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Abstract— This paper describes a method for robust stream-
ing of combined MPEG audio/video content (encoded either
with MPEG-2 or MPEG-4/H.264) over in-home wireless net-
works. We make use of currently used content distribution
format (MPEG Transport Stream) and network protocols
(either RTP or TCP/HTTP). The transmitted bit-rate is
constantly adapted to the available network bandwidth, such
that audio and video artifacts caused by packet loss are
avoided. Bit-rate adaptation is achieved by using a packet
scheduling technique called I-Frame Delay (IFD), which
performs priority-based frame dropping upon insufficient
bandwidth. We show an implementation using RTP and
an implementation using TCP. Measurements on a real-life
demonstrator set-up demonstrate the effectiveness of our
approach.

Index Terms— adaptive video streaming, wireless networks,
MPEG, H.264, I-Frame Delay

I. INTRODUCTION

In-home networks are becoming more and more com-
mon in consumer households. They connect together the
different electronic devices in the home from the CE,
mobile and PC domains, with which different digital
content is stored and viewed. Such in-home networks
typically consist of wired and wireless segments. Espe-
cially wireless networks are popular due to the ease of
installation. However, wireless networks cannot always
deliver the bandwidth needed for transporting the de-
sired content. This is because wireless networks offer
a lower bandwidth than wired networks, and very of-
ten this bandwidth has to be shared between multiple
streams. Furthermore, the wireless network bandwidth
often exhibits an unpredictable and fluctuating behav-
ior. This is mainly caused by reflections and obstacles,
roaming portable devices, and disturbances from other
devices (e.g. neighboring wireless networks, microwaves).
Other network technologies, e.g. power-line, also exhibit
similar stochastic behavior under interference. For streams
with real-time requirements, such as audio/video (A/V),
insufficient network bandwidth causes data loss and the
associated artifacts, such as blocky distortions in the
image and disturbances in the audio. This is clearly
unacceptable for the end user.

The problem of bandwidth sharing can be addressed
by several QoS (Quality-of-Service) techniques such as
prioritization and bandwidth reservation, and access con-
trol mechanisms. In this paper, we address the second
problem, namely that of fluctuating bandwidth for au-
dio/video streaming. A technique is presented to stream

the A/V content over the network, whereby the amount
of data transmitted by the sender is dynamically adapted
to the available bandwidth by selectively dropping data.
In this way the perceived quality of the A/V stream
is dynamically adjusted according to the quality of the
network link. Our solution can be implemented using RTP
(Real-time Transport Protocol) and TCP (Transmission
Control Protocol).

This paper is organized as follows. Section II lists some
related work. Section III describes our adaptive streaming
technique and its implementations. Experimental results
are presented in Section IV. This paper ends with con-
clusions and final remarks.

This paper is an extension of earlier publication sub-
mitted to IFIP/IEEE International Conference on Man-
agement of Multimedia and Mobile Networks and Ser-
vices [1]. Additional work included here covers extension
of the demonstator server and presented algorithm to han-
dle also the streams encoded with MPEG-4/H.264 codec
(in Section III-E), results of experiments for streams with
H.264 content previously done only for streams with
MPEG-2 content (in Section IV) and evaluation of picture
quality delivered by our algorithm (in Section IV-C).

II. RELATED WORK

Most work in literature concentrates around streaming
of video only, whereas we also consider audio, which is
streamed together with the video stream. Most users are
more sensitive to audio than to video artifacts, therefore
these should be avoided. Different approaches have been
proposed for adaptively streaming video over wireless
networks. These solutions can be categorized by:

• Scalable video. The original video is encoded in
separate layers, where a base layer contains video
of acceptable quality, and one or more enhancement
layers enhance the quality of the base layer. Adap-
tation is done by dropping enhancement layers in
case of insufficient bandwidth. As long as the base
layer can be transmitted without loss, no artifacts
will occur. Examples of this approach can be found
in [2][3][4].

• Transcoding/transrating. Here the original bit-rate of
the video is adaptively changed to a different bit-
rate depending on the available bandwidth, e.g. by
dynamically changing the quantization parameters.
Examples of such solutions are found in [5][6].
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Figure 1. Architecture of the streaming use case.

Figure 2. Protocol and format encapsulation.

• Frame dropping. Complete frames are dropped in
case of insufficient bandwidth, examples are found
in [7][8].

