

Fast Huffman decoding by exploiting data level parallelism

Citation for published version (APA):
Drijvers, T., Alba Pinto, C. A., Corporaal, H., Mesman, B., & Braak, van den, G. J. W. (2010). Fast Huffman
decoding by exploiting data level parallelism. In F. J. Kurdahi, & J. Takala (Eds.), Proceedings of the 2010
International Conference on Embedded Computer Systems (SAMOS), 19-22 July , 2010, Samos Greece (pp.
86-92). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ICSAMOS.2010.5642080

DOI:
10.1109/ICSAMOS.2010.5642080

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 07. Jul. 2024

https://doi.org/10.1109/ICSAMOS.2010.5642080
https://doi.org/10.1109/ICSAMOS.2010.5642080
https://research.tue.nl/en/publications/6e859941-4542-452b-9441-7bc31d3d2bf5

Fast Huffman Decoding by Exploiting Data Level

Parallelism

Tim Drijvers∗†, Carlos Alba Pinto†, Henk Corporaal∗, Bart Mesman∗, Gert-Jan van den Braak∗

∗Department of Electrical Engineering

Eindhoven University of Technology, The Netherlands

Email: {h.corporaal,b.mesman,g.j.w.v.d.braak}@tue.nl
†Silicon Hive

Eindhoven, The Netherlands

Abstract—The frame rates and resolutions of digital videos
are on the rising edge. Thereby, pushing the compression
ratios of video coding standards to their limits, resulting in
more complex and computational power hungry algorithms.
Programmable solutions are gaining interest to keep up the pace

of the evolving video coding standards, by reducing the time-
to-market of upcoming video products. However, to compete
with hardwired solutions, parallelism needs to be exploited on as
many levels as possible. In this paper the focus will be on data
level parallelism. Huffman coding is proven to be very efficient
and therefore commonly applied in many coding standards.
However, due to the inherently sequential nature, parallelization
of the Huffman decoding is considered hard. The proposed
fully flexible and programmable acceleration exploits available
data level parallelism in Huffman decoding. Our implementation
achieves a decoding speed of 106 MBit/s while running on a
250 MHz processor. This is a speed-up of 24× compared to our
sequential reference implementation.

I. INTRODUCTION

Modern video coding standards are becoming more compu-

tational power, bandwidth and hardware resource demanding.

These standards are driven by an active research area in

displays, a requiring consumer market and a still rising number

of videos on the Internet. Providing faster frame rates and

larger resolutions in a space efficient manner is key to success

of these coding standards. New optical storage systems, such

as Blu-ray and HD-DVD, are introduced to cope with the call

for more bandwidth and storage space, thereby also pushing

the compression ratios of video coding standards to their

extend, resulting in more complex and computational power

hungry algorithms.

These rapidly evolving video coding standards drive the

industry more towards programmable solutions. Offering the

ease of programmability to handle these quick changes in

coding standards. To compete with hardwired solutions, pro-

grammable solutions exploit parallelism on many different

levels to fulfill the request for computational power; examples

are: task, instruction and data level parallelism, available

in multi-core systems, very long instruction word (VLIW)

processors and vector processors respectively. Media vector

processors, such as the Silicon Hive VSP 2200 [1] and

Stanford’s Merrimac [2], have been introduced to cope with

the increasing performance demands of real-time decoding

of these modern video standards. Using a combination of

VLIW and SIMD offers a great deal of parallelism on both

an instruction level as well as on a data level.

One of these emerging video coding standards is Microsoft’s

VC-1, a mandatory video codec for Blu-ray, HD-DVD and

growing in popularity on the Internet. The challenge taken in

this work is to drastically improve the speed of the bitstream

parsing of VC-1, which needs to be able to process at least

45 MBit/s. In order to be applicable to other video and imaging

coding standards as well, we aim at a fully programmable

solution.

