D'(cx)2 ;:: 4q!,,o(q- <Xq-t,o'f. 

valid for all 0 <ex< 1. Hence, we can conclu~e that q- cxq_1,0 + ..Jv(a) is positive, deCreasing 

and strictly concave for 0 <ex< 1. Then foilows from convexity property (iv) that the 

mtmerator in (2.45) is strictly concave for 0 < ex < 1 and so, by the properties (i) and (iii), that 

the quotientin (2.45) is strictly convex. Finally. by convexity property (ii), the sum in (2.45) is 

strictly convex for 0 < ex < 1. This completes the proof of lemma 2.17. D 
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It is easily verified that at the boundary a= 0 

RH(ot')>lR(O) if h1,1+ho,1+ht,o>O: 

= IR (0) otherwise ; 

and, by using (2.43), that at the boundary a= 1 

RH(l)<lR(l) if q-1,-1+qo,-1+q1,-1>q-1,1; 

=Ul(l) otherwise. 

Hence, by lemma 2.17, in case h 1,1 + h 0,1 + h1,0 > 0 there is a root of equation (2.44) in the 

interval (0, 1) ifq_t.-1 +qo,-1 +q1,-1 > q-1.1 and otherwise the following extra condition is 

required: 

Conditioo: RH'(l) > IR'(1). 

Remark that the square root in (2.41) vanishes at a= 1 if q-1,-t + qo,-t + q1,-l = q_1,1 and thus 
the (left) derivative ofthis square root at a= 1 is -co. Consequently, in this case the derivative 

of RH at a= 1 is + oo, so the condition above trivially holds. 

Lemma2.18. 

lfthefollowing two conditions hold: 

(i) h1,1+ho,1+ht,o>O: 

(ii) q-1,-t +qo,-t +qt,-1 > q-1,1 => RH'(l) > LH'(1), 

then equation (2.44) has a u.ni(/ue solution in (0, 1). 

lf condition (i) or (ii) does not hold, then equation (2.44) has no solution in (0, 1). 

We know from section 2.6 that equation (2.44) may have a second solution in (-1, 1) if 

h 1,1 > 0. We show that condition (ii) in lemma 2.18 also guarantees the existence of a second 

solution in (-1, 0) ü h 1,1 > 0. Since RH(O-)::.:-oo and RH(a) and Ul(a) are continuous on 

[-1,0), thereexists a root in (-1, 0) üforsome ae [-1, 0) 

RH(a) > Ul(a). 

1bis inequality trivially holds if nZh-1,1 + aho,1 + h 1.1 = 0. Now suppose there is no such a. 
Then, by taking a= -1, we find 

h-t,t-ho,t+ht,l >0. (2.47) 

By lemma 2.5 and (2.43), 
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IX)-1)1 s; x.
1
(1) s; 1 . 

So we also find 

1 
x.(-1) ;;::-1 • 

(2.48) 

with equality ifand only if q-1,-1 +q1,-1 ;;::q-1,1 and q-1.0 = qo,-t =0. CombiDing the inequali
ties (2.47) and (2.48) yields 

RH(-t);;::UI(-1), (2.49) 

with equality if and only if q-1,-1 +qt,-t ;;:: q-1.1 and q-1,o = qo,-1 = 0 and all hij= 0 with the 
exception of h-t,t and h 1,1• In case of equality in (2.49) we have RH(-a.)=-RH(a.) for 
0 <a.< 1 and thus condition (ii) in lemma 2.18 guarantees that equation (2.44) bas a solution in 

(-1, 0). CombiDing these results we can fonnulate the following theorem. 

Theorem 2.19. 

lf ht,l + ho,t + h1,o > 0, then the maximum number of feasible pairs with respect to the 

horizontal boundary is found i/ and only i/ the following condition is satisfied': 

q-1,-t + qo,-t + qt,-t > q-t,t :11> RH'(l} > LH'(l); (2.50) 

Depending on the boundary behaviour thefeasible pairs have thefollowing properties: 

(i) lf h 1,1 > 0, then there are two feasible pairs. One C4J is the solution lf equation (2.44) in 

(0, 1) and the other 0.0 Is lts solution in (-1, 0); 

(ii) lf h 1,1 = 0 and ho, I + h 1.0 > 0, there is one feasible pair. The C4J is the solution lf 
equation (2.44) in.(O, 1). 

lf h1,1 +ho,t +h1,o=O, then there are no feasible pairs with respect to the horizontal 

boundary. 

In the next section it is shown that condition (2.50) can be interpreted as a drift condition. 

2.6. Neuts' mean drift condition 

Condition (2.50) in theorem 2.19 stales that if the rate downwards exceeds die rate 
upwards, then inequality RH'(l)> LH'(l) must hold. This inequality can be inteipreted as a 

mean drift condition. In fact, we will show that inequality RH'(l) > LH'(l) corresponds to 

Neuts' mean drift condition ([51], Theorem 1.7.1.). 
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Consider a Markov process with generator Q of the fonn 

81 Bo 0 0 0 

A2 At Ao 0 0 

Q= 0 A2 At Ao 0 (2.51) 

0 0 A2 At Ao 

where all elements are (finite) (k+l)x(k+l) matrices. The states are denoted by (m, n), m = 0, 

1, 2, ... , n = 0, 1, ... , k, and are lexicographically ordered, that is, (0, 0), ... (0, k), (1, 0), ... , 

(1, k), (2, 0), .••• The set of states (m, 0), (m, 1), .•. , (m, k) is called level m. Suppose that 

Ao +A 1 + A2 is irreducible and let n: be the solution of 

1t(Ao+A1 +Aû=O, u=l, 

where eis the column vectorwithall its elements equal to one. Then by Theorem 1.7.1. in 

Neuts' book [5l] the Markov process Q is ergodie if and only if 

(2.52) 

The lefi-hand side of (2.52) can be defined as the mean drift from level m to m + 1, and the 

rigbt-hand side as the mean drift from level m+l to m, m > 0, where the mean is taken with 

respect to the distribution Jt. Then (2.52) states that the mean drift to the higher level should be 

less than the mean drift to the lower level, and therefore is called the mean drift condition. 

In our case, the generator Q is also of the fonn (2.51 ), but all elements are infinite matrices 

and levelmis the infinite set of states (m, 0), (m, 1), (m, 2), .... Hence, we cannot conclude that 
the mean drift condition (2.52) is necessary and sufficient for ergooicity of Q. However, if 

q1,-t +qo,-1 +q-1,-1 > q-1,1 

(so X_(l) < 1), then the row vector 1t = (Jt:o, 1t1, ... )is given by 

C 
q-1.1 

11:,.= . 
h-1,1 +ho,t +h1,1 

if n=O, 

=CX~(l) if n>O, 

where Cis the nonnalizing constant. The mean drift condition (2.52) then becomes 
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X_(l) q-11 

1 _X_(l) q1,-t + h_ +h • +h (h1,1 +ht,o) 
1,1 0,1 1,1 " 

X_(l) q-11 
< 1 X (l")(q-t,t +q-t,o+q-t,-1)+ h h' h (h-t,o+h-1,t) (2.53) 

- - -1,1 + 0,1 + 1,1 

The interestlog point is thatinequality RH'(l) > Ul'(l) can be rewritten as (2.53): 
First insert the identity (see (2.25)) 

• (crq-1,-1 + Wfo,-1 +qt,-•)X-<a.> 

"x+<a.> = crq_,,, 

into equation (2.44), tben differentlate equation (2.44) and insert the identity 

X_'(1)=X_(l)+ X_(l)q-1,0 + x:(lXqo,-1 +2q-t,-t) 
ql,-1 +qo,-1 +q-1,-1-q-1,1 q1,-1 +qo,-t +q-1,-1 -q-1,1 

which can be derived by straightforward calculation. 

Condusion %.20. 

If q1,-1 + qo,-t +q.:.t,-1 > q-l.t. then condition (2.50) in theorem 2.19 is equivalent to 
Neuts' mean drift condition (2.53). 

%.7. Slmplificatlons oftbe formal solutions with feasible pairs 

In the previous sections we derived necessary and sufficient conditions for the existence of 
feasible initial pairs (CXo, J}o) with respect to the horizontal boundary. There are at most two 

such pairs. We denote these pairs by 

(«r, X-(«r)) and (a.., X_(a..)), 

where «r is the solution of equation (2.44) in (0, 1) and a.. its solution op (:-1, 0). Analogous 

conditions can be derived on the vertical boundary. The feasible pairs on the vertical boundary 
are denoted by 

<P+• X-<13+)) and (fi-, X-<13-)), 

where P+ is the solution of the IJ-equivalent of equation (2.44) in (0, 1) and P- its solution on 
(-1, 0). For ao = «r and f3o =X-(«r) we abbreviate the notation x~~~,,.( o.o. J}o) to x~~~,,.(«r). 

Similar abbreviations are used for the other feasible pairs. 

The formal solutions x~~~,,.(ao. f}o) with feasible initial pairs simplify with respect to the 

general definition in secdon 2.2. If we take ao =«r and f3o =X-(«r), then d_1 =0 and so 
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d; =/; =0 for all i< 0. Then for m > 0 and n > 0 the series x~~~,,.(O..) simplifies to (see (2.16)

(2.17)) 

00 

X".,,.( U.)= t d;(C;«f' + Cï+1 «~1 )~7 
i=O 

00 

=doco~3«3'+ :r, Cï+1(d;~7+dï+1~7+1)a~1; 
i•O 

for m = 0 and n > 0 and for m > 0 and n = 0 to (see (2.18)-(2.19)) 

00 

xo,,.(O..) = :r, d;e;~7 , 
i=O 

00 

x~~~,o(O..) = cofoa3' + :r, ci+11i+1 «~1 , 
i=O 

respective1y, where the sequence {«;, ~;) is initialized by 

«o = 0..' ~ =X_(O..). 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

The solution x~~~,,.(a...) simplifies accordingly. If we take «o = Y -<~+> and ~ = ~. then c 1 = 0 

and so.c; = e; = 0 for i > 0. Then for m > 0 and n > 0 the series x~~~,"(~+) simplifies to 

-1 

x~~~,,.(~+)= doco«3'~3 + :r, d;(c;«7' +ei+! «~1)~7 
Î=-ao 

-1 

= 1:, Cï+1 (d;~7 + di+1 ~7+1)«~1 ; 
i=-ao 

form =Oand n > 0 and form > 0 and n=Oto 

-1 

xo ... (~) = doeo~3 + :r, d;e;~7 , 
i=-oo 

-1 
X""o(~+) = :r, Cï+l.fi+1 «7+1 • 

i=-oo 

where the sequence { «;, ~i} is initialized by 

The fonnal solution x~~~,"(~-) simplifies accordingly. 

(2.58) 

(2.59) 

In the next section we investigate whether for feasible initial pairs the construction of 

x~~~,"(«o, ~) may fail because of a vanishing denominator in the definition ofthe coefficients c;, 
d;, e; or /; (cf. (2.20)-(2.22)). 
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1.8. On tbe eonstruction of tbe tormal solutions 

In tbis section we investigate whether for .C:XO = <4 and Po =X_(«..) the construction of 
x".,,.(CXo, Po> can fail. The construction of x".,,.(c:xo. Po> for the other three ~,X>tential feasible pairs 
can be investigated accordingly. 

The construction of x".,,.(«..) fails if forsome normegalive value of i the denominator in 

the definition of the coefficients Ci+l• e;. di+l or fi+t vaniShes (see (2.20)-(2.25)). Since 
0 < ao = <4 < 1 andO <Po =X-(«r) < c:xo. from lemma 2.16 weobtain 

ao > Po > «1 > ~~ > · · · > o • 
where for all i ~ 0, 

~i =X_(ai). ai+1 = Y -<M, 

and therefore also 

a.;= Y +<M; ~i =X+(<Xi+t). 

(2.60) 

(2.61) 

(2.62) 

Inserting (2.62) into the common denominator of the definitions of d;+l and fi+1 (cf. (2.21)) we 
see that tbis denominator is equal to RH(ai+t)-LH(a.;+1). Hence; since a.;+1 <«.. by (2.60), 
we conclude that the denominator in the definitions of di+t and fi+t is positive for alll ~ 0. 
Similarly, it can be seen that the denominator in the definitions of ci+t· and e; (cf. (2.20)) van
ishes if ~i solves the ~equivalent of equation (2.44): 

A _ (32vt,-1 +13v1,o+Vt,1 + +A2 
"'v- Y+@) . vo,t "' vo.-t • 

i.e., if ~. = ~- The following example Shows that this possibility really may occur. 

Example 2.21. 

Consider the process for which qo,-1 = qt.-1 = Vt,-1 = h1,o = 1, q-1,1 =h-1,1 = 2. 
vo.-t = I, vo,1 = 1/2 and all other rates qiJ• h;.j and vi.i are zero (see fi~ 2.7). By theorem 
2.19(ii) and its ~analogue, the roots <4 and ~ exist and it is easlly verified that <4 = 1/2 and 
~ = 113 (the value fora.. is suggested by the propetty that the marginal distribution {p".} is 
that of an M IM 11 queue with Ioad l/2). The construction of x".,,.(«..) fails, since 
Po =X-(«t) = l/3 = ~. so the denominator in c1 vanishes. 

This leads to the following condition: 



n 

Figure2.7. 
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2 

• 53. 

2 

~ 
1 1 

An example for which the construction of x".,"(<X.r) fails, due to the fact that the 

denominator in the definition of c 1 vanishes. 

Condition 2.22. 

lf the roots <lt. and ~+ exist, then none of the IJ; of the sequence {<X;, IJ;} Ï=o with initial values 

ao =<lt. and f3o =X-(<X.r) may be equal to IJ+. 

By considerlng small pertwbatîons of the boundary conditions it can be shown that vlola

tion ofdûs condition is exceptional (see the remark at the end ofdûs section). In fact. insection 

2.13 we shall demonstrate that the probabilities of processes vlolating condition 2.22 can be 

obtained from a limiting argument At the end of this section we fonnulate the analogous con

ditions for the sequences {a;. Pil associated with x".,"(CL), Xm,,.(fl+) and x".,,.((}_). 

Above we investigated whether the denominator in the definitions of c1+1 and di+! van
ishes for some nonnegative value of i. Altematively we may investigate whether the numerator 

in these definitions vanishes. In this case all subsequent ei or dj vanish and x".,,.(<X.r) reduces to 

a finite sum. Since fli+l <~i by (2.60), it follows that the numerator in the definition of d1+1 is 

larger than the denominator, which is positive for all i ~ 0. This proves that for all i ;;:: 0, 

di+! 
d; <0. 

Inserting (2.61) into the numerator of the definition of Ci+t we see that dûs numerator vanishes 

if ~i solves the equatîon: 

~2vt,-t +flvt,o +vt,l 
flv = y _(fl) + vo,t + P2

vo.-t . 
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In the following example the numerator in c 1 vanishes, so c i = e1 = 0 for all i > 0. 

Example 2.23. 

Consider the process witb the same rates as in example 2.21, except that vo,-t = 3 and 
v0,1 = 0. By tbeorem 2.9(ii) the root«.;. exists and it is easily verified that «.;. = 1/2. Hence, by 

taking ao = «.;. and Po =X-(«;.)= ll~. it follows that d_1 = 0 and e0 =Jo= 1, but more impor
tantly, a1so c1 = 0, so for allmand n the solutionx".,,.(«;.) reduces to 

1"'1" 
x".,,.(«;.)= 2 3 . 

We now formulate the analogues of condition 2.22 for the sequences {a1, Pil associated 
with x~~~,,.(a....), x~~~,,.(fi+) and x".,,. (IJ_). Remark that from lemma 2.16 it follows that the sequence 
{a;. PI} Ï=O is positive and decreasing if we take ao = «.;. and Po =x_(«.;.). and this sequence is 
negative and increasing if we take ao =a.... and Po =X-(a....). The simHar remark holds for the 

sequence { <li· Pi} ï:O witb Po= P+ and ao = Y -<P+> and with Po= jL and ao = Y _(IL) respec
tively. Hence, to guarantee that the construction of the formal solutions witb feasible initial 
pairs succeeds, wè have to impose the following condition. 

Condition 2.24. 

Ij the roots «.;. and P+ e:xist. then: 

(i) None ofthe P1 of {<Xi. P1l Ï:o with ao = «.;. and Po =X-(«;.) may be equal to fi+; 

(ii) None ojthe <Xi of (<Xi. (}; }i=Ö with Po= P+ and ao = Y _(fi+) may be equal to «.;.. 

The same property should be satisjied with «.;..(}+ replaced by a....,jL. 

Remark 2.25. 

Let us investigate the effect of small perturbations of the horizontal boundary behaviour 
on the solutions «.;. and a..... If we reptace k 1,0 by k 1,0 +e with e~O. then equation (2.44) 

beoomes 

Uf(a)+ae=RH(a)+e. (2.63) 

Let «;.(e) be the solution of (2.63) in (0, 1) and a...(e) its solution in (-1, 0) .. Then it is readily 
verified that «;.(e) and a....(e) are continuous and increasing in e. Specifically, to prove that «;.(e) 
is increasing in e, its derivative has to be evaluated. From (2.63) follows 
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1-«.(e) 
a..'(e) = LH'(a..(e))- RH'(a..(e)) + e · (2.64) 

This derivative is positive for e ~ 0, since LH'(a..(e)) > RH'(a..(e)) by the strict con\texity of 
RH(a)(cf.lemma 2.17). Ifv0,1 is replaced by v0,1 + e with e~ 0, then the sameproperties for 
the solutions ~+(e) and (L(e) are readily derived. 

It cao now be concluded that if condition 2.24 is oot satisfied by the process at hand, it is 
satisfied by some e-pertwbed process. Hence, violation of this conditi.on is exceptional. In fact, 
insection 2.13 it will be argued by using a sequence of e-perturbed processes, that in case of 
violation of condition 2.22 the probabilities cao be obtained from a limiting argument 

2.9. Absolute convergence of the formal solutions 

We now try to prove that for all feasible initial pairs Cl(), ~ the series x".,,.(Cl(), ~)con
verges absolutely. Weneed absolute convergence to guarantee equality of(2.16) and (2.17). It 

appears however, that Xm.,.(Oo. ~) possibly diverges in states near the origin ofthe state space, 
but we will prove: 

Theorem 2.25 (Absolute convergence). 

There exists an integer N such thatfor allfeasible pairs (Cl(), ~): 
... ... 

(i) The series :r, d;c;a1'~7 and :r, d;c;+t a~t!i7 the sum of which defmes Xm.,.(Oo. ~) 
î=-oo i=-oo 

for m > 0 and n > 0, both converge absolutely for all m ~ 0, n ~ 0 with m + n > N; 
... 

(ii) The series :r, d;e;~7 the sum ofwhich de/mes xo,,.(Oo.Jio)for n > 0, 

i=-oo {n>N-2 
converges absolutely for all n > N -l 

n>N .. 

if Vt,l > 0; 

if Vt,l =0, Vt,o+vo,t > 0; 

if Vt,l =Vt,o=Vo,l =0; 

(iii) The series :r, c;+tfi+t«~t the sum ofwhich defmes Xm.o(ao, ~)for m > 0, 

conu.-ges :lutely /fN all{: :: =~ ~ :::: :~:ho, t+h 1,0 > 0; 

m > N if ht,l =ho,t ;;ht,o =0; 



(iv) I: lx".,,.(ao, Po> I <- . 
... ~o ... l!t.O 
m+~t>N 
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In the next section we will define N as the smallest integer that guarantees the absolute 
convergence, stated in theorem 2.25. 

2.10. Proof of theorem 2.25 

We only prove theorem 2.25 for ao =«tand Po =X-(«t). The proof is similar for the 
other three potentlal feasible initial pairs. We first derive the limiting behaviour of the sequence 
(CXj, P1 }1:,0 and the associated sequence of coefficients {c;, d;. e1,/;)/:o. Using these results the 
proof oftheorem 2.25 appears to be simple. 

Lemma2.26. 

(i) Let lxtl > lxzl be the roots 0/(2.27)/or jixed P with 0 < I PI < 1 and let 

{
xT'P" + c.:trf}", m > 0, n > 0; 

z".,,. = el3" , m = 0, n > 0, 

where c and e are given by (2.12) and (2.13) respectively. Then, as f} ~ 0, 

A 1 A . q + "q
2 

-4q1,-1q-1,1 
~ ~ - where 2 = ...;.__'---::-_..;.....:...;...:__...;._ 
Xt A2 · 2q-l,l 

c~-v 

Aï1Vt,-t -v 

AïtVt,-t -v 

if V1,1 > 0; 

if v1,1 :::::vt,o=vo,t =0. 

(2.65) 
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tf Vt,l =0, Vt,O +Vo,t > 0; 

(ii) Letlyd > IYzl betherootsof(2.27)forfixeda.with0< la.l < landlet 

, { a."'yT + da."'y! , m > 0, n > 0; 

w"",. = fa."', m > 0, n =0, 

where d andjare givenby (2.14) and (2.15) respectively. Then, as a.~ 0, 

a. 
-~At; 
Yt 

Y2 1 
-~-; 

a. Az 

d~-H where H= 

Az 

At 

Azho,t + h t,o 

A tho,l + h l,O 

Azh-t,t -h 

Ath-t,t -h 

tf ht,l > 0; 

tf ht,t =0, ho.t +ht.o > 0; 

tf ht,t=ho.t=h,~o=O; 

fa.-2 ~- q-t,~(A; -A,) tf ht,t > 0; 
1 1,1 

if ht,t =0, ho,t +ht,o > 0; 

if ht,t =ho,t =ht,o=O. 

Proof. 

We prove part (ii). Part (i) can be proved similarly. Let z (a) betbesmaller root of (2.28}, 

so y2 /a.=z(a.). Hence, since z(a) is continuous, as a.~ 0, 

Y2 1 
=z(a.)~z(O)=-, 

a A2 

and from (2.25), 

2 a a q-t.-t +a.qo,-t +qt,-t Yz _,_ 1 -A 
= ~ - 1· 

Yt q-t.t a q-1.1 Az 

(2.66) 

(2.67) 
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1be Umits of d and f can directly be obtained by letting a-+ 0 in (2.14) and (2.15) and then 

insel1ing (2.66) and (2.67). 0 

, For ao = ~ and Po = X_(CX..) it follows from corollary 2.8 that «; and Pi tend to zero as i 
tends toplus infinity. 1b.en we directly obtain the desir-ed limiting behaviour from lemma 2.26 

and the definitions of«;. ~i• ei, d;. ei and /; insection 2.2. Note that the ratlos ~;/«; and 

a;+1 / ~i are monotonically decreasing, which follows from 1 > ao > Po > 0 and the lemmas 
2.15 and 2.16. Furthermore, lemma 2.27 is formulated for ao =a... If a.. exists, then 

h 1,1 + h 1,0 + ho,1 > 0 by lemma 2.18 and thus the case h 1,1 = h 1,0 = ho,1 = 0 is notrelevant for 

the limit of/;+1 (cf.lemma 2.26(ii)). 

LemmaU7. 

Consider thefeasible initial pairao =a.,, Po =X_(a.,) and let i tends to infmity. Then we have: 

k.~._l_; 
«; A2 

«.i+l I A . 
Pi "' 1

' 

lf c; = Ofor some i > 0, then Cj =ei= Ofor il/.l j >i. Otherwise, as i -+ oo, then 

Ci+l 
--+-V; 

C; 

t/;+1 
T-+-H; 

ei q1,-1(Aï1 -Ai1) -- -+- ...;_;'-----;---
ciPt vuAi1 

e; qt,-t(Aï1 -Ai1) 
--+-
c;P; v 1,oAi' + vo,t 

e; qi,-1(Aï1 -Ai1
) 

--+-
Cj Vt,-tAil -V 

li+1 q-1,1(A2 -At) 
---+-
d;at+l A 1 h 1,1 

fi+t q-t,t(Az -At) ---+- ""'--'=--...;;;__~;_ 

d;«i+t A 1 ho,t + h 1,0 

i/ Vt,l > 0; 

i/ v 1,1 =0,v 1,0 +vo,t >0; 

i/ Vt,1 = VJ,O = V0,1 = 0; 

i/ hl,l > 0; 

i/ h1,1 =0, ho,t +ht,o > 0. 
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Tileorem 2.25 is trivial if c; = 0 for some i > 0, since then c1 = e1 = 0 for all j > i, so 

x".,n(O...) simplifies toa finite sum. Now suppose that c1 nevervanishes. To prove theorem 2.25 

in this case, consider a ftxed m > 0 and n > 0. Then by lemma 2.27, as i -+ oo, 

ld;+tCi+t«T+t~7+tl and ldi+tCi+t«n2~1+tl -+ IHVI(A IA )"'+11. 

ld;c;«T~1l ld;Cï+I«T+tfl?l 
1 2 (2.68) 

Hencè, if IHVI(AtiAû'"+tt < 1, then the series x".,11(0...) converges absolutely, and ifthe limit 

I RVI (A 11 A 2)'"+n > 1, then the series x...,,.( a..) diverges. Finally, nothing cao be said in general 

if IHVI(AtiA2)'"+n = 1. 

Similarly, by lemma 2.27, for fixed values m > 0 and n > 0, 

{ 

IHVI(At/A2)"+2 if Vt,l > 0; 
ldi+tei+tP1+tl 

_ __..;.._..;;..__-+ IHVI(At/A2)"+1 if Vt,t =0, Vt,o +vo,t > 0; 
ld;e;~?l 

IHVI(At!Aû" if Vt,t =vt.o=vo.t =0; 

(2.69) 

if ht,l > 0; 

if ht,l =0, ho.t +ht,o> 0, 

as i -+ -. Because 0 <A 1 < 1 < A 2 we can define N, mentioned in theorem 2.25, as follows. 

Definition 2.28. 

Let N he the smallest nonnegative integer such that I HV I (A tl A ûN+l < 1. 

From this definition and the limits (2.68) and (2.69) it follows that N is the smallest 

integer which guarantees the absolute oonvergence stated in theorem 2.25(i)-(iii). We finally 

prove theorem 2.25(iv) stating that the sum 

l: lx...,,.(O...)I 
mli!O,nli!O 
m+n>N 

converges. lnserting the definitions (2.54), (2.56) and (2.57) for x".,,.(O...) into this sum yields 

l: I x....,.(«+) I 
mO!!O,nli!O 
m+n>N 
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N oo oo • 

= !. !. I x"",.( ex...) I + !. !. lx"",.(cx...) I 
m=l a=N+l-m. m=N+la=l 

... ... 
+ !, lxo,,.(CX...)I + !. lx~~~,o(CX...)I 

a=N+2 m•N+2 

N oo oo • 

S!. !. !,ldd(lc;la1'+lc;+d~t)P1+ !. !. !,ldd(lc;l«1'+lc;+tl~t)P1 
m-la=N+I-m.i=O m=N+la=l i=O 

(1000 00 00 

+ !. !. I d;e; I P? + !. !. I ci+tli+t I «~t 
a=N+2 i=O m=N+2 i=-1 

since the ratio of successive tenns in each of these series tends to IHV I (A 1 1 AûN+t < 1 as i 

tends to infinity (for the last two series the limit of this ratio may be smaller). 1bis completes 
the proof oftheorem 2.25. 0 

Remark 2.29. 

If ho,1 + h 1,1 + h 1,0 > 0 and v 1,0 + v 1,1 + vo,1 > 0, then 

A2 · Az 
lSHSAt, 1:SV:SAt, 

so N:S2. In particular, N=2 if h1,1 >0 and v1,1 >0. However, if ho,1 +h1,1 +ht,o=O or 
v 1.0 + v 1,1 + v o,1 = 0, then N can be arbitrary large. This is illustrated by the following example. 

Considerthe process forwhich q-1.1 =h-t,t =2, qt,-t =vt.-t =ht,o = 1-ö, qo,-t =vo,-t ::ö~ 

where 0 < ö < 1 and all other rates qi,i• h;,j and v1J are zero (see tigure 2.8). Por this example it 
can readily be verified that 

A1 =1._.!...J1+8Ö, A2 =1+.!...Jt+8Ö, 
4 4 4 4 

(1- ö)Aï1 -1 1 + ..Jï+"8ä 
H=l, V= = _r--:;-:;. 

(l - Ö)A21 
- 1 1 - 'H + 88 

Hence, the integer N is the smallest nonnegative integer for which 

..Jï+"8ä + 1 [ 3 - ..Jï+"8ä ]. Nt-I < 1 . 

.Jt+83-1 3+..J1+8ó 
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n 

Figure2.8. 

An example for which N ~ oo as ~ J. 0. 

From this inequality it follows that N ~ oo as ~ J. 0. 

2.11. Linear independenee ofthe format solutions 

In this section we prove the following property. 

Lemma2.30. 

The solutions x".,,.(ao. Po) for different feasible pairs are linearly independent on the set of 

states { (m, n) I m ~ 0, n ~ 0, m + n > N}. 

To prove the lemma we first need the following result 

Lemma2.3l. 

Let the numbers ao, a1, a2, ... satisfy 0 < la; I < lfor i~ 0, 
a; ':l:ajfor i :~:j anda; ~ Oas i~ oo; defmeform ~ 0 

-
Xm= I: k;a'/' 

i=O 

00 

with I: I k;l < oo. Then Xm = 0 <;::::> k; = 0. 
i=O 
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Proof. 

De fine 

.. .. kj 1 1 
f(z)= :E x".z"'= :E -

1
--, ze€ \ {-, -, · · ·}; 

111,.0 i•O -OjZ Do Ot 

3; is the distance from the pole 1/ a; of f (z) to its other poles. 3; > 0, since all ai are distinct 
and ai -+ 0 as i -+ oo. Using Cauchy's theorem of residues yields 

1 k· 
x".aO => f(z)aO:;::. 0=-. J f(z)dz=...L:;::. k;=O (j't!O). 

2ru 1 8. a; ,,_..,.....,_...L 
Oj 2 

The implication k; • 0 :;::. x". • 0 is trivial. 

From this lemma we can derive an extension of lemma 2.13 to infinite sums. 

Corollary 2.32. 

Let the pairs (ao, bo). (at> bt). (a2, b2), ... satisfy 0 < la; I < 1, 0 < I bi I < lfor i;.;: 0, 
(a;, M ~(a;. b;)for i~ j and (ai, b;)-+ (0, 0) as i-+ oo; definefor m;.;: 0, n;.;: 0 

.. 
.X".,4 = :E k;a'/'b7 

i=O .. 
with :E I kd < oo, Then Xm,4 • 0 <:=:> k; • 0. 

i=O 

Proof. 

By first considering .x".,,. for fixed m we obtain from lemma 2.31 

x...,,. a 0 => :E k;a'/' = 0 (m ;.;: 0, j;.;: 0) :;::. k; = 0 (i t! 0). 
b,•bj 

The impHeation k; a 0 :;::. xiii,IJ = 0 is trivial. 

0 

0 

Condition 2.24 implies that the solutions x...,,.(CJo,flo) for feasible initial pairs have no products 
in common. Then lemma 2.30 easily follows from corollary 2.32. 
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2.12. Main result 

We now have all ingredients to prove our main result, stating that under certain drift con

ditions, the probabilities p".,11 can be expressed as a linear combination of the series 

Xm,11(<XQ, fin), with (<Xo, 1.\J) running through the set of at most four feasible pairs, on a subset of 
the state space. Essentially, this subset is the set on which the series x".,11(<XQ, Po> converge 

absolutely. By theorem 2.25, this set is given by 

J{(N) = {(m, n) lm;:: 0, n;:: 0, m + n > N}u':B(N). 

where the set ':B(N) depends on the transition structure on the axes, that is, 

{ 

{(N-1, 0), (N, 0)} if ht,t > 0; 

':B(N)= ((N,O)} if ht,t=O,ho,t+ht,o>O; 

0 if ht,t=ho,t=ht,o=O; 

{ 

{(0, N-1), (0, N)) if Vt,l > 0; 

U {(O,N)) if Vt,t=Ü,Vt.o+Vo,t>O; 

0 if Vt,t=Vt,o=vo,t=O. 

In ligure 2.9 the set J{(N) is depicted forthe case h 1,1 > 0 and v 1,1 > 0. 

Figure 2.9. 
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I N-1 N N+l 

The set }:{(N) on which the series Xm,n(<Xo. ~o) converge absolutely.jor the case 

h 1,1 > 0 anti Vt,t > 0. For states outside Jl(N) the series x".,~~<ao. Po> may 

diverge. 
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1beorem l.JJ (main result). 