Our adaptation technique falls into the last category and
is called I-Frame Delay (IFD), previously reported in [9].
This paper extends this by including audio. IFD is a
scheduling technique which drops MPEG video frames
when detecting insufficient bandwidth, thereby favoring I-
and P-frames over B-frames. Artifacts are avoided as long
as only B-frames are dropped. The result is a decreased
video frame rate. The perceived quality here is lower than
e.g. scalable video [10] or transrating, however IFD has
the lowest cost in the implementation, and is able to react
quickly to the changing conditions. Most MPEG decoder
implementations are able to decode the resulting stream.
Furthermore, the decision to perform adaptation is based
on send buffer fullness, instead of relying on feedback
from the receiver for bandwidth estimation. Therefore no
receiver modifications are necessary. The work of [11]
resembles ours the most, dealing with adaptive streaming
of MPEG Transport Streams by means of frame drop-
ping. However, this approach relies on specific receiver
feedback about the network status. Furthermore, since
the feedback arrives periodically, the beginning of an
abrupt bandwidth drop can often not be handled in time,
leading to a short burst of lost packets (and hence frames).
Lastly, only RTP streaming is considered, whereas we also
consider TCP.

III. ADAPTIVE STREAMING OF MPEG TRANSPORT

STREAMS

In this paper, we focus on the home scenario where
content is entering the home from a content provider via
ADSL, cable or satellite, then possibly stored on a home
storage server and further distributed over a local network
within the home (Figure 1). The content can be delivered
either with use of HTTP or RTP protocol which transports
distribution format. Here the most common distribution

format is MPEG Transport Stream (TS) [12], which can
contain video encoded with a variety of different codecs
(i.e. MPEG-2 and H.264 that we focus on). Therefore
we will further discuss adaptive streaming of MPEG TS.
Figure 2 illistrates encapsulation of protocols and formats.

Section III-A shortly introduces the problem addressed
later on with our video sheduling technique. Section III-
B describes our IFD adaptive video scheduling technique.
Sections III-C and III-D explain how this technique can
be applied on Transport Streams using RTP and TCP.
Section III-E will describe the challenges faced and
solutions found when applying IFD to streams with H.264
content.

A. Problem description

Streaming video over a network often faces limited
bandwidth as the network link is usually shared between
multiple applications. Moreover, if the video is transmit-
ted over wireless networks (e.g. IEEE 802.11), then aside
from sharing the logical link, the physical medium that
the link is using is also shared between different standards
(e.g. DECT phones, Bluetooth, ZigBee) and is subject to
interference (such as multipath interference or microwave
ovens).

When available bandwidth is insufficient for transmis-
sion of a video stream, the viewer will experience a
disruption of the viewing experience. Since the default
behaviour of a network stack in case of insufficient band-
width is to drop packets at the moment of congestion, the
disruption of frames (artifacts) will be random: missing
parts of a frame, mixed frames, misplaced fragments of
the picture, etc.

B. I-Frame Delay

I-Frame Delay (IFD) is a scheduling technique for
adaptive streaming of MPEG video. The basic idea is
that scheduler will drop video frames when the trans-
mission buffer is full and overflow is imminent due to
insufficient bandwidth, to reduce the transmitted bit-rate.
The algorithm is characterized by the following: 1) buffer
fullness is indicated by the number of frames currently
in the buffer (not the number of bytes), 2) less important
frames (B-frames) are dropped in favor of more important
frames (I- and P-frames), 3) the transmission of I-frames
is delayed when conditions are bad but as little as possible
omitted, even if they are out-of-date w.r.t. the display time,
because they can still be used to decode subsequent inter-
predicted frames1.

The IFD mechanism is based on two parts: 1) during
parsing and packetization of the stream into network pack-
ets, the stream is analyzed and the packets are tagged with
a priority number reflecting the frame type (I/P/B)2, and
2) during transmission, packets are dropped by the IFD

1We assume that out-of-date frames are still decoded and only thrown
away by the renderer, rather than thrown away already before decoding.

2Since there may be multiple consecutive B-frames between two P-
frames, we use different tags to distinguish between them.
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Figure 3. Network packets in the IFD buffer.