Huffman coding [3], as applied in VC-1, assigns bit-

lengths proportional to the frequency of use, resulting in

high compression factors. These encoded bits, their length

and the original symbol are typically stored in a Huffman

table. Since the encoded symbols no longer reside within a

fixed number of bits, the decoding process becomes more

complicated. The next symbol can not be read from the input

bitstream before the bit-length of the previously coded symbol

has been determined. Huffman decoding therefore consists out

of two operations, code-length determination and retrieval of

the original decoded symbol as shown in Fig. 1.

In modern video coding standards, the structure of bit-

streams are becoming more complex. To further improve the

compression many different Huffman tables are used. The

choice between these tables depends on the specific state

of the decoder (e.g. decoding ac-coefficients, motion-vectors,

etc.). For the VC-1 standard we distinguish over 100 different

Huffman tables [4].

It has been stated by recent articles [5], [6] that the use of

SIMD would be ineffective to optimize the speed of Huffman

decoding, due to data dependencies. In this work we present

a technique that allows to exploit data level parallelism that is

available in Huffman decoding. This allows the use of SIMD

Shifting Buffer Table look-up
Bytestream Bitstream

Length

Original symbol

Fig. 1. Abstract representation of a Huffman decoder

978-1-4244-7938-2/10/$26.00 ©2010 IEEE 86

instructions in order to accelerate the Huffman decoding, while

maintaining full flexibility of the Huffman tables without ad-

ditional computational expensive modifications of those tables

and full processor programmability.

This paper is organized as follows. First a range of related

work is discussed, in which proposed programmable solutions

are considered. Continuing with a more in-depth explanation

on Huffman decoding. After this we discuss our data parallel

Huffman decoding technique, followed by experimental re-

sults. Concluding this paper with an analysis on speed, energy

and area.

II. RELATED WORK ON PROGRAMMABLE SOLUTIONS

Within the field of Huffman decoding, various approaches

have been taken to accelerate the decoding process in a

programmable solution. What can be seen from Fig. 1 is the

fact that the table look-up process and shifting buffer form the

critical path.

A common optimization is the one proposed in [7], here

a co-processor with one issue slot is capable of performing

Huffman decoding and bitstream parsing. They use a ‘se-

quencer’ (hardwired converter from bytestream to bitstream)

and hardwired Huffman tables to meet their performance.

However, this solution offers very little flexibility.

A range of instruction-set extensions for a RISC have been

presented in [6], supporting multiple video coding standards

while maintaining programmability. However the Huffman

tables need to be modified on forehand, calculating the number

of leading zeros and perform clustering based on this infor-

mation. In [5] a range of possible optimization techniques

are proposed, taking similar approaches by grouping based

on leading zeros.

More instruction-set extensions are proposed in [8] and [9].

Where the former proposes some software optimizations (loop

transformations and clever alignment of lookup tables) and

a new instruction (based on a barrel-shifter) for a TriMe-

dia/CPU64. Hence the bitstream parsing and table lookup

are somewhat optimized. The latter proposes a series of

new instructions to speed-up the bitstream parsing (getbits,

showbits, flushbits), however no optimizations are proposed

for the table lookup process.

Yet an other extension made to the TriMedia/CPU64 is

based on a FPGA-functional unit [10]. This functional unit

is capable of decoding a single Huffman symbol in a 8 cycle

function, resulting in a 43% improvement. However the pro-

posed solution lacks real flexibility, since the FPGA can hold

a limited number of table entries and run-time reconfiguration

is difficult. The 43% improvement is insufficient in our case,

especially considering the size of the FPGA that is required.

