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An Eigencurrent Approach to the Analysis of
Electrically Large 3-D Structures Using Linear
Embedding via Green’s Operators

Vito Lancellotti, Member, IEEE, Bastiaan P. de Hon, and Anton G. Tijhuis, Member, IEEE

Abstract—We present an extension of the linear embedding via
Green’s operators (LEGO) procedure for efficiently dealing with
3-D electromagnetic composite structures. In LEGO’s notion, we
enclose the objects forming a structure within arbitrarily shaped
domains (bricks), which (by invoking the equivalence principle) we
characterize through scattering operators. In the 2-D instance, we
then combined the bricks numerically, in a cascade of successive
embedding steps, to build increasingly larger domains and obtain
the scattering operator of the whole aggregate of objects. In the
3-D case, however, this process becomes quite soon impracticable,
in that the resulting scattering matrices are too big to be stored and
handled on most computers. To circumvent this hurdle, we propose
anovel formulation of the electromagnetic problem based on an in-
tegral equation involving the total inverse scattering operator of the
structure, which can be written analytically in terms of scattering
operators of the bricks and transfer operators among them. We then
solve this equation by the method of moments combined with the
eigencurrent expansion method, which allows for a considerable
reduction in size of the system matrix and thereby enables us to
study very large structures.

Index Terms—Boundary integral equations, composite struc-
tures, diakoptics, domain decomposition method, eigencurrent
expansion method, equivalence principle, method of moments
(MoM).

I. MOTIVATION AND BACKGROUND

HE scattering and radiation of electromagnetic (EM)
T waves from electrically large structures—such as EM
band gap structures, frequency selective surfaces and antenna
arrays, to name but a few examples—constitutes a problem of
great practical interest. When a numerical solution is attempted
(whether in the spatial or in the spectral domain) with the
finite element method (FEM) [1] or the method of moments
(MoM) [2], one is sooner or later faced with the issue of filling,
storing and (formally) inverting a huge matrix. This may be
a challenging or even unfeasible task due to both too long
computational time and practically limited memory resources.

To get around these hurdles, we have developed a modular
EM modelling approach, named linear embedding via Green’s
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operators (LEGO), which relies on the decomposition of a large
structure into its constituent parts [3]-[5]. Admittedly, the idea
of subdividing large systems into interacting multiport subsys-
tems, which is called diakoptics, dates back at least to the fifties
[6]. In LEGO we embed an object (or many objects as well)
within a “brick”, which we then characterize electromagneti-
cally by means of a scattering operator. Hence, we can say the
LEGO method is a specific variety of diakoptics, in that a com-
plicated structure is modelled by many interacting bricks which
can be regarded as multiport systems with a continuous distribu-
tion of ports. In this respect, the scattering operator of a LEGO
brick extends the usual notion of scattering matrix for a multi-
portdevice, where the ports may be either actual terminals [7] or
just abstract terminals corresponding to the spectrum of prop-
agating and evanescent modes in, e.g., a cylindrical waveguide
[8], or a stratified medium [9].

The primary goal of LEGO is not to propose a new fast al-
gorithm for solving boundary integral equations (BIE) (even
though reduction of the overall computational time shows up
as a quite welcome side effect), but rather to provide an effec-
tive procedure which makes the solution of large scale problems
feasible. Nevertheless, LEGO shares the very idea of tearing
apart a large structure into pieces with other approaches, such
as the popular fast multipole method (FMM) [10] and the more
recent nested equivalence principle algorithm (NEPAL) [11]
and the equivalence principle algorithm (EPA) [12]. The FMM
aims at accelerating the iterative solution of a BIE, in conjunc-
tion with any suitable numerical method, upon reducing the
number of matrix-vector multiplications. To this end, the FMM
relies on the subdivision of the basis functions (used to expand
the unknown) into localized groups. Conversely, in LEGO the
emphasis is on parts of the structure and the subdivision is
done prior to any discretization [5]. In the NEPAL procedure,
a large scattering problem is addressed by solving a succes-
sion of smaller problems, which are defined upon repeatedly ap-
plying Huygens’ equivalence principle (EP) [13]. By contrast,
in LEGO, we first describe the bricks forming a structure inde-
pendently of one another, by means of their scattering opera-
tors, and then we formulate the whole original problem. Simi-
larly to LEGO, in the EPA scheme [12] scattering operators are
defined on the boundaries of domains—which enclose compli-
cated structures with fine details—in order to reduce the number
of unknowns and hence the overall computational load for scat-
tering problems.

