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Abstract—In many practical applications we are interested
in the extraction of only one desired signal out of a mixture
of signals. A disadvantage of most blind extraction approaches
proposed in the literature is that they are inefficient in the sense
that they also separate or extract undesired signals. To deal with
this inefficiency we exploit an a priori guess of direction of arrival
related parameters of the desired signal, which serves as a mold.
Based on this mold we create linear combinations of noise-free
correlation matrices that are used to construct a single matrix
with a specific eigenstructure. The eigenvector that corresponds
to the smallest eigenvalue of this matrix is the desired extraction
filter. Finally it is shown that this approach paves the way to
make the algorithm flexible in the utilization of additional a
priori information.

I. INTRODUCTION

The extraction of only one desired signal from a linear

mixture of signals is the objective in a large variety of signal

processing problems, e.g., the cocktail party problem. Many

approaches to solve this problem use Blind Signal Processing

(BSP) techniques. In BSP problems the source signals as well

as the mixing system are unknown. Therefore, BSP techniques

generally use no training data and no a priori knowledge about

the mixing system. However, an essential problem in BSP is

the permutation problem, which implies that signals can be

separated or extracted in an arbitrary order only.

In the literature several Blind Signal Extraction (BSE) ap-

proaches are proposed that deal with this permutation problem.

In [1] and [2] sequential BSE algorithms are discussed. In

these algorithms the first step is to extract one likely interesting

signal. The second step is to classify the extracted signal. If the

extracted signal is not the desired signal, a deflation method

is used and a new, potentially interesting signal is extracted.

The order in which the signals are extracted is depending

on properties like sparseness, non-Gaussianity, smoothness,

and linear predictability. These properties are assumed to

lead to the extraction of only interesting signals because

noise signals typically carry properties like Gaussianity and

whiteness. An alternative BSE approach is based on Blind

Source Separation (BSS) [1]–[3]. Such a method first separates

all signals simultaneously with a BSS algorithm. Second, a

classifier selects the desired signal from the set of separated

signals. A disadvantage of both these approaches is that they

are inefficient in the sense that they also separate or extract

undesired signals.

In [4] a novel BSE approach is introduced that randomly

extracts a signal. The extraction filters are the eigenvectors
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Fig. 1: Diagram depicting the proposed BSE algorithm

from the Generalized Eigenvalue Decomposition (GEVD) of

correlation matrices from which the structure is composed

in a very specific way. It is observed from there that each

eigenvalue depends only on the mixing parameters of the

signal that is extracted by the corresponding eigenvector.

We believe that the approach in [4] can be extended towards

convolutive mixtures, which are applicable in many acoustic

applications. In these applications a priori knowledge about

the mixing system is often available in terms of a rough

guess of the Direction Of Arrival (DOA) of the desired signal,

which is a parameterization of elements in the mixing system.

Therefore, we assume that we have a mold available, which is

an a priori estimation of the mixing column that belongs to the

desired signal. In the current work, this mold is incorporated

in the work in [4] in order to extract directly the desired signal

and this rationale is validated by means of simulations.

The outline of this paper is as follows. In Section II, the

BSE problem scenario is given and in Section III assumptions

on the Second Order Statistics (SOS) are given. In Section IV

the BSE algorithm is derived and in Section V simulation

results are discussed. Finally, Section VI contains conclusions

and future research.

II. BSE PROBLEM SCENARIO

A model of the extraction scenario is depicted in the

upper branch of Figure 1. Here, S unknown source signals

s1[n], · · · , sS [n] are mixed by an unknown instantaneous

mixing system A. We observe D sensors, which generate

sensor signals x1[n], · · · , xD[n]. These sensor signals consist

of mixtures of the source signals combined with additive noise

signals ν1[n], · · · , νD[n]. The index n ∈ Z is the discrete time

index and we assume that the sampling rate is sufficiently high

to prevent aliasing. If we model the mixing system as a matrix
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then the mutual relationship of the signals is given as

x[n] =

S
∑

i=1

a
isi[n] + ν[n] = As[n] + ν[n] ∀n ∈ Z (1)

with the vectors defined by x[n] , ([x1[n], · · · , xD[n]])T ,

s[n] , ([s1[n], · · · , sS [n]])T , ν[n] , ([ν1[n], · · · , νD[n]])T ,

and the mixing matrix defined by: A ,
[

a
1 · · · a

S
]

