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Bite Weight Prediction From Acoustic
Recognition of Chewing

Oliver Amft*, Member, IEEE, Martin Kusserow, Student Member, IEEE,
and Gerhard Tröster, Senior Member, IEEE

Abstract—Automatic dietary monitoring (ADM) offers new per-
spectives to reduce the self-reporting burden for participants in
diet coaching programs. This paper presents an approach to pre-
dict weight of individual bites taken. We utilize a pattern recogni-
tion procedure to spot chewing cycles and food type in continuous
data from an ear-pad chewing sound sensor. The recognized infor-
mation is used to predict bite weight. We present our recognition
procedure and demonstrate its operation on a set of three selected
foods of different bite weights. Our evaluation is based on chew-
ing sensor data of eight healthy study participants performing
504 habitual bites in total. The sound-based chewing recognition
achieved recalls of 80% at 60%–70% precision. Food classification
of chewing sequences resulted in an average accuracy of 94%. In
total, 50 variables were derived from the chewing microstructure,
and were analyzed for correlations between chewing behavior and
bite weight. A subset of four variables was selected to predict bite
weight using linear food-specific models. Mean weight prediction
error was lowest for apples (19.4%) and largest for lettuce (31%)
using the sound-based recognition. We conclude that bite weight
prediction using acoustic chewing recordings is a feasible approach
for solid foods, and should be further investigated.

Index Terms—Algorithm implementation, biosignal processors,
signal and image processing.

I. INTRODUCTION

AUTOMATIC dietary monitoring (ADM) aims at simplify-
ing the reporting of individual eating behavior for weight

and diet coaching programs [1]. Moreover, it may become a
vital tool for dietary supervision in clinical observation of obese
patients and to support independent living of elderly individu-
als. ADM is based on ubiquitous on-body or ambient sensors
and pattern recognition techniques to derive eating behavior in-
formation. It proposes a novel monitoring paradigm, compared
to manually recording of dietary activities, as it is currently per-
formed using daily self-reports [2]. For the success of ADM, it
is essential that it provides similar information detail on eating
behavior as derived through self-reports today.

Besides meal schedule and food type of each intake, self-
reports typically record amount of consumed foods. Such food
amount data provide essential information on balance of nu-
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trient composition and portion size. While respondents could
count food amount in some cases, such as the number of ap-
ples consumed over a day, many foods require weighting before
the intake. However, weighting every food item adds a sub-
stantial burden for respondents to follow a natural lifestyle.
This continuous manual monitoring effort hampers participant
compliance in coaching programs [3]. Moreover, self-reports
are biased due to misreporting of respondents. Reporting errors
depend on various social and personal aspects [4], [5], and in-
crease with monitoring duration. Typically, report entries are
omitted, partially completed, or backfilled, as perception of de-
sirable intake patterns evolve. An error variation between 50%
under- and overestimation was observed in healthy individuals
and patients [4], [6].

The goal of this paper was to evaluate the prediction of food
weight in individual bites using an ear-pad chewing sound sen-
sor. We refer to bite weight as a quantity of food amount that is
ingested into the mouth with each bite taken. The prediction uti-
lizes a sound-based recognition of chewing cycles that provides
structural and timing variables of chewing sequences. In our
approach, bite weight prediction models are selected based on
recognized food types. As required for a robust ADM system op-
eration, we adopted in our evaluation a habitual food consump-
tion protocol, including unconstrained food size selection and
freestyle chewing. We demonstrate that a robust food classifica-
tion is feasible using this recognition procedure. Bite weight pre-
diction based on the sound-based recognition was subsequently
compared to a semisupervised detection–prediction scheme us-
ing muscle activity recorded from surface electromyography
(EMG) electrodes.

A. Chewing Recognition for ADM

Most ADM approaches focus on activities, such as upper body
and arm motion during intake [7], chewing [8], and swallowing
[9]. An essential requirement for ADM systems is that deployed
sensing solutions are ubiquitously integrated, protect privacy,
and minimize interference with daily activities of their user. For
example, chewing detection based on EMG, which is used for
comparison in this paper, may not be acceptable since EMG
electrodes are applied in visible facial regions. Moreover, skin
preparation and precise positioning of electrodes are required to
ensure acceptable signal quality.