In the 2-D instance of LEGO [3], indeed, we did obtain the
total scattering matrix of a structure numerically with a cascade
of successive embedding steps. This strategy is not generally
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viable in 3-D problems, for the size of the matrix doubles at each
step and a naive application of the process would soon drain the
memory of most computers, thus limiting the number of bricks
that can be handled at the same time [14].

For this reason, we propose a novel approach based on the
total inverse scattering operator, ST, of the whole structure.
Since S~! can be written analytically in a formal fashion, as we
will show, we use it to formulate the scattering problem through
an integral equation for the whole structure. However, if we
were to try solving the latter equation directly with the MoM,
then in general we would fail, for the resulting system matrix
can usually not be stored nor inverted, except for small prob-
lems. Therefore, we solve the relevant equation by the eigen-
current expansion method (EEM) [15], [16, Ch. 5], which is the
other important idea of this work. While referring the reader
to Section IV for the necessary details, here we mention that
the EEM is essentially the MoM applied with a suitable set of
basis and test functions, whose introduction allows us to reduce
the size of the matrix to be stored and inverted. A substantive
increase in speed of the overall process stems from drastically
reducing the time needed to virtually fill the total inverse scat-
tering matrix [S] !, as discussed in Section IV-C.

Among the distinctive features that make LEGO particularly
efficient, we mention:

¢ LEGO bricks may be arbitrarily combined and re-used to
form new structures, without having to recompute the rel-
evant scattering operators;

* the interaction between the bricks is mediated by transfer
operators that depend only on the shape and relative posi-
tion of the bricks (not on their content), thus they may be
computed once for a given spatial distribution;

¢ LEGO inherently lends itself to parallel computing, since
the calculation of the transfer matrices involves just pairs
of bricks at a time;

* local optimization of a large structure can efficiently be car-
ried out by identifying a designated brick in which the EM
properties are supposed to vary, whilst leaving the other
bricks unchanged.

The rest of this paper is organized as follows. In Section II we
outline the notion of LEGO brick and introduce its scattering op-
erator, whereas in Section III we show how to formulate the EM
problem of a composite structure, represented with many bricks,
through an integral equation involving S=1. In Section IV we
outline the solution of the latter equation with the MoM and the
EEM. Finally, in Section V we discuss the validation of the code
implementing LEGO, the convergence of the EEM and the time
requirements of the overall approach.

II. DEFINITION OF 3-D LEGO EM BRICKS AND THEIR
SCATTERING OPERATORS

In the LEGO concept, we start solving the EM problem by
separating a large complex structure into basic constituents,
which may actually consist of one or more objects with ar-
bitrary shape. At this stage, the underlying goal is to provide
a full-wave description of each part that is independent of
all the others as well as of the external sources. To this end,
we consider a (homogeneous) background medium, in which
the whole structure is embedded, and carve out Np bounded
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Fig. 1. Modified LEGO concept: a large composite structure is decomposed in
3-D LEGO EM bricks (see Fig. 2) each endowed with its own scattering operator
Sk (11); then the multiple scattering occurring among the bricks is described
by transfer operators T 1, (13) and finally captured in the total inverse scattering
operator S—1 (17).

Fig. 2. A 3-D LEGO EM brick consists of a bounded volume D}, (carved out
of a background homogeneous medium) enclosing a scattering object. The EM
behavior of the brick—which depends on the nature of the enclosed scattering
object—is fully described by its scattering operator Sy .

domains Dy, k = 1,..., Np, each enclosing a body, as ex-
emplified in Figs. 1 and 2. Apparently, we are at liberty of
choosing any shape for the boundary 0D, of D—which adds
great flexibility to LEGO. Nonetheless a certain degree of sym-
metry is expedient, for this eventually facilitates the process of
stacking many such domains (in the three spatial directions) in
order to characterize the original complete structure. We refer
to the domains Dj, as LEGO EM bricks [4] and we characterize
their EM behavior by means of scattering operators Sy

To introduce and derive Sgy, let us consider the EM problem
outlined in Fig. 2, consisting of just a single brick Dy, i.e.
without all the other bricks comprising the structure, and
arbitrary sources outside Dj. The brick Dj, embeds an object
which, being illuminated by an incident field F*, develops and

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 4, 2009 at 10:39 from IEEE Xplore. Restrictions apply.
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TABLE 1
PROPAGATORS USED IN LEGO

Propagators are 2 X 2 matrices whose entries are rank-2 dyadic integro-
differential operators involving the scalar Green’s function G(R) of the
background medium. ko denotes the vacuum wavenumber. The unit
normal to 9Dy, points always inward Dy, (Fig. 2).