Let the following conditions be satisjied: 

(i) Jf ho,1 + h 1.1 + h 1,0 > 0, then condition (2.50) should be satisfted; 

(U) lfv1,0 + Vt,t +vo,1 > 0, then the analogous drift condition should be satisjied on the vert
ical boundary. 

Then there exists an integer M such that on the set ;.t(M) 

p18,,. = ~ k(ao. Po>xm,,.(ao. Po>. 
<a.. I!.> 

where (Qo, (3o) runs through thesetof at mostfour feasible pairs and k(Qo, (3o) is an appropri
ately ciaosen coefjicient. 

Proof. 

Take M ::=: N and M > 1. Tbe latter inequality is required to preclude possible complica

tions in the states (0, 0), (0, 1), (1, 1) and (1, 0) due to the rates r1i in the origin. Tben, to prove 

the main theorem, we shall consider the Markov process restricted to the set ;.t(M), that is, 

visits to states outside ;.t(M) are not considered. 

In all states with m + n > M the equilibrium equations, associated with the restricted pro

cess, are identical to the ones of the original process, that is, the equations (2.1)-(2.5)). Hence, 

for each feasible pair (Qo, (3o) the series x"",.(Qo, (3o), which converges absolutely on the set 
;.t(M), satisfies the equilibrium equations associated with the restricted processin all states with 

m + n > M. Tbe boundary equations on 'B(M) are not given by the equations (2.3) and (2.5), 

but have an extra incoming rate. This is due to excursions of the original process to states out
sitie ;.t(M), which, because of the special transition structure in the interlor of the state space, 

always end at one of the states in f.B(M). To satisfy the equations on 'B(M), we wil1 try to fit a 

linear combination of series x18,,.(ao. (3o) with different feasible pairs Cao. (3o) on these equa

tions. 

Since the original Marlcov process is supposed to be irreducible, ho,t + h 1,1 + h 1,o > 0 or 

v1,0 + v1, 1 + vo,1 > 0. The conditions (i) and (ii) in theorem 2.33 are necessary and sufficient 

for the existence of a number of feasible pairs at least equal to the number of states in 'B(M). 

Hence, by first omiUing one arbitrarily chosen equation on 'B(M), there exist nonnull 

coefficients k(ao. (3o) such that the linear combination 

~ k(ao. (3o)x18,,.cao. Po>. (2.70) 
<a.. I!.> 

where (Qo, Po> runs through the set of feasible pairs, satisfies the remairung (homogeneous) 
equilibrium equations on 'B(M). The equation on 'B(M), which is initially omitted, is also 
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satisfied, since inserting the Hnear combination (2.70) into the other equadons on the set JI(M) 

and then summing these equations and changing summadons exactly yields the desired equa

tion. Changing summadons is allowed by the absolute convergence stated in theorem 2.25(iv). 

1be Hnear combination (2.70) is nonnull, because, by lemma 2.30, the series x"..,.(Qo, Po> for 

different feasible pairs are linearly independent on the set of states with m + n > M. By a result 
of Poster (see appendix A), this proves that the process restticled to JI(M) is ergodie and nor

malization of the linear combination (2.70) produces the equilibrium distribution {p".,,.(M)} of 

the process resttieled to JI(M). Since the complement of JI(M) is firiite, it follows that the ori
ginal processis also ergodie and the probabilities p".,,. and p".,,.(M) are related by 

p".,,. =p".,,.(M)P(JI(M)), (m, n)eJI(M), 

where P(JI(M)) is the probability that the original processis in the set JI(M). Since p".,,.(M) 

equals the sum (2. 70) up to a normalizing constant, this tinally proves theorem 2.33. 0 

2.13. Comment on condition 2.24 

In this section it is shown by using a sequence of e-perturbed processes how the probabili
ties p".,,. of the process in tigure 2. 7 violating condition 2.22 may be obtained by a limiting pro

cedure. In the resulting expression for p".,,. products ofthe form mQ."lfl" and namfl" appear. 

For the processin tigure 2.7 the construction of Xm,11(a_..) fails due toa vanishing denomi

nator in the definition of cl· The construction of x",.,.(fl+), however, succeeds. N = 0, since 

h t,t = ho,t = Vt,t = v 1,0 = 0, so x"",.(fl+) converges for all m + n > 0 and satisties all equili
brium equations, except in the states (0, 0), (0, 1), (1, 0) and (1, 1). It remains to define x 0,0 (fl+) 

for which we can use definition (2.58) or (2.59). If we specify r1,1 = ht,t and rt,o = h 1,o. then 
equations (2.7) af\!! (2.8) are identical to (2.4) and (2.5) for m = 1. Hence, if x0,0(Jl+) is defined 

by (2.59), then x".,,.<P+> also satisfies the equilibrium equations in (1, 1) and (1, 0). The equa
tion in (0, 0) is given by 

Po.oO +ro,t)=po,t. (2.71) 

which may be satisfied by x".,,.(Jl+) forsome special ro,1. In that case, the equation in (0, 1) is 

also satisfied, due to the dependenee of the equilibrium equations, so Xm,11 (fl+) can be normal

ized to produce the equilibrium distribution. However, we assume that r 0,1 is such that equation 

(2.71) is violated by x",.,.(fl+), i.e., 

xo.o<fl+)(l + ro,t)- xo,t<fl+) ;~: 0. (2.72) 

To find the equilibrium distribution though, we proceed as follows. 

Perturb the vertical boundary behaviour of the process in figure 2. 7 by adding some small 

e > 0 to v0,1 = 1/2 (see tigure 2.10). For this e-perturbed process the coefficients in the 



Figure 2.10. 
Transitton-rate diagram of the e-perturbed Markov process. 

solutions x...,..(«..) and x".,,.(~+) depend on e. Moreover, since ~ deptmds on E. the parameters 
a; and I}; in x....,..(j}+) also depend on e. We write ~+(e), x".,,.(a... e) and x...,,.(~(e), e) to indicate 
the dependenee of e. Since ~(e) > ~ (see remark 225), the construction of x...,,.( a..., e) now 
succeeds. However, as e J. 0, 

Ct(e)=- e+7/6 J.-oo. 
e. 

Therefore it is sensible to rescale x...,,.( a.., e), by taldng insteadof do= 1, 

do(e)- _1_ --_e_ 
- c 1(E)- E+7/6 ' 

from which it follows that 

(2.73) 

(2.74) 

Since N =0 the series x...,,.(«.., e) and x".,,.(fS+(e), e), which may be defined in the origin by. 
(2.57) and (2.59) respectively, converge absolutely for all m ;;;: 0 and n ;;;: 0, and satisfy all 
equilibrium equations, except in (0, 0) and (0, 1). The equation in (0, 0) (and then also in (0, 1)) 

can be satisfied by 

x...,,.( a... e) + k(e)x...,,.(j}+(e), e)), 

where, from (2.71), 

xo o(«r. e)(l +rot)- xo 1 («.., e) 
k(e)=- · · • . 

xo,o(~(e), e)(l + ro,t) - xo,t <P+(e), e) 

It is readily verified for the sequence { a;(e), ~;(e)) associated with Xm,,.(~(e), e) that 

(2.75) 

(2.76) 
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a;(e)-+ 0 , J,\;(e)-+ 0 (i -+ -- , unifonnly for small e ~ 0) . (2.77) 

By use of (2.77) it can be proved that the series x".,,.(J,\+(e), e) converges unifonnly for smail 

e ~ 0, and hence, is continuous in e. The similar properties can be proved for x,...,.(a.., e). Then, 

by (2.72), the denominator in (2.76) does not vanish forsmalle and by (2.74) the coefficient 
k(e)-+ -1 as EJ. 0. Hence (275) tends to the null solution as e J, 0. Therefore we have to 
investigate higher order tenns. Since IJo(e) = IJ+(e) is differentiable (cf. (2.64)) and for i S 0 

a;(e) = L(J,\;(e)) , Pi-t (e) = Y _(a;(e)) , 

it follows by induction that the parameters a;(e) and Me) in x,...,.(Ji..(e), e) are differentiable for 
all i s 0. Hence, each term in x,...,.(Ji..(e), e) can be differentiated with respect toe. Introduce 

x".,,.'(J,\+(e), e) = tenn-by-tenn derivative of x,...,.([}+(e), e) with respecttoe. 

In the series for x,...,.'(J,\+(e), e) terms will appear of the form ma111
()" and na"'()". It can be 

proved that for fixed e the series x,...,.'(Ji..(e), e) converges absolutely for all m 2:! 0 and n ~ 0 and 

that its sum over all m ~ 0 and n ~ 0 converges absolutely. Furthennore. by use of (2.77) it can 
be proved that for all m ~ 0 and n ~ 0 the series x".,,.'(IJ+(e), e) is unifonnly convergent for 
small e ~ 0, from which it follows that x".,,.([}+(e), e) is differentiable with respect to e and its 

derivative can be obtained by differentlating tenn-by-tenn. The similar properties can be 
proved for the tenn-by-term derivative x,...,.'(a... e). If we denote the derivative of k(e) by k'(e), 
then 

+ o(e), (e J, 0) . 

By letling e J. 0 in (2.78), we conclude that the sum 

x,...,.'(a... 0) + k(O}x,...,.'(IJ+(O}, 0) + k'(O}x,...,.([}+(O), 0) 

(2.78) 

(2.79) 

satisfies all equilibrium equations of the original process (e = 0}. For m -+ oo and fixed n > 0 
the dominating term in (2.79) is the first term in Xm,..'(a... 0) which is given by (see (2.73)) 

do'(O)a.!I'J.\3 = t~x~(CX..). 

This proves that (2. 79) is nonnull. Hence, we can finally conclude that the sum (2.79) is an 
absolutely convergent and nonnull solution of all equilibrium equations of the original process, 
so normalization of this solution produces the desired equilibrium distribution. 
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1.14. Comment on assumption :U 

In this secdon we oomment on the cases that are initially excluded by assumption 2.1 in 
section 2.1. We first consider the case that part (i) of assumption 2.1 is violated, so 

q 1,1 + q 1,0 + q 1,-1 = 0 (there is no rate component to the east) , 

where, to avoid trivialities, we also assume that 

ht,l +ht,O >0. 

Then it can be proved under certain drift conditions that for all m > 1 the probabilities p".,,. can 
be expressed as a linear combination of the initial products «3'~3 which can be fitted to the 
horizontal boundary (d_1 = 0). This can be established by restricting the Markov process to the 
set ofstates { (m, n) I m > 1, n ~ 0} v {(1, 0)}, and then proceeding in the sante way as in sec
tions 2.4 and 2.5. To be able to restriet the process to the above set of states we need to know 
that as soon as the process entets the set of states with m s; 1, then the expected time to rettun to 

(1, 0) is finlte; a necessary and sufficient condition for this can be derived from Neuts' mean 
drift condition ([51), theorem 1.7.1.). 

Now we consider the case that part (ii) of àssumption 2.1 is violated, so 

q-1.1 +q-1,o +q-1.-1 = 0 (there is no rate component to the west), 

where, to avoid trivialities, we also assume that 

h-t,l + h-t,O > 0 · 

This case is illustrated by the following exantple. 

Example 2.34 (the longer queue model). 

Consider a system consisting of two queues that are served by one server. The service 
times are exponentially distributed with unit mean. The server always works on the Jonger 

queue and treats the jobs in the longer queue with preemptive priority with respect to the jobs in. 
the shorter queue. In each queue jobs arrive according to a Poisson stream with intensity p /2. 
This model is known as the longer queue model. The statespace consistsof the pairs (m, n), 
m, n =0, l, ... where mis the lengthof the shorter queue and m+n the lengthof the Jonger 
queue. Jobs in service are also counted as being in queue. The transition rates are depicted in 
tigure 2.11. 

Now equation (2.9) reduces to a linear equation in a. Therefore, the generation of oom
pensadon terms fails and, due to the vertical boundary conditions, the probabilities p".,,. cannot 
be expressed as a linear combination of the initial products «3'133 which can be fitted to the 

horizontal boundary. Several alternatives to the compensation approach are available for 
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· Figure2.11. 

Transition rates for the long er queue model. 

solving dle longer queue model. In fact, this problem has been extensively studied by :l.heng 
and Zipkin [64] and by Flatto [25]. The medlod of Zheng and Zipkin consistsof directly solv
ing the equilibrium equations. First dle probabilities Po,,. are solved from dle equilibrium equa

tions for m = 0 which fonn a second order homogeneaus recursion relation. For n <:: 0 this yields 

Po".= A."-1PPo,o • 

wbere 

À.= p + 1-"i7+1 
2 

(2.80) 

and, from a balance argument, Po,o = 1 - p. Inserting (2.80) into the equilibrium equations for 
m == I leads to an inhomogeneous recursion relation for p 1,,., which is solved by 

Pt".=(an+b)A.", n>O, 

wbere 

a== Àp(l- p) 
p/2-A.2 

(2.81) 

and b is an arbitrary constant Next p 1,0 can be detennined from dle equilibrium equation in 
state (0, 1) and then, by inserting (2.81), the constant b follows from the equation in (1, 0). By 

repeating this procedure for m = 2, 3, ... and using induction it can be proved that Pm.n is of the 
fonn 
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p".,,. = "A."P".(n), 

where P".(n) is a polynomial in n of degree m. So the probabilities do nothave a geometrie 
fonn. The metbod of Flalto consists of transfonning the equilibrium equations to a functional 

equation for the probability generating function F (x, y ). The functional equation for this model 
can easily be solved explicitly (see sections 2 and 3 in [25]). We have assumed that jobs in the 
longer queue are treated with preemptive prlorlty witb respect to tbe jobs in the shorter queue. 
The Jonger queue model, where jobs in the longer queue are treated with nonpreemptive prlor
ity, bas been studied by Collen [15]. He treats the case of general service time distributions and 
reduces the relevant functional equation to a Riemann type boundary value problem. 

Finally we point out that the parts (v) and (vi) of assumption 2.1 can be relaxed; it suffices 
that at least one of the axes is reftecting. 

2.15. Condusion 

In this chapter we applied the compensation approach to two-dimensional Markov 
processes on the lattice in the positive quadrant of IR 2• We considered Markov processes for 
which the transition rates are constant in the interlor points and also constant.__on the two axes. 
To simplify the analysis, we assumed that the transitions are restricted to neighbouring states. 

We characterlzed the structural properties of Markov processes for which the compensation 
metbod can be used: there may be no transitions possibilities from the interlor points to the 
north, nort-east and east The compensation approach does not work for processes which do not 

have this property. Insome cases (like two independent M IM 11 queues) there is no oompensa
don needed. In other cases (like two M IM 11 queues with coupled arrlvals, cf. [24,45], and the 
coupled processor problem, cf. (14,20,47]) compensation is needed, but it would not \vork. 
Indeed, the solutions beoome essentially more complicated for these cases. In the next two 

chapters we give a complete treatment of two queueing problems as an application of the tbeory 
developed in this chapter. In doing so, special attention is devoted to extra properties of these 
problems. 

The emphasis in this cbapter was on the development of analytical results. The results are 
obtained by a numerlcally-orlented approach and therefore can easily be exploited for numerical 
purposes. Numerical procedures have not been worked out for the general model in this chapter. 
For the queueing problems in the two subsequent chapters it will be shown that the compensa

tion approach indeed leads to efficient and accurate numerical algorithms for the calculation of 

the equilibrium probabilities or otber quantities of interest, such as mean waiting times and 
mean queue lengths. Moreover, these algmithms have the advantage that tight error bounds can 
be given. 
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Chapter 3 

The symmetrie shortest queue problem 

In the previous chapter we studied a class of two-dimensional Markov processes on the 

lattice in the positive quadrant of R 2• We explored under wbich conditions the oompensadon 

approach wOiks. It appeared that the processes for wbich this approach works are characterized 

by the property that transitions from state (m, n) with m > 0, n > 0 to any ofthe neighbouring 

states (m, n+l), (m+l, n+l) or (m+l, n) are not allowed. Intbis chapter we treat the sym

metrie shortest queue problem as an application of the theory in chapter 2. This problem is 

characterized as follows. Jobs arrive according to a Poisson stream at a system consisting of 

two identical parallel servers. The jobs require exponentially distributed service. times. On 

arrival a job joins the shortest queue and, if queues have equallength, joins either queue with 

probability 112. · This problem can be fonnulated as a Markov process satisfying the condition 

on the transition possibilities jost mentioned. Therefore, we may apply the compensation 

metbod teading to an explicit characterization of the equilibrium probabilities. In secdon 1.1 

we have shown that tbis problem can also be treated as a direct application of the compensation 

approach, i.e., without use of the general theory of chapter 2. All details of tbis direet applica

tions are worlted out iil [3]. 

The symmetrie shortest problem has been addressed by many authors. Haight [34] intro

duced the problem. Kingman [44] and Flatto and McKean [23] analyse the problem by generat

ing functions. Using a unifonnization approach they show that the generating function for the 

equilibrium distribution of the lengths of the two queues is a meromorphic function and they 

find explicit relations for the poles and residues. Then, by partial fraction decomposition of the 

generating function, it follows that the equilibrium probabilities can be expressed as an infinite 

1inear combination of product fonns. However, the decomposition leads to cumhersome fonnu

lae for 1he equilibrium probabilities. Another analytic approach is given in COhen and Boxma 

[14] and Fayolle and Iasnogorodski [19,20,40). They show that the analysis of the symmetrie 

shortest queue problem can be reduced to that of a Riemann-Hilbert boundary value problem. 

The approaches mentioned, however, do not lead to an explicit characterlzation of the equili

brium probabilities. The main advantage of the compensation approach over the analytic results 

of Kingman [44] and Flatto and McKean [231 is that the compensation method yields explicit 

relations for the coefficients in the infinite linear combination of product fonns and thereby an 

explicit characterization of the equilibrium probabilities. 



-72-

So far, the avallable analytic results, though mathematically elegant, offered no practical 
means for computing the perfonnance cbaracteristics and therefore didn't close the matter in 
this respect For this reason, many numerical studies have appeared on the present problem. 

Most studies, however, deal with the evaluation of approximating models. For instance, 
Gertsbakh [29], Orassmann [30], Rao and Posoer [52] and Conolly [16] treat the shortest queue 
problem by truncating one or more state variables. Usiilg linear programming, Halfin [35] 
obtains upper and lower bounds for the queue length distribution. Foschini and Salz [26] obtain 
heavy traffic ditfusion approximations for the queue length distribution. Knessl, Matkowsky, 
Schuss and Tier [ 46] derive asymptotic expressions for the queue length dis~bution. Based on 
a fonnula, given by Flatto and McKean [22], for the probability that there are k jobs in each 
queue, where k = 0, 1, ... , 2'.hao and Orassmann [32] derive a numerically stabie algorithm for 
oomputlog these probabilities and then use these probabilities to calculate recursively the other 
queue length probabilities from the equilibrium equations. Schassberger [54,55] uses an itera
tive metbod to numerically obtain approximating values for · the queue length probabilities. 
'These studies are all restricted to systems with t~o parallel queues. Hooghiemstra, Keane and 

Van de Ree [38] develop a power series metbod to calculate the stationary queue length distri
bution for fairly general multidimensional exponentlal queueing systems. 'Their metbod is oot 

restricted to systems with two queues, but applies equally well to systems witltmore queues. As 
far as the shortest queue problem is concemed, Blanc [10, 11] reports that the power series 
metbod is numerically satisfactory for the shortest queue system with up to 25 parallel queues. 
'The theoretica! foundation of this metbod is, however, still incomplete. Nelson and Philips [50] 

derive an approximation for the meao response time for the shortest queue system with multiple 
queues. 'They report that their approximation bas a relative. error of less than 2 percent for sys
tems with at most 16 queues and with service utilizations over the range from 0 to 0.99. F'mally, 

a common disadvantage of the numerical methods mentioned is that in general no error bounds 
can be given. 

Since the compensation metbod is constructive in nature, the analytica! results can easily 
be exploited for numerical purposes. It appears that these results offer an efficient numerical 
procedure, with tight bounds on the error of each partial sum. Also, expressions are obtained for 

the first and second moment of the waiting time, which are suitable for numerical evaluation. 
These algorithms apply to the exact model. 

Many authors addressed the problem of proving that the .shortest queue policy is optima!. 
Winston [61] studies the model with c identical exponentlal servers, infinite buffers and Poisson 
arrivals. He proves that the shortest queue policy maximizes siochastically the number of jobs 

served by any time t. Hordijk and Koole [39] extend Winston's results to systems allowing 
finite buffers and batch arrivals. Moreover, they consider general anival processes. Ephrem

ides, Varaiya and Walrand study the model with c = 2 and prove that the shortest queue policy 



minimizes the sum of the expected sojoum times of all jobs arriving before a certain time t. 

Tbis chapter is organized as follows. In section 3.1 we formulate the model and the 

equilibrium equations. In section 3.2 we apply the general theory of chapter 2 to this model. 1t 

appears that only the feasible pair ((4, X_((4)) plays a róle. We prove that for all m. n the sta

tionary queue lengtil probabilities p"."" can be expressed as x"",.( a...) up to some normalizing 
constant C. The general theory however, does not explicitly yield a... and C. In sections 3.3 and 

3.4 it is shown that for this problem a... and C can be found explicitly., Monotonicity properties 
of the tenns in the series for x".",.(a...) are derived insection 3.5,leading to bounds on the error 
of each partial sum of x"",.((4). An asymptotic expansion of xm",.(O...) as m + n -+""is given in 
section 3.6. Product fonn expressions for global performance measures are presented in section 
3.7, and section 3.8 presents some numerical results. Insection 3.9 wedevelopa recursive 
algorithm to numerically compute the stationary queue length probabilities. Sections 3.10 and 

3.11 deal with some simple variants of the symmetrie shortest queue problem. The final section 
is devoted to conclusions. 

3.1. Model and equilibrium equations 

Consider a system with two identical servers (see ligure 3.1). Jobs arrive according to a 
Poisson stream with rate 2p where 0 < p < 1. On arrival a job joins the shortest queue. Ties are 
brok:en with equal probabilities. The jobs require exponentially distributed service times with 
unit mean, the service times are supposed to be independent This model is k:nown as the sym
metrie shortest queue model. 

2p 

Figure 3.1. 
The sy,;,metric shortest queue model. Arriving jobs join the shortest queue. Ties 

are broleen with equal probabilities. ft is assumed that 0 < p < I. 
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This queueing system can be represented by a continuons-time Marlrov process whose 
natwal state space consists of the pairs (i, j) where i and j are the lengtbs of the two queues. 
Instead of t and j we use the state variables m and n where m =min( i, }) and n = j- i. Let 

'-
(pm,,.} be the equilibrium distribution. The transition-rate diagram is depicted in figure 3.2. The 

rates in the region n s 0 can be obtained by reileetion in the m-axis. By symmetry p".,,. = Pm. -· 
Hence, the analysis can be restricted to the probabilities Pm.,. in the region n :2: 0. 

n 

1 

~ 
1 2p 1 2p 

p p 

-+-----~----m 

Figure3.2. 
Transltion-rate diagramlor the symmetrie shortest queue model in figure 3 .1. 

The equilibrium equations for {p".,"} can be found by equating for each state the rate into 

and the rate out of that state. These equations are fonnulated below. 

p".,,.2(p + l) = Pm-1,n+l2P + Pm.n+l + Pm+l,n-1 • 

Pt,,.2(p + l)=Po,n+12p +Pt,n+l +pz,n-1 • 

Po,,.(2p + 1) = PO,n+l + P l,n-1 • 

Pm. t2(p + l) = Pm-t,22P + Pm.2 + Pm+t,o + Pm.oP • 

Pm.o<P+ l)=Pm-t,t2P+Pm.l, 

P t,t2(p + 1) = Po,22P + P 1.2 + P2.o + P t.oP , 

Pt.o(P+ l)=Po,t2P+Pt,l, 

Po,t(2p+ l)=po,2 +Pt.o +Po.oP, 

P0;0P =Po. I · 

m > l,n> 1 (3.1) 

n>l (3.2) 

n>l (3.3) 

m>l (3.4) 

m>l (3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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This formulation can be simplified by observing that equation (3.2) is identical to (3.1) 

with m = 1. The reason for not doing so, is that the equations (3.1)-(3.5) correspond with the 

equations (2.1 )-(2.5), and therefore are suited to application of the general theory of chapter 2. 

In the next section we investigate how the compensation approach worles out bere. 

3.2. Application of the compensation approach 

To facilitate application of the theory in chapter 2 we translate the transition rates qii• v;i• 

h;i and r;i in terms of the rates in tigure 3.2. From the transition-rate diagrams in figures 2.2 and 

3.2 it follows that, 

q-1.1 = 1 , qo,-1 = 1 , q1,-1 = 2p, q-1,-1 = fJ-1.0 = qo,1 = q1,1 = q1.o = 0; 

Vo,-1 = 1, V1,-1 =2p, 

h-1,1 = 1, ho,1 =p, 

ro.1 = P. 

v1.o=v1,1 =vo,1 =0; 

h-1.o=h1,1 =h1,o=O; 

r1,1 =r1.o=O. 

For the transition rates in the interlor points we directly obtain 

qo,1 =q1.1 =q1,o=O, 

(3.10) 

which is the essential condition for application of the compensation approach (cf. assumption 

2.6). In general there are at most four feasible pairs. For this model it follows from the boundary 

behaviour that (a.,, X_(a..,)) is the only feasible pair possible (cf. condusion 2.14(ii)). By 

theorem 2.19 this pair exists if and only if condition (2.50) is satisfied. This condition is verified 

below. Since 

q-1,-1 +qo,-1 +q1,-1 = 1 +2p > 1 = q-1.1, 

we must have RH'(1) > LH'(l). Inserting (3.10) in RH(o.) and LH(o.) (cf. (2.44)) yields 

RH(o.)= (o.+ p)(o.+ 2P) (3.11) 
p + 1 + ..Jp2 + }.,. 0. 

LH(o.) = o.(p + 1) , (3.12) 

from which it easily follows that 

RH' (I)= lP..±.!. 
. 2p 

LH'(l)=p+1. 

So RH'(l) > LH'(1), since 0 < p < 1. Hence, the feasible pair (a.,, X_(a..,)) indeed exists. We 

now investigate convergence properties of Xm,,.(O.... X _(a.,)), which may be abbreviated by 
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x".,,.(o..,). 1be integer N mentioned in theorem 2.25 is defined as the smallest nonnegative 
integer such that (see definition 2.28) 

IHVI(AtiAûN+I < 1. (3.13) 

Insetting (3.10) into the definitions of A 1, A2, Hand V (see lemma 2.26) yields 

At=p+1-~~+1, A2=p+l+~p2 +l, 
A2 Aï12p-(2p+l) 1-A 1 

H=-, V= =--. (3.14) 
At Ai12p-(2p+ 1) 1-Az 

To obtain the latter equality, we substituted the identities 2p =A tA 1 and 2(p + 1) =A 1 +A 2· 

Substitution of the expressions forA., A 2, H and V into (3.13) yields N = 0. lt then follows 

from theorem 2.25 that the series (2.54) defining x~~~, .. (O...) for m > 0 and n > 0 converges abso
lutely for all m > 0 and n > 0; the series (2.56) defining xo,,.(O...) for n > 0 converges absolutely 
for all n > 0; the series (2.57) defining Xm,o(O...) for m > 0 converges absolutely for all m > 0, 
but also for m = 0, so we may define x0,0(o..,) by the series (2.57) with m = 0 (note that x0,0(o..,) 
has not been defined in chapter 2); and finally it follows from theorem 2.25 that the sum of 
x~~~,,.(O...) over all m ~ 0 and n;::: 0 converges absolutely. Further, by lemma 2.30, {x~~~,,.(O...)) is 
nonnull. 

{x~~~,,.(o..,)} satisfies the conditions (3.1)-(3.5). Since V ti =qti• we have ei =ei+ Ci+l for 
all i, so the series (2.56) defining x0, .. (0...) for n > 0 is identical to (2.54) with m = 0 (Cf. remark 
2.4). Hence, it easily follows that (x~~~,,.(o..,)} aiso satisfies (3.6)-(3.7). Below it is shown that 
{x~~~,,.{O...)} also satisfies (3.8)-{3.9). First, we rewrite (3.8) as 

Po.t (2p + 1)-Po,2 = P t,o + Po,oP · (3.15) 

Inserting the series (2.56) into the lefi-hand side yields 

xo.t(a.)(2p + 1) -xo.z(O...)= :Ë di(ei~i(l + 2p)- ei~T). (3.16) 
i•O 

{c;} and {eil are such that for all t the temts (cia:" + Ci+taT+1 >~1 and ei~1 satisfy (3.3). 
Hence, substituting these temtS into (3.3) leads to 

eifiW + 2p)- eïP1+1 =(ei a;+ ci+l Cl;+t>ll7-1 . 

Dividing both sides ofthis equality by ~7-1 and then inserting into (3.16) yields 
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.. 
Xo,t(«t-)(2p + 1)- Xo,z(«t.) = l: d;(C;Cl; + Ci+I<Xi+t) 

i=O .. 
=docoao + L ci+t(d; +d;+tA+t. 

; .. o 
(3.17) 

where equality of the two series follows from theorem 2.25(i) with N = 0. On the other hand, 
insening the series (2.57) into the right-hand side of equation (3.15) yields 

.. 
Xt,o(«t.) + xo,o(«t.)P = /o(P + Oo) + L li+t (p + CJ.;+t) · (3.18) 

i•O 

UH and {dil are such t11at for ani the tenns {d;IJ1 + d1+t Pf+t>an.t and li+t an.t satisfy (3.4). 
Hence, subsûtuting these tenns inlo (3.4) gives 

li+t an.p + li+t a7W = (d;IJ; +di+1 lli+t>a7!.t2(p + 1) 

- (d;llr + dî+tllT+t>a7!.ï12p- (d;IJr + di+l Pr+t >ant . 

Dividing this equality by a7!.ï1 and inserting into the right-hand side the quadratic equa!ion 
(2.9), which by use of (3.1 0) simplifies to 

aiJ2(p + 1) = a2 + p22p + ap2 • 

weobtain 

(3.19) 

1bis relation reduces the right-hand side of (3.18) to (3.17) (note that d_1 = 0). So x"",.(«+) 
doesindeed satisfy (3.8). The remaining equation (3.9) is also satisfied by x".,,.(«t.). since insert

ing Xm,,.(«t.) into the equations for m + n > 0 and then summing these equations and changing 
summations, exactly yields equation (3.9). Changing summations is allowed by the absolute 
convergence stated in theorem 2.25(iv). 

Now we can finally conetude that {x"",.(~)} is a nonnull absolutely convergent solution 
of an equilibrium equations. Hence, by a result of Poster (see appendix A), the Markov process 
is ergodie and nonnalization of {x".,,.(~)} produces {p".,,.}. Before summarizing the results we 
restate the definition of Xm,11(«t.), which for the present model simpUfles considerably. 

Since v tj = q Ij• we have e; = c; + ci+t for an i, so the series (2.56) defining x0.,.(~) for 
n > 0 is identical to (2.54) with m = 0 (cf. remark 2.4). Hence, 

... 
Xm,,.(«t.) = L d;(c;a'{' + Cj+l an. >131 • m ~ 0 • n > 0; 

i=O . 

... 
Xm,o(~)=co/oa3' + L c;+tli+t<X'l'+t, m ~0. 

i•O 

(3.20) 

(3.21) 
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Insertion of (3.10) infO (2.20)-(2.21) leads to the following recursion relations for c; and d;. We 

simplilled the recursion relation for c; by using the relations for «XïO.i+l and «Xï + ai+l (cf. 
(2.23)-(2.24)). The equation for /;+1 directly follows from (3.19). 

~i- «Xi+t 
Ci+l =- ~i - «Xj C; 

with co =do = 1 and, since d-t == 0, 

ao 
fo=do--. p+ao 

(i =0, 1, ... ) ' 

(i=O,l, ... ), 

(i =0, 1, ... ) • 

We summarlze our lindings in the following theorem. 

Tbeorem 3.1. 

Forall m ~o. n ~o. 

p"._,. = c-1x"..,.(~)' 

where C is the nomuzlizing constant. 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

Theorem 3.1 is incomplete in the sense that the theory in chapter 2 does not yield explicit 

e:x:pressions for ~ and C. However, for the present problem ~ and C cao be derived explicitly. 

Tbis will be shown in the next two sections. 

3.3. Explicit determination of~ 

To determine ~ explicitly, consider the process on the aggregate states k, where k 
denotes the total number of jobs in the system (so k = 2m +In I). Let P ._ be the probability that 

there are kjobs in the system. The average rate from state k to k+l is given by the arrival inten

sity 2p. The average rate from state k+l to statekis obtained by observing that the service rate 
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in state k+1 is 2, except when all jobs are in one queue onl~, in which"case the setvice rateis 1. 