A particularly interesting source of information for bite
weight prediction is the chewing microstructure used to con-
sume a bite. The chewing microstructure can be described as a
sequence of chewing cycles (closing and reopening movements
of the mandible) used to decompose food pieces from ingestion

0018-9294/$25.00 © 2009 IEEE
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Fig. 1. Illustration of an apple chewing sequence Si . Waveforms show data from the ear-pad chewing sound sensor (upper plot) and averaged rectified EMG
electrodes (lower plot). The mandible closing phases of individual chewing cycles c(i ,j ) are marked as shaded areas.

into the mouth (bite) until swallowing [10]. Fig. 1 illustrates a
chewing sequence for one ingested bite. We expected that mi-
crostructure variables of chewing sequences adapt according to
the food weight in a bite.

Our previous investigations have shown that bone-conducted
food breakdown sounds can be recorded by a miniature mi-
crophone at the ear canal [8]. Based on this sensing concept,
food category and individual chewing cycles could be recog-
nized from acoustic pattern models [11]. The current paper ex-
tends the robustness of food and chewing recognition using the
chewing sound sensing approach.

B. Relation of the Chewing Microstructure to Bite Weight

Food ingested into the mouth excites different oral receptors
that convey sensory information on material properties to the
brain stem. Most important stimuli are food texture, such as
crispness and hardness, size, shape, as well as flavor [12], [13].
Chewing continuously adapts to these stimuli, targeting an ef-
ficient food breakdown and creation of a food bolus that can
be swallowed [14]. Intra-individually, this adaptation process
is fairly constant. Using controlled settings and constant food
stimuli, no significant differences were found in several chewing
tests, when monitoring mandibular movement, muscle activity,
and chewing microstructure [15], [16]. This stability of the mi-
crostructure is a key aspect to derive personalized bite weight
prediction models in this paper.

A relation to chewing microstructure was previously observed
for prescribed bite sizes from the same food [13]. Most consis-
tent reports exist for variables measuring number of chewing
cycles and chewing sequence duration from ingestion to swal-
lowing. Both variables increased with bite size for artificial
food [17] and three natural foods using fixed sizes [18].

Many investigations of the chewing microstructure analyzed
masticatory performance in prescribed chewing assessments
[19], [20]. However, the prediction of bite weight from chew-
ing microstructure variables was neither investigated for fixed
bite weights nor in habitual chewing. Hence, it is not clear how
habitual bite weight of different natural foods is reflected in
chewing behavior. Moreover, the chewing microstructure has
not been recognized from continuous chewing sound data in
previous works.

C. Food Selection for This Study

Food texture and material structure provides vital features
for food discrimination from chewing sounds [8], [21]. We had
previously confirmed the relation of sound patterns and food
groups using an event recognition in specific texture types [11].

Food texture groups can be defined in various forms, as they
relate to food perception and jargon of human panelists [22].
For the purpose of this paper, we refer to two texture groups
and included three different foods: 1) wet-crisp structures from
naturally grown foods, such as apple and lettuce, and 2) dry-
crisp foods, such as potato chips. For our interest in ADM,
the first group is particularly relevant, since the consumption of
fruits and vegetables is vital for a balanced food selection [23].

The foods selected for this study served two purposes. First,
they allowed us to evaluate a food-specific discrimination of
similar sound emission groups (wet- and dry-crisp textures).
Second, we chose them to study habitual bite size selection and
bite weight prediction in different bite weight ranges. Regarding
this second goal, foods were chosen to cue different weight se-
lections, e.g., potato chips had typically the lowest bite weights,
while apple bite weights were largest.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 01,2010 at 06:08:34 EST from IEEE Xplore.  Restrictions apply. 



AMFT et al.: BITE WEIGHT PREDICTION FROM ACOUSTIC RECOGNITION OF CHEWING 1665

II. EXPERIMENTAL PROCEDURE

A. Study Protocol

Eight volunteer students (two females and six males)
aged between 20 to 35 years were recruited from differ-
ent Eidgenössische Technische Hochschule (ETH) departments
through advertisements. All participants had natural dentition,
and no known history of chewing and swallowing abnormalities.
Further exclusion criteria were disorders or audible sounds of
the temporomandibular joints, as well as food allergies. A pre-
recording interview was conducted with each participant in the
measurement room for familiarization. The recording procedure
was explained; however, the specific goal of this investigation
was not mentioned. Participants were subsequently invited for
an individual recording session around midday.