scheduler when the bandwidth is insufficient. Non-video
packets are given a priority number not recognizable by
the IFD scheduler, which therefore will never drop them.
The size of the IFD buffer should be big enough to
hold a number of frames. The minimum required size
is two frames, one to hold the frame currently being
sent (denoted as S), and one currently waiting to be sent
(denoted as W ). Increasing the IFD buffer size permits
more intelligent decisions on which frames to be dropped,
at the cost of increased latency and memory usage.
Figure 3 depicts an example of the buffer filling. The
numbers represent the priority numbers of the packets. In
this example the IFD-related priority numbers are 10 and
higher. The packets with priority number 12 belong to the
S frame, and the packets with number 11 belong to the W

frame. Currently a packet from an incoming frame C is
about to enter the buffer. As can be seen, it is possible to
interleave video packets with non-video packets (priority
numbers 0 and 2). When a packet belonging to C tries
to enter the IFD buffer and both S and W are full, the
IFD scheduler will decide to drop a frame (in C or W ),
based on the priority numbers. No artifacts will occur if
only B-frames are dropped, because no subsequent frames
depend on them. When the network conditions are such
that also P-frames are dropped, then the GOP (Group of
Pictures) is said to be disturbed and the remainder of the
GOP is also dropped. This causes the effect of the image
being temporarily frozen, the duration of which depends
on the GOP size. For an IFD buffer capable of holding
two frames, the frame dropping algorithm is shown in
Figure 4.

C. RTP implementation

This section describes our adaptive streaming approach
using RTP. We first present a method for encapsulating TS
packets into RTP packets, such that they can be used by
IFD. This does not come without consequences, as will be
explained. We then describe our streamer implementation.

1) IFD-friendly RTP encapsulation: For RTP encapsu-
lation of TS packets we adhere to RFC2250 [13]. It states
that a RTP packet contains a number of TS packets (188
bytes each). Each RTP packet does not need to contain
an equal number of TS packets, however the common
approach is to encapsulate 7 TS packets into one RTP
packet. Together with some protocol headers, the packet
size stays just below the MTU (Maximum Transmission
Unit) of 1500 bytes (Ethernet), which avoids packet
fragmentation. The problem of such RTP packets is that
they are dropped by IFD as a whole, and they may contain

procedure BUFFER ENQUEUE(C)
if Disturbed GOP == True then

if C is of type I then � New GOP is encountered
Disturbed GOP = False � Reset disturbed GOP flag

end if
end if
if Disturbed GOP == True then

Discard C � Discard rest of disturbed GOP
return

end if
if W is empty then

Store C in W

else
if C is of type I then

Overwrite W with C

else if C is of type B then
Discard C

else if W is of type I or P then
Discard C

if C was of type P then � Discarded frame is P-frame
Disturbed GOP = True � Set disturbed GOP flag

end if
else

Overwrite W with C

end if
end if

end procedure

Figure 4. Pseudocode for IFD algorithm with buffer of two frames.

audio, video and data TS packets, or packets belonging
to multiple frames. Therefore we need to make sure that
video and non-video packets are split up in different RTP
packets, and the same goes for video packets belonging to
different frames. Re-ordering of TS packets is unwanted
due to timing dependencies and efficiency (e.g. buffer
memory usage) considerations, therefore we can achieve
the splitting by simply finalizing packets earlier. During
parsing, TS packets are gathered into RTP packets. A RTP
packet is finalized if one of the following conditions is
met:

1) The RTP packet contains 7 TS packets.
2) The next TS packet has a different TS PID (Packet

Identifier) than its predecessor, and one of them has
the video PID.

3) The next TS packet and its predecessor both have
the video PID, but the next packet starts a new video
frame.

Figure 5(a) shows the result of the common encapsula-
tion scheme for an example TS packet sequence. The
TS packets are denoted with their type (Audio, Video,
Data). For video packets also their frame numbers are
mentioned. All packet boundaries are exactly 7 TS packets
apart. Figure 5(b) shows the packet boundaries obtained
with our encapsulation scheme. Boundary number 2 is the
result of the first rule (maximum of 7 packets reached).
Boundaries 1, 3, 4, 6 and 7 are the result of rule 2
(switching between video and non-video). Boundary 5 is
the result of crossing a frame boundary (rule 3).

Compared to the common encapsulation scheme, pars-
ing of the TS packets down to the video elementary stream
level is required for finding the picture start codes in video
packets to identify the start of each frame and the frame
type. In many cases the start of a new frame is aligned
with the start of a TS packet. This is the ideal situation and
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Figure 5. Example of RTP packet encapsulation: (a) common scheme,
(b) IFD-friendly scheme.

a clean separator can be placed between two TS packets
to separate two frames. However, there are cases where
the frame start and TS packet start are not aligned:

1) In some cases, the picture start code is located
halfway a TS packet, which means that this packet
belongs to two different frames. In this case there
are a number of options for setting the RTP packet
boundary: 1) split up this packet into two TS
packets and add stuffing, 2) keep this packet with
the previous frame, 3) keep this packet with the
new frame. For efficiency reasons (no increased bit-
rate and no copying/modification of TS headers) we
did not go for option 1. Options 2 and 3 differ
in which part of a frame will be dropped. With
option 2 the start of the new frame will be lost
if the previous frame is dropped, while with option
3 the last part of the previous frame will be lost if
the new frame is dropped. In our experience, most
decoders handle the latter situation better, therefore
we choose option 3.