Hence, the average rate from state k + 1 to state k is given by 

2 
_ PO,A:+l + Po,-.t-1 = 

2 
_ 2Po,A:+1 . 

Pt+t . Pt+t 

The transition-rate diagram is depicted in figure 3.3. 

2p 

1 

Figure 3.3. 

2p 

2
_ 2po,2 

p2 

2p 2p 

The transition-rare diagram for the aggregate stat es k where k is the total number 

of jobs in the system and PA: is the probability that there are k jobs in the system. 

Balancing the rates in figure 3.3 gives for all k ~ 0, 

Pt+t p 
--p;- = 1-Po,k+tl P~; . 

(3.26) 

To obtain a relation for <Xo = a... we let k ~ oo in the equality (3.26). Then we first need the 

asymptotic behaviour of P". The probabilities Pk can be expressed in tenns of the detailed pro-

babilities p".,". This yields for all k ~ 0, 

" Pa =P.t,o + 2 l: Pl<-1,21 • 
1=1 

" . 
Pa+t =2 l: Pl<-1,21+1 · 

1=0 

Hence, the asymptotics of P" as k ~ oo can be derived from that of p".," as m + n ~ oo, 

Below we prove that the asymptotic behaviour of Pm,ll =c-l Xm,,.(O...) is detennined by the 

first tenn in the series x".,,.( a...). viz. 

x".,,.(«t-) ~ 1 as 

do(coa3'+c,aT>~3 ' 
m+n~oo,n>O, (3.27) 

x".,o(«t-) 
1 ~. 

cofoa3' 
as m~oo. (3.28) 
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i.e., we have the following asymptotic equivalences 

x"",.(«+.)- do(coa3' + Ct«f)ll3, (m + 11-+ oo, 11 > 0), 

X""o(«+.)- cofoa3'. (m-+ oo). 

First. since (see (2.60) in secdon 2.8) 

1 > CXo > (Jo > CXt > !lt > . . . > 0 • 

(3.29) 

(3.30) 

(3.31) 

itfollows from (3.22) that Ct > 0. Hence, d0(coa3' + c1 af)~ and /oa3' are positive, so the 

quotients (3.27) and (3.28) arewen defined. From (3.31) we obtain that for m ~ 0,11 > 0, .. 
lx"",.(«t)-do(coa3'+ctCX'l')ll31 S L ldïl(lcda7'+ lc;+tl«f+t>ll7 

i= I. 

S afll7-1 :Ë I d;l {I cd + I ci+l DP1 , 
i=l 

where, since N = 0, the latter series converges by theorem 2.25(i) with m = 0 and n = 1. This 

inequality yields the asymptotic equivalence (3.29) by observing that a1 < ao and Pt < f:Jo. The 
asymptotic equivalence (3.30) can be established similarly. Inserting (3.29) and. (3.30) in the 

expression for P 2!: yields 

p2A:- c-•{cofoaà + 2 Î. do(coaà-1 + Ct«t-I>P~}' (k-+ oo). 
l=t 

By inserting the identity 

1: x"-v" l:,x"-ly'=y~ 
1=1 x-y 

in this expression and using that 1 > ao > Po > a 1 > 0, the asymptotic formula for P 2!: 

simplifies to 

where the constant L is given by 

L=c-1[cofo+doco 
135 

2 ], CXo- Po 
which is independent of k. Similarly, we obtain 

forsome constant M independent of k. Now we have all ingredients to find ao = «+. explicitly. 

First, since 0 < Po < ao < 1, it follows from the asymptotic formulas for PO,k+l and P~;+1 that 
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Po,~:+tl P~;+t -+ 0 as k -+ -. Hence, from (3.26) we obtain 

Pt+t --p;- -p. (k -+-). 

Combining this relation for 2k and 2k + 1, we find 

Pu+z z 
Pu -p ' 

Finally, substitution ofthe asymptotic fonnula for Pu into (3.32) yields 

ao=a...=pz. 

(3.32) 

It is easily verified that a= p1 does indeed satisfy the equation RH (a) =LH (a) (see (3.11) and 

(3.12)). This conetudes the detennination of a.... In the next section we detennine C. 

3.4. Explicit determination of the normalizing constant 

In this section we derive an explicit fonnula for the nonnalizing constant C, which how

ever, is not essential to the compensation metbod itself: substitution of the series (3.20) and 

(3.21), defining x~~~,,.(a...). into the nonnalization equation 

C = :E :E x"",.(a...) 
m=O 11=0 

leads to a series of product fonns for C, analogous to the series for x"",.(«+). The metbod to 

obtain the explicit fonnula, by means of the generating function, is different from the main 

arguments in this thesis. Therefore we omit details and oruy sketch the proof. Define the gen

erating function F (y, z) by 

F(y, z) = :E :E p"",. ym z11 

m=011=0 

= c-• Ë Ë x"",.(a...) ym z" . 
m=OII=O 

Substituting of(3.20) and (3.21) in this expression and then changing summations leads to, 

F(y, z) = c-•{Ë d;[_c_; _ + Ci+l ] ~ + cofo + Ë Ci+l/;+1 }• (3.33) 
. i=O 1- a;y 1- ai+IY 1 :- ~;z 1- OoY i=O 1- ai+IY 

valid in IY I < 1/ ao. I z I < 11 ~0 • The partial fraction decomposition of the generating tune

tion is difficult to obtain, at least in this explicit fonn, from the analysis of Kingman [44] and 

Aatto and McKean [23]. The equilibrium equations (3.1)-(3.9) reduce to the following func

tional equation for F(y, z), 
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F(y, z)g(y, z) =F(y, O)h(y, z) + F(O, z)k(y, z), 

where 

g(y, z)=z2 +y(2py + 1)-2(p+ 1)yz, 

h(y, z)=y(2py+ 1)-(p+ l)yz -pyz2 , 

k(y, z)=z(z-y). 

It follows that, if y and z satisfy IY I < 1 I ao. I z I < 1 I l3o and g(y, z) = 0, then F (y, 0) and 

F (0, z) are related by 

F(y, O)h(y, z)+F(O,z)k(y, z)=O. (3.34) 

In the analysis of Kingman [44] and Flatto and McKean' [23] this relationship between F(y, 0) 

and F (0, z) eventually leads to the determination of these functions. We tiSe it to establish that 
c- p(2+p) 

- 2(1-p2)(2-p) . 

First, Il()te that F (0, 1) is the fraction of time server 1 ( or 2) is idle. Since 2p is the offered load, 

we obWn, by symmetry, that. 

F(O,l)=1-p. 

Starting with F(O, 1), we subsequently apply relationship (3.34) to the pairs (y, z) = (112p, 1) 

and (112p, 1/p), both satisfying g(y, z) = 0. This leads to 

F(O, 1/p) = (1- p)(2- p). (3.35) 

Next, we apply (3.34) to (y, z) satisfying g(y, z) =0, and let y t 1/p2 (= 1/Qo)and z-+ lip. 

Here, note that, by treating y as a parameter, the equation 

g(y, z(y)) = 0, z(l/ p2) = 1/ p, 

is solved by 

z(y)= (p + l)y- ..Jy((p2 + 1)y -1) . 

It is easily verified that 

h(y, z(y))= (2 +P:-l) (y -llp2)+o(y -l/p2) (y t l/p2), 

and from (3.33) we obtain 

F(y, O)=C-1 /o · +0(1) 
1-aoy 

which by insertion of (3.25) and ao = p2 reduces to 

(3.36) 
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F(y, 0)= Cp(p+l~~-1/pz) +0(1) ,(3.37) 

Then, inserting z = z (y) into relationship (3. 34) and letting y t 1/ p2, we finally obtain the 

desired expression for C by using (3.35)-(3.37). We end this section by restating theorem 3.1. 

Theorem3.2 

ForaUm ~O.n ~o. 

Pm.n =c-l x".,,.(«+.) , 

where «+. = p2 and 

c- p<Z+p) . 
- 2(1-p2)(2-p) . 

3.5. Monotonicity of the tenns in the series of produels 

In this section we prove that the termsin the series (3.20) defining x".,,.(«+.) for m ~ 0 and 
n > 0, are allernaring and monotonlcally decreasing in modulus. From a numerical point of 

view this is a nice property, since then the error of each partial sum cao be bounded by the abso

lute value of its fina1 term. 

In section 2.8 we have seen that for all i ~ 0, 

di+l <0 
d; • 

and it directly follows from (3.22) and (3.31) that for all i ~ 0, 

Cï+l 
->0. 

C; 

Hence, the coefficients d; are altemating and the coefficients c; are positive. Since all a; and (3; 
are positive, we can conetude that for m ~ 0 and n > 0 the terms d;(c;a'{' + ci+l a~1 )(3'{' are 

altemating. To prove that these terms are decreasing in modulus, we first rewrite the recursion 

relation (3.23) for di+l in a more convenient form by expressing the quotient in (3.23) in terms 

of the ratios «;+1 / f3ï+t and ll;+l I (3;. 

Substituting (3.10) into the relations (2.25) and (2.26) yields 

(3.38) 



Rewriting (3.38) as 

a;+l U;+t 
(X;+) = -----2p' 

(3; l3i+l 
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and then inserting this relation into the denominator of (3.23) yields 

[ 
«i+l - (p + 1)] «X;+) a;+l + p[ 2(p + 1)- U;+t ] . 
~ ~ ~+I ~ 

Combining the relations (3.38) and (3.39) leads to 

2(p + 1) = a;+ I + a;,.l . 
(3; l3i+l 

By insertion this equality into (3.40), the denominator in (3.23) finally reduces to 

«i+ I [ a;,.. - p] [ U;+t - 1] . 
l3i+l (3; (3; 

(3.39) 

(3.4o) 

Since the numerator in (3.23) can be rewritten similarly, we arrive at the following recursion 

relation 

T[~-p][~-·] 
d;+t=- ] d;. 

a;+l «i+l - p a;,.l - 1 
Pi+t 13; IJ; 

(3.41) 

This relation helps in proving that the terms in (3.20) are decreasing in modulus, at least with 

rate R =4/(4 + 2p + p2). 

Lemma3.3. 

Let R =4/(4 + 2p + p2) < 1. Thenfor all m 2:0, n > 0 and i 2:0, 

Proof. 

We first prove the lemma for m = 0 and n = 1. By (3.22), we obtain for i 2: 0, 

1- tl;+t 
(3; 

Ci+l =- _ __:....;,._ C; , 
a; 

1-ïf 
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from wbich it follows that 

Cj+J +Cï+2 [ 
1-T][ ~-~) 

Cj + Cï+l -- [ l- «i+l] [ Clï+J _ Clj 

Pï+l fl; Ji; 

(3.42) 

By virtue of the lemmas 2.15 and 2.16, the ratlos Ji; I Clï and a; +I/ Ji; are decreasing, so for i ~ 0, 

CXj Oo- «i+l ~ -~ 
Ji; ~Po -2+p, 0< s !Jo- 2+p. 

Hence, from (3.41)-(3.43) it follows that 

ldi+t(Ci+l + Ci+ÛJii+tl 

I d;(C; + Ci+J )(l; I 

< [p- «i+l 
(l; 

Tr[ ~-pJ[ ~-~J 
= [ «i+ I ) 

2 
[ «i+ I ] [ U; «i+l ] - p-- ---

lli+l (l; (l; (l; 

R<l. 

(3.43) 

(3.44) 

This proves the lemma for m = 0 and n = 1. Now coJJSider an arbitrary m ~ 0 and n > 0. Since 
Clj and IJ; are positive and decreasing (see (3.31)) and the coefficients c1 are positive, it follows 
from (3.44) that for all i ~ 0, 

ld;+t(C;+J«T+t +c;+z«T+ûflT+J I= ldi+l l(c;+t«T+t +c;+z«~z)flT+t 

< I d;+tl (c;+t + c;+z)fl;+t «~t13T-1 

< R I dd (c; + c;+t)fl; «i"+tPT-1 

< R I dd (c;ai" + ci+l «~t)13T 

=R ld;(C;a;"+c;+tCX~t)i3fl. 

3.6. Asymptotic expansion 

0 

We now return to the asymptotic equivalence (3.29). By lemma 3.3 this result can be 

extended such as to yield a complete asymptotic expansion for x .... "(~) in (3.20). First, since ai 

and 13 i are decreasing, it follows for all j ~ I that, 
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dj(cia'J' + Cj+l«J+I>PJ = o(dj-1 (ei-I aj..:1 +ei aj)P}-t) • (m +n --+ oo, n > 0). 

Thus successive tenns in the series (3.20) are indeed refinements. Since the tenns in (3.20) are 
altemating and decreasing in modulus, the error of each partlal sum can be bounded by the 
absolute value ofthe first tenn omitted. Hence, we have for all j ;:: 1, 

j-1 
p".,,. =c-t L di(Ci«'f' + Ci+l «~t)i37 + O(dj(CjUJ + Cj+l UJ+I)j3j) , (m +n --+ 00, n > 0). 

i=O . 

The 0-fonnula for j = 1 improves on the asymptotic equivalence (3.29), since 

c-1do(coa.3' +ct«T>P8 + O(d,(ct«T + czar>lm 

= c-1d0(c0a.g' + c 1 af)~ (1 + o(l)), (m +n--+ =, n > 0). 

Similarly, the 0-fonnula for j = 2 improves on the one for j = 1, and so on. The notation =is 
used in order to represent the whole set of 0-fonnulas for j = 1, 2, · · · by a single fonnula (see 
e.g. de Bruijn [13], section 1.5), 

Lemma3.4. 

p".,,.:::: c-t i dj(Ci«'l' + Ci+l <Xi+t>P7 • (m +n--+ oo, n > 0). 
i•O 

3. 7. Product form expressions for the moments of the waiting time 

In this section we show that the product fonn expressions for the probabilities p".,,. lead to 

similar expressions for the first and second moment of the waiting time. The waiting time of a 
job is given by 

W=S 1 +S2 + .. ·+SM, 

where Mis the lengthof the shonest queue on arrival and S 1o S 2 , ... are independent exponen
tially distributed random variables with unit mean and independent of M. By conditioning on M 

and using the property that Poisson anivals see time averages (see e.g. Wolff [62]) we find .. 
EW =2 :E :E mp".,,. + :E mp".,o. 

m=l n=l nt=l 

JEW2 = 2 Ï, Ï, m(m + l)p".,,. + i: m(m + l)p".,o . 
nt=l n•l m=l 

Substituting (3.5) to eliminate Pm. 0 and then inserting the series for p".,,. with m ;:: 0, n > 0, we 
obtain by changing summations, 
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EW=c-t{2i:d;[ C;fl; 2 + Ci+tfl;+t2]_!L 
i=O (1 - «;) (1 - fl;+1) 1 - p; 

1 .. [ c.;(2p +a.;) c;+t (2p + fl;+t)] r.t} 
+--I;d; 2 + 2 Pi. 

p+ 1 ;~o . (1-a;) (l-a.;+1) 

and a similar expression for IEW2• The tenns in both series are altemating and decreasing (cf. 

the proof of lemma 3.3), so the error of each partial sum can be bounded by the absolute value 

of its final term. Similar expressions can be obtained for higher moments of the waiting time or 

other quantities of interest 

3.8. Numerical restdts 

Representation (3.20) is suitable for numerical evaluation. The tenns alternate in sign, 
decrease exponentially fast in modulus, and can easily be calculated. Por the calculation of a.; 

and ~~ we have the option to use the fonnulas in theorem 2.11 or to use the relations for a.;a.;+1 

and P1P1+1 (cf. (2.23) and (2.25)). The coefficients c; and d; can be calculated from the relations 

(3.22) and (3.23). We finally note that, insteadof using the series (3.21), the probabilities Pm,o 
can easily be calculated from the equilibrium equations (3.5). In table 3.1 we list the probabiti

ties Po,t, Po.2, p 1,1 and p 1,2 computed with an accuracy of 0.1 %. The numbers in parentheses 

denote the number of terms in (3.20) needed. 

p Po,t Po,z P1,1 P1.2 

0.1 0.0817 (40) 0.0007 (i) 0.0009(2) 0.0000(2) 

0.3 0.1591 (14) 0.0100(3) 0.0156 (3) 0.0007 (2) 

0.5 0.1580 (10) . 0.0233 (3) 0.0441 (4) 0.0047 (2) 

0.7 0.1100 (8) 0.0275 (4) 0.0606 (4) 0.0118 (3) 

0.9 0.0380(6) 0.0140 (4) i 0.0350 (4) 0.0104 (3) 

Table3.1. 

Values ofPo,t.P0,2• Pt,1 and Pt,2 with an accuracy of0.1%for increasing values 
ofp. The numbers in parentheses denote the numberofterms in (3.20). 

Let us investigate the rate of convergence of the tenns in the series (3.20) as a tunetion of 

p. From (3.14) and the limits (2.68) insection (2.10), it follows that for all m ~ 0 and n > 0, 

I d;+t (c;+t «~t + ci+2a~z)J37+t I ~ 1 -A 1 [ ~] mwo-I 

ld;(c1a7'+c;+t«~1 )J371 Az-l Az 
(3.45) 
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as i -+ oo. For 0 < p < 1, the factor (1 -A t)l (A 2 - 1) is decreasing and A 1 I A 2 is increasing, 

and 

lim 1 -A 1 ;::: 1 ' lim ~ = 2 - 2'h = 3 - 2312 
p.t.OAl-1 pf1 A2 2+2% . 

Hence, if m > 0 or n > 1, convergence of the tenns in the series (3.20) is very fast for all p, at 
least with rate 3-2312 =0.1715 .... If m =0 and n = 1, then the rate of convergence is deter
mined by ( 1 -A 1) I (A 2 - 1) only, so, as table 3.1 illustrates, convergence is slow for sma1l p. 

In table 3.2 we list values of EW and EW2, together with the coefficient of varlation 
cv(W) of the waiting time, for increasing values of p. lEW and IEW2 are computed with an 
accuracy of 0.1 %. The numbers of tenns needed are shown in parentheses. For comparison we 
also computed the mean waiting time IEWc and the coefficient of varlation cv <Wc) of the wait
ing time for the corresponding common-queue system, that is, the M IM 12 queue with arrival 
rate 2p and service rate 1 for both servers. Table 3.2 illustrates that the perfonnance óf the 
shortest queue system is close to that of the common queue system. 

p lEW JEWl cv(W) IEWc cv (Wc) 

0.1 0.0177 (39) 0.0358 (39) 10.632 0.0101 10.440 
0.3 0.1441 (13) 0.3181 (13) 3.7846 0.0989 3.6667 

0.5 0.4262 (8) 1.1472 (8) 2.3053 0.3333 2.2361 

0.7 1.1081 (6) 4.3842 (5) 1.6032 0.9608 1.5714 

0.9 4.4748 (4) 47.208 (3) 1.1652 4.2632 1.1600 

Table3.2. 

Values of the first moment lEW, the second moment EW2 and the coejficlent of 

variation cv(W) of the waiting time with an accuraey of 0.1%, together with .the 

first moment IEWc and the coefficient of variation cv(Wc) of the corresponding 

common-queue system for increasing values of p. The numbers in parentheses 

denote the number ofterms needed. 

3.9. Numerical solution of tbe equilibrium equations 

From limit (3.45) it follows that convergence of the series (3.20) is faster for states forther 
away from the origin. This feature is illustrated in table 3.1. In particular, for p = 0.1 forty 

tenns of the series for Po,1 have to be computed, whereas for Po.2 and p 1,1 two tenns suffice to 



-89-

attain the same accuracy. This feature can be used to compute p o, 1 from the equilibrium equa

ûon (3.8) radter then from the series (3.20). By insening (3.5) and (3.9) to eiiminate p 1,0 and 

Po.o. equation (3.8) reduces to 

Po,t:zpl=po,z(p+l)+pt,t· 

This idea can be generalized as follows: the series (3.20) are used to calculate p".,,. for 

m + n > M, where M is some integer, whereas for m + n s M the probabilities p".,,. are calcu

lated from the equilibrium equations. In this section we show that the equilibrium equations in 

states with m + n SM can be solved efficiently and numerically stabie from the solution for 

m + n > M. The algorithm is based on the special propeny that the only flow from level /, 

defined by 

Ieveli = {(O,l), (1, 1-l), (2, l-2), ... , (l-1, 1), (1, 0)} , l <:! 0, 

to levei/+I is via state(/, 0). By this propeny, the problem of simultaneously solving the equa

tions at the levels l s M, given the solution at level M +I, can be reduced to that of recursively 

solving the equations at level M ~ M -1 ~ ... ~ 1 ~ 0. 

We first formulate the equilibrium equations at level/> 0 (see (3.3) and (3.1)). 

PoJ(2p+l)=Po,t+l +Pt,l-1, 

Pk.t-k2(p + 1) =Pt-l,t-k+t2P + Pt.t-k+l + Pk+t,t-k-1 , 

(3.46) 

0 < k < 1-l. (3.47) 

The equilibrium equations in the states (l-1, 0) and (I, 0) are replaced by the following two 

equations. Applying the general balance principle "rate out of A = rate into A" to 

A= { (m, n) lm <:! 0, n <:! 0, m + n SI } \ {(1, 0)} , 

leads for all I > 0 to 

l-1 

Pt-1,12p=pt,o+}; Pt.t-t+l • 
t•O 

and applying this principle to 

A= { (m, n) lm <:! 0, n <:! 0, m + n SI } , 

yields for all/ <:! 0, 

l 

Pt.oP = }; Pk.t-t+t . 
t-o 

(3.48) 

(3.49) 

Now the probabilities at level/ can be solved from the equations (3.46)-(3.49), given the proba

hilities at level/+1. This scheme can be repeated to recursively compute the probabilities at 

leveli-l ~ ... ~ 1 ~ 0. The equations (3.46)-(3.49) forma second order recursion relation for 

the probabilities at level /. Below we show that these equations can be red u eed to a first order 



reeutSion relation. 

Definition 3.5. 

The sequence Xo, x 1, Xz, ••• is the solution of 

Xi+t=Xi2(p+l)-X;-12p• i~l, 

with initial wdues x0 = 1 and x 1 = 2p + 1. 

The numhers x1 are solved by 

l-At . Az-1 
x;= A A A\ + A~ , z- 1 Az-At 

withA~tA 2 given by (3.14). 

Theorem 3.6. 

ForaUl >0, 
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k . 
Pt.t-kXk+l = Pt+l,l-k-tXk + ::E Pi,H+tX;(2p)/c-• for k = 0, 1, ... , l-2. 

i=O 

Proof. 

(3.50) 

We prove the recursion relation (3.50) by induction. Por k = 0 the equations (3.50) and 

(3.46) are identical. Assume that (3.50) holds for k = j. Multiplying (3.50) for k = j by 2p and 

(3.47) for k = j+l by Xj+l and adding the resulting equations, yields (3.50) for k = j+l. 0 

Basedon tbeorem 3.6 the probabilities at levell can he computed efficiently, given the 

probabilities at Ieveli + 1. First, Pt. o follows from (3.49) and Pl-1,1 from (3.48). Then Pt-2.2 ~ 

Pt-3,3 ~ ... ~Po,/ can he successively calculated from (3.50). This reenrsion is numerically 

stable, since all coefficients in the reenrsion relations are nonnegative, so the calculations 

involve only tbe multiplication and addition of nonnegative numhers. However, since Xï 

increases exponentially fast, it is numerically sensible to scale (3.50) by dividing both sides by 

Xt+l· 

This conetudes the analytical as well as the numèrical treatment of the symmetrie shortest 

queue problem. In the next sections we artalyse some simpte variants. 
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3.10. Unequal routing probabilities 

We now consider a variant of the model of section 3.1; the equal routing probabiliqes in 
case of equal queue lengtbs are replaced by a and 1 -a, where a is an arbitrary number between 
0 and 1. The transition-rate diagram is depicted in tigure 3.4. 

n 

1 

~ 
1 2p 1 2p 

2ap 1 lap 

2(1-a)p 1 2(1-a)p 

1 2p 1 2p 

/ 
1 

Figure 3.4. 

Transition-rare diagram for the shortest queue model with unequal routing 

probabilities a and 1 -a respectively. 

This problem is oot symmetrie anymore. However, the asymmetry is rather weak in the sense 
that the regions n > 0 and n < 0 are still mirror images of each other and the average 
(p".,,. +p".,_,.)/2 satisfies all equilibrium equations (3.1)-(3.9) of the symmetrie problem. This 
suggests that p".,,. can be expressed as 

p".,,. =c-l l: cft(c;a'f + Ci+l Cl~l )~7 for m~O.n>O, 
;~o 

p".,,. =c-l l: à;(c;a'f + Ci+l Cl~1 )~(" for m ~ 0 , n < 0 , (3.51) 
i=O 

P".,n = c-1{Cofoa'G + .:Ë Ci+lfi+l Cl~t} for m ~ 0. n = 0' 
•=0 
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wilere 

1 2(tJt+di)=d; (i=O,l, ... ). (3.52) 

,The motivation for introducing new coefficients dt and di is the fact that the transition struc
tnre at tbe m-axis is not symmetrie anymore. For any choice of { dt} and {di) satisfying (3.52) 
the series (3.51) satisfy all equilibrium equatiollS, except for the equations for In I = 1. To also 
satisfy the latter conditions it is readily verified that [ dt} and {di} have to satisfy the following 
reiations: 

(d; + d;+lX«i+l + p) = (tJt + dt+l )(<Xi+l +2ap) (i= 0, 1, ... ) , 

(d;+d;+lX<Xi+t +p)=(di+di+t)(<Xï+t +2(1-a)p) (i=O,l, ... ), 

with initially 

do(<Xo + p) = dé)(ao + 2ap) = äo (<Xo + 2(1- a)p) . 

The solutions fdt} and {di} of these relations indeed satisfy (3.52). 

3.11. Tbreshold jockeying 

In this secdon we consider the shortest queue model with a threshold-type jock:eying; one 
job switches from the longest to the shortest queue if the difference between the lengtbs of both 

queues exceeds some threshold value T. It appears that the compensation approach also work:s 
for this model. In fact, the main term in the series (3.20) already satisfies the bo~ condi
tions, so no oompensadon arguments are required. 

There are several other techniques to analyse this model. The form of the state space sug
gestS to apply thematrix-geometrie approach developed by Neuts [51]. Actually, Gertsbakh 

[29] studies the threshold jockeying model by using this approach. In [8] the relationship 
between our approach and the matrix-geometrie approach bas been investigated. It appears that 
our approach suggests a state space partitioning · which is more useful than the one used by 

Gertsbakh [29]. In [4] it is shown that the matrix-geometrie approach can also be used to 

analyse the threshold jockeying model with c parallel servers. The results in this paper 
emphasize the importsnee of a suitable choice of the state space partitioning. Another approach 
to the jockeying model with cparallel serverscan be found in Grassmann and Zhao [63]. They 

use the concept of modilied lumpability for continuous-time Marlcov processes. 1t is finally 
mentioned that the instantaneous jock:eying model (T = 1) bas been addressed by Haight [34] 
for c = 2 and by Disney and Mitchell [17), Elsayed and Bastani [18], Kao and Lin [42] and 

Zhao and Grassmann [31] for arbitrary c. 
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The threshold jockeying model· bas a much simpter statespace than the original model, 
since n only varles between -T and T. The model is symmetrie with respect to the m-axis. 
Therefore the analysis can be restricted to the state space in the first quadrant 1be transition 
rates are depicted in figure 3.5. 

n 

Figure3.5. 
Transition-rate diagram for the shortest queue model with threshold jockey ing. The 

threshold value is T. 

The transition rates in states with n < T are identical to the rates of the original model (see 

figure 3.2). Hence, the first tenns in the series (3.20) and (3.21), i.e., 

for m~O.O<n<T-1, 

for m~O.n=O, 

(3.53) 

(3.54) 

satisfy all equilibrium equations for m > 0 and 0 ~ n < T-L We now investigate whether 
a3'~3 can be fitted to the equations for m > 0 and T -1 :::;; n :::;; T. We de fine 

goaS'PÖ for m ~o. n =T, (3.55) 

and try to choose go such that the equilibrium equations for m > 0 and T -1 ~ n ~ T are 
satisfied. These equations state: 

Pm.r-t2(p + l)=Pm-t,r2P +Pm,r2 + Pm+l,T-2, m > 0, 

Pm.r2(p + 1) =Pm+l,T-1 , m > 0. 
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Insertion of (3.53) and (3.55) in the equations for m > 0 and n = T yields 

ao 
go= 2(p + l)~ · 

(3.56) 

:Por this choice of g0 , it is easily verified, by using ao = p2 and ~ = p2 1 (2 + p), 1hat the equa
tions for m > 0 and n = T -1 are a1so satisfied. The solution (3.53)-(3.55) violates the condi
dons for m = 0, and therefore cannot produce Pm.n for all m and n, but we will prove: 

Theorem 3.7. (thresbold jockeying) 

ForaUrn +n > Tandfarm =Tandn =0, 

p".,,.=K-1a3'N for O<n <T-1, 

=K-1foa3' for n =0, 

=K-1goa3'P~ for n = T, 

where K is the normaltzing constant and 

_1__ ao ao 
ao=pz, ~- 2+p' /o= ao+p • go= 2(p+l)~. 

Proof. 

Consider the Markov process restricted to '11= ((m, n) lm + n > T, 0 Sn S T}I.({(T, 0)} 

(cf. section 2.12 where an analogous argument is used to prove theorem 2.33). 'The transition 

rates are depicted in figure 3.6. All transitloos from states with m + n = T + 1 and 0 < n s T to 

state (T, 0) result from excursions to states outside o/, which always end at (T, 0). Let { v".,11 ) bê 

the equilibrium distribution of the process restricted to o/. 

lt is readily verified that the products (3.53)-(3.55) with go specified by (3.56), satisfy all 
equilibrium equations on IJ/. The sum of these products over o/ converges, since ao = p2 < 1. 

Hence, the products (3.53)-(3.55) are positive and convergent solutions of all equilibrium equa

tions. By a result of Foster (see appendix A), this proves that the restricted process is ergodic, 

and the products (3.53)-(3.55) can be normalized to produce { vm.,.}. Since the number of states 

outside o/ is finite, the original process is also ergodic, and Pm.,. and v""" are related by 

p".,~~. = Vm,n P(o/) for (m, n)e o/, 

where P(o/) is the probability that the original processis in o/. The proof of theorem 3.7 is 

now completed by observing that the products (3.53)-(3.55) produce vm,,. up tosome multiplica

tive constant. 0 



-95-

n 
I 

T+h 
I' 

T~:~----------------------------~---------
1 

I 
I 
I 
I 
I 

--+--------.-----

Figure3.6. 
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Transition-rate diagram for the shortest queue model with threshold jockeying, 

restricted to '11= {(m. n)lm + n > T, 0 Sn ST} u {(T, 0)}. 

From a computational point of view we note that, given the solution on '1/, the equations 

on the complement of '11 can be solved efficiently and numerically stabie by the recursive algo

rithm derived in section 3.9. In table 3.3 we list the mean waiting time W for increasing values 

of p and T. For T = 1 the mean waiting time Wis the same as the mean waiting time Wc of the 
corresponding common-queue system. The case T = oo corresponds to the shortest queue prob

lem without jockeying. Table 3.3 illustrates that already for small T the mean waiting time W is 

very close to the mean waiting forT= oo. 

3.12. Condusion 

In this chapter we applied the general theory, developed in chapter 2, to the symmetrie 

shortest queue problem and proved that the equilibrium probabilities can be expressed as a 

series of products. These products, as well as their coeflicients, are found explicitly. From the 

expressions for the equilibrium probabilities, simHar expressions can be derived for the 

moments of the waiting time, or other quantities of interest. We showed that the product form 

ex.pressions are useful from a numerical point of view and that the analysis can easily be 

extended to some variants of the original problem. An important variant of the symmetrie shor

test queue problem, which has not been discussed yet, is the asymmetrie shortest queue 
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w 
p T=l T=2 T=4 T=6 T=oo 

0.1 0.0101 0.0176 0.0177 0.0177 0.0177 

0.3 0.0989 0.1405 0.1440 0.1440 0.1440 

0.5 0.3333 0.4091 0.4260 0.4263 0.4263 

0.7 0.9608 1.0624 1.1052 1.1081 1.1082 

0.9 4.2632 4.3822 4.4614 4.4733 4.4749 

Toble33. 