The multi-layer prefix grouping technique for parallel Huff-

man decoding in [11] describes a novel implementation of

the Huffman algorithm on a VLIW processor, instead of an

extension to the instruction set. It is implemented as a two-

level lookup approach, which solves long decoding cycles and

table size explosion at the same time. Their solution makes the

number of clock cycles needed for decoding independent on

TABLE I
EXAMPLE HUFFMAN TABLE

Symbol: Frequency: Bitcode: Length:

space 7 111 3

a 5 010 3

e 3 000 3

f 3 1101 4

t 2 1010 4

h 2 1000 4

i 2 0111 4

s 2 0010 4

l 2 1011 4

m 2 0110 4

n 2 11001 5

o 1 00110 5

p 1 10011 5

b 1 11000 5

u 1 00111 5

x 1 10010 5

the codeword length. Also in this approach the 89% improve-

ment in performance is still insufficient for our goals, but full

flexibility is retained.

A final work worth mentioning is the widely discussed

single-side growing Huffman table (SGHT), proposed by

Hashemian in [12]. A clustering algorithm is used to avoid

the high sparsity of a Huffman table, resulting in a SGHT

that can be stored efficiently. Moreover, due to the arithmetic

properties of the SGHT and the encoded bitstream, a symbol

can be decoded using simple arithmetic operations. However,

this technique results in a SGHT with different code-words

than the original coded Huffman table and an optimal solution

for the clustering is still an open problem.

None of these proposed solutions allows fast Huffman

decoding while maintaining full flexility of the Huffman tables

and programmability of the parsing processor. This is highly

desirable when aiming at a solution that supports multiple

standards. For example, Huffman tables in JPEG are encoded

in the header, this requires flexibility of the Huffman tables.

In the VC-1 video coding standard more than 100 different

Huffman tables are used, resulting in a complex bitstream

where one requires fast switching between these tables.

III. HUFFMAN DECODING

Table I shows an example Huffman table generated for the

input “this is an example of a Huffman table”. The table shows

the symbols used in the input, the frequency of use of these

symbols, the assigned bitcodes and the length of these codes

in bits. We assume that the table is sorted descending by

frequency of use of the symbols.

Let us describe each column of the Huffman table as a list,

where column[i] holds the i-th element of column indexed

starting from 0. Here column is either symbol, bitcode, or

length. In our example symbol[0] is ‘space’. The frequency

87

Require: Next 32 bits from input stream s

Require: Length of the Huffman table len

for i = 0 ; i < len ; i = i+ 1 do

if hit(s, bitcode[i], length[i]) then

return (symbol[i],length[i])
end if

end for

return Error

Fig. 2. Linear search over the Huffman table

column is not required for decoding, but merely shown for an

illustrative purpose. Secondly a bitstring is represented as a

binary number (e.g. 101101012).

The bits(w, l) function takes the upper l bits from the

input word w, for example bits(10110101 . . .002, 4) = 10112,

similar to the getbits operation proposed in [9]. The hit(s, b, l)
function returns True when a hit is found with the given input.

Here s contains the next 32 bits of the input bitstream, b and l

contain the bitcode and the length of the current table row. For

example: hit(10110101 . . .002, 10112, 4) = True, which is in

fact: hit(10110101 . . .002, bitcode[8], length[8]) = True. So

we have a hit and should return the symbol symbol[8] which

is ‘l’, according to our example Huffman table.

Since the Huffman table is sorted descending by frequency

of usage of the coded symbols, a linear scan from the top of

the table to the bottom is likely to find a hit within the first

rows of the table. For example in table 130 of the VC-1 video

coding standard, there is a probability of 74% that a linear

scan will find a hit within the first 10 rows.

IV. EXPLOITING DATA LEVEL PARALLELISM

The algorithm in Fig. 2 shows a linear table search. This

algorithm is highly conditional, therefore it is not suitable

to apply techniques such as software pipelining in order

to increase the ILP (instruction level parallelism). ILP is a

common level of parallelism available in VLIW processors.

The performance of a VLIW processors can be improved in

two obvious ways: increasing the clock frequency or increas-

ing the number of issue slots. However, a third improvement

is available by using single instruction multiple data (SIMD)

vector issue slots. In a N -way SIMD vector issue slot, a

single instruction is simultaneous performed on N vector

elements. These operations can be performed in two ways:

either inter-vector or intra-vector. In inter-vector operations the

same operation is element-wise performed on multiple vectors.