Participants were asked to eat the following foods: potato
chips (Chio chips “Ready salted”, ∼25 pieces, total: 20 g),
mixed lettuce (containing endive, sugar loaf, frisée, raddichio,
chicory, and arugula, total:∼55 g), and one apple (“Jangold”,
total:∼110 g). The food weights indicate approximate values,
since participants were allowed to eat as much as they liked from
individual foods. They chewed and swallowed all foods in their
habitual style. From potato chips, a few chips were taken for
each bite with the hand, lettuce was consumed using fork and
knife, and apples were eaten by taking bites from the skinned
fruit. The apple core was not consumed.

All participants were familiar with the food types. None of
them expressed a dislike or problems to chew or swallow the
selected foods. Participants were allowed to move, drink wa-
ter, and speak during recording sessions. Session duration was
not constraint, since participants were eating/drinking at their
individual pace. Informed consent was obtained from each par-
ticipant. The study protocol was reviewed and approved by the
ETH ethics committee.

B. Data Recording

Chewing sound was recorded using a miniature microphone
(Knowles, TM-24546) embedded in a custom ear-pad device.
Ear occlusion of this pad was kept low, in a way that participants
could hear room-level conversation at the applied side. While
low occlusion decreases signal-to-noise ratio, it is needed for
wearer comfort and safety reasons. In contrast, high occlusion
prevents air circulation to the ear canal, and disturbs sense of
balance. A low noise level was maintained in the recording
room, similar to a restaurant environment.

The sound signal was constantly amplified (M-Audio, Au-
dio Buddy) and sampled at 44 kHz, 16 bit using a computer-
connected sound device (ESI, U46DJ). We expect that this sam-
pling rate could be reduced without impact on performance.
However, optimizing sampling rate was not a goal of this pa-
per. Surface EMG was recorded bilaterally from M. masseter
at 2 kHz, 24 bit, and bandpass-filtered in the recording device
(MindMedia, Nexus 10). The plate weight was recorded at
∼1 Hz with a resolution of 0.1 g. We used a computer-connected
weight scale (Kern, 572-45) that was embedded into a custom-
build table. The scale performed an automatic measurement

stabilization. Synchronization marks were embedded in data
of all sensor modalities during recordings. These marks were
subsequently used to align data streams after recording each
session. We estimate that the remaining alignment jitter due to
our recording setup was below 0.1 s.

An observer controlled the data recording during each ses-
sion, and annotated chewing sequences and swallowing events.
In a postrecording step, all annotated sequences were reviewed,
start/end times adapted, and swallowing events marked for ex-
clusion by inspecting signal waveforms. A total dataset of 8.64 h
was recorded and annotated. The average length per participant
was 64.83 min (standard deviation 14.6 min).

C. Chewing Annotation

In order to train and validate food pattern models, an annota-
tion of chewing cycles in all recorded data was required. This
annotation consisted of location marks for individual chewing
events (mandible closing phase of a chewing cycle) and food
type information for each such event. We will further denote
this annotated phase as chewing event to differentiate it from a
complete chewing cycle.

All annotations of chewing events were performed manually
in a postrecording step, by reviewing sound and EMG wave-
forms as well as listening to chewing sounds. As our goal
was to obtain an accurate and consistent evaluation baseline,
all chewing annotations were performed by one observer. This
method is precise in identifying every chewing event before the
main food bolus is swallowed. However, it is expensive and
time-consuming for large chewing data sets, as in our study. To
reduce annotation efforts, we tested a sound-energy-based seg-
mentation of chewing events. However, this segmentation failed
to correctly identify events, since sound energy is highly vari-
able during chewing. Energy during mandible reopening may
even exceed sound energy during closing phases. Although less
pronounced, we observed similar issues for a chewing segmen-
tation using the EMG amplitude. For performance comparison
to our manual annotation, we included a semisupervised EMG-
based chewing detection in the evaluation (Section V-A).