, with

a
i the mixing vector of the i’th signal for i ∈ {1, · · · , S}. The

output y[n] of the extraction system is obtained by applying a

linear filter w to the sensor signals. Ideally, this output signal is

exactly the desired signal, which we indicate by sd; however,

by allowing for only linear filters, the best extraction filter

produces a noisy observation of this desired signal. The task

of our BSE algorithm is to identify this best filter, which is the

d’th row vector of the (pseudo-) inverse of the mixing system.

This (pseudo-)inverse only exists if there are at least as many

sensors as sources; therefore, in our analysis we assume to

have the same amount of sensors as sources.

Our filter identification strategy is depicted in the lower

branch of Figure 1. As discussed in Section I, we use the

approach from [4] where correlation matrices C
x
i were con-

structed from the sensor signals. These matrices have a very

specific structure and are taken from an a priori available

Noise-Free Region Of Support (NF-ROS) as discussed in

Section III. From these noise-free correlation matrices linear

combinations Γl are created based on a mold, which is a

guess of the mixing column corresponding to the desired

signal. From the linear combinations one new matrix M is

constructed with a specific eigenstructure. The eigenvector that

corresponds to the smallest eigenvalue of M is the desired

extraction filter, as derived in Section IV.

III. SECOND ORDER STATISTICS

The approach in this work exploits the structure in cor-

relation matrices from the observed sensor signals. First we

introduce our assumptions on the auto- and crosscorrelation

functions of the source, noise and sensor signals. Then we

indicate the structure in the correlation matrices.

Definition III.1. The correlation function value of a source

signal pair (si1 , si2) for 1 ≤ i1, i2 ≤ S at a given time n ∈ Z

and with a certain lag k ∈ Z is defined by

rs
i1i2

[n, k] , E {si1 [n]si2 [n − k]} (2)

where E{·} is the mathematical expectation operator.

By using time-lag pairs (n, k) we are able to cope with both

non-stationary and non-white signals. Similar to the source

signal correlation functions, the noise, sensor, and source-noise

correlation functions are defined by

rν
i1i2

[n, k] , E{νi1 [n]νi2 [n − k]}

rx
i1i2

[n, k] , E{xi1 [n]xi2 [n − k]}

rsν
i1i2

[n, k] , E{si1 [n]νi2 [n − k]}

∀ 1 ≤ i1, i2 ≤ S = D

By using these definitions we are able to define a Noise-Free

Region of Support (NF-ROS), or shortly Ω.

Definition III.2. The Noise-Free Region Of Support (NF-

ROS), also denoted by Ω, is a set of time lag-pairs (n, k)
for which the noise correlation, source-noise crosscorrelation,

and source crosscorrelation functions equal zero. The total

number of time-lag pairs in the NF-ROS is denoted by N ,

thus: Ω , [Ω1, · · · , ΩN ] and |Ω| = N .

We assume from now on that we only take time-lag pairs

from the NF-ROS. This implies a noise-free relation between

the sensor correlations and the source autocorrelations, i.e.,

rx
i1i2

[Ω] =
S

∑

j=1

aj
i1

aj
i2

rs
jj [Ω] ∀ 1 ≤ i1, i2 ≤ D (3)

An additional assumption is that all source autocorrelation

functions are linearly independent in the NF-ROS. Finally, we

assume that we have the same amount of time-lag pairs in the

NF-ROS as we have sources, N = S.

Given these assumptions we collect all sensor correlation

data in the following correlation matrices, for i ∈ {1, · · · , D}:

C
x
i ,











rx
i1[Ω1] rx

i1[Ω2] · · · rx
i1[ΩN ]

rx
i2[Ω1] rx

i2[Ω2] · · · rx
i2[ΩN ]

...
...