Intra-vector operations are applied within the same vector on

N elements.

The basis of this approach lies within speculative ‘look-

ahead’ searching, reducing load operations, data packing and

reducing the conditional behavior of the algorithm. First of

all, let us discuss the base of our SIMD approach in which

columns of the Huffman table are split into multiple vectors

with an equal length N , rather than splitting columns into

cells which are basically vectors of length 1. The final vector

N
j

column[0] . . . column[N−1]

column[N] column[2 × N−1]. . .

column[i × N]

i
. . .

. . .

. . .

column[(i + 1) × N−1]

Fig. 3. Alignment of vectors and their elements in memory.

is padded with stuffing values until it meets the length N , we

will refer to this padding as table gaps.

−−−−−→
columni = (column[i×N], . . . , column[i×N +N − 1])

Here i represents the i-th vector of column column and N

the chosen N-way, in our case N ∈ {8, 16, 32}. We can

address an element in the vector as follows
−−−−−→
columni[j] which

is column[i×N+ j], here j represents the j-th element from

this vector (0 ≤ j < N). Furthermore let us define a flag to be

a vector of booleans with length N . In Fig. 3 the alignment

of the cells of a Huffman column in memory are shown. A

single access to this memory on address i results in a vector
−−−−−→
columni containing a row of N elements.

Now, lets introduce the vector variant of our hit operation:
−−→
flag i = hitv(s,

−−−−→
bitcode i,

−−−→
lengthi). This operation is an intra-

vector, performing element wise operations on the vector

input. Defining the semantics of this function as follows:

for j from 0 till N − 1 do
−−→
flagi[j] = hit(s,

−−−−→
bitcodei[j],

−−−→
lengthi[j])

end for

Taking a SIMD approach, each processing element j in the

processor’s vector datapath executes the hit function on the

corresponding data element j. To be more precise the first

processing element executes the hit function on
−−−−→
bitcode i[0]

and the last element on
−−−−→
bitcodei[N − 1] (hence the alignment

of vectors in Fig. 3).

A correct Huffman table guarantees decompression unique-

ness, this means that no code is a prefix of another. Due to

this property we know that we will find at most one hit in

the Huffman table. Therefore we can state that there will be

at most one True value in the
−−→
flagi vector. In order to check

if the ‘flag is true’, we sum all elements using a bitwise-OR

using the function found as defined below. If found(
−−→
flagi)

is True there is at least one True value in the vector
−−→
flagi,

including decompression uniqueness implies there is at most

one True value.

found(
−−→
flagi) =

∨

0≤j<N

−−→
flagi[j]

To find the corresponding value when the flag is true, a

second operation is introduced: pickv(
−−→
flagi,

−−−−−→
columni), with

semantics defined as follows. This operation is an inter-

vector operation, mapping a vector to a scalar. An example of

88

Require: Next 32 bits from input bitstream s
−−→
flag = (0, . . . , 0)
i = 0
while not found(

−−→
flag) do

−−→
flag = hitv(s,

−−−−→
bitcodei,

−−−−→
lengthi)

i = i+ 1
end while

return (pickv(
−−→
flag,

−−−−→
symboli−1

),pickv(
−−→
flag,

−−−−→
lengthi−1

))

Fig. 4. Data parallel search over the Huffman table

applying this pick function: pickv((1, 0, 0 . . . , 0),
−−−−→
symbol

0
) =

‘space’.

for j from 0 till N − 1 do

if
−−→
flagi[j] then

return
−−−−−→
columni[j]

end if

end for

return 0

Additionally, we can further reduce the conditions in the

linear search algorithm (Fig. 2) by assuming bitstream cor-

rectness, stating that the input bitstream is correctly coded

according to the Huffman table. Applying this property to the

data parallel algorithm allows us to remove the loop over the

length of the table, because we know that there exists a hit

in the table. The algorithm now only contains one conditional

statement (i.e. the while).