NOMENCLATURE
G(R) = exp (—jsR)/(4wR), R=|r—7'|, k= ko\/Eh
I =I1-nn Vsi=I V=V-#a(a V), Vi=-Vs

61)7; — 62)2 (from incident currents to incident fields), r € 8Dk+

(Pl =—j faD:d%' [RG(R)L + £VG(R)V{] -

(Pip)22 = —(Pi )11

(Pip)iz = —PV. [, . d*'ViG(R) x I+
N =

1
1 ST
(Pl )21 =Pv. faDz.dzr’VsG(R) XL - 5

11~

X .
S
l .

6Dk_ — 817,; (from scattered currents to scattered fields), r € 82),;

(Prp)in =—j faD; @ [RG(R)és + %VSG(R)V‘@ .
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TABLE II
EXPLICIT FORM OF (8) IN CASES OF INTEREST

The subscript “b” denotes operators and quantities within the medium
comprising the penetrable body. mo (ko) is the intrinsic impedance
(wavenumber) of vacuum. The unit normal to So points inward Dy,.

NOMENCLATURE
G(R) = exp (—jkR) /(47 R),

K= KoyEl, N =100/ /e,

R=|r—7| L =1L — oo,

Gp(R) = exp (—jrp R)/ (47 R)

Kb = K0+/Eblb> ﬂb:ﬁom
Vs=1 -V, Vi=-Vy
BASIC RANK-2 DYADIC OPERATORS

L= [ @ [RGRIL + LVsGR)VY] -
K* =p. [ &' VIG(R) x L -

1"650

S41 'n.0><[ o TES,

Ly = —j fsodzr’ [Hbcb(R)gs + ivsab(mv;} L TESS

Ky =PV, [5 ' ViGy(R) x L - £3h0 X L. 7 €S

Perfect Electric Conductor:
MFIE (o = 0), CFIE (0 < a < 1), EFIE (a = 1)

, P 7, i i _ i
(P22 = —(Piy)u w=| V| Fi- [ @B/ VI+ (1) ity }
P = —PV. _dzr’V’GR XL - —g5hgx L
(Pi)iz = =RV, [, < (R) “xhex L w _[atta-axt o
(P§,)21 =PV. fa d VsG(R) X L +5Rk x L 00 = 0 0
oD,, — 81):, n#k Penetrable body: A
(from scattered currents to incident fields), © € 6’D;r o = v1do Fi Etlo NI
(Pin)11 = (Prn)12 =0 —Mo/\/n 0 VIHL
(Pin)21 = PV. faD* d2r'VsG(R) x £g . +%'hn % £S. PMCHW equations B
(Pin)22 =] [ e [RG(R)L_+ ivG(R)vf,] . oo — | LHm/mEy KT =Ky
! o S -kt - Ky — (n/mp) Ly

sustains induced (secondary) sources that radiate the scattered
field F®, where

and n = /u/e is the intrinsic impedance of the background
medium. We assume a time-harmonic, exp(jwt), dependence
for fields and currents throughout.

From the standpoint of an observer inside D;, the EM
problem looks the same if we replace the actual sources with
equivalent current densities g on 8’1?;’ that reproduce the
incident field F''. Conversely, an observer sitting outside Dj,
detects the same scattered field F*°, provided we place proper
equivalent current densities g;, on dD,, set against the back-
ground medium. The quantities g;, and ¢j, are defined as

Vi, i

q}“:[— L/ﬁ]’ qk:[— NG

where J and M denote electric and magnetic current densi-
ties. In (1) and (2) 7 serves not only as a mere normalization
factor—so F}"" and ¢ possess the physical dimension of a
power wave per unit length—but also for the purpose of bal-
ancing the matrices that arise in the MoM solution of the BIEs

Miiller equations
{ L —myepLy/(ne)
XOO =

—K~ + (up/mKE
involved in the numerical derivation of the scattering operator
(see definition of operators in Tables I-III).