. . .
...

rx
iD[Ω1] rx

iD[Ω2] · · · rx
iD[ΩN ]











(4)

Using (3), the structure of these matrices is described in terms

of the mixing system and a source autocorrelation matrix

C
x
i ≡ A diag(ai)C

s ∀ i ∈ {1, · · · , D} (5)

where the source autocorrelation matrix is defined by

C
s ,











rs
11

[Ω1] rs
11

[Ω2] · · · rs
11

[ΩN ]
rs
22

[Ω1] rs
22

[Ω2] · · · rs
22

[ΩN ]
...

...
. . .

...

rs
SS [Ω1] rs

SS [Ω2] · · · rs
SS [ΩN ]











(6)

and ai ,
[

a1

i , · · · , aS
i

]

is the i’th row vector of the mixing

system. This source autocorrelation matrix has full rank be-

cause we assumed that the source autocorrelation functions are

linearly independent in the NF-ROS. Later in this work we use

the following linear combinations of correlation matrices:

Γl ,

D
∑

i=1

ξl
iC

x
i ≡ A diag

([

α1

l , · · · , αS
l

])

C
s (7)

where ξl
, ([ξl

1
, · · · , ξl

D])T and αi
l , 〈ξl,ai〉. Here 〈·, ·〉

is the standard Euclidean inner product. A vector ξl can be

any arbitrarily chosen vector from a set of L unequal vectors

ξ1, · · · , ξL. These vectors are used further on to incorporate

the mold such that the desired extraction filter is selected.

IV. PERFORMING BSE

In [4] it is shown how to identify a random extraction filter

from the GEVD of linear combinations of correlation matrices

as in (7). Here we generalize these results and introduce an

algorithm that directly identifies the desired extraction filter.
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Definition IV.1. The GEVD of two square, equal size, full

rank matrices Γl1 and Γl2 of size S × S is denoted by

{w, λ} = gevd (Γl1 ,Γl2) (8)

where {w, λ} is the set of all eigenvectors and eigenvalues

that solve the system λwΓl1 = wΓl2 .

Theorem IV.1. Suppose that we have two random, full rank

linear combinations of correlation matrices Γ1 and Γ2 as in

(7). Then the extraction filters for all source signals are the

eigenvectors of gevd (Γl1 ,Γl2).

Sketch of proof: In (7) we give the structure of linear

combinations of correlation matrices. As long as αi
l 6= 0, these

matrices remain square, full rank matrices. If we substitute

(7) into Definition IV.1, it follows that the S eigenvectors are

exactly the S row vectors from the inverse of the mixing

system, up to an unknown scaling. Therefore we can use

the symbol w for eigenvectors as well as extraction filter.

The unknown scaling is an inevitable problem of BSP, which

we deal with by normalizing the eigenvectors; furthermore,

no specific ordering is chosen in the set of eigenvectors and

eigenvalues, which is related to the permutation problem.

We observe that using different linear combinations of

correlation matrices leads to the same eigenvectors for each

GEVD, as long as both linear combinations are different. On

the other hand, the eigenvalues have the form

λi
l1l2

=
αi

l1

αi
l2

=
〈ξl1 ,ai〉

〈ξl2 ,ai〉
∀ i ∈ {1, · · · , S} (9)

which depends on the choice of linear combinations ξl1

and ξ
l2 . A physical interpretation of these eigenvalues is

that we project all mixing vectors a
1, · · · ,aS onto the two

dimensional plane that is spanned by the vectors ξl1 and ξl2 .

The eigenvalues are related to the angles between the projected

mixing vectors and the vectors ξl1 and ξl2 , respectively. Fur-

thermore it follows that each eigenvector and eigenvalue pair

is depending on only one source. The mixing information a
i in

the eigenvalue λi
l1l2

belongs to the signal si[n] that is extracted

by the corresponding eigenvector, without knowing the label

i. This property leads us to our new BSE approach. Given

the mold and two vectors ξ1 and ξ2 we are able to calculate

an estimation of the generalized eigenvalue that belongs to

the desired source, which is extracted by its corresponding

eigenvector.