We modify our linear search algorithm to use these vector

functions and assumptions on the Huffman table and bitstream,

Fig. 4 shows the modified algorithm.

A. Further improvements

Performing the parallelization as proposed in Fig. 4 still

yields at least three load instructions in a load-store archi-

tecture, assuming that the Huffman tables are not stored

inside the issue slot (we want this to maintain full and easy

programmability, even during runtime). In order to reduce

this overhead we pack the three vectors into a single vector,

hence it requires only one load now. Instead of loading three

separate column vectors, one ‘big’ vector will be loaded.

Now each vector element contains three packed fields, we can

say that
−−−−→
packedi[j] is a triplet of

−−−−→
bitcodei[j],

−−−−→
lengthi[j] and

−−−−→
symboli[j].

Increasing the speed even further, we introduce a Huffman

load unit. This unit loads the vector, applies the hit function

and post-increments the counter i, this results in a 2-cycle

pipelined function. The advantage of this approach is that we

do not need to wait for the load of the vector data to finish

before we apply the hit function. These modifications result

in the following algorithm, as shown in Fig. 5.

V. EXPERIMENTAL RESULTS

Experiments have been performed on artificial inputs to

test this new idea, doing so we used table 130 of the VC-1

video coding standard, this is a 126 entry Huffman table. We

generated inputs based on the average probability distribution

Require: Next 32 bits from input bitstream s
−−→
flag = (0, . . . , 0)
i = 0
while not found(

−−→
flag) do

(
−−→
flag,

−−−−→
symbol,

−−−−→
length, i) = huffman(s, i)

end while

return (pickv(
−−→
flag,

−−−−→
symbol),pickv(

−−→
flag,

−−−−→
length))

Fig. 5. Data parallel search over the Huffman table, using a combined load
and Huffman operation

as observed in a range of well known example test movies

(the foreman, claire, suzie sequences), making this an input

with realistic distribution of symbols. Doing so, we create an

environment in which we can closely observe the result of

our improvements. Using the table distribution as observed

by a range of sample input movies, there is 74% chance

that an encoded symbol is found within the first 10 rows of

the Huffman table, this fact forms the base for the achieved

acceleration.

A. Target platform

As programmable platform we have chosen for a Silicon

Hive stream processor (SP). Silicon Hive cores are VLIW

processors, which can contain a vector datapath allowing

SIMD operations. Silicon Hive processors and systems are

flexible during design time and programmable when ready.

Silicon Hive offers a simulation environment in which the

applications run on models of the cores and systems. The

behavior of the processor’s and system’s composition can be

changed without big effort, providing an easy environment to

explore our design space.

Silicon Hive processors are described in a high level

hardware design language called The Incredible Machine

(TIM) [13]. In the TIM language a processor can easily be

described, ranging from register files, interconnections to the

semantics of functional units. TIM can easily be translated

into VHDL or Verilog by assembling prewritten blocks of

hardware. Moreover, TIM forms the input for the Silicon Hive

compiler and simulation toolchain.

The Silicon Hive SP is a three issue slot scalar VLIW

processor, with a word size of 32-bits. The processor contains

special instructions for bitstream parsing, which allow reading

and viewing of a number of bits from a scalar input, as

proposed in [9]. This improves efficiency of the bitstream

parsing, since the processor has a 32-bit datapath. Moreover,

2-way SIMD functional units are available that operate on

normal scalar input data (i.e. the elements in the vector part

have width 16 bit), this is especially useful for processing of

e.g. motion-vectors (containing a X and Y component). We

assume that the processor is running at a 250 MHz clock-rate.