The equivalence principle (in the formalism of Love, [13],
[17], [18]), which we have tacitly invoked twice in our rea-
soning, prescribes that the equivalent current densities be related
to the tangential fields on 9Dy, via

qi_{ﬁﬁkaL} qs_[\/ﬁﬂixﬁk] 3
aex B/l T LB x fu/ym
which indeed provides a mean to compute them. However, we

prefer to deduce ¢;”* through two BIEs posed on either sides of
0Dy, and entailing the so called propagators, namely

—K~ + (ep/0)K} }
=L+ nup Ly / (M)

ek = /d27”Pkk7‘T)Qk( ') = F}y, redD; (4
oDy

Piedt = /

oD;

&' P (r.r)ai(r') = Fy, 1€dDy (9)

inasmuch as they lead to a stabler numerical scheme than the
combination of (2) and (3) does. In (4) and (5), integration is
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TABLE III
PROPAGATORS USED IN LEGO (CONTINUED)

See Table I for nomenclature.

8D,': — So (from incident currents to incident fields), » € So
Perfect Electric Conductor:
MFIE (a = 0), CFIE (0 < a < 1), EFIE (@ = 1)

(Pok)11 = —aj faD:dzr’ [KG(R)L + LVsG(R)VY] -
+(1—a) [p.vA faD;dzr’VsG(R) XL — g x 1 } .

(Por)12 = —a {p.v faD:dzr’V;G(R) XL+ Ly, x ;J .
+(1 — a)j faD:er’ [»:G(R);S +1VG(R)VY] -

(Pok)21 = (Pok)22 =0

Penetrable body: PMCHW and Miiller equations

(Pok)11 = = [y 7' [RG(R)L 4 3 VsG(R)V] -

(Pok)12 = —PV. fabjdzr'vgc(ﬁ) XL —Shu, x L

(Pok)21 = (Por)12,  (Por)22 = —(Pox)11

So — 8’D; (from secondary currents to scattered fields), » € B’D;
Perfect Electric Conductor:

(Pro)11 = (Pro)12 = (Pro)22 =0

(Po)21 = PV. fSOd2r’VSG(R) X1 - —ghox L

Penetrable body:

(Pro)11 = (Pro)12 =0

(Pro)2z = [5 4" [RG(R)L + LVsG(R)V{] -
(Pro)21 = PV. fsodzr’VSG(R) XL - =30 XL

carried out over a brick’s boundary and d?s/ denotes the area el-
ement. The operators P}, and P3,,, are explicitly givenin Table I,
whilst the forcing terms are

i

th —

[ﬁ(l)‘f} Fi L/ﬁ(}f}

i.e., they involve only the tangential magnetic field components.
In words, (4) requires that the fields generated by ¢i, inside Dy,
equate the true incident fields on D;; similar arguments apply
to (5). We refer to the operators in (4) and (5) as propagators,
since in general they relate currents on one brick’s boundary to
fields on another brick’s; in this special instance, though, fields
and sources clearly share the same surface. It is worth noticing
that the numerical solution of (4) and (5)—with the MoM and
a symmetric inner product [19]—yields symmetric propagation
matrices [P} ].

We now introduce the (dimensionless) scattering operators
Sk through

(6)

% = Skrd) = / &' Spr(r,v)q (), redDy (7
oD

that is, a mapping between incident and scattered equivalent cur-
rent densities on either side of 0D;,.

To find an operative expression for Sy, we first solve for the
secondary sources, say q,, induced over the object inside Dy.
Then, we relate the scattered fields on 9D, to g,. Generally,

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 57, NO. 11, NOVEMBER 2009

the calculation of g, may entail posing a set of coupled BIEs on
the object’s boundary S, viz.,

Xoolo = —F,, on S, ®)

where the actual form of X,,, ¢, and Fti0 depends on both the
object’s nature and the adopted formulation. In Table II we have
collected the relevant expressions of Xo,, ¢ and F., for the
notable instances of a perfectly electrically conducting (PEC)
object (formulated with the EFIE [19], MFIE [19], CFIE [20]),
and a penetrable body (formulated with the PMCHW [19] and
Miiller [21] equations).

It is important to note that in (8) the forcing term consists of
the fields radiated by the equivalent incident currents q}c instead
of the actual external sources. In fact, we obtain F}, by acting
on ¢}, with the propagator from aD,j to S,, viz.,

F! =Porq, = / A% Py (r,7)gh(v'), r€S,. (9)
oD

Similarly, we derive Fy;, from g, by applying a propagator from
S, to 9D, , namely,

S, = Progo = /dQTIPkO(T,T/)qo(T/), redD,. (10)
S,

For the sake of completeness, in Table III we list the expressions
of P, and Py, pertinent to the cases of PEC and penetrable
objects.