2) Sometimes the picture start code is split over two
TS video packets. Detecting this situation entails
a higher complexity, because two video packets
have to be scanned at a time, with the additional
possibility that they are interleaved with audio and
data packets. Failing to detect this situation may
result in two frames being tagged as if they are
one. If a B-frame is followed by a P-frame, then
also the latter is tagged as a B-frame, and may be
dropped as well.

The occurrence of the above situations depends on how
the video stream is packetized into Packetized Elementary
Stream (PES) packets, before it is multiplexed in the
Transport Stream together with audio data. From our
experience with broadcast streams two methods are most
often used: 1) each PES packet contains a single frame,
2) each PES packet contains a GOP. The above miss-
alignment situations do not occur when a PES packet
contains a frame, because the start of a PES packet is
always at the start of a TS packet. They might occur often,
though, when each PES packet contains a GOP.

2) IFD overhead: As can be seen from Figure 5, our
IFD-friendly encapsulation scheme results in more and
smaller RTP packets. Smaller packets have more over-
head, which means that the wireless network is used less
efficiently. Considering an average size of a RTP packet
consisting of NTS per RTP TS packets, we define the
encapsulation efficiency Eencap as a measure to express
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Figure 6. Example RTP packet size distribution for high (a) and low
(b) encapsulation efficiency.

how well a stream can be encapsulated, that is, how close
NTS per RTP is to the optimal number of 7:

Eencap =
NTS per RTP

7
× 100% (1)

Our experience with typical Transport Streams yields val-
ues for Eencap ranging from 37.4% to 85.8% for MPEG-
2 and 59.9% to 76.5% for H.264. Figure 6 shows the
distribution of RTP packet sizes for example sequences
with a high and a low encapsulation efficiency.

One source of overhead of having smaller packets
is the protocol headers (e.g. RTP, IP), as the packet
payload is relatively smaller. An analysis of the header
overhead resulted in numbers ranging from 0.92% to
8.42% (MPEG-2) and from 1.63% to 3.56% (H.264) for
our example streams. Another source of overhead comes
from the fact that the maximum theoretical throughput at
the 802.11 MAC layer degrades with decreasing packet
size (a theoretical analysis can be found in [14]). Fig-
ure 7 depicts the relation between NTS per RTP and the
maximum throughput. We define the throughput penalty
as the relative drop in throughput with an average RTP
packet size NTS per RTP compared to the throughput
with the maximum packet size of 7 (Eencap = 100%).
For the example sequences we used, a throughput penalty
was found ranging from 6.1% to 47.0% for MPEG-2 and
from 15.7% to 28.5% for H.264. It is therefore imperative
to obtain a high encapsulation efficiency. This depends
on how the packets have been multiplexed. The best is
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Figure 8. RTP sender architecture.

to have as few transitions between video and non-video
packets as possible. Since video packets make up most
of the stream, we can then achieve the highest possible
number of RTP packets of the maximum size (such as in
Figure 6(a)).

3) Implementation: We implemented IFD as part of a
RTP/RTSP server application running on a Linux PC, the
streaming part of which is shown in Figure 8. The TS file
reader reads TS packets from a MPEG Transport Stream
file and sends it to the RTP packetizer, which encapsulates
the TS packets into RTP packets according to the method
described earlier. The target transmission times (TTT) of
the packets are determined by the file reader from the PCR
(Program Clock Reference) values (following the DLNA
guidelines [15]). The RTP packetizer then translates the
TTT to RTP timestamps and inserts the proper RTP
headers. The resulting RTP packets are given to the RTP
sender. This component is responsible for buffering the
RTP packets for transmission. For the correct pacing of
the transmission, the RTP scheduler examines the RTP
timestamps of the RTP packets and tells the RTP sender
to send the packets at the right time. IFD packet tagging
is done by the RTP packetizer, and the dropping is
implemented in the RTP sender. Audio and data packets
are tagged with a priority number which is not recognized
as video frames by IFD; they thus will never be dropped.
In this way the audio is almost never interrupted at the
receiver output.