Four custom operations are used, namely: getbits, a three

cycle pipelined operation that reads a number of bits from

the bitstream; peekbits is a two cycle pipelined operation that

reads a number of bits from the bitstream, without changing

the bitstream; huffman a two cycle pipelined SIMD operation

that performs a load from memory and applies the hitv

89

0

10

20

30

40

50

60

70

80

90

100

110

Reference 8-way 16-way 32-way

M
B

it
/s

Base implementation

Packed

Huffman load unit

Fig. 6. Huffman decoding speeds in MBit/s

function; pick is a single cycle SIMD inter-vector operation

that translates a vector into a single scalar based on an input

flag.

B. Reference implementation

As a reference an implementation has been made based on

the linear search algorithm shown in Fig. 2. Furthermore, the

bitstream operations getbits and peekbits are used. Finally no

modifications are made to the data path and memory system

of the processor. Since the SP’s datapath is 32 bits wide, each

cell of the Huffman table consumes 32 bits.

C. Performance results

Let us consider the speed-ups gained by three implemen-

tations of our idea, we tested the vectorization with a N-

way of 8, 16 and 32. The results of these experiments are

listed in Fig. 6. One can see we reached a top speed of

106 MBit/s with a 32-way data parallel approach. As earlier

mentioned three different approaches have been implemented.

The base implementation shows the results of simply applying

the proposed vectorization technique, secondly we applied

packing of the three columns (i.e. bitcode, length, symbol)

into a single packed column and finally the Huffman load unit

is tested.

D. Table gaps

In this section we analyze the memory consumption of the

data parallel approach that has been proposed. This analysis

is performed on a real life example, namely the VC-1 video

coding standard, this standard uses over 100 different Huffman

tables. Let us first introduce the principle of table gaps.

Since vectors need to be aligned in our memory and

Huffman table entries are not always a multiple of N , gaps

are introduced in between the vectorized tables. Tables need

to be aligned, because for every different mode of the encoder

a different table is required. Therefore these tables need to be

stored strictly separated in memory. A vector at the end of a

table with a length smaller than N introduces gaps. The size

of the introduced gap is defined as follows, here ⊕ is a module

operation.

overhead(n) =

{

0 if (n⊕N) = 0
N − (n⊕N) if (n⊕N) 6= 0

Getting the total gap size for a given table can be calculated

by taking the length of the table as input, overhead(length).

Fig. 7. Memory consumption in bytes of the reference approach and data
parallel approach

The total size of the table, taking the gaps into account is

shown in the Fig. 7, moreover this table also shows the refer-

ence implementation. The element size per vector is 64 bits,

containing bitcode, length, symbol respectively consuming 24,

8 and 32 bits. Each cell in the reference code consumes 32 bits

(because of the width of the scalar memory), hence a row

consumes 96 bits. Therefore a reduction in memory, in terms

of bytes, is seen in the figure. In order to show a more fair

overview we also calculated the size in bytes for a possible

packed version, this size is denoted by the cross in the graph.

VI. ENERGY

Due to the speculative behavior of the proposed acceler-

ation technique, more energy is consumed compared to the

sequential reference implementation. For example, when a hit

is found at the first table element: N − 1 table elements can

be considered overhead, as also the application of N−1 times

the hit operation. We refer to energy loss as the percentage of

unnecessary applied hit functions and loaded vector elements.

The frequency column of our example Huffman table, de-

picted in Table I, is not a property of the table itself but merely

of the encoded bitstream. The analysis made in this section is

based on the used data inputs, as described earlier. The lost

energy, when a hit is found at the i-th table row, can be calcu-

lated using the previously defined overhead function. Given

a frequency distribution of the encoded bitstream and number

of concurrent processing elements N , the actual lost energy

for that bitstream can be calculated by summing the overhead

per encoded symbol:
∑

i frequency[i]× overhead(i).
Performing this experiment for the used data input, based

on VC-1 table 130, we observe the loss in energy as shown

in Table II.