Eventually, upon eliminating ¢, and the fields from (5), (8),
(9) and (10), we arrive at the following expression for the scat-
tering operators

Sk = — (Pix) " Pro(Xoo) "' Pok (11)

which provides us with a suitable recipe to compute Sy numer-
ically by the MoM. We notice that, as required, the Sy, do not
depend on one another nor on the external sources. In fact, (4),
which we have not used to derive (11), allows us to compute
the incident currents q}c from Ftik. In the trivial instance of just
one brick, then plugging g into (7) yields the scattered currents.
More generally, although S, is all we need to fully characterize
a LEGO brick, we need many of them to describe a composite
structure: how the bricks combine in a EM sense will be the sub-
ject of the next section.

III. FORMULATION THROUGH THE TOTAL INVERSE
SCATTERING OPERATOR S~™1

Unlike the strategy adopted in the 2-D LEGO method [3],
where in subsequent steps we (numerically) built a total scat-
tering operator by combining pairs of increasingly larger bricks,
here we take another route. To be specific, we analytically derive
the total inverse scattering operator S~! of the composite struc-
ture and then we apply a numerical method to solve for the total
scattered currents. We focus on S™1, rather than on S, because
the former can be written in closed form, whereas determining
the latter requires the inversion of S~!—which can be effected
only numerically.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 4, 2009 at 10:39 from IEEE Xplore. Restrictions apply.
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In order to determine S—!, we consider the N, bricks de-
picted in Fig. 1. In response to the incident fields F'', scattered
currents develop on each brick’s boundary. In particular, thanks
to linearity, g, still follow from (7), provided we include among
the incident currents both the contribution from the external
sources and the terms due to the presence of all the other Np —1
bricks. Symbolically, this reads

q = Ska}mot =Sk | @b + Z Ting, |, VEk
n#k

12)

where the summation extends over all but the kth brick. We
express the extra contributions by means of (dimensionless)
transfer operators T ,,, namely

q}c(n) =Ting = / A T (r, )G (7)), k#n (13)
oD;
which map scattered currents on 9D, to incident currents on
8’2?2’. We obtain Ty, by first relating ¢;, to the tangential inci-
dent fields F}, via the relevant propagator, i.e.,

iy = Pondl, = / &' P (r,#) g3 (), 7€ 0D} (14)

oD,

which is also outlined in Table I. Second, we plug Ft‘k from (14)
into (4), which we solve for q}C (n)" Thus, we find the following
expression for the transfer operators

-1
Pkn7

Tin = (Pix) k#mn
again in a format well-suited for numerical evaluation.
To complete the derivation of S~*, we solve the Np coupled
BIEs implied in (12) with respect to ¢,. Upon grouping all of
the scattered and incident currents columnwise into ¢° and ¢,
we can express the result succinctly as

15)

STl =¢ (16)
with
S —-[112 -Ting,
sio| T o T (17)
_T.NDl _T.NDQ va]l;ND
¢ =g av,) s d=ldd,] . 18

Equation (16) along with (17) constitutes the formulation of
the EM problem represented in Fig. 1. The total inverse scat-
tering operator fully and elegantly incorporates the underlying
physics. In fact, all of its entries obviously depend on the shape
of the bricks, but only the diagonal entries Sgkl convey infor-
mation about the objects comprising the structure [see (11)]. In
contrast, the off-diagonal entries, —T,,, (wWhich tell us how the
bricks interact) quite remarkably do not depend on the bricks’
content, but solely on their relative position in the structure, as is
evident from (15). This means that if, for the sake of argument,
we allow for a change either in the EM properties or in the shape
of the object within each brick, only 51:-13 have to be re-com-
puted—which adds to the efficiency of the LEGO approach.

3579

As in general we cannot carry out the inversion of (17) in
closed form—a notable exception being the instance of just two
bricks [3]—it is now clear why we stick to S—1. On the other
hand, the numerical inversion [22], feasible as it can be insofar
as the resulting matrix can be handled, is unnecessary, for we
can directly solve (16) efficiently with the MoM and the EEM,
as we shall discuss in the next section. Besides, once the ¢}, have
been computed, the total incident currents on 817,:' follow from
the rightmost term in (12).