Two problems arise with this basic approach. First, if more

than two sensors are used, the projection of the mixing

column vectors on the two dimensional subspace reduces

the information in the eigenvalues. This could lead to the

selection of an undesired signal. Second, by choosing the

vectors ξ1 and ξ2 randomly, the estimated eigenvalue can

take any value. In practical algorithms it is more common to

search for a typical eigenvalue, such as a zero, the largest or

the smallest eigenvalue. These problems lead to the following

generalization such that the desired signal is selected directly

and that we can use an efficient algorithm such as the power

method [5] to search for the eigenvector that corresponds to

the smallest eigenvalue.

Theorem IV.2. We denote the mold by the vector a
0. If we

choose the set of S vectors ξ1, · · · , ξS as an orthonormal

basis, with ξ
1 = a

0/
∣

∣

∣

∣a
0
∣

∣

∣

∣ and ||·|| the Euclidean norm, then

mi ,

√

(λi
21

)2 + · · · + (λi
D1

)2 ∀ i ∈ {1, · · · , S} (10)

is minimal for i = d if
∣

∣〈a0,ad〉
∣

∣

||ad||
>

∣

∣〈a0,ai〉
∣

∣

||ai||
∀ i 6= d ∈ {1, · · · , S} (11)

Notice that mi collects the generalized eigenvalues for several

GEVD problems that correspond to source i.

Theorem IV.2 means that mi has the smallest value for the

mixing column with the smallest angle towards the mold.

Proof of Theorem IV.2: We decompose the measure mi

in terms of the basis vectors ξ1, · · · , ξS by using (9)

mi =

√

√

√

√

√

S
∑

l=2

(

〈ξl,ai〉
)2

(

〈ξ1,ai〉
)2

=
1

∣

∣αi
1

∣

∣

√

√

√

√

S
∑

l=2

(

αi
l

)2

(12)

where αi
l , 〈ξl,ai〉. We may assume that all mixing vectors

are normalized because these vectors appear in the nominator

as well as in the denominator. From (11) it follows that αi
1

has

the largest value for the desired mixing vector a
d. Because the

vectors ξ1, · · · , ξS are orthonormal it holds that
√

√

√

√

S
∑

l=2

(

αi
l

)2

=

√

||ai|| −
(

αi
1

)2

∀ i ∈ {1, · · · , S} (13)

Equation (13) has always the smallest value for the mixing

vector that has the smallest angle with respect to the mold,

thus for i = d. Next, combining (12) and (13) leads to

mi =

√

1 −
(

αi
1

)2

∣

∣αi
1

∣

∣

∀ i ∈ {1, · · · , S} (14)

which has the smallest value for i = d.

From Theorem IV.2 it follows that we are able identify the

desired extraction filter as the eigenvector that corresponds to

the smallest value of mi if (11) holds. The measure mi can

be calculated from the solutions of S − 1 GEVD problems.

However, this is computationally expensive. Therefore we give

a new, less expensive algorithm.

Notice that gevd (Γ1,Γl) results in the same eigen-

vector and eigenvalue pairs as the eigenvalue decomposition

eig
(

Γl(Γ1)
−1

)

that solves the system λwI = wΓl (Γ1)
−1

, if

Γ1 is invertible [5].

By squaring this matrix: Γl(Γ1)
−1

Γl(Γ1)
−1, the eigen-

values are squared while the eigenvectors remain the same.

Therefore, the following matrix M has S eigenvalues that are

the squared values of mi:

M ,

S
∑

l=2

{

Γl(Γ1)
−1

Γl(Γ1)
−1

}

(15)
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From Theorem IV.2 it follows that we have to select the

eigenvector that corresponds to the smallest eigenvalue of M.

The method is summarized in the following algorithm.

1) Calculate or estimate the sensor correlation matrices C
x
i

for 1 ≤ i ≤ D, in the NF-ROS.

2) Find a set of orthonormal basis vectors ξ1, · · · , ξS ,

where ξ1 = a
0/

∣

∣

∣

∣a
0
∣

∣

∣

∣, where a
0 is the mold.