From Table II we can observe that for a 32-way imple-

mentation 79% of the loaded vector elements and applied hit

TABLE II
ENERGY LOSS OF DIFFERENT N-WAY IMPLEMENTATIONS

Type: Energy loss:

reference 0%

8-way 62%

16-way 71%

32-way 79%

90

TABLE III
MEMORY AREA OVERHEAD.

Type: Depth: Bank width: Banks: Total:

reference 15,056 32 bits 1 0.488mm
2

reference packed 4,640 64 bits 1 0.332mm
2

8-way 608 128 bits 4 0.710mm
2

16-way 336 128 bits 8 1.237mm
2

32-way 256 128 bits 16 2.349mm
2

functions in the vector datapath is overhead, this occurs due

to the speculative look-ahead. Increasing the N-way would

result in a further loss of energy. The fact why this energy loss

does not scale linearly comes from the frequency distribution,

further along in the tail of the table the frequency is much

lower. Due to this fact a low N-way has already a high energy

penalty, further increasing the N-way yields lower additional

energy penalties.

VII. AREA

In this section we calculate the memory area overhead.

The overhead of the logic is not taken into account, it is

too small with respect to the memory overhead. The area

consumption for the memory introduced by this data parallel

approach is calculated based on the TSMC 65nm general

purpose process. The vector memory is build out of multiple

SRAM banks each 128 bits wide, while the memory of the

reference implementation is based on one bank of 32 bits

wide. For wider memories the implementation with banks

of 128 bits is the most efficient (currently we are unable to

generate memories with a larger width). However an additional

overhead is introduced by the usage of multiple banks, this

occurs due to the row decoder and sense amplifiers in these

banks. Furthermore, the depth of the banks is rounded to a

multiple of 16 for efficiency.

Note that the area of the memories in Table III are calcu-

lated for VC-1, containing over 100 different Huffman tables.

Clearly we have to pay a high price for high performance, by

implementing this parallel approach, up to 2 mm2 in 65nm.

For standards requiring fewer Huffman tables, such as JPEG

and MPEG-2, the required memory is much lower.

VIII. SPEED VS. ENERGY TRADE-OFF

From the previous sections it can be observed that there is

a trade-off between area, speed and energy, which all scale by

the used parallelism (N-way). This raises the question, how

much a flexible N-way processor could reduce the consumed

energy. For this we take the 32-way implementation and

modify the first access. Changing all accesses would not result

in any noticeable energy reduction since the changes are low

that these elements are used. The first 32-way access is split-

up in accesses of 2, 4, 16 or a single 32-way access, such

that the sum of these accesses still equals 32. Only access

patterns with increasing (or constant) N-ways are used, since

these are the most beneficial due to the table distribution. We

assume memory banks of 128-bit wide, each entry containing

two Huffman entries (of 64-bit each). The initial number of

Fig. 8. Speed vs. energy trade off.

cycles required for decoding a single Huffman entry (and

updating the shifting buffer) is 9, every additional iteration

in the Huffman lookup process has a penalty of 4 cycles. The

number of cycles and consumed energy for many different

access patterns is shown in Fig. 8. In this figure the energy

required for accessing one memory bank is taken as one unit.

Since our memory banks hold two vector elements, the 1-way

implementation is not considered.

In Fig. 8 we indicated for four the access patterns. For

example, ‘8, 8, 16, 32∗’ means two 8-way accesses, then a

16-way, followed by 32-way accesses for all remaining entries.

The fastest, but most energy consuming, implementation is

the 32-way implementation. The least energy consuming, but

slowest, implementation is the 2-way implementation.

IX. CONCLUSION

In this paper a new technique is proposed that allows high

speed Huffman decoding, while maintaining full flexibility

of the Huffman tables and programmability of the processor.

Furthermore there is no need to perform any modifications

beforehand on the Huffman table. The SIMD approach taken

in this paper results in high decoding speeds, high enough

for real time decoding of modern video coding standards used

for High Definition content. Moreover, we have shown that the

usage of SIMD operations for Huffman decoding is beneficial.