V alues of the mean waiting time W for increasing values of p and T. 

problem, i.e., the shortest queue problem for nonidentical servers. In chapter 5 we show how the 

analysis can be extended to this problem, but first, in chapter 4 we apply the general theory to a 
queueing model arising in the field of computer perfonnance analysis. 
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Chapter4 

Multiprogramming queues 

In this chapter we analyse a queueing model for a multiprogramming computer system 
consisting of an input-output unit (10) and a central processor (CP). This model was introduced 

by Hofri [37]. He uses the samegenerating function approach as Kingman used in [44] for the 

shortest queue problem. In doing so, Hofri shows tbat tbe generating function of tbe stationary 
queue length probabilities p"..,. is a meromorphic function and he finds explicit expressions for 
the poles and residues. By decomposing the generating funclion intopartlal fractions he is able 
to prove tbat the probabilities p"..,. can be represented by an infinite linear combination of pro
duct form solutions. 1be decomposition, however, leads to cumhersome formulae for the 
coefficients. In [1] it is shown that these representalions are partly incorrect in the sense that 
they do oot always hold for small m and n. This complication is overlootred by Hofri [37] due to 

the fact that he uses an incorrect version of Mittag-Leffer's tbeorem to deduce the partlal trac
tion decomposition. 

1be multiprogramming system can be modelled as a Madcov process satisfying assump
tion 2.6. 1berefore, we may apply the theory in chapter 2 to analyse the multiprogramming sys
tem. This approach impraves the results obtained by Hofri in the sense that explicit expressions 
are found for the coefficients in tbe infinite linear combination of product form solutions. Simi
lar expresslons can be derived for global performance measures, such as the mean number of 

jobs in the system. A new feature not occurring in tbe analysis of the symmetrie shortest queue 
problem, is tbat the resulting series of product form solutions may diverge for small m and n. 
By exploiting the explicit expressions for the product forms and their coefficients, an efficient 
numerical procedure witb light bounds on the error of each partlal sum can be derived. This 
model can also be treated as a direct application of the compensation approach, i.e., without use 
of the theory of chapter 2. The details of this direct application are wodced out in [5]. 

This chapter is organised as follows. In section 4.1 we formulate the model and equili
brium equations. In section 4.2 we apply the tbeory of chapter 2 to this problem. lt appears that 
only the feasible pair («t. X_(«t) plays a role. We prove that on JII.(N) the probabilities p"..,. 

can be expressedas x"..,.(«t) up to some normalizing constant C. Both a.r and Care found 
explicitly. Insection 4.3 error bounds on each partial sum of x",,,.(«t) are derived. Insection 4.4 
we develop a recursive algorithm for numerically solving p"..,. from tbe equilibrium equalions. 
Product form expressions for the mean number of jobs at the 10 are derived in section 4.5. 1be 
next section presents numerical results and the final section is devoted to conclusions. 
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4.1. Model and equilibrium equations 

Consider the queueing model for the multiprogramming system depicted in figure 4.1. 

queue I 

10 
queue lil 

p 

Figure4.1. 
Queueing modelfor the multiprogramming system. 

In the queueing model it is supposed that queue lil of incoming jobs provides an infinite 

souree of available jobs. 1be multiprogramming system consists of an input-output unit and a 

central processor. Incoming jobs start at the 10 unit with an exponentially distributed service 

time with parameter J(. Subsequently, the job leaves the system (with probability p) or proceeds 
to queue n at the CP (with probability 1 - p). At the CP a job has an exponentially distributed 

service time with parameter 11· Next the job is recycled to the IO unit where it joins queue I. 

1be 10 unit treats the jobs in queue I with nonpreemptive priority with respect to the new jobs 

in queue lil. Since the IO unit is always busy, jobs arrive at the CP according to a Poisson pro

cess with rate Ä.=(l-p)J(. Hence, the CP constitutes an M IM 11 queue with arrival rate A. 
and service rate 11· 1berefore, it is sensible to assume that A. < 11· 

The system can be represented by a continuons-time Mark:ov process with states (m, n), 

m, n ""0, 1, ... where m is the length of queue II including the job being served and n is the 

length of queue I excluding the job being served (the 10 unit is constantly busy). Let {p...,,.} be 

the equilibrium distribution. 1be transition rates are depicted in ligure 4.2, where 11 = pp.' 

1be equilibrium equations for {p...,,.} are formulated below, where IC= A.+ 11 + TJ. 

Pm,,.K:=Pm-l..,+tÀ.+pm,,.+11'1 + Pm+1,n-11.1. • m>l.n>l (4.1) 

Pt,,.IC= PO,n+tÀ. + P 1,11+11'1 + P2,n-ll.l. • n>l (4.2) 

Po,,.(Ä.+TJ) =Po,n+tTI + Pt,n-111• n>1 (4.3) 

Pm, tiC= Pm-t,2Ä. + Pm, 2Tl + Pm+t,ol.l. , m>l (4.4) 

Pm, o(Ä. +l.I.)= Pm-1,1 À.+ Pm, 11'1 + Pm-t,oÀ. • m>l (4.5) 
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n 

Figure4.2. 

Transition-rate diagramfor the multiprogramming model, where 11 = p~'. 

P 1,1 K = Po,zÀ + P t,z'r'l + Pz,o~ , 

Po,t(À+TI) = Po,21'1 + Pt,o~, 

Pt,o(À+~)=Po.tÀ+Pt,tTI +Po.oÀ, 

Po.oÀ=Po.tTI· 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

This fonnulation can be simplified by observing that the equations (4.1) hold for all m > 0 and 
n > 0. The reason for not doing so, is that the equations (4.1)-(4.5) correspond with the equa

tions (2.1)-(2.9) and therefore fit the theory of chapter 2. In the next section we investigate how 

the compensation approach wotks out here. 

4.2. Appllcation of the compensation approach 

We fi.rst translate the transition rates qii• vii• hiJ and riJ in tenns of the rates in fi.gure 4.2. It 
is easily derived that, 

q-t,t=~. qo,-t=fl, qt,-t=À, q-1,-t=q-t,o=qo,t=qt,t=qt,o=O, q=!C, 

V0,-1 =fl, Vt,-1 =À • 

h-t,t=IJ., ht,o=À, 

'1,0 =À, 

Vt,o =v1.1 =vo,t =0, 

h-t,o=ht,t =ho,t =0, 

Tt,t = ro,l = 0. 

For the rates qij ftom states (m, n) with m > 0, n > 0 we directly obtain 

(4.10) 
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qo,l =qt,t =qt,o =0, 

which is the essential condition for the application of the compensation approach (cf. assump

tion 2.6). From tfle...boundary behaviour it follows that («t, X_(«t)) is the only feasible pair 

possible (cf. conclusion 2.14(ii)). This pair exists if and only if condition (2.50) in theorem 2.19 

is satisfied. This condition is checked below. Suppose that 

(4.11) 

Then RH'(l) > LH'(l) must hold. Inserting (4.10) in RH (a) and UI (a) (cf. (2.44)) and using 

(4.11) yields 

RH(a.) = a.2lt(fJ.11 +À) +À , 
1e+ v~ -4<<l11 +À)p. 

Ul(a.)=a.{À+p.). 

from which it follows that 

RH'(l)=p.[t + i ·], 11+ -11 

Ul'(l)=À+p.. 

So RH'(l) > LH'(l), since À< 11· Hence, the feasible pair («t. X_(a..,) indeed exists. 

{x,...,.(«t)} fonnally satisfies the conditions (4.1)-(4.5). Since v t,j = q l,i and hj, 1 = qi, h we 
have e; = c; + ci+l and li+t = d; + d;+t for all i (cf. remark 2.4). So the serles (2.56) defining 

x0,,.(«Xt) for n > 0 is identical to (2.54) with m = 0; the serles (2.57) defining x,...o(«t) form > 0 

is identical to (2.55) with n = 0. The.n, by taldog the serles (2.55) with m = n = 0 as definition 

of x0,0(a..,), it easily follows that (x"",.( a..,)} fonnally satisfies (4.6)-(4.8). The remaining equa

tion (4.9) is satisfied, due to the fact that the equilibrium equations are dependent Hence, 

{x,...,.(«t)} is a fonnal solution to all equations. Before investigating properties of J.ll(N) we 

restate the definition of x"",.(a..,), which for the present model simplifies considerably. 

The series x,...,. (a..,) is defined by .. 
x,...,.( a..,)= 1: d;(c;af' + c;+t<X~t)J3?, 

i=O . .. 
X""o(«t) = codoa!l' + l: c;+t(d; + d;+t)a~, , 

i=O 

m :::o, n >0; (4.12) 

m:::o. (4.13) 

Substitution of (4.10) into (2.20)-(2.21) leads to the following recursion relations for c; and d;. 

The recursion relation for c; is simplified by insertion of the relations for a;CXj+t and CXj + a;+t 

(cf. (2.23)-(2.24)); the one ford; is simplified by insertion of the analogous relations for ~i~i+l 

and f}; + ~i+l (cf. (2.25)-(2.26)). 
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(i=0,1,· .. ), 

(i=O,l, ···). 

By theorem 2.25 the series x".,,.(<X.t.) converges absolutely on (see secdon 2.12) 

.A(N)= {(m, n)lm ~0. n ~ 0, m + n > N}u{(N, O)J, 

where Nis defined as the smallest nonnegative integer such that (see delinition 2.28) 

IHVI(AtiAûN+I < 1. 

tnserting (4.10) into the delinitions of A 1, A 2, Hand V (see lemma 2.26) yields 

K- ...JJél-4f.l.A K+ ...JJél-4f.1'i., 
At= • Az= ' 

2f.l. 2f.l. 

Aï1A.-(A.+rt) 1-AI 
V= =----. 

Ai1A.-(A.+tl) 1-Az 
H=1, 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

The fina1 equality is obtained by substituting the identities 'i..lf.l.=A 1A2 and Klf.l.=A 1 +A2• 

lnserting (4.17) in ( 4.16) we find that Nis the smallest nonnegative integer such that 

For J.l.' = 1, f.l. = 2 and p = 3/25 it follows that N = 2. Hence, N is not necessarily zero implying 

that the series for x".,,. may diverge for small m and n. In fact, in remalk 2.29 we have seen for 

f.l.' I f.l. ::: 1/2 and p = 8 that N --. oo as 8 J. 0. 

By restricting the Malkov process to .A(N) it is easily shown that Xm,,.(<X.t.) produces p".,,. 
for all (m, n)e.A(N) up tosome multiplicative constant C. For the present problem a... and C 

can be found explicitly by observing that the CP constitutes an M IM 11 queue with arrival rate 

A. and service rate f.l.. Hence, the probability Pm of tinding m jobs at the CP is given by 

Pm =(I -A. I f.l.}(A.I f.l.r . 

On the other hand, we have for m > N 

Pm = i p".,,. =c-t i x".,,.( a...). 
~t=O ~t=O 

(4.18) 

The series (4.12) can be rewritten by forming pairs with the samea-factor (which is permitted 

by theorem 2.25(i)). Inserting this series together with (4.13) in the expression for Pm and using 

the recursion relation (4.15) leads to (note that c 0 =do = 1 ), 
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(4.19) 

wilere changing of summations is allowed by the absolute convergence stated in theorem 

2.25(iv). Combining (4.18) and (4.19) yields <Xo =À/ J.L, and so l3o = X_(<Xo) =À/ ('fl + J.L). It is 

easily verified that «=À/ J.L indeed satisfies LH(«)== RH(«). Further, from (4.18)-(4.19), 

c-t_I_ = t- !. , 
t-13o J.L 

soweobtain 

c = J.L(1] + J.L) • 
(J.L-ÀX1J + J.L-À) 

Our findings are summarized in the following theorem. 

Theorem 4.1. 

Forallm ~O.n ~Owithm +n >N andform =N andn =0, 

Pm..tt = c-•xm,,.(Ct.t), 

where a... =À/ J.L and 

c = J.L(1] + J.l) • 
(J.L-ÀX1J + J.L- À) 

In the next two sections we concentrare on numerical aspects. 

4.3. Error bounds on each partial sum of product forms 

In this section we derive bounds on the error of each partial sum of the series (4.12)-and 

(4.13) defining x"..,.(a...). First, for m > N the series (4.13) can be rewritten as (4.12) with n = 0 

(which is allowed by theorem 2.25(i)). Note that for m =N this may leadtoa divergent series. 

Hence, we have for all m ~ 0, n ~ 0 with m + n > N, .. 
Xm,tt(Ct.t} = 1: dï(Ci«f + Ci+t a~-t)~f . (4.20} 

i=O 
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We now investigate whether the tenns in this series are altemating and monotonically decreas

ing in modulus (just as forthe tenns in (3.20)). Since (cf. (2.60)) 

1 > Oo > Po > Ut > Pt > . . . > 0 • 

it follows from the recursion relations (4.14) and (4.15) that for i~ 0, 

Ci+l O --> . 
Cj 

Hence, the coefficients c; are positive and the coefficients d; are alternating. Consequently, the 

tenns in the series (4.20) are alternating. However, these tenns are not necessarily decreasing in 

modulus from the beginning. Below we derive bounds on the decrease of the tenns in the series 

(4.20) from which we can decide when these tenns are decreasing. To do so, we first need 

bounds for c;+1 / c; and d;+tl d;. From lemma 2.27 it follows that as i --+ oo, 

a; <X;+t 
ïf;"tAz, T.l.At. 

Hence, by defining for i ~ 0 

_ 1-A1 
C; = ' a;/f3;-1 

- 1 
d;= 1-P; • 

we obtain from the recursions relations (4.14) and (4.15) that for i~ 0, 

Cj+l ""'-. I di+l I < d-· 
Cj ;;::, C,' Jdd - I • 

The bounds ë; and.d; are decreasing and asymptotically tight, i.e., as i --+ ""• 

1-A -
ë;.l. Az- 1 =-V, d;.l.I=H. 

(4.21) 

(4.22) 

Basedon the bounds c; and d; and the monotonicity given in (4.20) and (4.21) we can prove: 

Lemma4.2. 

Forallm ~O.n ~Oandi ~o. 

Jd;+tl (Ci+t aT+t + c;+za7'+ûP7+t SR (i, m. n) I d;l (c;a7' + Ci+t aT+t>P? , 

where 

R (i, m. n) = d;c;(a;+tl <X;)m (f3ï+tl f3j}'' . 
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Proof. 

Letm ~o. n ~0 and i ~o. Then 

and insertion of 

«i+2 - «i+2 ~i+i s;: ai+ I ~- «i+l 

«i+l - IJi+l «i+l ~i <X; - a; • 

(cf. (4.21), (4.22)) in the right-hand side ofthis inequality proves the lemma. D 

1be monotonicity given in (4.21)-(4.22) yields that R(i, m, n) is decreasing in i and 

asymptotically tight 

Lemma4.3. 

Forallm ~Oandn ~O.as i-..-. 

We can now conclude that for fixed m ~ 0, n ~ 0 with m + n > N the bounds R (i, m, n) 

on the decrease of the i-th tenn in ( 4.20) are eventually less than one. From there on the terros in 

(4;20) are monotonically decreasing in modulus, so, since these tenns are also altemating, the 

error of each partial sum is bounded by the modulus of its final tenn. 

4.4. Numerical solution ofthe equilibrium equatlons 

If N > 0, then the equilibrium equations for m + n SN have to be solved numerically from 

the salution on the complement. These equations can be solved efficiently and numerically 

stabie by an approach similar to the one insection 3.9. Below, this approach is outlined briefly. 

De fine 

level/= {(0.1). (1,1-1), ... , (1-l, 1), (l, 0)}, l <::0. 

We show that the probabilities at level I can be solved from the solution at level /+1. This 

scheme canthen be repeated to subsequently compute the probabilities at Ieveli-.. l-1 -.. ... 
-.. 1 -.. 0. First, p1,1 can be computed from the following equation derived by application of the 

balance principle to {(m, n) I m ~ 0, n :2: 0, m + n S I}. 
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.. 
Pt,t'A.= :E Pt,l-ht'l · 

l•O , 

Next, the probabilities p1 ... 1,1 -+ P1-2.2 -+ ... -+ Po.t can be computed from the following recur
sion relation. This relation can be established similarly as the one in theorem 3.6. 

Deftnition 4A. 

The sequence xo. x1, x2, ... is the solulion of 

Xi+1 =X;1C-X;-1Àfl, Î ~ 1, 

with initial values xo = 1 and x t = À.+ fl. 

lt is easily veritied that the numbers x; are positive and given by 

(À.+11)-'t1 . 't2-(Ä.+11) . 
Xj= ~+ ~. 

't2 - 't1 'tz - 't1 

where 

Theorem 4.5. 

Foralil > 0, 

i. k-i 
Pt.t-tXA:+1 = Pl+l,t-.t-1Xtl1 + :E Pi,l-i+tX;À. 11 for k = 0, 1, ... , l-1 . 

i=O 
(4.23) 

The recursion relation in theorem 4.5 is numerically stab/e, since all coefficients in these 

recursion re1ations are nonnegative, so the calculations involve only the multiplication and addi
tion of nonnegative numbers. This concludes the numerical solution of the equilibrium equa
tions for m + n SN. Fmally, from (4.17) and the limits (2.68) insection (2.10), it follows that 

successive termsin the series (4.20) satisfy 

I d;+t (Ci+l a.T.t1 + Cj+2a.T.tûl37+1 I 1 -A 1 [ A 1 ] mtll • ---, ------"-----+ --- -, - (l -+ "") 
ld;(c;a.f'+c;+t«T.t1>1371 A2-l A2 ', 

for all m ~0. n ~0. Hence, convergence of the series (4.20) is faster for states further away 
from the origin, soit is numerically sensible to use the series (4.20) only to calculate Pm.11 for 

m + n > M where M > N and to use the relations (4.23) to calculate Pm.n for m + n s M. 
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4.5. Product lorm expresslon tor the number of jobs in queue I 

In tbis section we show that the product fonn expresslons for the probabillties p"._,. lead to 

similar expressions for the mean number of jobs in queue I. Similar expresslons can be derived 
for other quantities of interest. 

lnsertingp"._,. = c-1x"._11(«..) for m + n > Nin the expression forthe mean numberofjobs 
L1 in queue I leads to 

L1 = I, I, np"._,. 
m=Ott=O 

N .. .. \" 
= :r. np"._,. + c-1 :r. n :r. x"._,.(a..,) +c-t :r. n :r. x"._11(a..,) 

m2:0,tt2:1 n=l m=O n=N+I m=O 
m+ttSN 

N .. 
= :r. np"._,. + c-t I. n :r. 

1112:0,112:1 11=1 1=0 

__ N-11+1 __ N-n+1 
C;u.r Ci+t U1+1 R ---+ > ..... 

1 - a1 1 - <Xi+t • 
m+11SN 

(4.24) 

1be terms in the series above are altemating and the deercase of these tenns is also bounded by 
R (t, m, n ). Hence, if R (t, m, n) < 1 for some i, then from there on the error of each partial sum 
is bounded by its final tenn. 

4.6. Numerical examples 

In this section we present some numerical results. In table 4.1 we list for 11' = 1, Jl = 10 
and decreasing values of p the probabilities p o.t , p 0.2, p o.3 and p o,4 computed with an accuracy 
of 0.1% by using the series (4.20). 1be results in table 4.1 illustrate that the convergence of the. 
series (4.20) is faster for states further away from the origin and thal N increases when p 

decreases. 

In table 4.2 we list values of L1 with an accuracy ofO.l% for J.L' = l, Jl = 10 and decreasing 
values of p. In the second column L 1 is calculated by use of (4.24); in the fourth column the 
same calculalions are done by use of (4.24) where Nis replaced by a somewhat larger number, 
M say. Of course, then some extra effort is needed to solve the equilibrium equations for 
m + n 1:.M, but this effort is easily compensated by the advantages of efficiently computing the 
series in the expression (4.24). 
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p PO, I Po.2 Po,3 Po,4 N 

0.1 0.0989 (4) 0.0010(2) 0.0000(2) 0.0000(2) 0 

0.3 0.2876(8) 0.0109 (3) 0.0003(2) 0.0000 (2) 0 

0.5 0.4540(40) 0.0396(4) 0.0020(3) 0.0001 (2) 0 

0.7 0.1130 (5) 0.0086(3) 0.0006 (2) 1 

0.9 0.3462(19) 0.0508 (4) 0.0048 (3) l 

Table4.1. 

Values ofPo,ltP0.2•Po.3 and Po,4 with an accuracy of0.1%for Jl' = l, 11= 10 and 
decreasing values of p. The numbers in parentheses denote the number of terms in 

(4.20) needed. 

p Lx N Lr M 

0.1 0.1009 (4) 0 0.1010(2) 1 

0.3 0.3113 (8) 0 0.3116 (2) 2 

0.5 0.5442(39) 0 0.5440(3) 2 

0.7 0.8333 (5) 1 0.8332 (3) 2 

0.9 1.3701 (18) 1 1.3703 (3) 3 

Table4.2. -

Values of the mean number of jobs Lr in queue I with an accuracy of 0.1% for 

11' = 1.11 = 10 and decreasing values ofp. In the second column Lr is calculated by 

use of(4.24); in thefourth column the same calculations are done by use oj(4.24) 

where Nis replaced by M. The numbers in parentheses denote the number of terms 

in each of the series in (4 .24) needed. 

4. 7. Condusion 

In the chapters 3 and 4 we treated two queuein~ problems as an application of the theory 
in chapter 2. For these two problems we found explicit expressions for the stationary queue 
length probabilities as well as for some global perfonnance measures. These expressions are 
useful from a numerical point of view, since they can be calculated efficiently and accurately. 
In chapter 5 we show how the compensation approach can be extended to the asymmetrie 
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shortest queue problem. This problem differs from the ones studied so far with respect to the 
fonn of the state space; this problem can be modelled as a Markov process on two coupled 
regions n ;;:: 0 and n s; 0. 
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ChapterS 

Tlte asymmetrie shortest queue problem 

In chapter 2 as the statespace we have chosen lhe lattice in the first quadrant of R 2• In 
this chapter we analyse the asymmetrie shortest queue problem, which cannot be modelled as a 
Matkov process on such fonn of state space. This. problem is characterized as follows. Jobs 

arrive in a Poisson stream at a system consisting of two parallel exponentlal seNers with dif
ferent seiVice rates. 1ll.e jobs require an exponentially distn'buted workload with unit mean. On 
arrival a job joins the shortest queue and, in case of equal queue lenglhs, joins one queue or the 
other with probability 1-q and q respectively, where q is an arbitrary number between 0 and 1. 
This problem can be modelled as a Matkov process on the lattice in the right half-plane of R 2 

with different properties in the upper and lower quadrant lt appears lhat lhe · compensation 
approach also worles for this problem. So extensions of lhe approach to a more general state 
space are quite wen possible. 

Only few analytical results for lhe asymmetrie shortest queue problem are available in lhe 
literature. The unifonnization approach used by Kingman [44] and Flatto and McKean [23] to 

analyse 1he symmetrie version does not seem to be generalizable to the asymmetrie version. 
Cohen and Boxma [14] and Fayolle and Iasnogorodski [19,21,40] show that the analysis ofthe 
asymmetrie shortest queue problem can be reduced to that of a simultaneous boundary value 
problem in two unknowns. This type of boundary value problem stems from the interaction 

between the upper and lower quadrant of lhe state space and requires further research. Knessl, 
Matkowsky, Schuss and Tier [46] derive asymptotic expressions for the stationary queue-lenglh 
distribution. To our knowledge no furlher results exist in the literature. 

The compensation approach constrocts solutions on lhe upper and lower quadrant. These 
solutions are infinite sums of products and, due to the interaction at lhe horizontal axis, these 
infinite sums have a binary tree structure. The expressions for the equilibrium probabilities 
easily lead to similar ones for the moments of the sojoum time or olher quantities of interest 
The compensation approach furlher is easily adapted tosmalt modifications in the model; lhe 
approach can be extended to a threshold-type shortest queue problem and to the shortest queue 
problem wilh parallel multi-seJVer queues. The analytical results offer efficient numerical algo

rithms. In fact, all nice numerical properties of the symmetrie problem are preseiVed. Tbe 

compensation approach yields recursion relations by which lhe tenns in the binary tree can 
easily be calculated and few terros suffice due to lhe fact that the convergence is exponentially 
fast. In addition, bounds for the error on each partial tree are provided. Por highly unbalanced 
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systems bowever, tbe series of product fonns may diverge for small m and n. A system is called 
highly unbalanced if one of the servers is woricing much faster than the other. 1berefore we 
derive a numerically stabie recursive algorithm for solving tbe equilibrium equations around tbe 

origin of tbe state space from tbe solution on the complement This approach can a1so be used 
if èonvergence of tbe series of product fonns in states around tbe origin is slow compared to tbe 

convergence in states furtber away from the origiil. 

This chapter is organized as follows. In section 5.1 the model and tbe equilibrium equa
tions are fonnulated. In section 5.2 we outline the compensation approach and we define tbe 

resulting infinite sum of product fonn solutions denoted by x...,,.. Sections 5.3, 5.4 and 5.5 are 
devoted to prove that x...,,. converges absolutely. Section 5.6 presents the main result stating 
that Pm.n equals x...,,. up to a nonnalizing constant C. In secdons 5.7 and 5.8 simnar series of 
product fonn solutions are derived for C and the moments of the sojoum time. Secdon 5.9 
comments on two extensions of the compensation approach and concludes the analytical.treat
ment 1be rest of tbe chapter approaches tbe results from a computational point of view. In sec
don 5.10 we derive bounds on the contribution of each subtree and tbe next section presents a 
basic scheme for the computation of the trees of product fonns. In section 5.12 we propose an 
efficient and numerically stabie algorithm for numerically solving tbe equilibrium equations for 
states around tbe origin of the state space from tbe solution on tbe complement of the state 
space. Section 5.13 is devoted tosome numerical considerations and presents numerical results. 
An alternative strategy to tbe computation of trees is discussed insection 5.14. The finai section 
is devoted to conclusions. 

S.l. Model and equilibrium equations 

Consider a queueing system consisting of two parallel servers with service rates y1 and 12 
respectively, where y1 > 0, 'Y2 > 0 and y1 + 12 = 2 {see tigure 5.1). Jobs arrive according to a 
Poisson stream with rate 2p where 0 < p < 1. On arrival a job joins the shortest queue and, if 
queues have equal lengths, joins one queue or the other with probability 1 - q and q respec
tively, where q is an arbitrary number between 0 and 1. The jobs require exponentially distri
huled service times with unit mean, the service times are supposed to be independent and 

independent of tbe arrival process. This model is known as the asymmetrie shortest queue 
model. This queueing system can be represented by a continuons-time Markov process, whose 
state space consists of the pairs (i, j), i, j = 0, 1, ... where i and j are tbe lengtbs of tbe two 
queues. Instead of i and j we use the variables m = min{i, j) and n = j - i. Let {Pm,n} be tbe 

equilibrium distribution. The transition-rate diagram is depicted in tigure 5.2. The equilibrium 
equations for (p...,,.} are fonnulated below. 
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2p 

Figure5.1. 

The asymmetrie shortest queue model. Arriving jobs join the shortest queue and, if 
queues have equal lengths, join either queue with probability 1-q and q 
respectively. ft is supposed that 0 < p < 1 and y1 + 'Y2 = 2. 

n 

"fl 

~ 
'Y2 2p 'Y2 2p 

2qp "fl 2qp 

m 

2(1-q)p 'Y2 2(1-q)p 

Yt 2p Y1 2p 

/ 
Y2 

Figure5.2. 

Transition-rate diagram of the asymmetrie shortest queue model in figure 5.1. 
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p~~~.,,.2(p + 1) = Pm-l,,.+t2P + P,..,~~+t 'Y2 + Pm+l,n-1 'Yt • 

P~~~., l2(p + l)=Pm-t,:z2p + P~~~.,:z'Y:z +Pm+t,o'Yi +p~~~.,o2qp, 

Po,~t(2P+Yl)=po,,.+t'Y2 +Pt,n-I'Yt • 

Po.t (2p + 'h) =po,:z'Y2 + Pt,o'Yt + Po.o2qp. , 

P~~~.,~t2(p + 1) = Pm-t,,.-t2p + Pm,n-I'YI + Pm+t,n+t'Y2 • 

P~~~.,-t2(p + 1) = p,..-t,-:z2p + P~~~.,-2'Y1 + Pm+l,o'Y2 + P...,o2(1- q)p, 

po,,.(2p+Yt)=Po,n-t'Yt +Pt,,.+t'Y2 • 

Po,-t (2p + 'Yt)= Po,-:z'Yt + Pt,o'Y2 + Po,o2(1- q)p. 

P~~~.,o2(p + l)=Pm-t,t2p+p~~~., l'Y2 +Pm-t,-12p +Pm,-t'Yt , 

Po,o2P = Po,t'h + Po,-t'Yt . 

In figure 5.3 it is illustrated where the different types of conditions hold. 

n 

(5.3) (5.1) 

(5.4) (5.2) 
------------------------

(5.10) (5.9) 
m 

-1 ~~! ___________ s~-~>- _____ _ 

(5.7) (5.5) 

Figure53. 

m >O,n> 1 

m>O 

n>l 

m>O,n<-1 

m>O 

n<-1 

m>O 

The different typeS of condinons for the equilibrium distribution (p..., .. }. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

For the symmetrie problem, i.e., when y1 = 'h = 1 and q = 112, the regions n ~ 0 and n S 0 

are mirror images of each other, which implies that Pm.- =p .... ,., so the analysis canthen be 
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restricted to one region. For the asymmetrie problem, however, these regioos are no longer mir

ror images of eadl other, so we have to construct salutloos on each of the two regions. In the 

following sections we try to prove that there are «;.11;, !;;. and c;. d; and e1 such that .. 
plfl.,l& = :E C;«1'117 . for m~O,n>O; 

i•O .. 
p".,,. = :E dt«f'~i" for m~O.n<O; 

i=O .. 
Pm,O = :E e;a.f' for m<!:O. 

i=O 

After introducing the first tenns these series are coostructed by adding tenns in the uppe.r qua

drant satisfying (5.1) and by adding tenns in the lower quadrant satlsfying (5.5) so as to alter

nately satisfy the vertical conditloos (5.3) and (5.7) and the horizontal conditioos (5.2), (5.6) 

and (5.9). Afterwards it is checked whether the remaining conditloos (5.4), (5.8) and (5.10) are 

satisfied. 

5.2. The oompensadon approach 

The compensatlon approach starts with the solution descrihing the asymptotic behaviour 

of p".,,. as m-+ ""· Numerical experiments suggest that there are a.g, ~to Pl. d1 and d2 such 

that 

p".,,.- Kdta.W~T (m-+ oo, n > 0); 

p".,,.- Kdza3'~ï" (m -+ oo, n < 0); 

Pm.o- Ka.'G- (m -+co), 

(5.11) 

for some constant K. The question arises: what are a.g, !31, P2, d 1 and d 2? First «o is found by 

following the same reasoning as in section 1.1, yielding 

«o =p2. 

The products (5.11) describe the behaviour of p".,,. away from the vertical boundary. Therefore 

they have to satisfy the conditloos (5.1), (5.2), (5.5), (5.6) and (5.9). Insertion of a.'GI3T in (5.1) 

and then dividing the resulting equation by afl'-1 ~T-1 yields a quadratic equation. for J31• A 

similar equation is obtained for fu by use of (5.5). 
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Lemma S.t. 

(i) The product «"'P" is a solution of equation (5.1) if and only if 

apl(p + 1) = p22p + ap2'Y2 + a.2yl ; 

(ii) The product «""P_,. is a solution of equatio!' (5.5) if and only if 

apl(p + 1) = p22p + ap2yl + a.2'Y2 . 

For fixed a. the quadratic equation (5.12) in pis solved by (cf. (2.41)) 

p + 1 + -./(p + 1)2 - (2p + O.Yz)yl 
X+(a.)=a. 2 . 

- . p+ay2 

(5.12) 

(5.13) 

Let Y +<P> be the roots of (5.12) for fixed p. Similarly x+(a.) and y +<P> are the roots of (5.13) 

for fix~ a. and p respectively. Applying lemma 5.1(i) to a.3'P1 ;ith <Xo = p2 we obtain the 

roots p1 =X+(p2) = p and p1 = X_(p2). The first root yields the asymptotic solution 

p".,,.- Kp2mp" forsome K, corresponding to the equilibrium distribution of two independent 

M 1 M 11 queues, each with a worldoad p. However, the queues of the shortest queue model are 

strongly dependent, so the only reasonable choice is 

2 
p1 =X_(p2)= 

2
P Y1 . 
+PYz 

Similarly we obtain from lemma 5.1(ii) 

P2'Y2 Pz =x_(p2)= --. 
2+PYI 

The coefficient d 1 is found by substituting p".,,. = d 1 a.3'P1 for m 2: 0, n > 0 and p"., 0 = a.3' 

for m 2: 0 in condition (5.2). This results in the following equation, which is simplified by use of 

equation (5.12). 

dI <XoYt = <XoYt + 2qp . 