3) Calculate S linear combinations Γl of the correlation

matrices as is defined in (7).

4) Combine the matrices Γl as in (15) such that the

eigenvalues of M are (mi)2 and the eigenvectors are

the extraction filters.

5) Use an efficient algorithm to find the eigenvector that

corresponds to the smallest eigenvalue of M.

V. SIMULATION RESULTS AND DISCUSSION

In [4] the use of generalized eigenvectors to extract sources

is introduced. The main focus of the current work is to select

the desired source based on the mold; therefore, we validate

the selection procedure by evaluating the eigenvalues of the

matrix M.

In our simulations we use a BSE scenario where two sensors

measured 50000 samples of noisy mixtures of two stationary

sources. The sources have unit variance and an autoregressive

temporal structure with a pole at z = 0.5 and z = 0.9 for the

desired and undesired sources respectively. Furthermore, the

sensor noise was spatially and temporally white with variances

of 0.1. All signals were created with a Gaussian distribution.

Based on the properties of the stationary signals the NF-ROS

was chosen as the lags k = 1 and k = 2.

The mixing system was constructed as follows. The mixing

columns are parameterized by a Direction Of Arrival (DOA)

parameter θi = arctan(ai
2
/ai

1
). The mixing column elements

are found as: ai
1

= cos(θi) and ai
2

= sin(θi). The real DOA

was +30 degrees, while the guess for the mold uses a DOA of

0 degrees, thus a
0 = (

[

1 0
]

)T . The DOA of the undesired

source increased linearly from -90 degrees to +90 degrees.

The algorithm from Section IV was used and the eigen-

values (mi)2 of the matrix M were transformed with the

monotonically increasing function φi = arctanmi; selecting

the smallest value of (mi)2 still corresponds to selecting the

smallest value of φi. These transformed eigenvalues φi are

depicted in Figure 2. In the upper graph the basis vectors ξ1

and ξ
2

were chosen orthonormal with respect to each other

and ξ1 was equal to the mold. We know from constructing

the simulations that the horizontal line of eigenvalues belongs

to the desired source at 30 degrees, while the ‘V’-shaped

eigenvalues correspond to the undesired source. We observe

that if the DOA of the undesired source lies in between -

30 and +30 degrees, then the undesired source is extracted.

This corresponds with our analysis and implies that the source

with the DOA closest to the mold is extracted by selecting the

smallest eigenvalue.

In the lower graph of Figure 2 we made an extension to

our work. We chose ξ1 with a DOA of 60 degrees and ξ2

orthogonal to the mold, with a DOA of 90 degrees. Now the

−80 −60 −40 −20 0 20 40 60 80
0

20

40

60

80

DOA of undesired source [degree]

φ
i

−80 −60 −40 −20 0 20 40 60 80
0
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φ
i

Fig. 2: Simulation results for linearly increasing DOA of the

undesired source.

undesired source is extracted when it’s DOA is in between -10

and +30 degrees. Furthermore, it follows that the algorithm

prefers a source with a DOA equal to the mold; therefore,

we conclude that the source selection is not symmetrical

anymore with respect to the mold. If the desired source is

not located at the DOA of the mold, then in this case a

positive DOA is preferred over a negative DOA. This means

that besides an available guess of the DOA we are also able

to incorporate additional global DOA information via the

weighting parameters ξl.

VI. CONCLUSIONS AND FUTURE RESEARCH

We introduced a new blind extraction algorithm that directly

selects and extracts the desired signal from a mixture of

signals. If we have available a rough guess of the mixing

parameters of this desired signal, then based on the GEVD of

noise-free correlation matrices we have shown that the desired

signal is selected directly. We validated our method with

simulations and showed that additional a priori information

can be used to obtain a more flexible selection procedure.

Future research topics are to investigate if extra sensors can

be used for noise reduction. Furthermore, we will develop a

BSE algorithm for convolutive mixtures based on a similar

approach where we use a rough guess of the direction of arrival

of the desired source as a priori information.
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