D. TCP implementation

The main drawback of using RTP streaming is that
IFD must be supported by each wireless node (e.g. an
access point) in the network, not only at the sender. This

MPEG−2
Transport Stream

IFD
dropper

TS file
reader

TS
collector

TCP
sender

Network

IFD buffer

Figure 9. TCP sender architecture.

is because with RTP, only the bandwidth of the wireless
link on which transmission takes place (e.g. between the
sender and the access point) can be monitored (there is
no feedback from the receiving peer). If the path to the
receiver passes another wireless link (e.g. from access
point to the receiver), then the quality of the second link
is visible for the access point, but not for the sender3.
Therefore the sender can only adapt to the bandwidth
conditions on the first link but cannot prevent artifacts
caused by packet losses on the second link, and therefore
also the access point should implement IFD. This is com-
mercially highly unattractive. TCP provides reliable data
transmission using its acknowledge and retransmission
mechanism. Since the acknowledgments are sent between
the receiver and sender, it is possible to observe the end-
to-end bandwidth on the network path, independent of
the (number of) wired/wireless links on that path. Thus it
suffices that only the sender supports IFD.

The main issue of TCP is that the retransmission
mechanism may delay the streaming such that the real-
time requirements are not met. We can solve this by
applying IFD. Our TCP sender architecture is shown in
Figure 9. The file reader component is similar to the RTP
implementation. The TS collector component packs TS
packets together in a similar way as the RTP packetizer
described in Section III-C.3, with a slight difference that
the TS collector never applies encapsulation rule 1. This is
because packets offered to TCP may be bigger than 7 TS
packets; TCP will automatically split up such big packets
into smaller chunks. The IFD algorithm is implemented
by the IFD dropper component. It writes packets into the
IFD buffer according to the pacing of the stream. The
TCP sender task tries to send the packets in this buffer as
fast as possible. When the network conditions deteriorate,
TCP stalls and the TCP sender cannot empty the IFD
buffer fast enough. This will trigger the IFD dropper to
apply the dropping algorithm.

The overhead introduced by our packetization scheme
for TCP is smaller than for RTP. This is because TCP will
automatically split up big packets into smaller chunks, and
merge smaller packets into bigger chunks for transmis-
sion. The average packet size at the IP level is therefore
bigger than for RTP. This comes at a cost of a bigger
receiver buffer to deal with the higher jitter.

E. H.264 considerations

To further explore applicability of IFD to video stream-
ing both TCP and RTP implementations were extended to
handle streams with H.264 content. Like in the case of

3This could potentially be tackled by detecting ICMP Source Quench
messages, however, not every router implements this feature.
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MPEG-2, the H.264 content was encapsulated in MPEG
Transport Stream together with audio. The choice of the
codec was dictated by the high interest with H.264 in
both scientific comunity and industry. Its features and the
recognition it gets suggest that it is a viable successor to
MPEG-2. For this reason it was important to investigate
the performance of IFD with H.264 streams.

Although there are differences between the two stan-
dards, the H.264 standard keeps many of the MPEG-
2 notions: it still distinguishes I, P and B frames, and
encoding of the frames is in principle the same.

Prior to implementation it was necessary to perform a
simple sanity check if IFD can be at all applied. Major
benefit of IFD is that it allows to cope with bandwidth
drop by dropping B-frames without introducing artifacts.
Therefore, applying IFD depends on the contribution of
B-frames to the size of the stream - if it is significant
then it is reasonable to apply IFD to use the bandwidth
gain. After checking our example streams with MPEG-
2 content it was concluded that the contribution of B-
frames is between 30% and 55% (which means that it is
possible to save the same amount of bandwidth in case
of network congestion). The same check for our example
streams with H.264 content yielded results between 20%
and 35% for SD streams and 40%-48% for HD content.
This is still significant, even though it is somewhat less
than in MPEG-2.

The high compression factor of the H.264 codec can
be attributed to several features it supports. Many of
these features are new in H.264 and were not included
in MPEG-2 before. Because of these differences between
these two standards, it was necessary to look closer at
those features as they could have a negative impact on
the possible application of IFD to H.264.

IFD relies only on extraction of frames (beginning and
end or length of a frame) and detection of their type. That,
in turn, depends on features related to the structure of the
bitstream with frame-wise granularity and classification
of the frames, which limits the scope of the features
considered to the following list (for a complete list of
features one can refer to [16] or [17]):

• Indication of frame boundaries. There are two ways
to detect a beginning of a new frame in H.264. One
way is to scan bitstream and detect an Access Unit
Delimiter (AUD) indicating a beginning of a new
frame. However, AUD is an optional element of a
sequence. Another way is to parse headers of all top-
level parsing units (Network Abstraction Layer units,
NAL units) in the bitstream and checking values
from the headers against a set of conditions defined
by the standard.