A similar equation is obtained for d 2 by insertion of p".,,. = d 2a.3'P2' for m 2:0, n < 0 and 

p"., 0 = a.3' for m 2:0 in condition (5.6). This yields 

d2<Xo'Y2 = CXYz + 2(1- q)p. 

For d 1 and d2 given by these two equations, it is easily verified that condition (5.9) is also 

satisfied. Hence, for the values of ao. p,, Pz, d 1 and dz found, we conclude that the sequence 

p".,,. given by 

d 1 a.3'P1 for m 2: 0, n > 0 ; 



d2a8'Pï" for m ê!:O, n < 0; 

a3' for m ê!:O, n =0, 
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satisfies the condidons (5.1), (5.2), (5.5), (5.6) and (5.9). However, this sequence violates the 

condidons (5.3) and (5.7) at the n-axis. To oompensare for d 1a3'PT on the posidve n-ax.is we 
follow the same procedure as in secdon 1.1: 

Try to find c1, a, p with a, jhatisfying (5.12) such that 

d 1 aS'PT + d 1 c 1 «"P" satisfies (5.3). 

To satisfy (5.3) for all n > 1 the !i-factor of the two tenns must be the same, so we have to take 

P=Pt· 

For ~=fit equation (5.12) has roots Y+(fit) and f_(flt) satisfying Y+(flt)>fit > f_{Pt)>O 
( cf.lemma 2.15). So ~ = Y +<131) and thus we are forced to take the smaller root fora, i.e., 

a=at = Y -<Pt>. 
Insertion of d1 a3'~1 +d1ct«TPT in (5.3) and dividing by d 1ji7-1 leads to an equadon for c1 

wbich is easily solved. The same procedure is applied to compensate for d2a3'fli" on the 
negative n-ax.is: add d2c2a!!'Pï" where <Xz =y_(f32) and solve cz from condition (5.7) .. This 
results in the sum 

dta3'137 +dtct«TPT for m ê!:O, n > 0; 

d2a8'Pï" + d2cza!!'P2" for m :2 0, n < 0 ; 

for mê!:O,n=O, 

satisfying the conditions (5.1), (5.3), (5.5) and (5.7). This procedure is generalized in the fol
lowing lemma (cf.Jemma 1.2). 

LemmaS.l. 

(i) Let z".,,. = n'(fl)(i" +cf!'(ji)ji" jor m ê!: 0, n > 0. 
Then z~~~,~~ satisfies (5.1) and (5.3) ij cis given by 

f_(p)-fl 
c=- Y+@)-~. 

(ii) Let w~~~,,.=,:'(ji)ji_,.+~(fi)j)" form:20,n <0. 
Then w~~~,,. satisjies (5.5) and (5.7) ij cis given by 

Y-<P>-P 
c =- Y+(ji)-ji . 
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1be new tenns d 1c1aTPf and d2czafPi" violate the conditloos (5.2), (5.6) and (5.9) at tbe 
m-axis. Compensation of these eJTOrs requires addition of tenns with tbe same a-factor as tbe 
two ell'Or tenns. Since tbe two eJTOr îenns have different a-factors, we have to compensate for 
each of tbem separately. For the compensation of d 1 c 1 aTPf we use the following procedure: 

Try to ftnd d3, d4,f~o IJ:J, P4 with a~o iJ:J satisfying (5.12) 

and a 1, jJ4 satisfying (5.13) such that tbe sequence Pm.~t given by 

Ctdt«'l'Pf +ctd3ó.TP~ for m ~ 0, n > 0; 

Ctd4aTPt 

Ct/t«T 

satisfies (5.2), (5.6) and (5.9). 

for m;';!:O,n<O; 

for m;';!:O,n=O, 

(5.14) 

Fora=a1 equation (5.i2) has roots X+(a1) and X:...(a1) satisfying X+(a1) > a 1 > X_(a1) > 0. 

So jJ1 =X+(«t) teaving the smaller root for ~.i.e., 

Pl =X_(at). 

ForiJ. we may choose between the rootsx+(«t) and x_( at) ofequation (5.13) with a= a 1• It is 
desirabie to keep d4aTPt as smallas possible, so we take the smaller root, i.e., 

P• =x_(at). 

Insertion of the tenns (5.14) in (5.2), (5.6) and (5.9) and dividing by c 1aT-1 leads to three 
equations for d3, d4 and ft which are easily solved. The sameprocedure is applied to compen
sate for d2c 2afflz__,.: add dsc2afP~ solution in the upper quadrant, add d6c2aTP6' to tbe 
solution in the lowerquadrantand add c2f2aT to the solution on the m-axis where 

Ps =X_(az). 

iJ6 = x_(az). 

and solve ds. d6 and fz from the conditions (5.2), (5.6) and (5.9). This results in the sum 

for m ;';!: 0, n > 0; 

for m ~o. 

satisfying the conditions (5.1), (5.2), (5.5), (5.6) and (5.9). The following lemma generalizes the 

compensation at the m-axis. 
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Lemma5.3. 

(i) Let 

(ii) 

{

o!"x:(a) +do!"X!(a) 

Zm." = go!"x-:!(a) 

Jo!" 

Jor m~O.n>O, 

Jor m~O.n<O, 

Jor m~O.n=O. 

Then z".,,. satisfies (5.1), (5.2), (55), (5.6) and (5.9) lf d, g andJ (!re given I:Ty 

tx'Yt +2qp <X11. +2(1-q)p 
X_(a) + x+(a) - 2(P + l) 

d=- ' art + 2qp <X11. + 2(1- q)p . _;_:_...;;..:.._ + . - 2(p + 1) 
X+(a) x+(a) 

Yt(«X'Y2 +2(1-q)p)[ x_~a)- x+l(a)] 
g---.r---------~~--------~ 

- [trtl +2qp <X11. +2(1-q)p ] 
12 X+(a) + x+( a) - 2(p + l) 

tx'Yt [ x_~a) - x+~a)] 
J=- <X'Yl +2qp <X11. +2(1-q)p . 

---'---+ -2(p+ 1) 
X+(a) x+(a) . 

Let 

Jor m~O.n<O, { a!"x;" (u) + da!"L'(u) 

w".,,. = go!"X!(a) Jor m~O.n>O, 

Jo!" Jor m~O,n=O. 

Then w".," satisfies (5.1 ), (5.2), (5.5), (5.6) and (5.9) lf d, g and Jare given I:Ty 

art + 2qp <X11. + 2(1- q)p 
X+(a) + x_(a) - 2(p + 1) 

d=- trtt+2qp <X1J.+2(1-q)p • 
_;_:;.__...;;..:.._ + - 2(p + 1) 

X+(a) x+(a) 

'Y2(tx'Yt + 2qp)[ X.;.~ a) - x+~ a)] 

g =- [trtl +2qp CX)2 +2(1-q)p • 
Yt X+(a) + x+(a) - 2(p + 1) 



We added tenns in the upper and lower quadrant to compensate for d 1 c 1 a'{'P? and 

d2c 2afPi" on the horizontal axis and in doing so introduced new errors at the vertical axis, 

since the tenns added violate the conditloos (5.3) and (5.7). It is clear how to continue: the 

compensation procedure consists of adding on tenns so as to altemately compensate for the 

error at the vertical axis. according to lemma 5 .2, ,.and for the error at the horizontal axis. accord

ing to lemma 5.3. This results in an infinite sum of tenns in the upper and lower quadrant Due 
to the compensation at the horizontal axis these sums have a binary tree structure. Let xm,,. be 

the resulting infinite linear combination of products a"'P". 1be detailed definition of im,,. is 

given below. We first fonnulate the recursion relations defining the a's and pts in this linear 

combinatlon. These a's and pts can be represented by the binary tree depicted in tigure 5.4. 
This tree is called the parameter tree. 

P1 fu 

! t 
a, <"X2 

~ ~ 
P3 134 Ps ll6 

+ t + + 
a3 Cl4 as «X6 . 

A A A A 
P-7 Ps P9 P10 p,, 13t2 Pt3 P14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure5.4. 
The parameter tree. The sequences {ai} and { j3;} are generared · by use of the 

quadratic equations in the upper and lower quadrant. 
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In figure 5.4 the a's and IJ's are numbered from the root and from left to light. For specifying 
the recursion relations to generate the parameter tree, we use the following notations: 

Pi<i> = the left descendant of a; ; 

P,.(t/ =the light desCendant of a1 ; 

0"<1> =the a-parent of jl1 • 
Further define L as the set of indices i of p,. 's that are left descendants and R as the set of indices 
i of 131 's that are right descendants, i.e., 

L = {l(i)li =0, 1, 2, · · ·}, 

R = {r(i)l i= 0, 1, 2, · · · ) . 

It is easy to check that for the numbering in ligure 5.3 we have 

l(i)=2i+l; r(i)=2i+2; p(i)=li;lj; 

L = {2i + ll i= 0, 1, 2, · · · } ; 

R = {2i + 21 i= 0, 1, 2, · · • } . 

As starting value we take 

ao =pz. 

Then for all i ~ 0 the left descendant P1(i) of a; is defined as the smaller root of equation (5.12) 

with a= a; and the light descendant Pr(i) of a; is defined as the smaller root of equation (5.13) 

with a= a;. Tile descendant <Ji(i) of Pl(i) is defined as the smaller root of (5.12) with P = Pl<ï> 
and and the descendant a,.(i) of Pr(i) is defined as the smaller root of (5.13) with ll = Pr(i)· By 
lemma 2.15 we have for 0 < a < 1 

X+(«)> a> X_(a) > 0 

and similar inequalities hold for Y ± (J3), x± (a) and y ± (J3). Using induction it then follows that 
forall i ~o. 

!lt(ï) = X_(a;), 1:}..(1) = X-(CX;), 

<Xi(ï) = Y -<lll(ï)) • a,.(ï) = Y-{(3,(1)) • 

andthat 

a; > Pt<ï> > <li<ï> > o. 
<X; > llr(i) > a,.(i) > 0 · 

(5.15) 

So {a;} and {jl1} forma decreasing positive tree. For all ieL the products a~(ï)Pf and «Tilf 
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satisfy rondition (5.1) by lemma 5.l(i); for all ieR the products «;'(i)Pi" and «TPI" satisfy 

rondition (5.5) by lemma 5.l(ii). Let us define the infinite sum x~~~,,. by 

x~~~,,. = L d;(cp<•>«;'(i) + c,ar>P? for m ~ 0 , n > 0 , 
ieL 

x~~~,,. = L d,(cp(i)«;'(i) + c,ar>Pi" for m ~ 0 , n < 0 . 
ieR 

(5.16) 

(5.17) 

By linearity the sum x~~~,,. satisfies" the oonditions (5.1) and (5.5). Below we define the 

ooefficients c1 and d1 such that x".,,. also satisfies the boundary oonditions (5.2), (5.3), (5.6), 

(5.7) and (5.9). First we note that for each m ~ 0, n > 0 the sums x.n,,. and x~~~,..,. can be 
represented in one binary tree derived from the parameter tree. This tree is called the compensa
tion tree and depicted in figure 5.5. The indices i of left descendants d,(cp(i)«;'(i) + c;«T>P1 in 
the oompensadon tree run through L. The indices i of right descendants run through R. So x~~~,,. 

is the sum of allleft descendants and x~~~,_" is the sum of all right descendants in the oompensa

non tree. 

. . ~.. . "· .. 

Figure 5.5. 

The compensation tree. For each m <:: 0, n > 0 the left descendants add up to x~~~,,. 

and the right descendants add up to Xm. _". 

The ooefficients c1 are such that (Cp(i)«;'<1> + c1«T)Jl? satisfies (5.3) for all ieL and such 

that (cp(i)«;'(i) + C;«T>Pi" satisfies (5.7) for all i eR. Application of lemma 5.2 and using the 

relations (5.15) yields that c; can be obtained from Cp(i) by 

Y_(Jl;)-Jl; 
C; =- y +<M- Jl; Cp(i) 

Y-<Jl;)- p, 
Cj =- IA.) a Cp(i) 

Y+I.Pi -Pi 

(ieL), 

(i eR), 
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with initial condition 

co= l. 

By linearity of (5.3) and (5.7) it then follows that x",.,. satisfies (5.3) and (5.7). Compensation at 

the horizontal axis requires pairs with the same a-factor. Therefore we rewrite x~~~,,. as 

x",.,.= codtflfaW + l: c;(d;P? +d,<;>J31v>>ar + l: c;d,<;>P1<;>af' 
~L ~R 

for m;;:: 0' n > 0' (5.18) 

x",.,. =codzP2"<XW + L c;dr<ï>~;(;>a7' + L c;(d;Pi' +d,(ï)P;(i))af' 
ieL ieR 

for m;;:: 0, n < 0, (5.19) 

and define x",.,. on the m-axis by .. 
Xm,o == l: c;/;a'[' = cofo<XW + l: c;fi.af' + L c;/;af' 

i•O ieL ieR 

The coefficients d; and /; are such that for ieL the tenns 

(d;!i7 + dt<ï>Pf<;>>a'!' 

dr(i)ji;(i)a'[' 

/;af' 

for m;;::O,n>O; 

for m;;::O,n<O; 

for m;;::O,n=O, 

satisfy (5.2), (5.6) and (5.9) and such that for i eR the same conditions are satisfied by 

dt(ï)li1<;>af' for m ;;:: o , n > 0 ; 

(d;jii' + dr(i)li;(;>)a'f' for m ;;:: 0 , n < 0 ; 

/;a'!' for m ;;:: 0 , n = 0 . 

(5.20) 

Application of lemma 5.3 and using the relations (5.15) yields that d1(i)• dr(i)•/; can be obtained 
fromd; by 

a;Yt + 2qp <Xi'h + 2( l - q )p 

X ( ·) + ( ·) -2(p+l) _ <Xi x+ a, 
dt(i) =- <XiYt + 2qp <Xi'h + 2(1 - q )p d; 

X+(<Xi) + x+( a;) - 2(p + 1) 

(ieL), 

'Yt(atYz + 2(1- q)p) [ x)a;) - x)a;)) 

dr(i) =- ---:[.-<Xi_iYt_+_2q_p--a-;'J2---"+-2-(1---q-)p----"-~ d; 

1'2 x ( ) + ( ) - 2(p + 1) 
+ <Xi x+ <Xi 

(ieL), 
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/; =- Ot'Yt + 2qp Uj'Y:z + 2(1- q)p d; 

X . ( ) + ( ) - 2(p + l) 
+ a; x+ a; 

Y:z(Ot'Yt + 2qp) [x) a;) - x) a;)] 
~w=- ~ 

Q.;'YJ + 2qp a.;'h + 2(1- q)p 
'YI x ( ) + ( ) - 2(p + 1) + a; x+ a; 

dr(i) =-

Ot'Yt + 2qp Q.;Yz + 2(1 - q )p 
---::-::--:--:'-'-- + - 2(p + 1) 

X+(a.;) x_(a.;) . d· 

<X;Yt + 2qp <X;Y:z + 2(1- q)p I 

( ) + ( ) - 2(p + 1) x+ 0.; x+ a; 

with initially 

dt = Oo'YI + 2qp • 
Oo'YI 

Oo'Yl + 2(1- q)p 
dl= • 

Oo'Yl 

fo= I. 

(ieL), 

(ieR), 

(ieR), 

(ieR), 

By linearity of (5.2), (5.6) and (5.9) it then follows that x".,,. satisfies these conditions. This 

completes the definition ofxm,,.· We may conetude that {xm,,.} is a fonnal solution to all equili
brium equations if we show that the conditions (5.4), (5.8) and (5.10) are also satisfied. To shOw 

that (5.4) is satisfied, we first rewrite this condition as 

Po,t (2p + Y:z)-Po,2'h = P t,o'Yt + Po.o2qp . (5.21) 

Insenion ofthe sum (5.16) intheleft-hand side of (5.21) yields 

Xo,t (2p + Y:z)- Xo,2Y:z = .l: d;[ (Cp(i) + C;)l};(2p + Y:z)- (Cp(i) + C;)I}TY:z] • (5.22) 
IEL . 

For ieL the coefficient c; is such that (cp(i)a.';<il + c;a7'>137 satisfies (5.3) or equivalently 
(5.21). Substituting this tenn in (5.21) leads to 
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(cp(i) + c;)P7(2p + 'b)- (Cp(i) + c;)P7+1'b = (c1 (i)0"(i) + c;a;)p7-1Yt . 

Dividing both sides of this equality by pr-• and then inserting in (5.22) yields 

Xo,t(2p + 'YÛ -Xo,2'b = I: d;(Cp(i)0"(i) + C;(l;}yt 
ieL 

= cod 1 Clo'Yt + I: C;(d; + dl(i)}a;"fl + I: Cidt(i)Clc'YJ . (5.23) 
~L ~R 

On the other hand, inserting the sum (5.20) in the right-hand side of (5.21) yields 

-Xt,o'Yt +xo,o2qp= I: c;/;(a.;Yt +2qp). 
i=O 

From the definition of Ji it is readily verified that 

<X;'Yt 
Ç. ='d· +dl("))_....:..:..:_ 
Jt ~ l ' <X;'Yt + 2qp 

fi.;'Yt 
/i = d, (i) <l;'Yt + 2qp 

(ieL), 

(teR). 

(5.24) 

These relations reduce the right-hand side of (5.24) to (5.23). So {Xm,nl indeed satisfies (5.4). 

Similarly it follows that {Xm,nl satisfies (5.8). The final condition (5.10) is also satisfied due to 

the dependenee of the equilibrium equations. Hence we can now conetude that (x~~~,,.} is a for

mal solution to all equilibrium equations. The next problem is to prove the convergence of the 
infinite sum x"",.. This is the object in the following three sections. 

Remark5.4. 

The attalysis simplifies if y1 ="f2. In this case the quadratic equations intheupper and 

lower quadrant are the same, so in the parameter tree all a's at the samedepthand all P's at the 

same depth are identical and the tree thus simplifies to a sequence with the structure 

Consequently X""n bas a Iinear structure. In fact, up to some multiplicative constant Xm,n is equal 

to Xm,n(~) defined by (3.20) and (3.21) in chapter 3. 

Remark5.5. 

In this secdon ao is found. by a beuristic argument However ao can also be found by 

requiring that the initial products 

dta.S'Pf for m t!!O, n > 0, 



d2a8'Pi" for m :!: 0, n < 0 , 

a3' for m:!:O,n=O, 
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satisfy the conditions (5.1), (5.2), (5.5), (5.6), (5.9) and 

o < p, < ao , o < P2 < ao . 
1be final inequalities are imposed to ensure that compensation terms are generated in the 
decreasing direction only (cf. definition 2.9 and conclusion 2.10). It is easily shown that tomeet 
these requirements ao bas to be the solution in (0, 1) ofthe equation (cf. equation (2.44)) 

un + 2qp CX'f2 + 20- q)p 
a2(p + 1) = X+(a.) + x+(a) · 

The solution in (0, 1) of this equation is indeed given by a== p2• 

S.J. Absolute convergence of the formal solution 

We now prove that the series (5.16), (5.17) and (5.20) defining x".,,. converge absolutely. 

Absolute convergence is needed to guarantee equality of (5.16) and (5.18) and of (5.17) and 

(5.19). These series, however, may diverge forsman m and n, but we will prove: 

Theorem 5.6 (Absolute convergence). 

There is an integer N (to be ~pecijied later on) ~uch that: 

(i) The ~eri~ (5.16) defining x".,,. for m ;<!: 0 and n > 0, converge~ ab~olutely for all m ;<!: 0, 
n :!:Owithm +n >N; 

(ii) The ~eri~ (5.17) dejining x....,. for m ~ 0 and n < 0, converges absolutely for all m ;<!: 0, 

n S 0 with m- n > N; 

(iii) The seri~ (5.20) defining x"., 0 for m ;<!: 0, converges absolutely for all m ;<!: N; 

(iv) I; I x".,,. I <co. 
mO!:O 

m+IIII>N 

5.4. Prelirninary results for the proof of theorem 5.6 

To prove the absolute convergence of (5.16), (5.17) and (5.20) weneed information about 
the asyn)ptotic behaviour of a;. ~~· c1, d;, ft as i~""· We first prove that a1 and P1 decrease 
exponentially fast. The next lemma follows directly from lemma 2.15. 



Lemma5.7. 

ForallO <a< l 
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(i) the ratio X+(«)! a is decreaslng andX_(a)l a is increasing; 

(ii) X+(«)> a> X_(a) > 0. 

The Stl1M properties hold for Y :t (IJ), x :t (a) and y :t (IJ). 

Corollary 5.8. 

Foralil =0, 1, 2, · · · 

ao ~a. > p,<l> > «t<ï> > o. 
CXo ~ «lt > IJr(i) > CX,(i} > 0 • 

where 

p,<l> s 2 :~ a. . «t<i> s 2 :~12 ~~<'> 

Pr(i) S 2 :P'Yl «; • Q,.(i) S 2 ;~'YI IJr(i) · 

Proof. 

1be corollary is proved by induction: we deseend the parameter tree by starting at the 

root. Assume that 0 < «; S 0{), which trivially holds for i= 0. Then by lemma 5.7, 

X_(CXQ) 'Yt 
0 < A.t(') =X_(tv-) S --tv. =--a· 

~ I ...... CXo ...... 2+Pî'2 I 

and IJI(i) = X_(ex;) S X_(CXQ) = 1}1 , so again by lemma 5.7, 

f_(!Jt) _L 
«t{i) = y -<Pl(i)) s -R- Pl(i) = 2 l'l(i) 0 

~~ +Pî'l 

1be inequalities for Pr(ï) and a,.(i) are proved similarly. 0 

Corollary 5.8 states that «; and 1}1 decrease exponentially fast as i -+ ""· 1be asymptotic 

behaviour of«; and !31 is staled in 



Lemma5.9. 

As i-+ ""• then 

Pt<i> ---+ 
a, Al ' 

CJ.i(i) A ---+ 1• 
Pt<i> 

where 

Proof. 

Pr(i) 1 ---+-
<Xi a2 

a,.(i) 
~-+at. 
~(i) 
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We prove the first limit. 11te other limits are proved similarly. As i -+ ""• then <Xi -+ 0 by 
corollary S.8, so 

Pt(i) X_(a,) A 1 'YI 1 
--=---+--=-. 

<Xi <Xi 2p Al 

The asymptotic behaviour of the coefficients ei is stated in 

LemmaS.lO. 

The coejjicients c; are positive for all i = 0, 1, 2, · · · ; and as i -+ "", then 

C; 
-- -+ C1 i/ i runs through 4 
Cp(i) 

C; 
---+ C, i/i runs through R, 
Cp(i) 

where 

0 
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Proof. 

Lemma 5.7 implies that c;ICp(i) > 0 for all i> 0. Since c 0 > 0 it follows by \Jsing induc
tion that c; > 0 for all i ~ 0. We now prove the ftrst limit. The other limits are proved simllarly. 

As i -+ ""'• then IJ; -+ 0 by corollary 5.8. so if i runs througb L 

0 

Befure stating the asymptotic behaviour of d; and /;. we investigate whether the common 

denominator in the definitions of dt(i}• d,(i) and /; never vanishes. The denominator 

(a y1 + 2qp) a (a 'h + 2(1- q)p) a ...:._:.;:____::.:...:..__ + - a2(p + 1) 
x.(a) x+(a) 

vanisbes at a=ao and a= land is strictly convex for 0 <a< 1 (cf. the proof of lemma 2.17). 
Hence the denominator is positive for 0 <a< ao. Since .0 <a; < <Xo for i ~ 1, it then follows 
that the common denominator in the definitions of d1c•>· dr(J) and /; is positive for i~ 1. Using 
lemma 5.7 it is easily shown that the numerators in these definitions are also positive. So d; and 

/; are altemating of sign with respect to the depth in the compensation tree, i.e, for all i ~ 1, 

dt(i) 0 dr(i) 0 T< , d:< . 

/r(i) 0 y<. 
The next lemma describes the asymptotic behaviour of the coefficients d;. 

LemmaS.Il. 

As i -+ oo, then 

dt(i) D ---+- u 
d; ' 

dt(i) D -- -+- _, 
d; n' 

where 

d,c;> D 7-+- ,, 

d,c;> -+-D 
d; " 

if i runs through L; 

(_ 

if i runs through R, 
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Proof. 

We prove the first limit The other limits are proved similarly. Multiplying the numerator 

and denominator in the definition of d1<•> for ieL by <Xt and letting i-+ oo, soa.-+ 0 by coro1-
lary 5.8, we obtaii1 

d,(i) qAz +(1-q)at 
---+- =-Dil. 

d; qAt +(1-q)at 

1be asymptotics of/;. is stated in the lemma below. lts proof is similar to tbat of lemma 5.11. 

LemmaS.ll. 

As t -+ oo, then 

/;. 
-- -+- F1 if i runs through L; 
d;a.; 

/;. 
-- -+-F if i runs through R, 
d;<Xt r 

where 

The lemmas 5.9-5.12 are the ingredients to prove theorem 5.6. 

5.5. Proof of theorem 5.6 

0 

We can now prove that tbe series (5.16), (5.17) and (5.20) converge absolutely. First con

sider a fixed m ~ 0 and n ~ 0. Since a;, ~;, c; are positive for all i ~ 0, it follows that the series 

(5.17) witb-n replaced by n and tbe series (5.16) converge absolutely ifand onlyif 

... 
l: I d; I (cp(i)a';(ï) + c;a.}")f31 < "" . 
i•l 

Below it is shown tbat the terros in this infinite sum converge exponentially fast to zero. First. 

ldl(i)l(c;a.'/'+c,<;>a.7(;>)fJf<i> {Rll(i, m, n) for ieL; 
is abbreviated by R (i m n) for ie R ·, 

ld; l(cp<•>a.';<•> + c;a.T>P1 ,, • • 
I dr(i) I (c;a.'f + Cr(i)a.~;))fJ~(i) { R,,(t, m, n) for ieL ; 

is. abbreviated by 
ld; l(cp(i)a';c•> + c;a.'/')fJf R"(i, m, n) for i eR . 
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By the Iemmas 5.9-5.12 we obtain that as i -+- and i runs through L, 

and as i -+ - and i runs through R, 

l+C,(AtiAû"' [aa
2

t]"'[Aat
2

]". R,1(i, m, n)-+R"(m, n) :=D"C, _ __;__.:........;_::__ 
l +C, (a 11az)"' 

R"(i, m, n)-+ R"(m, n) :=D"C, [ ::] mHI 

Hence, in the limit the tenns hebave geometrically. To formulate necessary and suflident con
dinons for the convergence of the infinite sum we need the notion of a positive geometrical 
binary tree. 

Delinition 5.13. 

The numbers n 1• nz, n3, .. .form a positive geometrie al binary tree if: 

(i) The numbers n; have a binary tree structure as depicted infigure 5.6; 

(ii) The initial values n 1 and n 2 are positive; 

(iii) · . [Ru R"] , 
The geometrical behaviour is determined by the nonnegative matrix R". R" such that: 

nt (i) = Ru n; , n, (i) = R". n; 

nt(i) = R" n; • l&,(i) = R" n; 

if n; is a left descendant ; . 
y 

if n; is a right descendant. 

Notice that the tree ofnumbers n I> n2 , n3 , •.• is of the same structure as the compensation tree 
depicted in figure 5.5. Let a(A) denote the speetral radius of the matrix A, then in particular, 

[
Ru R,,] _ Ru+R"+~(R11 -R")2 +4R,,R,t 

a R~r R" - 2 . (5.25) 

... 
The next lemma provides a necessary and sufficient condition for the convergenre of :E n;. 

i=l 
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ns 
.... ··· ... . .. ··· ... 

. ·· ··. . ·· ·· . ~.. · ... 

Flgure5.6. 
The binary tree structure of the numbers ni. 

Lemma5.14. 

.. [Ru R"] ~ n; <oo<=>CJ R R < 1. 
i•l Ir " 

Proof. 

Define for all m ~ 0, 

W1(m) = the sum of all numbers n; at depth m, which are a left descendant, 

W,(m) = the sum of all numbers n; at depth m, which are a right descendant. 

Titen for all m ~ 0, 

[ 
W,(m + 1)] = [ Rtt R"] [ W1(~ )] _ _ [ R11 R"] m [ W1(1 )] 
W,(m+l) R" R" W,(m) - ... - Rtr R" W,(l) • 

where W1(1) = n 1 and W,(l) = n2; Hence 

... ... ( ] .. [Ru R,,] "'[W1(l)] 
.~ ni = ~ W1(m+l) + W,(m+l) = (1, 1) ~ R R w (I) ·. 
••1 m=O m•O Ir " ' 

(5.26) 

If o[ =u =rl) < 1, then [=u =''] m converges exponentially fast to zero, so Ï, n; < oo. 

Ifon ~ o:rhand Ï, n;: co,~n, since W1(1) and W,(l) arepositive and [

1

:
0 

:"] ~ 0, 
i=J /r TT 

[ :: ::] m-+ 0 as m -+ co , 

which holds if and only if 
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[
Ril Rrt] 

a R" R" < 1 · 0 

Hence, the convergence of a positive geometrical binary tree is detennined by the speetral 

radius of the matrix of rates. Since the compensation tree of tenns I d; I (Cp(i)a.';<o + c;a.f')(J? 
behaves asymptotically as a positive geometrical binary tree with rates 

[
Ru R,,] _ [Ru(m. n) R"(m, n)] 

. R1r R" - R~r(m, n) R"(m, n) ' 

we expect that the convergence is also detennined by the speetral radius of this matrix. First, let 

us define: 

Definltion 5.15. 

ForaU n ~0. a(n) isdefinedby thefollowing equation: 

a(n) =I [ DuCz(A tl Az)" + D"C,(a 11 az)" 

+ (DuCt(Atl Az)" -D"C,(atl a2)")2 +4D"CzD,,C,(Atl Az)"(ai I az)" 

From this definition we conclude (cf. (5.25)) 

[

Ru(m, n) R,1(m, n)] 
a R"(m,n) R"(m,n) =a(m+n). 

Since 0 < a1 < 1 < a2 and 0 < A1 < 1 < A2, it follows that R11(0, n), R~r(O, n), R71(0, n) and 
R"(O, n) J. 0 as n-+ oo, Hence, since 0 SA SB implies a(A) Sa(B) (see e.g. [28]), we obtain 

that a(n) J. 0 as n-+ oo Soit is sensible to define (cf. definition 2.28): 

Definition 5.16. 

Let N be the smallest nonnegative integer such that a(N + 1) < 1. 

Below we prove that if a(m + n) < 1, or equivalently m + n > N, then 

00 

l: ld; I(Cp(i)CI.';(i) + CjCI.f')~? < 00 

i=l 

and otherwise, if a(m + n) > 1, then this series diverges. 
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First assume that a(m + n) < 1. In this case there exist rates Rtr. R11, R,1 and R" such that 

R11 > R11(s, t), Rr1 > R,1(s, t), 

Rtr > R~r(s, t), R" > R"(s, t) 

and 

[
Ril Rrl] 

0 RR <1. 
Ir " 

The indices i of the tenns I d; I (cp(i)a';(i) + c;a7')(37 at depth d in the compensation tree run 
from i= 2d-1 to i= 2d+1-2 (cf. figure 5.5). By taking d sufficiently large we have for i~ 2d-1, 

R11(i, m, n) < R11, Rtr(i, m, n) < R1r if ieL, (5.27) 

R,1(i, m, n) < Rrl, R"(i, m, n) < R,, if i eR . 

Consider the positive geometrical binary tree of numbers n; with rates [ :;: ::] and initia! 

values n 1 = n2 = K, where Kis taken sufficiently large such that for i S 2d+1-2, 

I d; I (Cp(i)a';(i) + c;a7')(37 S n; . 

In particular, this inequality holds for i= ~-1, ... , 2d+1-2, so by (5.27) it follows that this ine

quality holds for all i. By lemma 5.14, the sum of n; converges, so .. .. 
I, ld;I(Cp(i)a';(i)+c;a7')(37S L n; <oo. 

i=1 i=1 

Now assume that a(m + n) > 1. Then the compensation tree of tenns I d; I (cp(i)a';(i) + c;af')Ji7 
can be bounded below by a divergent geometrical tree, so .. 