Fig. 1 shows sample waveforms from the sound sensor and
EMG electrodes for a chewing sequence of one apple bite. While
intermediate swallowing can occur, none was observed in the
depicted example. The mandible closing phases of each cycle
are marked as shaded areas. In total, 7910 chewing cycles were
identified and annotated in 504 chewing sequences.

III. CHEWING RECOGNITION PROCEDURE

We developed a recognition procedure to derive chewing
events from the sound sensor data. This procedure attempts to
identify temporal bounds for each individual chewing event, and
classifies events regarding their food type. In order to identify
chewing events a feature similarity search (FSS) was applied
for each food and participant. Subsequently, a food type clas-
sification was used to determine food type for each detected
chewing event. A sequence voting was used to determine food
type of each chewing sequence. Events detected by all food-
specific FSS instances were fused by comparing concurrently
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Fig. 2. Methodology to recognize chewing events and predict bite weight.
Bite weight prediction uses: (a) food type and (b) chewing microstructure infor-
mation. The procedure for chewing recognition is detailed in Section III. The
method for bite weight prediction is presented in Section IV.

occurring events. This event fusion step retained the events with
the highest classification model confidence.

Fig. 2 illustrates the entire evaluation procedure to identify
chewing events, classify food type, and predict bite weight. In
this section, the recognition procedure is presented in detail.
All evaluation steps regarding the prediction of bite weights are
discussed in Section IV.

A. Feature Similarity Search (FSS)

FSS is an online event recognition algorithm, based on a
variable-length feature pattern search. The algorithm has been
introduced in our previous works, e.g., [11]. We used FSS here
to recognize temporal boundaries of chewing events in sound
data. FSS is particularly applicable for this task, since the sound
data may contain other arbitrary noises (NULL class) besides
chewing events.

FSS utilizes a data description approach to model chewing
events from food-specific sound features, and discriminate these
events from noise. We used a training set F+ of feature vec-
tors f = (f1 , . . . , fNF

) to describe the pattern of a chewing
event: c(i,j ) → f(t(i,j ) , l(i,j )). Fig. 1 illustrates this concept.
Here, c(i,j ) is the jth chewing event in chewing sequence Si ,
Si = c(i,1) , . . . , c(i,Mi )}, with Si ∈ S and total number of
events Mi . Each event c(i,j ) has two temporal parameters, time
of occurrence t(i,j ) and duration l(i,j ) .

Using the event model, FSS then searches through sound data.
A normalized Euclidean distance function d was used to evaluate
feature vector f(t, l) at position t and potential duration l. Hence,
for each t, a distance is obtained, measuring the similarity of
a data section with duration l to a chewing event model. All
paramters for d as well as search bounds for l were estimated
using training set data.

A distance threshold DThres was derived for each FSS model
to omit NULL class data sections. DThres was determined by
evaluating the recognition performance on training set data,
containing chewing events (F+ ) and disjunct NULL class data
(F−). We targeted a high sensitivity in order to retrieve at least
90% of all training set chewing events.

We selected a constant interval of ∆t = 125 ms for each eval-
uation of d. While this interval limits the temporal resolution
of retrieved chewing events, it reduces processing requirements
compared to an evaluation for every sampled data point. The in-
terval was acceptable for bite weight prediction, since temporal
information at a lower resolution was not expected.

1) Dataset Cross-Validation: To derive robust recognition
performance results from our dataset, we applied a ten-fold
cross-validation to select training and validation data for FSS,
feature selection, and all subsequent recognition steps. The
dataset was partitioned into ten sections, while maintaining
complete chewing sequences in each section. For each iteration,
nine data sections were used for training and one for validation.
Hence, each section was used once for validation.

2) Derived Feature Set: A total of 264 sound features were
extracted from sound data. This set had been used in earlier
studies [11]. It consists of the following feature subsets: log-
band spectral energy, cepstral coefficients, and linear predictive
coefficients (ten features each). Moreover, skewness, kurtosis,
and tristimulus (total: 33 features) were included. All spectral
features were computed from a 512-point fast Fourier transform
(FFT). All of these features had been devised for audio anal-
ysis before [24]. In addition, we used a logarithmic-sized bin
distribution (maximum frequency: 22.05 kHz) to derive spec-
tral energy bands. Previous chewing sound studies had observed
spectra up to 8 kHz; however, components below 3 kHz were
most important to describe foods [21]. The log-band spectral
energy subset reflect these observations, as it uses small bins for
low frequencies.