• Variable Length Compression. If parsing of headers
is necessary then this can introduce overhead through
keeping storage and the analysis of the values in the
headers. H.264 uses Exponential-Golomb encoding
for these values, which requires more computing
than for the encoding used in MPEG-2.

• Less strict inter-frame dependencies. Often, B-

frames are a closer approximation to neighbouring
B-frames than more distant I- or P-frames. Therefore
to enhance video quality and compression ratio it
was allowed to make B-frames dependant on other
B-frames. The result of this is that some B-frames
are more important than others.

• New frame types. H.264 introduces new frame types
- SI and SP, which allow to introduce custom en-
try points for the purpose of random access and
enhanced resilience. They basically duplicate the
content of another frame - for example an SI frame
duplicates another SP frame but allows the decoder
to recover in case preceding frames were lost, or, in
case we have two SP frames they introduce switching
points between two streams (more information can
be found in [18]).

• GOP-related issues. H.264 does not have an explicit
counterpart of Group-of-Pictures structure known
from MPEG-2. Instead, it has a concept of Instan-
taneous Decoding Refresh (IDR) picture, which can
be considered as a counterpart of a beginning of a
GOP.

One challenging feature is related to the detection of
frames. In our research we are using Transport Streams
and the standard defines that if H.264 bitstream in encap-
sulated in TS then AUD units are mandatory. In this case
frame detection is simple and requires only a detection of
the AUD units, it requires only scanning for a particular
four byte long sequence in the bitstream (the test set
used during this research consisted only of sequences
with AUD units). We are also able to handle a situation
where AUD units are absent. In this case the server has
to do more detailed parsing of the sequence (it has to be
robust enough for sequences with arbitrary slice ordering,
consecutive frames of the same type etc.) and has to
manage necessary data for parsing and detection.

Parsing of a H.264 bitstream and frame detection in
absence of the AUD units can be a resource consuming
process. One reason for this would be storage and lookup
of values from previously parsed headers, but a more
significant reason is the encoding used in the H.264. To
avoid sending any unnecessary data even in the control
part, it was decided to use variable length encoding
(Exponential-Golomb) with bit alignment (not a byte
alignment) and not to use any leap values. The fact that
no leap values are used (like length of a header or a
parsing unit) makes it impossible to skip values that are
of no interest - everything needs to be parsed. This can of
course require some CPU cycles, but by an experiment it
was established that the cost is minimal. For Pentium 4
1.7GHz with Windows XP the detection of frames by
using the slice encoded info adds only about 0.192%
processing time per frame as compared to the detection
based on the Access Unit Delimiters and for MIPS in a
set-top-box running Linux the difference is 0.032% (both
values measured for a 2 Mb/s stream).

The next feature that might pose problems is using B-
frames as reference frames. In this case it is necessary
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to distinguish between ”more” and ”less” important B-
frames. Tagging a priority to frames is no longer equiva-
lent to their type only. In general, that could require pars-
ing and analysis of a sequence to be even more detailed.
Fortunately, the parsing unit (NAL) header holds a field
which indicates whether given unit is referenced or not -
this can aid the detection of referenced B-frames without
adding much complexity to the decision algorithm. The
way the field is used, reflects the level of dependency
on given unit, for example - I-frame receives value 2, P-
frame 1 and unreferenced B-frame 0. Again, our test set
included sequences without B-frames as reference frames.

Another new feature is the introduction of new frame
types, SP and SI. Although their role is slightly different
then of the P- and I-frame, their priority can remain
the same, which allows using the same tags and leaving
decision algorithm unchanged.

In MPEG-2, it used to be possible that B-frames at the
beginning of GOP were referencing frames from previous
GOP (so-called open GOP). This, however, was limited
to a GOP boundary. In H.264, to enable management of
reference buffers a concept of Instantaneous Decoding
Refresh (IDR) picture was introduced. Only I-frames can
be IDR frames, and - when encountered - such frame
indicates that all reference frames should be marked as
unused. Therefore, even though H.264 does not recognize
formally a notion of GOP, it still keeps this functionality.

The IFD also handles situations where GOP is dis-
turbed by dropping P- or I-frame. I this case all following
frames are dropped until beginning of the next GOP. The
reason for this is to drop frames that depend on a missing
frame (these frames would be displayed with artifacts).
H.264 does not have a notion of GOP, but fortunately
it is possible to detect a boundary beyond which there
is no reference made. The boundary is an IDR-frame.
Thanks to that, also this IFD feature remains valid for
H.264 - IFD algorithm only requires different source of
information used in the decision. Long distances between
IDR-frames might be then the only problem. However, for
a broadcast content the distance is supposed to be short to
avoid sparse recovery points; trick-play for stored content
requires that as well. Otherwise, a mechanism analysing
references between frames would have to be in place in
order to detect when a dropped frame is not referenced
anymore. A trade-off is possible: dropping can simply
be continued until next I-frame or IDR-frame, which, in
case of sparsely distributed IDR-frames, would mean that
dropping I- or P-frame would result in longer periods
when the picture is frozen.