I, I d; I (cp(i)a';(i) + c;a7')Ji7 = oo. 

i=1 

Finally, if a(m + n) = 1, nothing can be said in generaL This completes the proof of parts (i) 

and (ii) of theorem 5.6. We now prove part (iii), that is, for all m ~ N the series· .. 
I, c;l.fi I a7' 
i=O 

converges. This series can also be represented in a binary tree of tenns c;l.fi I a7'. From the 
lemmas 5.9-5.12 it follows that as i ~ oo and i runs through L, 

cl(i) l.li(i) I a?(;> D C [A 1 ] -
1 

m ~ 111- • 
c;l.fi la; A2 

Cr(i) l.fr(i) I a~i) D C F, [!:!._] mt
1 

m ~ Ir 'F ' c; I .ti I a; 1 a2 
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and as i-+ oo and,i nms through R, 

_c,;,.,!;<Q;:..;.;..IJj;;...,lG"'"i)..;..l a-''f""<i.:..> -+ D,.,C
1

_F_l [-A-1 ] -
1 

cd/; laT F, Az ' 

Cr(i) 1/r(i) I CX~i) -+ D"C' [~] -I 
cd/;I«T az 

Hence, the tree of tenns c; I/; I ex'[' behaves asymptotically as a positive geometrical tree for 
which the speetral radius of the matrix of rates is given by a(m + 1). If a(m + 1) < 1, or 
equivalendy m C!: N, it then follows similar to theproof ofparts (i)-(ii) of theorem 5.6 that .. 

I: cd /;I ar < 00 • 

i•O 

This completes the proof of part (iii) oftheorem 5.6. We finally prove part (iv) staling that 

I: lx".,,.l 
... ~o 

converges.lnserting the series (5.16), (5.17) and (5.20) into this sum yields 

N-1 oo oo 

L lx".,,.IS L L L ld;I(Cp(i)CX~(i)+C;CX'[')~7 
m~O m=O •=N+l-m i=l 

m+I•I>N .. 
+ I: I: I: I d; I (Cp(i)CX~(i) + C;CX'[')~7 + I: I: C; I/; I ar . 

m•N•=l i=l m=Ni=O 

~ I d I [ Cp(i)<X~(i) c;a~ ] ~; ~ c;l/; I a~ 
+"" i +-- --+ .L. <oo, 

1• 1 1-CX"(i) l-ex; 1-~; ; .. o 1-<Xt 

since the speetral radius of the matrix of limiting rates. for each of the infinite sums is equal to 

a(N+l) < 1. 0 

Remark5.17. 

In general, the integer N is smalt. In case Yt = 'Y2, it follows that A 1 = a 1 and A 2 = a 2, so 
a(n) simplifies to (cf. (3.13)) 

l-At [At] n-l a(n)=---
A2 -1 A2 

Hence, if y1 = 1'2· then a(l) < 1 and thus N = 0. Only for highly unbalanced systems, that is, as 
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y1 ~ 0 or y1 ~ 2, the integerNis somewhat larger. In table 5.1 we list N for. fixed q = 1h and 

increasing values of p and Yt· 

N Yt 
0.2 0.5 0.8 

0.1 1 1 0 

p o.s 1 0 0 
0.9 0 0 0 

Table5.1. 

Values of N for jixed q = 1/2 and increasing values of p and 'Yt· 

5.6. Main result 

We now have all ingredients to prove our main theorem stated below. The proof of this 
theorem, however, is similar to that of theorem 2.33 and therefore it is omitted. 

Theorem 5.18. (main result) 

ForaUm,nwithm t!!Oandm +In I> N andform =N andn =0, 

C-l 
Pm,tt = Xm,tt • 

where C is the normalizing constant. 

In the next two sections we show that the expresslons for Pm.n lead to similar ones for the nor
malizing constant and the moments of the sojoum time. 

S. 7. Product form expression for the normalizing constant 

To derive an expression for C in the form of product forms we use the equation stating 
that the number of arrivals per unit time balances the number of departures per unit time, i.e., 

2p = Pt 'Yt + Pz'Y2 , 

where Pt(2) is the fraction of time server 1(2) is busy. Insertion ofthe identities 
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.. .. 
Pt =.I- I: Po,,. , P2 = 1- I: Po,_,. · 

in tbis balance equation yields .. .. 
2(1-p)= I: Po •• Y. + I: Po.-12 · 

•=0 ,..o 

We oow define for m ;ë! 0, n ~ 0 the unnormalized quantities Pm.• by 

Pm.,.=Cp".,,.. 

(5.28) 

(5.29) 

By substituting (5.29) in equation (5.32) and inserting for n > N the series (5.16) for po,,. =x0,,. 

and the series (5.17) forïJo,_,. =xo,-,. we obtahi 

N N 
2(1-p)C = I;po,,.'Yt + I:Po,_,.12 

,. .. o ,. .. o 

"" ... 
+ I: I: d;(Cp(i) + C;)IJf'Yt + I: L d;(Cp(i) + C;)l3712 .. 

t~.•N+l ieL n=N+I ieR 

lntercbanging of summations finally yields the following equation for C: 

N N 
2(1- p)C = I:ïJo,,.'Yt + I:Po ...... 12 

,..o ,. .. o 

(5.30) 

5.8. Product trom expressions for the moments of the sojourn time 

In this section we indicate how expressions in the form of series of products are found for 
the first and second moment of the sojoum time S. We do not work out all details. By condi
tioning on the number of jobs in the two queues on arrival of a job and using the property that 

Poisson arrivals see time averages (see e.g. Wolff [62]) we find 

ES= i i (m + 1)( Pm.nl'Yt + Pm....,.112 J + Ï; (m + l)p".,o(q 112 + (1-q)Jy,). 
m•Ot~.•l m=O 

ES2 = i i (2(m+l)+(m+l)m)[p ... ,,.ITI+Pm,-,.ln] 
m=Ot~.•l 

+i (2(m+l)+(m+l)m)pm.o(qtn+<I-q)ITI). 
m=O 

So we need to evaluate series as, for instance, 
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:Ë :Ë (m + l)p~~~,,. =c-t :Ë :Ë (m + 1)plfl,ll. 
"..o" .. t .... o .. ~t 

By inserling for all m + n > N the series (5.16) for Pm,• =x~~~,,. in the right-hand side of this 
equation we obtain 

N-1 N-m 
l: l: (m + 1)p~~~,11 = l: l: (m + l)pm;" 

.... o ... t m•011-1 

N-1 .. 
+ l: L (m + 1) E d;(cp(i)a.';(i) + c;a.7')f\1 

m=011=N-m+1 ieL 

+ E L (m + 1) l: d;(Cp(i)a.';c;> + c;a.7')(3? . 
m•N11•1 ieL 

Interchanging of summadons and inserting the equality 

:Ë (m + I )a.'" = aH (I + N (\-a.)) , 
m=N (1- CX) 

valid forO <a.< l, finally yields 

oo oo N-lN-m 
l: l: (m + l)jj~~~,,. = l: :E (m + 1)pm,11 

111•011•1 m•011•1 

N-1 J}~-m+1 
+ l: (m + 1) L d;(Cp(i)a.':v> + c;a.7') ; p 

m•O ~L - i 

(5.31) 

[ 
Cp(i)fl.~(i)(l +N(l-flp(i))) c;a.r(l +N(l-a;))] Pi 

+l:d; 2 + 2 -A-. 
ieL (1 - fl.p(i)) (1 - 0;) 1 - l"i 

Similar expressions can be derived for the other series in the equations for /ES and /ES2• 

In the next secdon we conclude the theoretica! treatment by considering two extensions. 

5.9. Two extensions 

The compensation approach bears fiexibility towards small modifications in the model. In 

this secdon we romment on the extension to a threshold-type shortest queue problem and on the 
extension to the shortest queue problem for two parallel multi-server queues. 

The threshold-type shortest queue problem is characterized as follows. Consider a queue
ing system consisting of two parallel servers with service rates y1 and 1l respectively, where 
y1 > "h > 0 and y1 + y2 = 2. Jobs arrive according to a Poisson stream with rate 2p where 

0 < p < 1. If an aniving job finds i jobs in queue 1 and j jobs in queue 2, then the job joins 

queue 1 if i Sj+T and otherwise queue 2. The jobs require exponentially distributed service 
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times "witb unit mean, the service times are supposed to be independent. 

In tbis model arriving jobs are always sent to the faster queue, unless tbis queue is much 
longer tban the slowee one. 1be slower queue functions as a dynamic overflow queue. 1be value 
T may be used as a parameter to balance the utilization of botb servers. This queueing system 
can be represented by a continuous-time Markov process, whose state space consists of the pairs 
(i, j), i, j = 0, 1, ... where i and j are the lengtbs of the two queues. However, the variables 
m =min( i, j + T) and n = j +T-i are more suited to application of the compensation 
approach. The transition-rare diagram is depicted in tigure 5.7 (cf. tigure 5.2). 

n 

I 
I 
I 
I 
I 

Yt 

--+-------------~--------------~-----
1 T 'Y2 

2p 2p 

Yt 2p Yt 2p y 
'Y2 

Figure5.7. 

m 

Transition-rate diagram for the threshold-type shortest queue problem wtth 

threshO/d value T.lt is supposed thot Yt > 12· 

The analysis of tbis problem is similar to that of the original shortest queue problem, except that 
compensation on the negative n-axis is now replaced by compensation on the negative part of 
the line m = T. The conditions for m =Tand n < -1 are (cf. (5.7)): 
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n < -1 (5.32) 

1be following lemma summarizes the compensation on the negative part of the line m = T. 1be 
proof ofthis lemma is similar to that oflemma 5.2. 

Lemma5.19. 

Let w"._,. = y~(p)p_" + cy~(p)p_" for m ~ 0, n < 0. 

Then w"._,. satisjies (5.5) and (5.32) if cis given ûy 

Y!<P> Y-<P>- P c=--- . 
Y~<P> Y+<P>- p 

We now oomment on the shortest queue problem with two parallel multi-server queues. 
This problem is characterized as follows. Consider a queueing system consisting of two parallel 
multi-server queues with M 1 and M 2 servers respectively. In the first queue the servers wolK 
with rate Y1 I M 1 and in the second queue the servers with rate y2 / M 2 , where y1 > 0, "f2 > 0 and 
y1 + 12 = 2. Jobs arrive according to a Poisson stream with rate 2p where 0 < p < 1. On arrival 
a job joins the shortest queue and, if queues have equallengths, joins either queue with proba
bility 1 - q and q respectively, where q is an arbitrary number between 0 and 1. 1be jobs 
require exponentlaDy distributed service times with unit mean, the service times are supposed to 

he independent 

This system can be represented by a continuons-time MaiKov process, whose state space 
consists of the pairs (i, j), i, j = 0, l, ... where i and j are the lengtbs of the two queues. The 
transfonnation m = min(i, j) and n = j - i leads to a state space more suited to application of 
the compensation approach. The transition structure at the vertical axis is more complicated 
than that of the original model with single servers. However, once the equival~nt of lemma 5.2 

for multi-servers is established, the analysis is further similar to that of the original model with 
single servers. For more details the reader is referred to [6]. 

5.10. The boonding geometrical trees 

The compensation approach is constructive in nature. Therefore, a natural question is how 
these results are used for numerical purposes. This section and the subsequent ones are devoted 
to numerical aspects of the approach. It will be shown that the compensation tree can be com
puted efficiently with bounds on the error of each partial tree. In section 5.5 we showed that for 

each m ~ 0 and n > 0 the compensation tree of tenns I di I (Cp(i)a';(i) + cio.7')P7 behaves asymp
totically as a positive geometrical binary tree with nonnegative rates 
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Ru(m. n) R"(m, n)] 
R(m, n) := R"(m. n) R",(m. n) · 
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Due to the exponential convergence, a few tenns suffice to obtain an accurate approximation for 
x..,,. and x""-. wbere x"",. is the sum of the left descendants in the compeilsation tree and x""_ 
is the sum of the right descendants. The question that arises is: how accurate is a partial com
pensation tree? In this section we derive an upper bound on the contribution of tbe subtrees 
below tbe leaves of each partlal compensation tree. This upper bound is obtained by bounding 

these subtrees by geometrical trees. 

In appendix B we define for m ~ 0, n > 0 and all nodes i ~ 1 in tbe compensation tree of 

tetms I d; I (Cp(i)CX';(i) + c;a.f')fl1, tbe nonnegative matrix 

[

Bu(i. m, n) B,1(i, m. n)] 
B(i, m. n) := B,,(i, m, n) B".(i, m. n) . ' 

and we prove that this matrix B(i, m, n) yields a uniform bound on the rate of convergence of 

the tenns in tbe subtree below ltiï l(cp(i)a.';c•> + c;a.f')(}1 (see tigure 5.8), i.e., for all tenns 

I di I (cp(i>a.':u> + cia.j>f:l1 in tbe subtree below I d; I (cp(i)a.';c;> + c;af')j31 it holds that 

Ru(j, m, n) '.'!!, Bu(i, m, n), R"(j, m, n) S B"(i, m, n) if ieL , 

R,1(j, m, n) S B,1(i, m, n), R".(j, m, n) S B".(i, m, n) if ie R . 

I d; I (cp(i)a';c•> + qaf')f:l1 

.......... ----~--- ........ , 
, 'J d 1 ( m m )R" 1 d 1 ( m m )All ' .... , ' /(i) C;CJ.; + Ct(i)CXt(î) pl(i) r(i) C;CJ.; + Cr(i)<Xr(i) Pr(i) '"" ... 

.............. . .. ·················... ..··········. ···... ... .. 

Ftgure5.8. 

.. ... 

The subtree below ld;l(cp(i)a';c;> +c;af')~T is the part of the compensation tree 
below the dashed line. 

.. .. 

So the subtree below I d; 1 (cp(i)a';c•> + c;a7'>~1 is bounded by the positive geometrical binary 
tree with tbe same initial values as this subtree and with rates B(i, m, n) (see tigure 5.9). The 
following theorem summarizes the bounding properties of B(i, m, n). This theorem is proved 
in appendix B. 



-140-

RJ n2 

xBu(l, m, n)~xB,,(i, m, n) xBr~(i, m, n~xB"(i, m, n) 

ns 

Figure5.9. 
The bounding geometrical tree for the subtree below I d; I (c p(i)a.';(î) + c;a.T>M, 
where llt = I dl(i) I (c;a.T + Cl(i)a.7(,>)13f(i) and n2 = I d,(i) I (c;a.T + Cr(i)O.~;))p~(i)· 

Theorem 5.20. 

For all m ~ 0, n > 0 and all nodes i ~ 1 in the tree of terms I d; I (Cp(i)a.';(i) + c;a.T)l31. 
the subtree below node i is bounded by the positive geometrical binary tree with the same initial 
values as this subtree and with rates B (i, m, n ). 

Letforall m ~o. n > 0 and all i~ 1, 

W1(i, m, n) = weight of allleft descendantsin the subtree below ld; l(cp(i)a.';(i) + c,a.T)P?; 

W,(i, m, n)= weight of allrightdescendantsin the subtree below I d, I (Cp(i)O.';(i) + c;a.T>Pf. 

By theorem 5.20, the weights W1(i, m. n) and W,(i, m, n) are bounded by the weight of allleft, 

respectively all right descendants in the positive geometrical tree with the initial values 

llt = I dl (i) I (c;a.T + C/(i)O.?(i))Pf<i) and 112 = I dr(i) I (c;a.T + Cr(i)a.:'(i))l3~(i) and with rates 

B (i, m, n). By (5.26) these bounds are easily calculated, yielding 

[ 

W,(l, m, n)] .. [ I dt(i) I (c;a.'{' + cl(i)a.7(i))l3f(i) l 
W (. ) S l: B(i, m, n)k ld I( m m )A" . 

r l, m, n k=O r(i) C;O.i + Cr(i)f1.r(i) Pr(i) 

This bound is finite if and only if a(B (i, m, n)) < 1 in which case it simplilies to: 



1beorem 5.21. 

Forall m ~0. n > Oandall i~ 1, 
if <J(B(i, m, n)) < 1, then 
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[
W,(i, m. n)] [ . ] 4 [ ldt(i)l(c;a'/' +ct(i)«f(;>)~1<i) l 
W,(i, m, n) S I-B(l, m, n) !d,.Q)!(c;a.T+c,<;>«~i)~~(i) ' 

where I denotes the identity matrix. 

If <J(B(i, m, n)) < 1 holds for all nodes i in the compensation tree, then an upper bound 
on the error of each parrial compensation tree is provided by the sum of the upper bounds on the 
weights of the subtrees below the teaves. To find out whether this condition for the speetral radii 

holds for all nodes, we need the following properties of B (i, m, n) proved in appendix B. 

Lemma5.2l. 

(i) B (i, m, n) decreases monotonically along each path in the compensation tree for fixed m 
andn; 

(ii) B(i, m. n) ~R(m, n)as i~ oo; 

(iü) B (i, m, n) decreases monotonically and exponentially fast as m ~ oo /or fixed i and n; 

(iv) B (i, m, n) decreases monotonically and exponentially jast as n ~ ""for fixed i and m. 

Since 0 SA s D implies <J(A) S a(D) (see e.g. [28]), it follows by lemma 5.22(i) that if 

<J(B(i, m, n)) < 1 for i= 1 and i =2, then this inequality holds for all nodes i. By lemma 

5.22(iii) and 5.22(iv) the speetral radii a(B(l, m, n)) and a(B(2, m, n)) decrease exponenûally 
fast as m + n ~ oo, so a(B (1, m, n)) and a(B (2, m, n)) are less than one for m + n sufftciently 

large. Now we have all ingredients for the computation of the compensation tree. 

5.11. Basic scheme for the computation of the compensation tree 

Below we formulate a basic scheme for the computation of x".,,. and x".,..,. with a relative 
error of e for each m ~ 0 and n > 0. We assume that bounds can be computed right at the begin
ning of the compensation tree, i.e., both a(B(l, m, n)) and a(B(2, m, n)) are less than one. 
This assumption will be relaxed later on. 



Step 0. (Jnitialization) 

Compute 

i".,,.=dt(coaS'+ct«T>Pf. 

i~~~,-= d2(coaS' + c2af)~. 

and set Ie = 1. 
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Step 1. (Compute all terms at depth k+ 1 in the compensation tree and compute the bounds) 

Compute for each tenn d;(cp(};«';<i) + c1aT>I31 at depth Ie in the compensation tree its 

immediate successors dt(i)(c;a.T + Ct(i)a7(;))13?c;> and dr(i)(c;a.T + Cr(l)a~;))p~(i) and 

add these tenns to i".,,. and i~~~,_ respectively. 

Compute the upper bounds U1(i, m, n) and U,(i, m, n) on the weight of allleft, respec

tively right descendants in the subtree below d;(Cp(i)a';cn + c;a.T>I31 , excluding its initial 

values d,(i)(c;aT + CJ(i)CX?(;>)ll?ci> and dr(i)(ciaT + Cr(i)~i))~~(i) (since we already 

added these tenns toi~~~," and i~~~,_ respectively). That is, bytheorem 5.21, 

[
U1(i, m, n)] [ . ] [ ldt(i)l(c;a.T+ct(•1a.7{i))~?(i) l 
U(i ) =B(i,m,n) 1-B(z,m,n) ~ I" I( ". ". )R" · 

r • m, n "r(i) C;Cl; + Cr(I)Clr(i) t'r(i) 

Step 2. (Convergence) 
Let/" be thesetof indices i of the tetms d;(Cp(i)a';(i) + c1a.T>I31 at depth kin the compen

sation tree, i.e.,/"= {21-1, 2" • ... , 2t+1-2}. Ifthe following two inequalities are satisfied: 

:E U1(i, m, n) s e{i".,,.- :E U1(i, m, n>}. 
~· ~· 
:E U,(t, m, n) S e{i....-- :E U,(i, m, n)}, 
~· ~h 
then the relative accuracy of e is attained, so stop and approximate x~~~," by i".," and x~~~,

by i".,_"; otherwise repeat step 1 with k = k + 1. 

This scheme computes the compensation tree with error bounds. These bounds are based 

on theorem 5.20. The analogue of theorem 5.20 also holds for the tree of product fonns in 

expression (5.30) for the notmalizing constant C (which is due to the fact that the extra factor 

1/ (1 - P> is increasing for 0 < P < 1). 
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LemmaS.13. 

For aU m è!: 0, n > 0 and all nodes i è!: 1 inthetree of tenns I d; I (Cp(i)O.p(i) + c;a1">P? I (1- Pi), 
the subtree below node i is bounded by the positive geometrical binary tree with the same initial 
values as this subtree and with rat es B (i, m, n ). 

Proof. 

By corollary 5.8, P1u> < Pi < 1 for all j è!: 1. Hence, by theorem 5.20, w,e obtain for allleft 
descendants j in the subtree below node i, 

I liL (i) l(cjo.j + c,c;>af(n> 1 P?~) s I d,U> I (ciaj + ctu>arU>>P?u> (1 
1 P ) 

- /(i) - j 

SB11(i, m, n) I di I (cP<i>a'Pu> + CjO.j) (1 ~ !3;). 

The other inequalities are obtained similarly. 0 

. SimHar results hold for the trees of product fonns in the expresslons for the moments of 
the sojoum time (cf. (5.31)). Hence, to compute the trees in the expression (5.30) for C and in 
the expressions for the moments of the sojoum time, we can use the same scheme as for the 

computation ofthe compensation tree. We conclude this section with some remarks. 

Remark5.24. 

In the convergence test we implicitly use that {x...,"} is a positive solution. This follows by 
observing that {x"""} bas constant sign by virtue of theorem 5.18 and that for fixed n the first 
tenn in X""11 is dominating as m -+ oo, 

Remark5.25. 

The quality of the computation scheme depends on the rate at which the upper bound 

[ 

U1(i, m. n)] 
;:1. U,(i, m. n) 

converges to zero as k -+ ""· lt follows from lemma 5.22(ii) that the rate of convergence of this 
upper bound is detennined by the rate at which the weight 

[ 
I dl(i) I (c;a'{' + cl(i)a7(i))J37(i) l 

;:1, I t4(i) I (c;a'{' + Cr(i)a:(;))l3~(i) 

converges to zero as k -+ oo. Since the compensation tree behaves asymptotically as a 
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geometrical tree witb rat.es R(m, n), it is easily shown tbat the rate of convergence of tbis 
weight is detennined by a(R (m, n )) = o(m + n ). Hence, since o(m + n) deercases exponen
tially Cast as m + n -+ -. tbe convergence of tbe upper bound is faster for stat.es further away 
from tbe origin. This aspect is exploited insection 5.12. 

Remtri5.26. 

In eacll cyc1e the immediate successors of allleaves of tbe current partlal tree are com
puted. So tbe number of computed terms doubles in each cycle. Lucki1y, few cycles usually 
suffice to obtain an accurate approximation. In sectiori 5.13 we propose an alternative computa
tion strategy in wbich a better use is made of tbe relative importance of tbe branches of the tree. 

Remark 5.27. 

1be basic scheme assumes tbat o(B(i, m, n)) < 1 for i= 1, 2 to be able to compute 
bounds at tbe begiming of the compensation tree. This can be relaxed to computing bounds as 

· soon as o(B{t, m, n)) < 1. If m + n > N, then o(B(i, m, n)) < 1 for l sufficiently large. This 

follows fromlemma 5.22(ii) and the fact thata(R(m, n))=o(m + n) < 1 form +n > N. 

Remark5.28. 

The equilibrium equations for n = 0 may be used to calculate xm. o for m ~ 0. These equa
tions state that (see (5.9) and (5.10)): 

Xm,o2(p + 1) =Xm-1,12p + Xm,tll + Xm-1,-t2P + Xm.-t'Yl • 

xo.o2p =xo,tll + xo.-t'Yt . 

AU quantities at the right hand side can be computed by the basic scheme. 

5.12. Numerical solutlon of the equilibrium equatlons 

m>O 

If N > 0, then the equilibrium equations for m + In I :S N have to be solved numerically 
from the solution on the complement. These equations can be solved efficiently and numerically 
stabie by an approach similar to the ones in the sections 3.9 and 4.4. 'Ibis approach is based on 
the special property that the only flow from level i, defined by · 

levell == {(m, n) I m ~ 0, m + In I = l} , l ~ 0 , 

to level 1+1 is via state (1, 0). By this property, the problem of simultaneously solving the 
equilibrium equations at the levels l :SN, given the (unnormalized) solution at level N +1, can 
be reduced to that of recursively solving the equations at the levels N -+ N -1 -+ ... -+ 1 -+ 0. 
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We first fonnulate dle equilibriwn equations at level/ > 0. 

Po,I(2P+Yl)=po,z+t'Yz +Pt,l-t'Yt • 

Pk.l-t2(p + 1) = Pt-l,l-k+12p + Pk,H:+l 'YzPt+l,l-t-1 'Yt • 

Pl-l.12(p + 1) = P1-2,22P + Pt-1,2'12 + P1,o'Yt + Pl-t,o2qp, 

Po,-l(2p+"ft)=Po,-l-t'Yt +Pt,-l+I'Y2, 

Pt. -l+A:2(p + 1) = Pt-t,-l+A:-t2P. + Pk. -l+k-1 'YtP.+:+t,-l+l+t 'Y2 • 

Pl-t,-t2(p +I) =P1-2,-22p + P1-1,-2'Y1 + P1.o'Y2 + Pl-l,o2(1- q)p · 

(5.33) 

O<k<l (5.34) 

(5.35) 

(5.36) 

O<k<l (5.37) 

(5.38) 

The equilibriwn equation in state {l, 0) is replaced by the following two equations. Applying 
dle balance principle "rate out of A= rate into A" to 

A= {(m, n)lm :0::0, m +In I S l} u \ {(l, 0)}, 

leads for all I > 0 to 
1-1 l-1 

Pl-l,t2p+pl-t,-12p=p,,o2+ I; P.t.t-t+l'Y2 + L Pk.-l+t-I'Yt, 
k=O 1=0 

and applying the balance principle to 

A = { (m, n) I m 0!: 0, m + In I S l} , 

yields for alll :=:: 0, 

I I 
P1,o2p = I: Pt,l-t+t'Yz + E Pt.-l+t-l'Yt . 

k=O k=O 

(5.39) 

(5.40) 

By eliminating Pl-t,o in dle equations (5.35) and (5.38) we obtain a set of linear equations for 
the probabilities at level I, given the probabilities at level l + 1. These equations fonn a second 
order recursion relation for the probabilities at level l. Below we show that these equations cao 
be reduced to a first order recursion relation. 

Deftnition 5.29. 

The sequence xo. Xt, x2, ... is the solution of 

Xi+l =x;2(p +I) -x;_12py1 , i:<:: 1 , 

with initial values xo = 1 and x 1 = 2p + 12. 
The sequence Yo. y 1 , y 2, ... is defined similarly with y1 and Yz interehang ed. 



Theorem 5.30. 

Foralil > 0, 
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A: A: • 
Pt,l-A:XA:+I = Pk.+l,l-A:-tXA:"ft + 1: Pi.1-i+tXi(2p) _,12. (5.41) 

i=O 

k. . A: • 
Pk..-t+kYic+t =P~:+t,-l+lc+tY~cb + l; Pi,-l+i.-1Yï(2p) _,Y1 jor k =0, l, ... , l-2, (5.42) 

i=O 

where the initia/ values PI-t, I and Pl-1,-1 follow from the equations 

Pl-1,12p(xi-IYI +XtYI-1(1-q))=Pt,o2xt-l(yt-t'Yt0-q)+ (yt-YI-I'YzP)q) 

1-1 I . 
+ 1: Pi,/-A:+t(XïYr-1(2p) _,(1-q)yz +Xt-1YtQ1z) 

i=O 

Pt-t,-t2P(yl-tXt +y,xt-tQ) = Pt,o2Yl-l <xt-1'Y2Q +(x, -Xt-t'YtPXl- q)) 

l-1 
+ l; Pi,-l+k-l(yiXI-t(2p'f-iq'YI +Yt-tXt(l-q)yt) 

i=O 

1-1 
+ L Pi,l-k+tYt-1 (x,- Xï(2p'f-i)(l - q)Yz . 

1=0 

Proof. 

(5.43) 

(5.44) 

We prove the reenrsion relation (5.41) by induction. For k =0 the equations (5.41) and 

(5.33) are identical. Assume that (5.41) holds for k = j. Multiplying (5.41) for k = j by 2p and 

(5.34) for k = j+l by Xj+t and adding the two equations yields {5.41) for k = }+1. This proves 
{5.41) for k = 0, 1, ... , l-2 by induction. The recursion relation (5.42) is proved similarly. It 

remains to prove (5.43) and (4.44). Multiplying (5.41) for k = l-2 by 2p and (5.35) by x1-1 and 
adding the two equations yields 

1-1 
PH,tXI = P1,oX1-t'Yt + 1: Pï,t-i+tXi{2p)'-t-i'Y2 + PH.oXt-12qp, 

î=O 

and similarly we obtain 

1-1 
PI-1,-tYI = Pt,oYt-('12 + L Pi,-l+i-tY;(2p)l-l-i'Yt + Pl-l,oYt-12(1- q)p. 

i=O 

Eliminatingp1_1,0 in these two equations leads to 

Pt-1,1XIYI-l (1- q)-Pt-1,-IX/-IYIQ = Pt,OXt-IYI-l('Yl (1- q) -"f2q) 
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r-1 · 
1 

• 
+ l: Pi.I-i+tXiYI-t(2p) -l-<)'2(1-q) 

Together with equation (5.39) we now have two equations for Pr-t,l and Pr-t,-1· The soluûon is 

given by (5.43) and (5.44). D 

By fust calculaûng the series for Po.N+h p t.N• ... , PN,t and for Po.-N-h P t,-N• ... , P-N, h 

the equations at levelNare solved efficiently by use ofthe recursion relations in theorem 5.30. 

First PN.o follows from (5.40) and PN-1,1 and PN-t.-1 follow from (5.43) and (5.44). Then 
PN-2,2 ~ PN-3,3 ~ ... ~ Po.N are subsequently computed from (5.41) and PN-2,-2 ~ PN-3,-3 ~ 

••• ~ Po,-N from (5.42). Once the solution at levelNis computed, we repeat this scheme to sub
sequently compute the solution at level N-1 ~ N-2 ~ ... ~ 1 ~ 0. The following result is 

requîred to establish that the recursion relations in theorem 5.30 are numerically stable. 

LemmaS.31. 

Forall i ;;::o andj;;:: 0 

xi+J ~X;(2p)Î ~0, Yi+j ~y;(2p)Î ~0. (5.45) 

Proof. 

We first prove the lemma for fixed j = 1 and i ~ 0 by induction. For i= 0 and j = 1, ine· 

quality (5.45) trivially holds. Assume that (5.45) holds fori = k-1 andj = 1, then 

Xt+l = Xt2(p+l)-Xt-t2P'Yt = Xt2p+xt2-Xt-t2pYt;;:: Xt2p+Xt-t2p(2-Yt) ~ Xt2p, 

which proves (5.45) for i = k and j = 1. By induction we can now conetude that (5.45) holds for 

all i ;;:: 0 and j = 1. Now consider an arbitrary i ~ 0 and j ;;:: 0. Then, 

Xi+j ~Xi+j-12p;;:: ... ~X;(2p)Î, 

which complete& the proof of this lemma for x. This lemma is proved similarly for y. D 

From lemma 5.31 it follows that all coefficients in the recursion relations in theorem 5.30 

are nonnegative. So the calculations involve only the addition and multiplication of nonnegative 

numbers and thus can cause no loss of significant digits. Hence, if the series for all Pm.n at level 

N + l are computed with a relative accuracy of e say, then repeated applièation of the recursion 

relations in theorem 5.30 yields all Pm.n at the lower levels with the same accuracy. 
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Remark5.32. 

By lemma 5.31, the numbers x1 and y1 increase exponentlaDy fast. Therefore, to avoid pos
sibie overflow problems, it is numerically sensible to scale the recursion relations in theomn 
5.30. Por example, relation (5.41) is scaled by dividing both sides by Xk+l· The resulting recur
sion relation requires the calculation of the ratlos x1(2p y+H I x1+1 for i = 0, l, ... , k. Por these 
ratlos an explicit fonnula is easily derived. Moreover, from lemma 5.31 it follows that these 
ratlos are all bounded by one. 