For all features, we computed mean and variance using a
sliding window of 512 samples without overlap. We derived
features for the entire chewing event as well as three evenly
divided partitions of each event. These partition features were
included to capture temporal patterns of chewing events in a
spatial feature representation.

3) Feature Selection: To select an adapted feature subset, we
deployed a feature relevance and independence filtering using
training set data. While we did not confirm that this procedure
is an optimal strategy among selection methods, it required
only small adaptations to work with the FSS data description.
For FSS, correct events and NULL class have a large skew;
consequently, any selection algorithm should not consider a
class prior.

In the first step, relevance wR of all features elements fn ∈ f
was determined. For this purpose, we computed the absolute
differences between training set feature distributions in correct
events (F+ ) and NULL class (F−). Distributions were esti-
mated using histograms of bin size N (1/3) , where N is the
number of training feature vectors.

The second step refines feature relevance ranking by estimat-
ing feature independence, introduced in [25]. This step aims to
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select a relevant feature subset, while minimizing redundancy.
Independence I was determined from correlations among fea-
tures, fn , fm ∈ f in training set events F+ , using Spearman’s
correlation coefficient ρ(fn , fm ) [26]

I(fn , fm ) =
√

1 − ρ(fn , fm )2 m �= n . (1)

Subsequently, an iterative scheme was used, starting with the
highest relevance-weighted feature. In each iteration i, an ad-
ditional feature was selected that yielded the highest combined
weight wC , when evaluated against all previously selected fea-
tures fhk

, 1 ≤ hk ≤ NF (2). In total, 20 features were selected
for the FSS step

wC (fn ) =
i∑

k=1

wR (fn )I
(
fn , fhk

)
, hk �= n . (2)

In the evaluation, we observed that cepstral coefficients and
log-band spectral energy from low-frequency bands were se-
lected most often. We also tested a relevance selection based
on Mann–Withney–Wilcoxen [27] without further performance
improvements. Wrapper-based approaches were not considered
here, since repeated FSS training becomes very processing in-
tensive for large datasets.

B. Food Classification

The FSS step was used to determine chewing event bounds
for individual foods. As foods had similar textures, this lead
to between-food confusions of FSS instances, and may, subse-
quently, select a wrong bite weight prediction model. We ap-
plied an additional food classification in this step for all chew-
ing events. A nearest centroid classifier was trained based on
a Fisher’s linear discriminant feature transformation [28]. The
same dataset cross-validation (partitioning of training and vali-
dation sets) was reused. We implemented the classification us-
ing all features derived for FSS, before feature selection. We
computed a confidence for each chewing event by normalizing
classifier distances with the largest class distance.

C. Chewing Event Fusion and Sequence Voting

Temporal event overlaps, as a result of independent FSS in-
stances for each food, were pruned after the classification using
an event comparison. This method filters all event detection
results and retains those, which obtained largest food classifica-
tion confidences. All chewing events obtained in this step were
subsequently used for analyzing chewing microstructure.

The final food type was determined from a majority vote
among all classified events in one chewing sequence. This ap-
proach is reasonable, since food type will not change within one
chewing sequence. The food type result was used to select bite
weight prediction models.

IV. BITE WEIGHT PREDICTION METHOD

Based on recognized chewing events, we extracted variables
to describe the chewing microstructure. Using both, microstruc-
ture variables and identified food type, we subsequently pre-
dicted bite weight.

TABLE I
MICROSTRUCTURE VARIABLES COMPUTED FOR EACH CHEWING SEQUENCE Si

AND SECTIONS WITHIN Si (SEE SECTION IV-A)

A. Microstructure Variables and Relevance Analysis

Eight base variables were defined, as summarized in Table I.
This base set was computed from each entire chewing sequence,
three evenly partitioned temporal sections, as well as first five,
and first three chewing events only (total: 50 variables). In ad-
dition, we computed event duration and mean signal energy
from each first chewing event in a sequence. These variables,
computed for sections within chewing sequences, allowed us
to evaluate whether dynamic changes in the microstructure are
relevant for bite weight prediction.