It is shown that our reference linear search implementation

has a decoding speed of 4.4 MBit/s, while the 32-way data

parallel search has a speed of 106.0 MBit/s (with the processor

running at 250 MHz). Hence we have a speed-up of approxi-

mately 24×, compared to our reference implementation.

However the usage of this data parallel approach, does come

at a price. The memory area for the Huffman tables of the

32-way approach is 4.4× larger compared to our reference

implementation. As shown in the experimental results section,

gaps are introduced in the memory. When increasing the

processors N-way, these table gaps grow larger, resulting in

more overhead, but gaining in performance. Moreover, also

energy is lost, ranging up to 79% for the 32-way implementa-

tion. Taking a slower approach by using accesses of 16-way,

slightly reduces the speed but already results in a good energy

reduction.

Finally, the proposed acceleration technique has been ap-

plied in a VC-1 decoder. It is capable of decoding advanced

level 3 VC-1 encoded sequences, with peak bit-rates of

45 MBit/s.

91

REFERENCES

[1] “Silicon Hive,” http://www.siliconhive.com.
[2] W. Dally, P. Hanrahan, M. Erez, T. Knight, F. Labonté, J. Ahn,

N. Jayasena, U. Kapasi, A. Das, J. Gummaraju et al., “Merrimac:
Supercomputing with Streams,” Proceedings of the ACM/IEEE SC2003

Conference, 2003.
[3] D. Huffman, “A Method for the Construction of Minimum-Redundancy

Codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.
[4] P. SMPTE, “421M, VC-1 Compressed Video Bitstream Format and

Decoding Process.”
[5] S. Sudharsanan and M. Sinnathamby, “Support for Variable Length

Decode on Embedded Processors,” Proceedings of the Workshop on

Media and Signal Processors for Embedded Systems and SoCs, pp. 33–
40, 2004.

[6] J. Peng, X. Qin, J. Yang, X. Yan, and X. Chen, “A Programmable Bit-
stream Parser for Multiple Video Coding Standards,” Proceedings of the

First International Conference on Innovative Computing, Information
and Control-Volume 3, pp. 609–612, 2006.

[7] Y. Chang, R. Chang, and L. Chen, “Design and implementation of
a bitstream parsing coprocessor for MPEG-4 video system-on-chip
solution,” International Symposium on VLSI Technology, Systems, and
Applications, pp. 188–191, 2001.

[8] M. Sima, E. Pol, J. van Eijndhoven, S. Cotofana, and S. Vassiliadis,
“Entropy Decoding on TriMedia/CPU64,” Proceedings on System Ar-

chitecture Modeling and Simulation Workshop, 2002.
[9] M. Berekovic, H. Stolberg, M. Kulaczewski, P. Pirsch, H. Möller,

H. Runge, J. Kneip, and B. Stabernack, “Instruction Set Extensions for
MPEG-4 Video,” The Journal of VLSI Signal Processing, vol. 23, no. 1,
pp. 27–49, 1999.

[10] M. Sima, S. Cotofana, S. Vassiliadis, J. van Eijndhoven, and K. Vis-
sers, “MPEG-compliant entropy decoding on FPGA-augmented TriMe-
dia/CPU64,” Field-Programmable Custom Computing Machines, 2002.

Proceedings. 10th Annual IEEE Symposium on, pp. 261–270, 2002.
[11] T.-H. Tsai and C.-N. Liu, “A low-latency multi-layer prefix grouping

technique for parallel huffman decoding of multimedia standards,”
Journal of Signal Processing Systems, vol. 53, no. 3, pp. 323–333, 2008.

[12] R. Hashemian, “Memory efficient and high-speed search Huffman
coding,” IEEE Transactions on Communications, vol. 43, no. 10, pp.
2576–2581, 1995.

[13] T. Halfhill, “Silicon Hive Breaks Out,” Microprocessor Report, Decem-

ber, vol. 1, 2003.

92