IV. THE EIGENCURRENT EXPANSION METHOD

We now describe how to accomplish the numerical solution
of (16) by the MoM [2], [19], combined with the EEM [15].

A. Concept

Loosely speaking, the very idea behind the EEM is to expand
¢! on a set of basis functions E which are “approximations” to
the eigenfunctions of S~1, say {35,’?}, m € N. We dub {35,5)}
eigencurrents, for in the light of (2) S~! maps scaled currents
to scaled currents. We mention in passing that the EEM, in the
form just stated, differs from the one applied in [15], [16, Ch.
5], since there the set £/ was actually used to start an iterative
process aimed at calculating the true eigencurrents of the rele-
vant operator.

To figure out what the set £ should be, we neglect for a mo-
ment the multiple reflections occurring in the composite struc-
ture of Fig. 1; as a consequence, the transfer operators in (17)
vanish and we are left with a block diagonal operator. In this
ideal case, the eigencurrents {eg,li)} of S~1 simply ensue upon
juxtaposing the eigencurrents of the individual Sy, say {u,gi )}.
For instance, the generic eigencurrent is defined as

e®) _

[0,...70,u£5)707...]t (19)
i.e., it is zero over all 9D,, except IDy,.

If we do take into account the interactions among the LEGO
bricks, the set { eg,li)} will no longer represent the true eigen-
currents of S—!. Nevertheless, owing to their definition, we
do expect {e,(fi)} to be approximations to {sgf)}, therefore we
adopt them to form the set £ and we still name them eigencur-
rents. More precisely, we speculate that only few elements of
FE, namely, those associated with the larger eigenvalues of each
Skk, will depart considerably from the corresponding {ss,lf)}:
we say that these eigencurrents are coupled. Conversely, we ex-
pect most elements of F, viz., those relative to the higher-order
eigenvalues, to constitute increasingly better approximations to
{35,’; )}. The latter may properly be termed uncoupled.

In light of these observations, we stipulate that the entries of
the resulting MoM matrix, when obtained by adopting F as a set
of basis and test functions, are not equally meaningful. As we
will show in Section IV-C, this observation is crucial to reduce
the size of the algebraic system drastically without jeopardizing
the accuracy of the solution.

B. Algorithm

Since in reality we do not know the elements of £ analyti-
cally, we accomplish the numerical implementation of the EEM
as follows.
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Fig. 3. For LEGO validation: a composite structure made of three dielectric cylinders (a) is represented with three LEGO bricks which are hexagonal prisms (b);
both cylinders’ and bricks’ boundaries are modelled with a 3-D triangular-facet mesh on which RWG functions are defined.

Firstly, we model each boundary 0Dy, by a 3-D triangular-
facet mesh, on which we introduce a set By, of 2Nr RWG func-
tions [23] to represent the current densities,

Np

N f Ji Js

i kp“kp s _ fk'P kp

f]k—E [ i}, qk—E [ S} (20)
p=1 ~9rp My, p=1 ~9epMj,

where the normalizing intrinsic impedance 7 has been included
in the expansion coefficients, and we have chosen f kp = 9kp
even though conceptually they constitute two distinct elements
of By. On 0D;, we generate a regular mesh (e.g. see Fig. 3(b))
to prevent the facets belonging to different bricks from over-
lapping awkwardly when two bricks touch one another. This
greatly simplifies the calculation of the MoM integrals. Further-
more, we similarly model each object’s boundary S, and define
on it a set C}, of No RWG functions for ¢,. The exact structure
of C), varies depending on the nature of the BIE (8), as outlined
in Table II.

Secondly, we apply the MoM to (5), (8), (9), (10) and (14)
using the sets By, and C}, as basis and test functions along with
a symmetric inner product. As a result, we may rewrite (11) and
(15) as

[Skk] = - [Plzk]_l [PkO][XOO]il[Pok]
[Lin) = [Pi]) "' [Penls k#n

where, with evident notation, each matrix represents the alge-
braic counterpart of the corresponding integral operator. The
entries of each matrix in (21) and (22) are double surface in-
tegrals involving pairs of RWG functions and can be deduced
with the aid of Tables I-III. In particular, when the structure is
electrically large, most of the propagation matrices [P, ] can be
evaluated asymptotically as shown in Appendix A.
With these preliminaries, (16), (17) and (18) become

21
(22)

[S]7¢°] = [¢] (23)
1y _ [ISw] Tt k=n,

(1517 e = {_[’}’ikn] k2 (24)
(@) = @], (Id]), = [a] (25)

where, e.g., [qi] contains the 2N expansion coefficients of g,
and so forth. The total inverse scattering matrix implicitly de-
fined in (24) is of size 2NpNp x 2NpNp.