The correlation of each variable vn with bite weight W
was analyzed using Spearman’s correlation coefficient ρ. Cor-
relation results were summarized in relevance wV (vn ) for all
participants

wV (vn ) =
∑

Participants

∣∣ ρ(vn ,W )
∣∣ . (3)

B. Prediction Model

We deployed a multiple linear regression model of the form

Ŵi = a0 +
NV∑

k=1

akvik (4)

for bite weight prediction. The microstructure variables are rep-
resented by v1 , . . . , vNV

, where NV is the total number of vari-
ables in a prediction model. Result Ŵi denotes the predicted
bite weight for a particular chewing sequence Si . Food-specific
coefficients a0 , a1 , . . . , aNV

were found by a least-squares fit
on training data. The weight prediction was performed by a
leave-one-out analysis to estimate prediction errors.

We investigated a stepwise regression fit to select informative
variables among all microstructure variables. However, we ob-
served a similar performance compared to a manual preselection
based on variable relevance analysis (Section IV-A before).

V. RESULTS

A. Recognition of Chewing Events

Recognition performance of chewing events was analyzed
using Precision and Recall. These metrics are frequently used
to assess event spotting performance (insertion and deletion
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Fig. 3. Food-specific performance of the recognition steps in validation data (confidence threshold sweeps according to Section V-A) in comparison to a sound
energy-based detection approach (sound energy). EMG detection shows the performance of a semisupervised EMG-based chewing detection in annotated chewing
sequences. Best performance is found towards the top-right corner (high precision and high recall).

errors). A detailed description can be found in [7]. To account
for jitter between recognized and annotated event bounds, a soft-
alignment procedure was applied [11]. Events with a boundary
deviation below 50%, with respect to the annotated event dura-
tion, were scored as correctly recognized.

All recognition steps: FSS, food classification, and event fu-
sion were evaluated in validation data using the cross-validation
procedure (see Section III-A.1). For comparison, we performed
a sound energy-based detection using the FSS algorithm with
signal energy as single feature. Fig. 3 shows food-specific per-
formance visualizations, averaged for all participants. These
visualizations were obtained by testing the validation set per-
formance for different confidence thresholds in retrieved chew-
ing events. The graphs show a line of best-performance points
obtained for each recognition step.

These results indicate a good performance of our recognition
procedure, despite very similar sound patterns in the selected
foods. In particular, the classification and event fusion helped to
refine recognition results. Overall a recall of 80% with a preci-
sion at 60%–70% was achieved for each food. As expected, the
sound energy-based detection did not achieve a practically use-
ful precision. This result can be attributed to natural variability
in chewing sound energy and arbitrary noise in the dataset.

B. Semisupervised EMG Detection

Fig. 3 additionally shows performance results for a semisuper-
vised EMG-based chewing detection. The detection was applied
in annotated bounds of chewing sequences only. It was imple-
mented according to chewing behavior investigations [20]. In
this implementation, the rectified EMG signal was mean-filtered
with a sliding window of 125 ms. A threshold was used to de-
rive chewing events, and set to the signal level before chewing
onset plus 1 standard deviation of the signal in each processed
chewing sequence. Our evaluations showed that this EMG de-
tection misses many events toward the end of sequences, pre-
sumably due to reduced muscle contractions. As a consequence,
this EMG-based detection clearly underperformed the manual
annotation of chewing events.

Fig. 4. Class-normalized accuracy of chewing sequence majority voting.
Min.–Max. values show participant-specific result variation.

C. Food Classification

Fig. 4 shows the final food classification performance for
chewing sequences, using event majority voting. Events used
for this voting were obtained from the food classification step
at a recall of ∼80% for all foods. In this evaluation, we used
the class-normalized accuracy a = 1

NC

∑NC

c=1
S Recognizedc

S Relevantc
as

performance measure. Here, NC is the total number of classes,
and S Recognizedc and S Relevantc are the number of cor-
rectly identified and total chewing sequences from food type
c, respectively. Any class skew was removed from the train-
ing set instances. For this final food classification, we obtained
an average accuracy of 94%. This excellent performance sup-
ports our approach to select bite weight models based on food
classification results.