5.13. Numerical restllts 

This section is devoted to some numerical aspects and results. The number of cycles of 
the algorithm in section 5.11, and thereby the size of the partial compensation tree required to 
approximate X".,111 and x".,_ sufficiently close, depends on the convergence of the upper bounds. 
From reJDaik 5.25 it follows that the rate of convergence of the upper bounds is detennined by 
a(m + n) which decreases exponentially fast as m + n -.. oo. So convergence is" faster for states 
forther away from the origin. This is illustrated in table 52. We list values of xo,h x1,1 and x2,1 

with an accuracy ofO.l% together with a(l), a(2) and a(3) and the depth D ofthe partial trees 

needed for 'Y1 =0.8, q =0.7 and increasing values of p. To approximate xo, 1 sufficiently close 
for p = 0.1 and p = 0.3, parti!ll compensation trees are needed with depth 2! 10. Therefore the 
comp!Jtation bas been aborted in these two cases. 

p xo,t D a(l) XJ,l D 0(2) X2.1 D a(3) 

0.1 2!10 0.763 0.000686 3 0.035 0.000007 2 0.002 

0.3 2!10 0.529 0.017916 3 0.061 0.001676 2 0.008 
0.5 0.262860 9 0.369 0.081151 3 0.058 0.021328 2 0.010 

0.7 0.363568 7 0.262 0.219552 3 0.047 0.113707 2 0.009 

0.9 0.465454 6 0.190 0.462543 3 0.035 0.396861 2 0.007 

Table5.2. 

Values of xo,t. x 1,1 and Xz,J with an accuracy of 0.1% together with CJ(l), a(2), 
a(3) and the depth Dof the partial trees neededfor y1 = 0.8, q = 0.7 and increasing 

values ofp. 

Table 5.2 shows that a(m + n ), and thereby the size of the partial tree needed to approxi
mate x".,111 sufficiently close, decreases fast for states further away from the origin. Hence, it is 
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numerically sensible to use the compensation tree to calculate Pm.11 =x"",. for m + I n I > M 
where M > N and to use the recursion relations in theorem 5.30 to calculáte /);,.,,. for 
m + In I :SM. In fact, M must be such that o(M + 1) is sufficiently smalt Of course, then some 
extra effort is needed to so1ve the equations for m + In I s M, but this effort is easily compen
sated by the advantages of efficiently computing the compensation tree in states further away 
from the orlgin. 

In tab1e 5.3 we list valuesofp0,0 ,po,-t andp 0,1 with a re1ative accuracy ofO.l% for fixed 
q = 0. 7 and increasing values of p and y1• To obtain these probabilities we first used the com
pensation tree to calculate p".,,. with an accuracy of 0.1% for all m + In I = M + 1, then we cal
culated p".,,. for m + In I :SM by use of the recursion relations in theorem 5.30 and finally we 
used (5.30) with N replaced by M to calculate C. ·The number D denotes the maximal depthof 
the partial trees needed to approximate p".,,. with an accuracy of 0.1% for m + 1 n 1 = M + 1. All 
partial trees are computed up to the same depth, so some partial trees might be more accurate 
than strlctly necessary. The examples in table 5.3 show that the equilibrium probabilities are 
computed efficiently. 

p Yt Po.o Po,-t PO, I M o(M+l) D N 

0.2 0.2 0.458891 0.326071 0.065746 2 0.077 3 1 

0.6 0.650480 0.153709 0.119976 1 0.082 3 0 

0.9 0.667731 0.104980 0.156919 1 0.051 3 0 

0.6 0.2 0.053825 0.131667 0.021253 3 0.101 5 1 

0.6 0.201925 0.162969 0.103235 1 0.090 4 0 

0.9 0.232253 0.123756 0.152112 1 0.048 3 0 

0.9 0.2 0.001841 0.007135 0.001048 3 0.069 5 0 

0.6 0.030726 0.039101 0.022748 1 0.057 4 0 

0.9 0.042493 0.035494 0.040494 1 0.032 3 0 

0.95 0.2 0.000539 0.002222 0.000322 3 0.060 5 0 

0.6 0.013810 0.018673 0.010739 l 0.052 4 0 

0.9 0.020045 0.017774 o.o2oo81 1 1 O.Q30 3 0 

Table 5.3. 

Values ofPo.o. Po,-t. Po,t with an accuracy ofO.l% tagether with o(M +1) and the 
depth D of the parttal trees needed for q = 0. 7 and increasing values of p and y1. 
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We conetude this section by mustrating the effect of the unbatance in the setvice rates on 
ES and the coefficient of varlation cv(S). Table 5.4lists values of JES and cv(S) with an accu
racy of 0.1 %. For comparison we atso computed values of IESc and cv (Sc) fora common-queue, 
but further idenûcat, system. 

p 'Yt JES ~ IESc cv(Sc) 

0.1 0.6 1.178 1.158 1.162 1.149 

0.8 1.054 1.040 1.044 1.034 
1.0 1.018 1.000 1.010 0.995 

0.3 0.6 1.294 1.168 1.203 1.102 

0.8 1.178 1.037 1.123 1.000 
1.0 1.144 0.996 1.099 0.968 

0.6 0.6 1.876 1.156 1.628 0.984 
0.8 1.726 1.018 1.578 0.938 
1.0 1.682 0.975 1.563 0.925 

0.9 0.6 5.817 1.132 5.308 0.958 
0.8 5.552 1.007 5.274 0.958 
1.0 5.475 0.970 5.263 0.959 

Table5.4. 
V alues of ES and cv (S) with an accuracy of 0.1% for the parallel-queue system, 
tagether with values of lES~: and cv(Sc) for the "corresponding" common-queue 
system,for q = 0.5 and increasing values of p and 'Yt. 

Table 5.4 shows that the perfonnance of the parallel-queue system is close to that of the 
common-queue system and that the perfonnance of both systems is fairly insensitive to the 
unbatance in setvice rates, except at light traffic, since then the setvice time forms the main part 

of the sojoum time. 

5.14. Alternative strategy to compute the compensation treè 

The basic scheme in section 5.11 computes in each cycle the immediate successors of aU 

leaves of the current parrial tree. For highly unbalanced trees, however, this strategy is 
inefficient Trees are highly unbalanced for systems where one server is woricing much faster 

than the other one. For example, to approximate X3, 1 and x3._1 with an accuracy of 0.1% for 

p = 0.9, y1 = 0.2 and q = 0.7 the basic scheme computes the compensation tree up to depth 5. In 
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ligure 5.10 we depiet the relevant part of this partial tree, i.e., the sum of the absolute values of 

the other tenns is roughly to-B. The pair in each node l stands for (t, d;(Cp(i)a.;(i) + c;a.r)fJ;). 

(1, 0.208759) (2. 0.614513) -------.... -------.... 
(3, -8x 1~) (4, -6xl~) (5, -0.150016) (6, -0.406283) 

~ 
(13, 0.034531} (14, 0.091026) 

~ 
(29, -0.004468) (30, -0.011671) 

~ 
(61, 0.000427) (62, 0.00lll3) 

Figure 5.10. 

Apart ofthe compensation treetor X3,1 andx3.-tfor p =0.9, Y1 =0.2, q =0.7 

Figure 5.10 illustrates lhat lhe oompensadon tree is highly unbalanced: the weight is concen

traled at the very right side ofthe tree. lt is not sensible to compute all62 tenns if only 12 tenns 

are relevant. Therefore we propose an alternative strategy, which makes a better use of the rela

live importance of the branches of the compens~tion tree by computing in each cycle the 

immediate successors of the leaf the subtree of which bas maximum weight, or more precisely, 

maximum upper bound for its weight The quantity U1(i, m, n) + U,(i, m, n) provides an upper 

bound on the weight of the subtrees below node l(i) and r(i) together, but the new strategy 

requires upper bounds on the weight of the subtrees below l(i) and r(t) separately. Therefore, 

we decompose the upper bound U1(i, m, n) in the contri bution U u(i, m, n) of the subtree below 

the Ieft descendant I (i), and the contribution U,t(i, m, n) of the subtree below the right descen

dant r(i). Similarly, the upper bound U,(i, m, n) is decomposed in the contribution 

U1,(i, m, n) and U"(i, m, n), yieldlng 

[ 
Utt(i, m, n)] . [ . J-!. [ ldt(i) l(c;a.'{' + Ct(i)a.l(o>f%>] 
U"(i, m, n) =B(l, m, n) 1-B(l, m, n) 0 , 

[ ~"((i: m, n))] =B(i, m, n) [1-B(i, m, n)l-1. [ ld I( ". 
0 

m )Ril ] • 
rr l, m, n J r(i) C;CI.; + Cr(i)CI.r(i) 1-'r(i) 

Then the weight of the subtree below node l (i) is bounded by Un(i, m, n) + U rr(i, m, n) and 

the weight ofthe subtree below node r(i) is bounded by U,1(i, m, n) + Urr(i, m, n). Basedon 
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these decomposed bounds, we are able to detennine in each cycle the leaf the subtree of which 
has maximum upper bound for its weight. To compute approximations for X3,1 and X3,-t with 
an accuracy of 0.1% for p =0.9, y1 =0.2 and q =0.1 this new strategy exactly calculates the 
pardal tree depicted in figure 5.10. Hence, to obtain the desired approximations, this new stra

tegy computes 12 tenns, wherea8 the strategy in secdon 5.11 computes 62 tenns. 

5.15. Conetosion 

In this chapter we analysed the shortest queue problem with nonidentical servers. 'Ibis 
problem can be modelled as a Markov process on the lattice in the right-half plane of R.2 with 
different properties in the upper and lower quadrant We showed that the compensation 
approach also works for this model. It leads to solutions in the upper and lower quadrant in the 

fonn of series of product fonns. We furtlter derived efficient algorithms for the computation of 
these solutions as weD as global perfonnance measures such as the moments of the sojoum time 
with the advantage of error bounds. Hence, we can conetude that extensions of the compensa
tion approach with regard to the fonn of the state space are quite weD possible. In fact, the 
asymmetrie shortest queue problem represents a typical example of a Markov process on two or 
more adjacent quadrants with different properties in each quadrant The extension to such a 
class of problems seems straightfmward and therefore we do not present the details. 
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Chapter6 

Conclusions and comments 

In section 1.1 we showed how the equilibrium probabilities Pm,n of the symmetrie shortest 
queue problem can be found by using a compensation method, which, after introducing the first 
term, consists of adding on terms of the form c ri"j3" so as to altemately satisfy the vertical and 
horizontal boundary conditions. This metbod exploits the asymptotic behaviour of the probablli
ties p".,,. in the sense that the product al\'133 which is the dominant term in the asymptoûc 
behaviour of p"..,. as m -+ oo and n > 0, is taken as the first term in the series generated by the 

oompensadon method. It is well known however, that for the coupled processor problem (see 

(20,47,581) and forthe problem oftwo M IM 11 queues with coupled arrivals (see [24,45]) the 
equilibrium probabilities p".,,. have more complicated asymptotic behaviour involving extra fac
tors m-112 or n-112• Therefore, it seems unlikely that the compensation approach also worles for 
these problems. So the question arises for what probieros exactly the compensation approach 
wotks. 

As a first attempt to answer this question we extended in chapter 2 the compensation 
approaeh toa class of Markov processes on the pairs (m, n) of nonnegative integers. We con
sidered Markov processes for which the transition rates are constant in the interlor points of the 
state space and on each of the axes. To simplify the analysis, we assumed that transitions are 
possible to neighbouring states only. This class of Markov processes contains sense that the 
queueing problems mentioned above (by choosing an appropriate model). The compensation 

approach first characterizes the set of product form solutions ri"j3" satisfying the equilibrium 
equaûons in the interlor points and then, by confronting these solutions with the boundary con
ditions, builds up an infinite linear combination of product form solutions that a1so saûsfies 
these boundary conditions. The essence of this construction is a compensation idea: after intro
ducing the main term, the approach consists of adding terros so as to altemately compensate for 
tbe vertical and horizontal boundary conditions. This construction leads to a formal, and tbus 
possibly not useful (divergent) solution ofthe equilibrium equations. Thereforewe derived con
ditions guaranteeing that this approach leads to useful results, that is, to a convergent infinite 

linear combination of products. The crucial condition appeared to be that no transitions are pos
sibie from the interlor states to the north, north-east and east Other conditions were either not 
relevant (but imposed for convenience only) or imposed to guarantee the ergodicity of the Mar

kov process. The general theory developed in chapter 2 was applied to the symmetrie shortest 
queue problem in chapter 3 and to a queueing model for a multiprogramming system in chapter 
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4. Both probieros can be modelled by a Maitov processof the type srudied in chapter 2 and 
satisfying the condition on the transitloos in the interlor points. The compensation approach 
does indeed fail for the coupled processor problem and the problem of two M 1 M 11 queues 
with coupled arrivals, since these problems violate the latter condition. 

It is important to remark that the compensation approach is constructive in nature and that 
therefore this approach is well suited for numerical purposes. This was demonstrated for the two 

specific probieros in the chapters 3 and 4. It appeared that the compensation approach leads to 

efficlent numerical procedures for the calculation of the equilibrium probabilities p".,,. as well as 
other quantities of interest, such as the moments of the waiting time, with the advantage of tight 

error bounds. 

As mentioned before, the analysis in chapter 2 should be regarded as a first attempt to 

characterize the Maitov processes for which the compensation approach works. Further exten
sions are possible in several directions. Some of these extensions will be discussed in the subse
quent sections. 

6.1. Form of the state space 

The analysis in chapter 2 is restricted to Maèkov processes in the first quadrant. Exten
sions to a more general form of state space are definitely possible, as shown in chapter 5. The 
main subject of chapter 5 is the analysis of the asymmetrie shortest queue problem. This prob
Iem can be modelled as a Maitov process on the pairs of integers (m, n) with m nonnegative, 

which behaves differently on each of the regions n > 0 and n < 0. Obviously this problem does 
not fit in the · class ·of probieros treated in chapter 2, but it is shown that the compensation 
approach also works for this problem. 1t leads to a series of product forms for the probabilities 

p".,,. in the region n > 0 and a similar series for the probabilities in the region n < 0. These ana
lytic results are exploited to. construct efficient numerical procedures. Fayolle and Iasno
gorodski [19,40] and Cohen and Boxma [14] show that the analysis ofthe generating function 

can be reduced to that of a simultanemiS Riemann-Hilbert boundary value problem. This type of 
boundary value problem, however, requires further research. Knessl, Matkowsky, Schuss and 
Tier [46] derive asymptotic expressions for the stationary queue length distribution. To our 

knowledge no further results are available in the literature. 

The asymmetrie shortest queue problem represents a typkal example of a Markov process 
on two adjacent . quadrants (or on two coupled regions of possibly different form; cf. the 

threshold-type shortest queue problem in section 5.9) with different properties in each quadrant 

The extension to such a class of problems seems straightforward and therefore we do not 
present the details. 



Currently, we try to extend the oompensadon approach to Markov processes on higher 

dimensional state spaces. Although no definitive results are available yet, it seems likely that 

extensions in this direction are possible. Recent results indicate that the conditions required for 

n dimensional Markov processes, can be expressed in termsof conditions for n-1 dimensional 

Markov processes. 

6.l. Complex boundary behaviour 

The transitions at the horizontal and vertical boundary of the Mark:ov processes treated in 

chapter 2 have a fairly simple structure. Extensions to more complex transition structures at the 

boundaries are feasible. In fact, an important case for which the transition structure at the verti

cal boundary is more complicated than the one treated in chapter 2, is the shortest queue prob

lem with two parallel multi-server queues. The compensation approach is also applicable to 

this model (cf. section 5.9). In the next two sections we present two models with more complex 

behaviour at the boundaries as well as in the interlor points. 

6.3. The symmetrie shortest delay problem for Erlang servers 

One severe limitation of the models studied in the chapters 3, 4 and 5 is the assumption of 

exponential service times. In this section we study the problem of chapter 3 withErlang servers 

and shortest delay routing. We sketch the essential features of the extension of the compensa

tion approach to this problem. A paper on the detailed analysis of this problem is forthcoming. 

The models involved are not skipfree to the south, which is a basic assumption for the probieros 

studied inthebook by Collen and Boxma [14]. Up to now, no analytica! results seem to be 

available in the lirerature forthese types of problems. 

Consider a system with two identical parallel servers. The service times are Erlang-I dis

tributed with mean l. Jobs arrive in a Poisson stream with intensity 2À, where we assume that 

')J < 1. Intuitively, this condition guarantees that the system can handle the offered load. An 
arriving job can be thought of as consisting of l identical subjobs, where each subjob requires an 

exponentially distributed service time with unit mean. Arriving jobs join the queue with the 

smallest number of subjobs, and in case the number of subjobs in the two queues is equal, join 

either queue with probability 112. This routing policy is called shortest delay routing, since 

arriving jobs join the queue promising the shortest delay, and it is optimal for parallel Erlang 

servers, see e.g. Hordijk and Koole [39] and Weber [60]. 

This queueing system can be represented by a continuous-time Mark:ov process, whose 

natural state space consists of the pairs (i, j) where i and j are the numbers of subjobs in each 

queue. Instead of i and j we use the variables m and n where m =min( i, j) and n = j -i. Let 
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lPm.•} be tbe equilibrium distribution. For simplicity of presentation we restriet tbe analysis to 

the problem with Erlang-2 servers. The extension to Erlangian-1 servers is briefty discussed at 

the end of this secûon. In fact, the Erlang-2 problem contains in its treatment already all 

ingredients, needed for tbe general problem. The transition-rate diagram for the shortest delay 

problem with Erlang-2 servers is depicted in tigure 6.1. The main difference with respect to tbe 

simple model in chapter 3 is that transitions are not to neighbouring states only. Consequently, 

tbe behaviour at tbe boUDdarles is more complicated. By symmetry we have p".,,. =p".,_. 

Therefore, the analysis is further restricted to the probabilities in the first quadrant. 

n 
1 

À. 1 

. . 
2À. 2À. 

Figure6.1. 
Transition-rare diagramlor the shortest delay problem with Erkmg-2 servers. 

Inspired by chapter 2, we starttolook for feasible initial pairs o.o. 13<J. That is, we try to 

find products O:P3 satisfying the equilibrium equations in the interlor points and satisfying 

the equations at tbe horizontal boundary (if 1 > I 0.0 I > 113o I ) or the vertical boundary (if 

1 > 113o I > I 0.0 I). Inserting the product a3'1'3 into the equations for the interlor points, that 

is, tbe points with m > I and n > 2, we find that 0.0 and l3o have to be roots of the cubic 
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equation 

a2p2(A. + 1) = J332A. + a2Ji2 + a 3 • (6.1) 

This cubic equation is the analogue of the quadratic equation (2.9). By Roucllé's theorem it is 
easily shown that foreach fixed a with 0 < lal < 1, equation (6.1) bas exactly one root P with 
0 < IPI <lal; and foreach fixed P with 0 <I lil <I, equation (6.1) has exactly two (simpte) 
rootsawithO< lal< IPI (cf.lemma2.7). 

To find the solutions cxl)'fi3 that satisfy the equations at the vertical boundary, that is, the 

points with m S l, note that the behaviour at this boundary is just the truncation of the 

behaviour at the interlor points (cf. remark 2.4) and so we need not to introduce extra 
coefficients for the solution on the vertical boundary. Furthermore, since for fixed p =Po equa
tion (6.1) has two roots ao and a 1 with I al < I Po 1. it seems more sensible tolook for linear 
combinations cx3'P3 + c 1 a'{'f}3 satisfying the vertical boundary conditions. It can easily be 
shown however that no such linear combinations exist. This result is of course suggested by the 

transition structure at the vertical boundary (cf. conclusion 2.14(iii)). Hence, feasible initial 

solutions stem from the horizontal boundary only. 

To find the solutions a3'P3 that satisfy the equations at the horizontal boundary, that is, 
the points with n s 2, we need to introduce extra coefficients for the solution on this ooundary. 
Let /ocx3' be the solution for n = 0 and g 0 al)' be the one for n = 1. Insertion of these solutions 
into the equations for n s 2leads to three nonlinear equations for ao. /o and go. The analysis of 
this set of equations is difficult, since these equations also involve the parameter Po which can 

be regarded as a ( complicated) function of ao (note that Po is the root with I pI < I ao I of the 
cubic equation (6.1) for fixed a= Qo). Therefore we propose the following approach, teading to 

the desired feasible values of ao without use of Jio. 
In secdon 3.11 we showed that the first term of the solution of the shortest queue problem 

gives the solution of the threshold jockeying problem. This suggests that the tirst terms for the 
shortest delay problem may be found by analysing the shortest delay problem with threshold 

jockeying. First consider the shortest delay problem with Erlang-I servers and assume that one 
subjob jumps to the shortest queue as soon as the difference between the number of subjobs in 
the two queues exceeds 1. In fact, this is the problem insection 3.11 with T = 1. It is called the 
instantaneous jockeying problem. The solution of this problem is of the form 

p~~~,,.=u,.f', m>O,OSnSl, (6.2) 

and is easily proved as follows. Inserting (6.2) in the equilibrium equations for states with 

m > 1 andOSn s lleadsto 

uol(A + 1) = Ut2('Y+ À), 

Ut2(À+ l)=uo(Y+À). 

(6.3) 
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1bese equat.ions have a nonnull solution if and only if lhe detenninant is zero, i.e., if 

2(y- ;.:z.)(y-1)= 0. 

Hence, since lhe absolute value of y must be less than one (necessary for nonnalization), we 
have to set 1= À2 and then u0 and u 1 are solved from (6.3) (up tosome multiplicative constant). 

Note that y= À2 yields lhe feasible initial ~ forlhe problem without jockeying, that is, the clas
sical shortest queue problem. 

'Ibis suggests that also for lhe Erlangian-2 servers the feasible initial values of~ may be 
found by analysing the related jockeying problem for which it is assumed that one Slibjob jumps 
to the shortest queue as soon as the difference between the number of subjobs in lhe two queues 
exceeds 2. This jockeying problem is solved by a linear combination of three geometrie tenns 
ofthe fonn (6.2), i.e., 

Pm,n =u,. 'ft' +v,.'fl' +w11"tf, m >I, OS n S 2. (6.4) 

1be proof of this result is omitted. We only state that y1 == rti, "f2 = rt~ and 1J =-À/ (1 +À), 

where 11 1 and 112 are the roots with I 11 I < 1 of 

rt22(À+ 1)=2Ä.+rt32. 

The parameters y1 and "f2 can also be found as· follows. Consider the jockeying process on 
the aggregate states kwherekis lhe total number of subjobs in the system. Let P~c be the proba
bility ofbeing in state k. Equating the rate out and the rate into state k > 2 yields 

P~c2(À+ 1) =P~c-22À+Pt+l2, 

from which we canconclude that forsome constants c 1 and c2, 

p/c =Ct'tlf + C2't1~. (6.5) 

By using (6.4) and (6.5) and the fact that P2k+l = Pk. 1, we find two parameters. y1 and "f2 say. 
This approach, however, does not lead to the detennination of 13. 

lt can be shown that y1, "f2 and 13 are indeed feasible values for ~- That is, if ~ is given 

by one of these values and Po is the root with I (31 < I <Xo I of equation (6.1) for a==~. lhen 
there exist coefficients f o and go such that the horizontal boundary conditions are satisfied by 

a3'~8 for m ~ 0 , n > 1 , 

goaW for m ~ 0, n =I • 

/oa3' for m~O.n=O. 

For each feasible pair ao.Po the initial product a3'(38 violates the vertical boundary con
ditions. To compensate for this error we add the two products c 1 af(38 and c2arl38 where a1 

and a..z are the roots with I al < lllo I of equation (6.1) for fixed (3 == l3o and then try to choose 
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c1 and cz such that the linear combination a3'P3+cr«TP3+cza~j33 satisfies the vertical 

boundary conditions. The new tenn c 1 aTIJ3 however, violates the horizontal boundary condi~ 

tions~ To oompensare for this error we add for n > 1 the tenn d r c 1 aTIJT, where Pr is the root 

with IPI < I atl of equation (6.1) for fixed a= «t; for n = 0 the tenn ft af; and for n = 1 the 

term g 1 aT. Then we try to choose the coefficients d 1, f 1 and g 1 such that the horizontal boun

dary conditions are satisfied. The error of c2a~P3 on the horizontal boundary is compensated 

similarly. By repeating this procedure we generare an infinite sequence of compensation terms, 

which grows, due to the oompensadon on the vertical boundary, as a binary tree. The final solu~ 

lionx~~~,,.(ao. Po> is given by(c0 =do= 1 by definition) .. 
x~~~,,.(ao, Po>= 1: d,(c,a'!' + c;+t «~t + ci+2a~z)P7 for m ~ 0, n > 1 , 

i•O 

and on the horizontal boundary by .. 
X"..r(Qo, Po>= 1: g;a'/' for m~O. 

i•O .. 
x~~~,o<ao. Po>= 1: /i«'!' for m~O. 

i=O 

The tree structure of x~~~,,.(ao, IJo) and the corresponding structure of the parameters a; and j3; 
are depicted in the figures 6.3 and 6.2 respectively. The series Xm,,.(ao.IJo) is a fonnal solution 

of the equilibrium equations. 

lt can be shown that for each feasible pair c:xo. l3o the construction of x .... ,.(<Xo, Po> indeed 

succeeds, and furthermore, that there exists an integer N > 1 such that for each feasible pair ao. 

l3o the series x .... ,.<ao. Po> converges absolutely for all states with m ~ 0, n ~ 0 and m + n > N, 
and forthe three boundary states (N-2, 0), (N-:2. 1) and (N-1, 0). Finally, by restrietlog the 

Maltov process on this convergence region (note that the Madcov process always reenters the 

states with m + n > N via one of the three boundary states), we can prove that there exist 

coefficients k(<Xo, IJo) such that for allstatesin the convergence region, 

p~~~,,. = 1: k(<Xo, IJo)xm.,.(<Xo. IJo), 
(lfo, P") 

where (<Xo, ~Jo) runs through the three feasible initial pairs. 

This concludes the analysis for Erlang-2 servers. The analysis can be extended to Erlang~/ 

servers, in which case the equilibrium probabilities Pm.n can be expressed as a linear combina

tion of l(l + 1)/2 series of product forms. Due to the compensation on the vertical boundary, 

each of these series has the structure of a l-fold tree. The extension to Erlang-I servers however, 

is still a little bit incomplete in the sense that the analogue of the properties stated in condition 

2.24 basnotbeen established yet (apart from the case I = 2). 
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Ftgure6.2. 
The binary tree structure of the sequences {a.} and (Jl;} in Xm,11 (CXo, J3o). These 
sequences are generared by the cubic equation (6.1 ). 

Figure6.3. 
The binary tree structure of the terms in the formal solution Xm, 11 (CXo, J3o). 

In the following section we sketch the analysis of the M 1 E, 1 c queue, which is also an 
example of a Markov process, that can make larger jumps. Furthermore, this problem is a spe
cial example of the extension mentioned insection 6.1, since the state space is infinite in one 
direction only. 
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6.4. Analysis of the MIEr Ie queue 

In this section we sketch the analysis of the MIE, I c queue. Consider a system with c 
parallel identical servers and a common queue. Jobs arrive according to a Poisson stream with 

intensity À. On arrival each job requires an Erlang-r distributed service .time with mean r liL 
1be service discipline is first-come first-served. We assume that 

~<1. 
CJL 

Intuitively, this condition guarantees that the system can handle the offered load. This system 

can be modelled as a continuous-time Markov process, whose state space consists of the veetors 

(n0 , n 1, ••• , nc), where n0 is the number of waiting jobs and ni is the number of remaining ser
vice phases forserver l, i= 1, ...• c. This problem is a special example of the extension in 6.1, 

since the statespace is infinite in the n0-direction only. 

1be M IE, I c queue bas been extensively studied in the literature. We mention that 

Mayhugh and McConnick [49] and Heffer [36] treated this queueing problem by using generat

ing functions. Their analysis, however, does not lead to the explicit detennination of the equili

brium probabilities. Shapiro [57] studied the M IE2 1c queue. His approach has some affinity 

with the one that is described below. 

We first try to characterize the set of products a."• 13~' · · · p:• that satisfy the equilibrium 

equations in the interlor points, that is, the points with n0 > 0. It turns out that this set is finite. 

However, it contains a subset, a linear combination of which also satisfies the boundary condi

tions. Contrary to most of the problems treated before, this construction needs no compensation. 

By inserting the products a."•j3j' · · ·13:• into the equilibrium equations in states with 

no > 0, we obtain a set of 2c equations for the parameters a.,j31, ••• , 13c· Luckily, it can be shown 

that these equations are equivalenttoa set of c + 1 equations, which are given below. That is, 

each equation in the originallarge set can be written as a linear combination of the equations in 

the following set: 

c 
cx(À. + CJI.) =À.+ }"; aj}iJI. • (6.6) 

c ~ 
cx(À. + Cf.L) = À.+ }"; aj}iJ.L + r-l , j = 1, ... , C • 

i,_j l3i 
(6.7) 

By subtracting (6.6) from (6.7) it readily follows that a= 13) for j = l, ... , c. This implies that 

13] = 13~ for all i and j. Hence, by introducing the parameters x; satisfying 

x0 = 1 , r; = 1 , i = 2, ... , c , 

we may write (i; = x;l31 for all i. Inserting this relation and a.= !3) into ( 6.6) leads to 
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c 
IJ~ (l. + cp.) = À+ ~~+t L X;Jl. 

;-1 

By using Rouché's theorem, it can be shown tbat for each feasible choice of the parameters x; 

this equation bas exactly r simpte roots ~~ with I~~ I < 1. The parameters a, Pz, ... , Pc then fol
lowfrom 

a= IJ~ , ~~ = x;~1 , i == 2, ... , c . 

Hence, we can conetude tbat there exist re products a"• pi• · · · p:· satisfying the equilibrium 
equations in the states with n0 > 0. Furthermore, it can be shown that these products are 
llnearly independent on the set of states with n0 > 0. Then, by restricting the Markov process to 

this set of states, we can prove that there exist coefficients k; such that 
,. 

p,.., ....... = .E kja~•Pîl · · · P~ for all (no •... ,nc) withno > 0. 
i•l 

Fora detailed description of the results the reader is referred to [59]. We finally remark tbat the 

results can be extended to the E~c IE, I c queue. A paper on the analysis of the E~c IE, I c queue is 
forthcoming. 

In the introduetion we mentioned that our interest in shortest queue problems arose from 
problems in the design of flexible assembly systems (see[2, 7]). In the following section we 
describe these problems in more detail. 

6.5. A dass of queueing roodels for flexible assembly systems 

In this section we introduce a class of queueing models, which may be used for the model
ling of fl.exible assembly systems with a job-type dependent parallel structure. These models 
have not been studied in the literature, except for some special examples, see Schwarz [56], 
Roque [53] and Green [33]. The job-type dependent parallelism however, gives rise to analyti
cal complications, for which no satisfactory mathematical solution techniques yet exist. In this 
section some of these complications will be illustrated by an example. 

A typical production structure, which is encountered in several situations, is the one dep
icted in tigure 6.4. This structure consists of a set of parallel machines and an incoming stream 

of several job-types. Each machine can treat a restricted set nf job types. Incoming jobs are 
routed to one of the feasible machines according to some policy. If the operations for the dif
ferent job types are of the sameorder of magnitude, then 'joining the shortest feasible queue' 
seems to be a sensible routing. 

As an example of this kind of structure one may think of a number of parallel insertion 
machines, which have to mount vertical components on several types of printed circuit boards 



-163-

D 

l f!J1Il0~AB 

...-----=@]= 'M31 AC 

Figure6.4. 
A job-type depeflllltnt parallel production structure. Ml, M2 and M3 denote 
machines, that treat the job-types A, B and C. Each machine can treat a restricted 
set of job types; M 1 can treat A and B jobs, M2 can treat B and C jobs, and M 3 
can treat A and C jobs. 

(PCB). Fora technical description of these machlnes the reader is referred to Zijm [65]. Due to 

the limited storage capacity tor components, each machine contains components for a restricted 
set of PCB types. Hence, the limited storage capacity gives rise to the job-type dependent paral
lelism. One of the important decision aspects in these systems is how to divide the necessary 

components among the machlnes. To find an optimal assignment of the components, we should 
be able to efficiently evaluating roodels containing the essential features of thls system. Since 
the PCB production is cbaracterized by large production batches and small processing times, 
queueing mode1s seem to be appropriate. From a modelling point of view, the following class of 

queueing roodels contains some of the essential features. 

N types of jobs arrive at a system consisting of M identical parallel exponential servers. 
Each server can treat a subset of job-types. On arrival jobs join the shortest feasible 
queue, and in case of equal shortest queue lengths, ties are broken with equal probabilities. 