IV. EXPERIMENTAL RESULTS

This section presents some experimental results in two
scenarios. The first one involves a stationary receiver
attached to a TV. In this scenario (Section IV-A), the wire-
less network is disturbed by turning on a microwave. The
second scenario (Section IV-B) involves a mobile receiver,
which is moved away from the access point, causing the
bandwidth to drop. We used a 802.11g wireless access

Microwave

Receiver (STB)

Sender (PC) TV+ router
Access point

MPEG−2 TS

Figure 10. Experimental set-up with stationary receiver.

point and PCMCIA wireless adapters. IFD is implemented
in the sender. The experiments were conducted in an office
environment with a WLAN infrastructure, which causes
some additional interference with our own network.

A. Stationary receiver with microwave disturbance

The set-up for this scenario is shown in Figure 10.
The sender PC has a wireless connection to the access
point, which is connected via wired Ethernet to a set-
top-box. The nearby (at appr. 2 m) microwave introduces
the disturbance. For this experiment we used a 10 Mb/s
MPEG-2 sequence (with phy-rate set to 54 Mb/s) and
4 Mb/s H.264 sequence (with phy-rate set to 24 Mb/s).
The GOP size in both cases is 15 and the GOP structure
is IBBP. During the experiment, the microwave was
turned on 45 seconds after the stream started, for a period
of 1 minute, and the output video and audio quality
was observed on the TV. With the microwave off, the
audio and video were streamed without problems. During
the period when the microwave was on, the experiment
without IFD exhibited artifacts in the video and frequent
interruptions in the audio. With IFD turned on, the audio
was never interrupted, and the video frame rate was ob-
servably reduced, however no artifacts were seen. Similar
observations were made both for the RTP and the TCP
implementation. Since the wireless network conditions
may vary over time, the experiments were repeated a
number of times.

Measurements were performed to determine the
dropped frames and their types. For both types of streams
(MPEG-2 and H.264) we first ran an experiment with
the TCP sender (Figure 9) without IFD, where the IFD
dropper was configured to drop all incoming packets when
the IFD buffer is full (tail-drop). The dropped frames
at the sender side are shown in Figure 11 (a) and (c).
The observations for MPEG-2 and H.264 were similar.
As can be seen, almost no frames were dropped when
the microwave was off. When the microwave was on,
frames from all types were dropped (including I- and
P-frames, consistent with the observed artifacts). Note
that actually only some packets belonging to these frames
were dropped, and not the complete frames. We consider
a frame with one or more packets missing as dropped
because typical decoders will throw away incomplete
frames anyway (including I- and P-frames, leading to
artifacts). With IFD turned on, it can be seen that no I-
frames were dropped (Figure 11 (b) and (d)). Most of the
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Figure 11. Dropped frames under microwave disturbance (TCP): (a)
MPEG-2 without IFD, (b) MPEG-2 with IFD, (c) H.264 without IFD,
(d) H.264 with IFD.
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Figure 12. Dropped frames with IFD under microwave disturbance
(RTP): (a) MPEG-2, (b) H.264.

dropped frames were B-frames. It can be seen that also
some P-frames had to be dropped, causing the dropping
of the rest of the disturbed GOPs. Considering our GOP
size, dropping a disturbed GOP may cause the image to be
frozen up to roughly half a second. This effect is reduced
if the GOP size is smaller.

The results for the RTP implementation are shown in
Figure 12. As can be seen, in this experiment only B-
frames were dropped.

B. Mobile receiver

In this experiment we used a 8 Mb/s MPEG-2 sequence
(with phy-rate set to 54 Mb/s) and 4 Mb/s H.264 se-
quence (with phy-rate set to 24 Mb/s). The sequence was
streamed along two wireless links from the sender PC to
the laptop (see Figure 13). After the stream started, we
walked away with the laptop from the access point until
halfway the sequence, then turned around and walked
back to the starting position. This experiment was only
done with the TCP implementation, because for RTP we
lacked IFD on the access point for adapting the stream
on the second link.