D. Microstructure Relevance Analysis

Correlations of microstructure variables with bite weight were
analyzed [using (3)] to determine commonly relevant variables
for all participants. Fig. 5 shows a variable relevance map
based on events retrieved from sound-based recognition and
semisupervised EMG detection. High relevance (wV ≥ 0.6),
hence large individual correlations, were observed for the vari-
ables number of chewing events and chewing duration, ex-
cept for potato chips. We observed largest participant-specific
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Fig. 5. Microstructure variable relevance (3) for sound-based recognition (left)
and EMG detection (right). All variables are detailed in Section IV-A.

correlations for apple (up to 0.96). Overall, relevant variables
were the same for sound-based recognition and EMG detection.

E. Bite Weight Prediction

Bite weight was predicted using a subset of four variables,
which we determined from relevance analysis and stepwise re-
gression fit. This subset contained number of chewing events
and chewing duration for the entire sequence and section 1 of 3.
The relevance analysis confirmed that that these variables were
the most relevant ones for all foods.

Table II shows bite weight prediction errors for sound-based
recognition and EMG detection. Moreover, we computed errors
for an interindividual prediction model using the sound-based
recognition and for a constant weight (average weight from sec-
ond and third chewing sequence). The leave-one-out verifica-
tion scheme was used for all results, except the constant weight
prediction.

A constant weight prediction assumes that bite weights do not
change for a specific food. We assumed that the second and third
chewing sequences represented a good average weight. In our
evaluation, this constant weight prediction marks a performance
baseline. However, our results demonstrate that predictions us-
ing the chewing microstructure outperform this baseline for all
foods.

TABLE II
PERFORMANCE OF DIFFERENT BITE WEIGHT PREDICTION APPROACHES

Overall lowest errors were achieved for the sound-based
weight prediction of apple. Here, the average error was only
19.4%. This result demonstrates the applicability of a sound-
based approach, compared to constant weight (error: 62%) and
EMG-based predictions (error: 28%).

Fig. 6 illustrates cumulative intake curves that are frequently
used to assess food-weight-related intake behavior [10]. We
deploy them here to visualize the variability in bite weights, and
qualitatively compare prediction results to actual values. The
graphs show that our sound-based prediction closely follows
the actually consumed food weight. A constant weight could
predict intakes of low weight variations only, such as for potato
chips in our study.

VI. DISCUSSION

The focus of this paper was to analyze the prediction of
bite weights, being the smallest granularity of food intake. Our
results demonstrate that even foods with very similar acoustic
emissions could be recognized in continuous sound data using
our recognition procedure. Moreover, with the dataset cross-
validation, we obtained robust performance results.

A specific challenge faced in chewing recognition is the ex-
pensive manual data annotation to obtain a ground truth for
evaluations. We tested alternative methods such as sound en-
ergy and EMG-based chewing detections to reduce this effort.
Results for a EMG-based chewing detection showed that its per-
formance is approximately 20% below our manual annotation,
even in a semisupervised mode. Our observation of EMG de-
tection errors is in agreement with reports from other studies,
e.g., [29]. Further investigations are needed to refine semisu-
pervised annotation techniques, potentially by combining EMG
and sound data.

A consequence of this annotation challenge is a low number
of foods that could be evaluated in our present study. Neverthe-
less, we chose these foods carefully, following our interest to
monitor fruit and vegetable consumption, and studying the dis-
crimination of similar acoustic textures. Moreover, the selected
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Fig. 6. Example cumulative intake curves illustrating bite weight prediction for sound-based recognition and constant weight approaches.

foods cover a spectrum of typical bite weights and consumption
styles (see mean bite weights in Table II) relating to bite weight
prediction, which was the focus of this paper. We expect that
our prediction approach using a sound-based recognition will
be feasible for other individually consumed solid foods. First,
ADM systems that use the bite weight prediction may focus on
a small set of relevant foods, e.g,. certain fruits and vegetables.
Weight prediction models for new foods may even be derived
from weight information initially provided by the user. To this
end, we confirmed in a recent chewing study with three partici-
pants that even 19 solid foods could be classified from chewing
sounds [1].