Thls class of queueing roodels is of courseastrong simplification of reality. But if one wants to 
be able to efficiently evaluate more realistic models, then one. must first be able to do thls for 
simple models. Even these simple models however, cannot be analyzed exactly by existing 
mathematica! techniques. So we tried to develop beuristic evaluation methods for these models, 

see [2). However, we did not succeed in developing methods that were both accurate and 
efficient. Therefore we decided to obtain a better understanding of the process by first consider
ing a further simplified process. By restricting the analysis to one job type and two servers we 
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anived at the shortest queue problem. For this problem we developed the compensation 
approach yielding efficient and accurate evaluation methods and we characterized a class of 
two-dimensional problems for which this approach works. Unfortunately, the following exam
ple illustrates that even models with a fairly simple job-type dependent parallel structure are not 
contained in this class. 

A and B jobs anive at a system consisting of two parallel servers (see figure 6.5). 1be ser
vice times are exponentially distributed with mean 1!-l. One server can treat both job-typeS, 

whereas the other one serves B jobs only. Arriving A jobs always join the AB queue and B jobs 
join the shortest queue. 

AB 

B 

Figure6.5. 

Queueing model with . a job-type dependent parallel structure. Arriving A jobs 

always join the general AB queue. Arriving B jobs join the shortest queue, and in 

case of equal queues,join either queue with probability 112. 

This system can be represented by a continuous-time Markov process on the pairs (m, n) wbere 
m is the length of the shortest queue and n is the difference in length of the queues. 1be 
transition-rate diagram is shown in figure 6.6. This problem is of the same type as the asym
metrie shortest queue problem in the sense that the Mark.ov process has different properties in 
the regions n > 0 and n < 0 (cf. figure 5.2). However, due to the possibility of transition to the 
south in states with n < 0, the compensation approach does not work. for this problem. On the 

other hand numerical experintents show some nice features. For the model in figure 6.5 numeri
cal experiments suggests that there are ao. ~t. ~2 • d 1 and d2 such that (cf. (5.11)) 

Pm.~a- Kdt«3'~T (m ~ oo. n > 0); 

Pm.~a - Kd2ali'P2" (m ~ oo, n < 0) ; 

Pm.o- Ka3' (m ~ oo), 

for some constant K. In some way this empirica! finding should be exploited to develop satisfac
tory evaluation methods. 
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n 

Figure6.6. 

Transition-rate diagram ofthe queueing model infigure 65. 

We finally remalk that Schwartz [561 considered queueing models with N parallel queues 

and N job-types, with a hierarchical job-type dependent parallelism. That is, an arriving type-i 
job may choose among the queues from 1 to i only. His analysis, however, tumed out to con

tain errors, see Roque [53]. Green [33] studied a model, related to the one in figure 6.5, but 

with a common queue for the servers. The service discipline is first-come first-served, except 

that B jobs may pass A jobs if the B server beoomes available. By truncating an appropriate state 

variable, she calculated approximations for the stationary probabilities by using the matrix

geometrie theory developed by Neuts [51]. 
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Appendix A 

Below we fonnulate aresult of Poster ([27), theorem 1). Let P = [p;j] be the transition 
matrix of an irreducible, aperiodic Mark:ov chain on the states {0, 1, 2, ... } and denote by 

p<"> = [p~j>J its nth power. 

Theorem A.I. 

Jf there exists a nonnull solution {x;} qf the equilibrium equations .. 
l: Xi/Jij=Xj 
i=O 

u =0, 1, 2, ... ) 

such that l: I x; I < -. then Pis ergodie and normalization of {x;} produces {x;}. 

Proof. 

(A.l) 

It is known that lim,......,p~j> =x i always exists and is independent of i; and further that 
either 1tj > 0 for all j or 1tj = 0. For any nonnull solution {x;} of (A.l) 

U=O, 1, 2, ... ) 

for all n, and so by the absolute convergence of l: x1 it follows by letting n ~"" that .. 
l: X;1tj =Xj 
i=O 

u =0, 1, 2, ... ). (A.2) 

Therefore 1tj > 0 (for otherwise {x;} would be null), and soP is ergodic. Moreover, (A.2) states 
that the ratio ofxi and 1tj is independent of j, so normalization of {x;} produces {x;}. 0 

This cesuit can be extended to continuons time Mark:ov processes. Let Q = [q;j] be the generator 
of an irreducible Mark:ov process on the states {0, 1, 2, ... } with sup1<!o -qii < oo; so there is a 
ll > 0 such that K 1 > sup;;>:o -qii. The continuons time equivalent of theorem A.l is obtained 
by applying theorem A.l to the irreducible aperiodic Mark:ov chain P =I + llQ and using that .. .. 

l: Xi/Jij= Xj ~ l: X;qij = 0 (j =0, 1, 2, ... ) . 
i=O i=O 

Corollary A.l. 

Ij there exists a normuil solution {x;} of the equilibrium equations 

l: x;q;j=O 
i=O 

(j =0, I, 2, ... ) 

such that l: I x; I < oo, then Q is ergodie and normalization of {x;} produces {x;}. 
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AppendixB 

In this appendix we prove theorem 5.20 and lemma 5.22. 

Proof of theorem 5.20. 

For m 0:: 0, n > 0 and all nodes i in the compensation tree we first derive upper bounds 
- -
Ru(i, m, n) and R~r(i. m, n) on R11(i, m, n) and R1,(i, m, n) for ieL and upper bounds 
- -
Rrt(i, m, n) and Rrr(i, m, n) on R,,(i, m, n) and Rrr(i, m, n) for ieR. We prove that these 

upper bounds are monotone in the sense that for all nodes j in the subtree below node i, 

RuU. m, n) s Ru(l(i), m, n), R1,U. m, n) SR1,(l(i), m, n) if )eL, (B.l) 

R.,,u, m, n) S Rrt(r(i), m, n), RrrU• m, n) S R"(r(i), m, n) if )eR . 

1be proof of theorem 5.20 is then completed by defining the matrix B (i, m, n) as follows. 

Deftnition B.l. 

Forallm O::O,n >Oandi 0:: l, 

[

Bu(i, m, n) Br~(i. m, n)] [Ru(l(i), m, n) R,1(r(i), m, n),] 
B(i, m, n) = B (" ) B (" ) = - - . 

Ir '· m, n rr I, m, n R1,(l(i), m, n) Rrr(r(i), m, n) 

Let m <:: 0 and n > 0. Then for all ieL we derive an upper bound Ïi1,(i, m, n) on 

R~r(i, m, n) satisfying the monotonicty given in (B.l). The other bounds are derived similarly. 
For ieL the ratio R~r(i, m, n) may be written as (see section 5.5) 

. C; ldr(i)l 1 +(Cr(i)IC;)(O.,.(i)/O.;)m [~] m[~r(i)]" 
R~r(t, m, n)=- -

1
d I A. 

Cp(i} i 1 + (c; I Cp(i))(a.; I C'Jp(i))m Clp(i) Pi 

By substituting (cf. (5.15)) 

O.,.(i) y -<~(i)) 
-a;-= Y+(~r(i)) ' 

in the right-hand side ofthis equality we obtain 

. C; ldr(i)l l+(Cr(i)/C;)(y_(~r(i))/y+(~,(i)))m 
Rtr(l, m, n) = -- --- m 

Cp(i) ld;l 1 + (c; I Cp(i))(Y _((3;)/ Y +(~;)) 

Now we first need bounds on c; I Cp(i}• Cr(i) I c; and I dr(j) I! I dj 1. 
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Definition B.l. 

For aU 0 <a< Qo, define 

(llî't + 2qp)a («1'2 + 2(1- q)p) a 
~~-=--+~----~~-

X_(a) x+(a) 
Du(«)= ---------------

(llî't +2qp)a («i'l +2(1-q)p)a ' 
X+(a) + x+(a) - 2(p+ l)a 

Yt(«i'l +2(1-q))(A2 -At) D
1
,(a) = ---..---___;...:....__,..:.;;;_ __ ...:.......---=._~-----....-

(ayt +2qp)a («1'2 +2(1-q)p)a 
12 X+(a) + x+(a) - 2(p+l)a 

Drr(«) = («'Yt + 2qp)a («'Y2 + 2(1- q)p)a 
X+(a) + x+( a) - 2(p + l)a 

and for all 0 < ~ < l, define 

. 1-Y_(~)/~ - l-At 
fj$)= A2-l ' Ct(~)= Y+(~)/~-1' 

Ç;.(~)= 1-~-~;!f3. C,(~)= Y+<~~;t-1 • 

where 

p + 1 + -.J(p + 1)2 - 2p 'Y2 
, a2 = 

'Y2 

LemmaB.3. 

Cj - ldt(i) I - ldr(i) I -
0 < fi(M < Cp(i) <Ct$;) , ~ < Du(CX;), l"d;'' < Dt,(CX;) for ieL ; 

C; - ldt(i) I - ldr(i) I -
0 < fr(M < Cp(i) < Cr<l3i), ~ < D,,(«;) , l"d;'' < D77(«;) for ie R . 
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Proof. 

We prove the bounds for teL. The proofis similar for ieR. The bounds on c11cp(i) follow 
by dividing the denominator and numerator of the quotient defining c1 I Cp(l) by P1 and inserting 
the inequalities ( cf.lemma S.7) 

Y+{P;)!Ji; <lim Y+<P>IP=A2, f_(Ji;)!Ji; > 1im Y,...{P)If3=At 
~ ~~ 

in this quotienl Mulûplying the denominator and numerator of the quotient defining d1 (i) I d1 by 
a; and adding 2(p + l)a. to the numerator of this quotient yields the bound on ldt(i) llld;l. 

Fmally, mulûplying the denominator and numerator of the quotient defining d,.(i) I d1 by a.1 and 
inserting the inequalities 

Xt(a;)/a.; <limX+(a.)/a.=A!1 , X_(a.;)/a.; > limX_(a.)/a.=Ai1 

u.Ul a.Ul 

in the numerator of this quotient yields the bound on I d,.(i) I/ I d; 1. D 

Application of lemma B.3 yields for ieL 

R~r(l, m, n) < C,(f3i) D~r(CJ.;) 1 + Cr(f3r(i)) (y_(f3r(i))lyt$r(i)))"' [ Y _((i;)] m [ x_(a;)] ". 
l+fi(f3;)(f_(f3;)/Y+((3;))m Y+(f31) X+(a.;) 

The right-hand side ofthis inequality is the desired bound R~r(i, m, 11). 

Definition B.4. 

For all m ~ 0 and 11 > 0, deftnefor ie L 

- . - p - l+C,(f3,<;>)(f_(p,<;>)/Y+<Pt(ï))Y" [f_(f3;)]m[X-(a;)]" 
Ru(l m. n) = C,( ·) Dtt(«·) -- --

' ' ' 1 + fi(j);) (Y _((31)/ Y +(f3;))"' Y +((3;) X+(a.;) ' 

R- (" ) - c- (A·) D- ( ·) 1 + Cr<Pr(i)) (y_(p,(i))/y+@,(i))Y" [ y _(f3;)] m [ x,...(U;)]" 
Ir I, m, n - l l-'1 Ir a., A ' 

1 +fi@;)(f_(p;)/Y+(f31))"' Y+(t';) X+(«Xi) 
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1be following properties are required to establish that these upper bounds are monotone. 

LemmaB.S. 

(i) For 0 <a< ao, thejunctions Du(a), D1,(a), D,t(a) and D"(a) are increasing in a; 

(ii) For 0 < ~ < 1, thefunctions Ct(~) and C,(j3) are increasing in 13 and thefunctions fJ$) 
and f,(~) are decreasing in j3; 

(iü) For 0 <a< (lo, the ratios X_(a)l X+(a), x_(a)/ X+(a), X_(a)/ x+(a) and x_(a)l x+( a) 

are lncreaslng in a; 

(iv) ForO < ~ < 1, the ratios Y _(~)/ Y +(J3) andy_((l)ly+(~) are lncreasing in j3. 

Proof. 

(i): We prove the monotonicity for D11(a). 1be proof is similar for the other functions. 1be 

denominator of D 11(a) vanishes at a= ao and a= 1 and is strictly convex forO <a< 1 (<:f. the 

proof of Jemma 2.17). Hence the denominator of D11(a) is positive and decreasing in a for 
0 < a < ao. By lemma 5.7 the two tenns in the numerator are positive and the second one is 
increasing in a. Now it remains to prove that the first one is also increasing. Since 

d (ayt+2qp)a 'Yta (ayt+2qp)"f2 

da X_(a) = X_(a)- 2V(p+l)2 -(2p+a"f2)y1 

is decreasing in a.. we obtain for 0 < a < ao 

d (ayt+2qp)a 'Yt<Xo (txoYt+2qp)yz 
-da- x _(a) > -X-_(_txo_) - -21Vr-(p=+"'=1"=:)2i=-=(=2p=+=ao==='Y2=)=y=

1 

(p î't + 2q) P 'Y2 (p Yt + 2q) 
=Z+p"f2- 2(1+p(l-Yt)) > 2 +p"f2- 2 >O, 

proving that the first tenn in the numerator is increasing in a for 0 < a < ao. 

(ii), (iii) and (iv): Immediately from lemma 5.7. 0 

We can now prove the monotonicity property (B.l). Let node j be a left descendant in the sub

tree below node i in the compensation tree. In the parameter tree ai is a merober of the subtree 

below a.. so ai < CX"v> Sa; by corollary 5.8. From lemma 5.7 it then follows that 

J3i =X -<CX"v>) SX_(a:;) = 13t(i) , 

ai= Y -<M s Y -<13t<i>> = <Xi<i>. 

13rv> =x_(aj) S x_(CXf(i)) = 13r(/(i)) . 
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By using these inequalities and lemma B.5 and the fact that x111 I (1 + cx111
) is increasing in x for 

x ~ 0 and c ~ 0 we obtain the desired inequality 

Rtr(j, m, n)!. i."(l(i), m, n). 

Since the other inequalities are proved similarly, this completes the proof of theorem 5.20. 0 

Proof of lemma 5.22 

(i): Immediately from the definition of B (i, m, n) and (B.l). 

(ii): We show that as i -+ oo 

Bu(i, m, n) =Ru(l(i), m, n)-+ Ru(m, n). (B.2) 

The limits of the other elements in B (i, m, n) are derived similarly. To establish (B.2) it 

suffices to show that the bounds on Ci(i) I c;, cl(l(i)) I cl(i) and ldt(l(i)) lil d1(i) I are asymptotically 

tight. As i -+ oo, then fSI(i) -+ 0 by the corollary 5.8. Since 

Y_(fS)/fS -+At, Y+(fS)/fS-+A2 

as fS-+ 0, we obtain ( cf.lemma 5.10) 

fi<Pt<•>>-+ c, . ëi<Ptc•>>-+ c, 
as i -+ oo, So the bounds on Ct(i) I c; are asymptotically tight Similarly it follows that the 

bounds on the quotients Ct(t(i)) I Ct(i) and I dt(/(i)) 111 d1(ï) I are asymptotically tight. 

(iü) and (iv): The ratios Y -<PI(ï))/ Y+<Pt<•>>· x_(al(ï))/X+(a,c;>), ... appearing in the 

definition of B (i, m, n) are positive and less than one. For example, by lemma 5.7, 

X-(<Xtcï)) x_(<Jo) P'Y2 
0< <--=--<1. 

X+(Clt(i)) X+(Oo) 2 + PYt 

Hence, B (i, m, n) decreases monotonically and exponentially fast as m -+ oo for fixed i and n 
and as n -+ oo for fixed i and m. 0 
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Samenvatting 

Bij de bestudering van wachtrijsystemen speelt de analyse van het evenwichtsgedrag van 

Marlmv processen een belangrijke rol. Voor de analyse van het evenwichtsgedrag van Markov 

processen op een een-dimensionale toestandsruimte is reeds veel wiskundig gereedschap 

ontwikkeld. De situatie is geheel anders voor Markov processen op een twee-dimensionale toe

standsruimte. Pas de laatste decennia is de ontwikkeling van analyse methoden voor twee

dimensionale Markov processen op gang gekomen. De meeste methoden zijn gebaseerd op de 

analyse van de relevante genererende functie. ln het bijzonder noemen we de methode om de 

functionaal vergelijking voor de genererende functie te reduceren tot een standaard-type 

randwaarde probleem. Deze methode is toepasbaar op een algemene klasse van twee

dimensionale Markov processen. Echter, een nadeel van de genererende functie aanpak is dat 

deze aanpak meestal niet leidt tot expliciete resultaten voor de evenwichtskansen en dat voor 

numerieke berekeningen niet-triviale algoritmen nodig zijn. 

Het doel van dit boek is om een bijdrage te leveren aan de ontwikkeling van methoden 

voor de analyse van het evenwichtsgedrag van Markov processen op een twee-dimensionale 

toestandsruimte. Het onderzoek is gestart met de analyse van een klassiek probleem uit de 

wachtrijtheorie, nl. het symmetrische kortste rij probleem. Voor dit probleem ontwikkelen we 

een methode die leidt tot een expliciete karakterisering van de evenwichtskansen in de vorm 

van reeksen van produkt-vorm oplossingen. De gedachtengang bij de ontwikkeling van deze 

methode wordt vrij uitvoerig besproken in hoofdstuk 1. De constructie van de reeksoplossingen 

is gebaseerd op een compensatie idee. Vandaar dat we deze methode 'de compensatie methode' 

noemen. De resultaten kunnen direct worden gebruikt voor numerieke berekeningen. 

ln hoofdstuk 2 wordt de compensatie methode gegeneraliseerd naar een vrij algemene 

klasse van Markov processen op de roostelpunten in het positieve quadrant in IR 2• We 

beschouwen Markov processen waarvoor de overgangsintensiteiten constant zijn in de inwen

dige punten van de toestandsruimte en ook constant zijn op de twee assen. Om de analyse te 

vereenvoudigen hebben we verder aangenomen dat de transities vanuit ieder punt beperkt zijn 

tot de buutpunten. We onderzoeken onder welke condities de compensatie methode werkt Het 

blijkt dat de essentiele conditie is dat er vanuit inwendige piloten geen transities mogen zijn 

naar het noorden, noord-oosten en het oosten. 

ln hoofdstuk 3 en 4 wordt de algemene theorie die ontwikkeld is in hoofdstuk 2 toegepast 

op een tweetal wachtrijproblemen. Het symmetrische kortste rij probleem wordt behandeld in 

hoofdstuk 3 en een model voor een multi-programmerings computer systeem wordt behandeld 

in hoofdstuk 4. Voor deze twee problemen worden ook extra eigenschappen afgeleid die benut 
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worden bij het ontwikkelen van efficiente numerieke algoritmen. 

In hoofdstuk 2 is als toestandsruimte de verzameling van roosterpunten in het positieve 

quadrant in R. 2 gekozen. In hoofdstuk 5 wordt het asymmetrische kortste rij probleem bestu

deerd. Dit probleem kan worden gemodelleerd als een Markov proces op de roosterpunten in het 
rechter halfvlak in R.2• We laten zien dat de compensatie methode kan worden uitgebreid tot 
dit probleem en dat de gevonden oplossingen, hoewel ze ingewikkelder zijn dan die voor het 
symmetrische probleem, leiden tot efficiente numerieke algoritmen. Hieruit kan worden gecon
cludeerd dat uitbreidingen van de compensatie methode naar algemenere toestandsruimten en 
algemenere processtructuren zeker mogelijk zijn. 

In hoofdstuk 6 worden de verkregen resulaten samengevat. Verder wordt in hoofdstuk 6 in 

het kort de uitbreiding van het kortste rij probleem naar Erlang-verdeelde bedieningstijden en de 
uitbreiding naar de MIE, Ie wachtrij besproken. Voor beide problemen geldt dat de transities 
vanuit de inwendige punten van de toestandsruimtt}niet beperkt zijn tot de buurpunten. 

Geconcludeerd mag worden dat de compensatie methode een krachtige techniek is waar
van alle toepassingsmogelijkheden nog zeker niet onderzocht zijn. Op dit moment wordt onder
zoek gedaan naar de mogelijkheden om deze techniek verder uit te breiden naar Markov pro
cessen op meer dan twee-dimensionale toestandsruimten. 



-179-

Curriculum vitae 

De schrijver van dit proefschrift werd op 9 maart 1962 geboren te Roosendaal. Noord

Brabant. Van 1974 tot 1980 bezocht hij de Rijksscholengemeenschap Scheldemond te Vlis

singen. Na het behalen van het Atheneum-diploma, begon hij zijn studie aan de Technische 

Universiteit Eindhoven in de richting wiskunde. In september 1987 werd het ingenieursexamen 

wiskunde behaald (met lof), met als afstudeerrichting besliskunde. Het afstudeetwerk. betrof een 

studie naar monotonie eigenschappen in netwerken van wachtrijen. Bij dit werk werd hij 

begeleid door dr.ir. J. van der Wal. 

Sinds oktober 1987 is de schrijver als assistent in opleiding verbonden aan de faculteit 

wiskunde en informatica van de Technische Universiteit Eindhoven. Dit proefschrift is een 

weerspiegeling van het onderzoek dat de schrijver de afgelopen vier jaar heeft:>verricht onder 

begeleiding van prof.dr. J. Wessels en prof.dr. W.H.M. Zijm. 



Stelling 1. 

Steutel [2] analyseert een stochastisch model voor de beweging van elektronen door een gas 

tussen twee elektroden. In dit model vertrekt op t = 0 een elektron van de kathode en begint met 
snelheid l te bewegen in de richting van de anode, die zich op afstand l van de lcathode bevindt. 

Gedurende negatief exponentieel verdeelde perioden is het elektron afwisselend in beweging en 

wordt het vastgehouden door een stilstaand gasdeeltje. De gemiddelde bewegingsduur is l.-1, 

de gemiddelde duur dat het elektron wordt vastgehouden is 11-1. De ftmctie C (t) stelt de kans 

voor dat het elektron op tijdstip t in beweging is en de anode nog niet heeft bereikt. Door par

tiele integratie van formule (14) in [2] wordt de volgende uitdrukking voor C verkregen, 

C(t+1) = _!!__[ 1-J(l.. llt)l + _l._e-{Ä+tl.)(t+l)[t-G(Il. l.t)l (t > 0), 
À+ll ~ À+ll ~ 

waarin 

z z 

J(x, y) = 1-e-'J T0(2..J;')e-sds; G (x, y) = e1J l 0(2..J;')e1 ds -1 . 
0 0 

De methode die Goldstein [1] gebruikt om een asymptotische ontwikkeling af te leiden voor de 

Bessel-1\mctie integraal J(x, y) (zie [1)) voor xy-+ '"'• kan ook gebruikt worden voor het ver

krijgen van een asymptotische ontwikkeling voor G(x, y) voor xy -+ ""· De eerste twee termen 

uit de ontwikkelingen voor J (x, y) en G (x, y) voor xy -+ "" geven een benadering voor C die 
aanzienlijk nauwkeuriger is, met name voor zeer grote t, dan de heuristische benadering, o.g.v. 

de centrale limietstelling, die door Steutel [2] wordt gebruikt 

l. GOLDSTEIN, S., "On the matbematics of exchange processes in fixed columns, I. 

Mathematica! solutions and asymptotic expansions," Proc. Roy. Soc. A., vol. 219, pp. 
151-171, 1953. 

2. STEUTEL, F.W., "A valanches of electroos in a gas," J. Appl. Prob., vol. 23, pp. 867-879. 
1986. 

Stelling 2. 

De evenwichtsverdeling van een M IC2 1 1 IK wachtrij wordt expliciet gegeven door een som 

van twee produkt-vorm oplossingen (vergelijk [2] en hoofdstuk 6 in dit proefschrift). 

In [1] ontwikkelt Klaren een iteratieve benaderingsmethode voor de bepaling van de doorzet en 

de gemiddelde doorlooptijden voor een produktielijn bestaande uit drie machines. In iedere 
iteratie wordt de evenwichtsverdeling van een M IC 2 lil K wachtrij en die van een C 2 I M I 1 t K 

wachtrij numeriek berekend. De efficientie van de benaderingsmethode kan aanzienlijk worden 

verbeterd door de expliciete voorstellingen voor deze even wiehtsverdelingen te gebruiken. 

1. KLAREN, M., Een anolyse-methode voor produktielijnen met eindige buffers en storingen, 

Afstudeerverslag, Universiteit Twente, Twente, 1987. 

2. W AARSBNBURG, W.A. VAN DE, The stationary state distribution of multi-server queueing 

systems with Erlangian distribuJed service times, Master's Thesis, Eindhoven University 

ofTechnology, Eindhoven, 1991. 
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Stelling3. 

Met behulp van genererende functies leidt Hofri [3] expliciete voorstellingen af voor de 

evenwicbtskansen van de rijlengten van een eenvoudig model voor het gedrag van een com
puter met multiprogrammering, in de vorm van reeksen van produkt-vorm oplossingen. Deze 
reeksvoorstellingen zijn echter niet geheel correct in die zin dat ze niet noodzalrelijk overal con
vergeren. Deze complicatie is door Hofri over het hoofd gezien, omdat hij een foutieve versie 
gebruikt van Mittag-Lemer•s stelling (zie [1)). De genererende-functie aanpak is echter zeer 
geschikt om af te leiden wanneer de reeksvoorstellingen gelden en wanneer niet (zie [1, 2)). 

1. ADAN, I.J.B.F., WESSELS, J. AND ZilM, W.H.M., "An error note on "A generating
function analysis of multiprogramming queues"," Memorandum COSOR 90-47, Eindho
ven University ofTechnology, Dep. ofMath. and Comp. Sci., 1990. 

2. ADAN, I.J.B.F., WESSELS, I. AND ZilM, W.H.M., "Analysing multiprogramming queues 
by genersting functions," Memorandum COSOR 91-25, Eindhoven University of Tecb
nology, Dep. ofMath. and Comp. Scl., 1991, (submitted forpublication). 

3. HOFIU, M. "A generating-function analysis of multiprogramming queues," lnternationql 

Journal ojCompUlerandlnfonnation Sciences, vo1.7, pp. 121-155, 1978. 

SteUing4. 

Bij het gebruik van de matrix-geometrische methode voor de berekening van evenwichtsverdel
ingen van Mmovprocessen is de keuze van de partitie van de toestandsruimte een stap die van 
essentieel belang is voor het al of niet verkrijgen van een bruikbaar resultaat. 

1. ADAN, I.J.B.F., WESSELS, J. AND ZilM, W.H.M., "Matrix-geometrie analysis of the shor
test queue problem with threshold jockeying,'' Memorandum COSOR 91-24, Eindhoven 
University ofTechnology, Dep. of Math. and Comp. Sci., 1991. 

2. NEUTS, M.F., Matrix-geometrie solutions in stocllilstic models, Jolms Hopkins University 

Press, Baltimore, 1981. 

3. ZHAO, Y. AND GRASSMANN, W.K., "Solving a parallel queueing model by using 
modified lumpability,'' Research paper, Queen's University, Dep. of Math. and Stat., 
1991. 
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StellingS. 

Gertsbakb [2] gebruikt de matrix-geometrische methode voor de analyse van het het kortste-rij 
probleem met 2 parallele rijen, waarbij het is toegestaan dat een klant in de langste rij over
springt naar de kortste rij als het verschil in lengte tussen deze twee rijen een zekere drem

pelwaarde overschrijdt. mj kiest de partitie van de toestandsruimte zodanig dat een zo een
voudig mogelijke structuur aan de rand wordt verkregen. Echter, de matrix-geometrische aan
pak leidt tot meer bruikbare resultaten als men zich bij de keuze van de partitie Iaat leiden door 
de speciale overgangsstructuur in het inwendige van de toestandsruimte (zie [l] en [3]). 

1. ADAN, J.J.B.F., WEsSELS, J. AND ZilM, W.H.M., "Analysis of the asymmetrie shortest 

queue problem with thresholdjockeying," Stochastic Models, vol. 7, 1991 (to appear). 

2. GERTSBAKH, 1., "The shorter queue problem: A numerical study using the matrix
geometrie solution," Eur. J. Oper. Res., vol. 15, pp. 374-381, 1984. 

3. RAMASWAMI, V. AND LATOUCHE, W.K., "A general class of Markov processes with 

explicit matrix-geometrie solutions, • • OR Spectrum, vol. 8, pp. 209-218, 1986. 

SteUing6. 

Een M IE, I c wachtrij kan worden gemodelleerd als een lcontinue-tijd Markov proces op de 
toestanden (n0 , nt. ... , nc), waarin n0 het aantal wachtende klanten is en n; het aantal 
resterende bedieningsfasen voor bediende i, i = I, ... , c. Voor MIE, 11 is bekend dat de 
evenwichtskansen van deze Markovketen kunnen worden gerepresenteerd door een lineaire 

combinatie van r verschillende produkten a"•...,.•. waarin de a's worden voortgebracht door de 
nulpunten van een polynoom van de graad r+l (zie b.v. Kleinrock [1]). De analyse van 
M IE, I c is niet wezenlijk moeilijker in die zin dat de evenwichtskansen nu kunnen worden 

gerepresenteerd door een lineaire combinatie van re verschillende produkten a(i•a.~' ···ex~·, 
waarin de a's worden voortgebracht door de nulpunten van polynomen sterk verwant aan het 
polynoom voor c = 1 (zoals onlangs is aangetoond in [2], zie ook hoofdstuk 6 in dit proef
schrift). Een soortgelijk resultaat geldt ook voor de Et IE, I c wachtrij. 

1. KLEINROCK, L., Queueing systems, vol. l, Wiley, New York, 1975. 

2. W AARSBNBURG, W.A. VAN DB, The stationary state distribution of multi-server queueing 
systems with Erlangian distributed service times, Master's Thesis, Eindhoven University 
ofTeclmology, Eindhoven, 1991. 

Stelling7. 

In [1) wordt bewezen dat de doorzet van een gesloten netwerk, bestaande uit multi-server sta· 
tions, monotoon niet-dalend is in het aantal klanten in het netwerk. Dit monotonie resultaat kan 

worden uitgebreid naar een gesloten netwerk met single-server stations, waarvoor de bedien
ingssnelheid een monotoon niet-dalende functie is van het aantal klanten in de rij. 

1. ADAN, I.J.B.F., AND WAL, J. VAN DBR, "Monotonicity of the throughput of a closed 
queueingnetwork in the numberofjobs," Opns. Res .• vol. 37, pp. 953-957, 1989. 
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SteDing8. 

Om op een verantwoorde wijze te tillen wordt meestal het advies gegeven om door de knieen te 

gaan. Bij veel mensen wordt de balans bij het door de knieen gaan verstoord door een vermin
derde enkelbewegelijkheid. Om de balans te bewaren wordt het dan noodzakelijk om op de 
voorvoeten te steunen. waatbij de rug een bolle i.p.v. een holle vorm aanneemt. Tillen met een 
bolle rug betekent echter gevaar voor rugklachten. Dit probleem wordt opgelost door tijdens het 
tillen te schamieren in de heupgewrichten i.p.v. in de onderrug. Hierbij wordt men niet gehin

derd door een verminderde enkelbewegelijkbeid en blijft de balans bewaard. 

Het advies voor bet vermijden van rugklachten bij tillen zou moeten luiden "ga door de liezen" 
in plaats van "ga door de knieen". 

1. GEERTS, P. AND BBRBNDSEN, F., "Limited hip and thoracic mobility as a soun:e of ver
tebral strain," Orthopaedtc Division Newsletter, January-February, pp. 22-24, 1991. 

Stelling 9. 

Het normalisatieprincipe van Nilje voor de verzorging van geestelijk gehandicapten kan als 
volgt worden omschreven: 

Streef ernaar om geestelijk gehandicapten leefpatronen en dagelijkse levensomstandigheden aan 
te bieden, die zo dicht mogelijk de levenswijzen en gewone omstandigheden van de maatschap
pij benaderen. 

Het is een concept, dat niet gebaseerd is op een overdreven idealisering en praktisch zeer goed 
is toe te passen. 

1. NIRJE, B. AND PBRRIN, B., "Setting the record straight: a critique of some frequent 
misconceptions of the normalization principle," Australia and New Zeaiand Journat of 

Developmental Disabilities, vol. 11, pp. 69-74, 1985. 

SteUing 10. 

Vaak wordt de indruk gewekt dat bureaucraten niet streven naar zo kort mogelijke rijen, maar er 
juist op toezien dat de rijen zo lang mogelijk zijn. Een reden hiervoor kan zijn dat ze lange rijen 
niet opvatten als een teken van inefficientie, maar als een teken dat ze blijkbaar belangrijk werk: 
verrichten. 

Stelling 11. 

In een ruimte waar de deur naar buiten toe opengaat, dient men ook te kloppen bij het verlaten 

van deze ruimte. 