With IFD off, it was observed that while walking away,
the audio and video were first streamed with no problems,
followed by a short period with artifacts, then followed
again by a period without problems. This is caused by
the automatic reduction of the transmission rate by the
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Figure 13. Experimental set-up with mobile receiver.

access point when the signal strength decreased. Hence
the artifacts were caused during the transitions. This effect
can also be seen in Figure 14 (a) and (c) from the short
bursts of dropped frames. When we reached a certain
distance where the required bandwidth could not be sus-
tained anymore, the receiver output exhibited continuous
artifacts. With IFD on, we observed that during transitions
the image showed a short freeze (caused by dropping
a P-frame and the subsequent frames in the disturbed
GOP). There were no blocking artifacts and no audio
interruptions. As can be seen from Figure 14 (b) and
(d), the dropped frames were limited to B-frames and
P-frames.

C. Picture quality delivered with IFD

Additionally, to confirm that IFD delivers better quality
than standard scheduling mechanism we performed an
experiment using scenario from Figure 10 where the
sequences were recorded as delivered on receiver side and
the Peak Signal-to-Noise Ratio (PSNR) was calculated
against the original sequence.

The experiment was done for both MPEG-2 and H.264.
The bandwidth was continuously suppressed to a value
just above the bitrate of the sequence to ensure a big
enough measurement sample (total number of frames sent
was 3370). Limitation of bandwidth was done with use
of the Token Bucket Filter (TBF) - a queuing mechanism
available on Linux, which can be used for traffic control
(the reason for using it, is to be able to arbitrarily
configure available bandwidth). For MPEG-2, a 10 Mb/s
sequence was used. Bandwidth was set to 10.5 Mb/s and
no additional interference was introduced. Similarly, for
H.264 we used a 4 Mb/s sequence with bandwidth limited
to 4.2 Mb/s.

The PSNR values were obtained by comparing YUV
files decoded from original and recorded sequences with
ffmpeg decoder. In case of missing frames this transcoder
copies most recent one so the number of frames and
timing still matches the original - which is consistent with
observations we made during playback of the streamed
video. The results of these experiments are presented in
two sets - one presents how many frames were disturbed
during transmission (Table I) and another presents average
PSNR (Table II). Note: The average PSNR was calculated
for disturbed frames only.

In both cases - MPEG-2 and H.264 - we can observe
that the number of disturbed frames is reduced by similar
factor when IFD is used. Also, in both cases the quality
of the disturbed frames is better - this can be attributed to
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Figure 14. Dropped frames with roaming receiver (TCP): (a) MPEG-2
without IFD, (b) MPEG-2 with IFD, (c) H.264 without IFD, (d) H.264
with IFD.
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Without IFD With IFD

MPEG-2 54.58% 8.21%
H.264 83.26% 39.85%

TABLE I.
PERCENTAGE OF DISTURBED FRAMES.

Without IFD With IFD

MPEG-2 22.40 24.14
H.264 19.56 25.60

TABLE II.
AVERAGE PSNR OF DISTURBED FRAMES.

the fact that for IFD there are no artifacts in the disturbed
frames - they are simply repeated frames.

V. CONCLUSIONS

In this paper, we have shown a method for adaptive
streaming of audio/video content over wireless networks
while using standard content distribution formats and
network protocols. With I-Frame Delay as the underlying
bit-rate adaptation mechanism, we are able to stream
artifact-free video even under degrading network con-
ditions. Moreover, it allows to reduce the number of
affected frames and this together artifact-free transmission
it results in a higher picture quality. Our solution is
implemented at the sender side only, no modifications are
needed at the receiver side. We also found out that IFD
is flexible enough to be applied to both MPEG-2 as well
as H.264 (and possibly also to other video codecs when
necessary adaptation is made). It is possible to apply IFD
in combination with RTP as well as TCP. We proposed
a packet encapsulation scheme which makes it possible
to separate video TS packets from non-video packets
and packets belonging to different frames, such that the
resulting packets can be fed into the IFD scheduler.
The effectiveness of IFD in case of network bandwidth
fluctuations was shown by means of measurements on a
real-life demonstrator set-up.

Our RTP packet encapsulation scheme results in on
average smaller network packets, which entails some
overhead in network efficiency. This overhead is depen-
dent on the encapsulation efficiency of the streams. For
TCP this overhead is considerably smaller.

IFD is effective against bandwidth fluctuations, which
may be severe but only last a short period of time. In
case of long-term bandwidth drops (e.g. due to multiple
contending streams), the perceived quality of the IFD
solution seriously degrades because frames are constantly
dropped. Such bandwidth problems are better handled by
solutions such as transrating.
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