Our analysis of microstructure variables show that partici-
pants adapted their chewing behavior to the foods in a simi-
lar way. We observed consistent correlations of 0.7–0.96 with
bite weight for several variables. Moreover, the same variables
were the most relevant for all foods. Similar correlations to bite
size were previously observed for artificial or fixed-sized foods
only [18]. Our results for natural foods and habitual bite selec-
tion are promising, in particular, for the bite weight prediction
approach presented in this paper.

The results also show that no microstructure adaptations
within chewing sequences occur that could be captured by linear
models. Further work should address whether other prediction
concepts, potentially models of higher orders, could provide
additional benefits.

Both, correlation and weight prediction results show that bite
weight is not equally reflected in the chewing microstructure of
all foods. Especially for foods with typically low bite weights,
such as lettuce and potato chips, prediction errors are higher
(∼30%) than in apples (error: 19.4%). We concluded that chew-
ing behavior does not adapt to these bite weights as it does
for larger weights. A similar observation was made by a recent
study on gum chewing of different weights [30]. There, a 1 g
gum bolus resulted in the largest within-subject variability, sug-
gesting that oral receptors are less sensitive to these low bite
weight stimuli.

Nevertheless, for all foods in this investigation, a sound-
based recognition of the chewing microstructure outperformed
all other prediction approaches. Notably, this approach per-
formed even better compared to a prediction using semisu-
pervised EMG-based chewing detection. The prediction per-

formance for apples even approaches the weight variation in
this fruit type itself. Hence, the prediction error is as low as in
accurately maintained self-reports, that record amount, instead
of requiring food weighting. When compared to a “typical”
performance of self-reports of up to 50% over- and underre-
porting [4], [6], our approach indicates clear advantages that are
very promising. However, further investigations are required,
that include additional foods and consumption patterns.

While altering lubrication of foods, such as buttering toast,
lowers the total number of chews, the change in absolute num-
bers remained low [31]. Deterioration, e.g., in apples, may add
an uncertainty in mass density of up to ∼10% [32]. Hence,
both aspects may limit overall bite weight prediction accuracy,
even for systems covering fruit and vegetables only. However,
this additional error will still be acceptable, compared to errors
and efforts for self-reports. At worst, if preparation or deteri-
oration would modify the material structure, an acoustic food
recognition may reject a food category. In this situation, a food
recognition system may offer a selection of most likely foods
and toppings. Once a user selection was made, the correspond-
ing food model could be used for amount prediction.

VII. CONCLUSION

Techniques to automatically monitor eating behavior are very
promising replacements for self-reporting assessments. How-
ever, it is essential for ADM to provide eating behavior infor-
mation types as self-reports do today. This paper introduced a
novel monitoring dimension to ADM: the prediction of food
weight based on acoustic recognition of chewing.

Our study explored the relation between chewing microstruc-
ture and weight of individual bites taken. In particular, we con-
sidered a set of natural foods and habitual consumption patterns.
As single modality, an ear-pad chewing sound sensor was used
to recognize chewing cycles in continuous sound data. For in-
dividual chewing events, we achieved good recognition results
(recall: ∼80% and precision: ∼60%–70%) and an excellent
food classification performance (accuracy: ∼94%). These re-
sults support our approach to use the recognition procedure for
selecting food-specific bite weight prediction models.

The weight prediction results showed that assessing bite
weights from chewing microstructure information is a fea-
sible approach. We confirmed that a constant bite weight
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assumption fails with bite weight prediction errors of 60%,
while our prediction using sound-based recognition achieved
lower errors, down to 19.4% for apples. This result marks an
important achievement in the development of alternative tech-
niques to replace self-reports.

We expect that our approach can predict weights of other
solid foods as well. Our future work will address the ambula-
tory evaluation of bite weight prediction and new annotation
concepts for chewing.
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body-worn inertial sensors to detect user activities,” Pattern Recognit.,
vol. 41, no. 6, pp. 2010–2024, Jun. 2008.
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