Thirdly, for each brick, we compute the 2N eigenvalues A,y
and eigenvectors vl()k), p=1,...,2Np, of [Skx]. Note that the
spectral decomposition [24] of [Sgx]—which may be time con-
suming—actually has to be effected only once in the particularly
meaningful instance when all of the Np LEGO bricks are equal
to each other. Next we employ v,()k) to build a larger basis U for
spanning the space of [¢*!], namely,

[V] = diag {[Vkx]}

where [Vjx] stores vgk) columnwise. The eigenvalues (and ac-

cordingly the eigenvectors in [V} ]) are arranged in a vector with
their real parts in descending order [25]. Note that U is precisely
the (finite) algebraic counterpart of the basis F, and hence, we
term the 2Np Np elements of U eigencurrents.

As a final step, we rephrase (23) in the basis U, namely,

(26)

[S17'a°] = [¢'] 27)
where
[ =VI ' g™], IS = VISV (28)
([5,],1) _ {diaior {)\;kl} , k=n 29)
n — [Tl k#mn
with
[Tkn] = [ka]_l[Tkn][Vnn]- (30)

The matrix [S’ ]! would be exactly diagonal if we had neglected
the multiple scattering occurring in the structure.

C. Order Reduction

Equation (27) is better suited for inversion than (23) is, as the
number of entries of [5 ]~ necessary for solving (16) accurately
may be greatly reduced. To this end we first swap rows and
columns of [S]~" as follows:

» the entries pertaining to two coupled eigencurrents are

moved to the upper left part of the matrix;

» the entries germane to two uncoupled eigencurrents are

shifted to the lower right part of the matrix;
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* the entries involving a coupled and an uncoupled eigencur-
rent are displaced either to the lower left or the upper right
corner of the matrix.

In symbols

577t = Py = [1Secly [Sed T )

[Suc]™ [Svu]™
where [P] is a permutation matrix [24]. Based on the coupled-
uncoupled eigencurrent concept, we now observe that:

« the block matrix [Scc]™! is dominant;
« the off-diagonal block matrices [Scy] ™", [Suc] " must be
relatively small and can be neglected altogether;
* the off-diagonal entries of [SUU]*1 either are null or must
be relatively small and can be discarded as well.
As a consequence, we may approximate (31) as

[Sv]fl ~ [S’CC]_1 [0] (32)

~ [0] [Avu]l™?

where [Ayy] is diagonal and contains all the eigenvalues corre-
sponding to the uncoupled eigencurrents in U. At this point, we
have turned the problem of solving (16) into the formal inver-
sion of the diagonal matrix [Ayy] ™" plus the solution of a linear
system whose matrix, [Scc] ™, is far smaller than [S] ' in (24),
i.e., if we had used the original RWG functions distributed over
all of the Np domains.

Eventually, the expansion coefficients of the scattered cur-
rents in the original set U B;, may be written as

e~ vie Ko O e o

which is the sought for solution to (16) and constitutes the most
important result of this work. Furthermore, by also applying the
procedure outlined above to the the rightmost part of (12), we
may express the total incident currents as

atod ~ 1+ 01 o) B ey 0

where [TCC] = [Acc]_l — [gcc]_l, with [Acc] a diagonal
matrix containing the eigenvalues associated with the coupled
eigencurrents in U. The matrix [ch] has null diagonal and de-
pends only on the transfer matrices (30). Apparently, (34) can
be interpreted as a statement that only the coupled eigencurrents
in U contribute to the multiple reflections occurring among the
bricks in the structure. In theory, from (12) we may also deduce
an alternative expression for the coefficients of the total incident
currents, namely,

[dhcc] = ding {[Sw] ™"} [¢'] = V] diag {\ ;i } [V][a']
(35)

which at a first glance seems convenient, in that we have effected
the spectral decomposition of [Sk] for our needs. As a matter
of fact, (35) turns out to be quite unstable as the smallest eigen-
values—possibly close to threshold of numerical noise—Ilead to
inaccurate results when inverted.

Equations (33) and (34) are remarkably efficient in many
respects:

3581

1) to build [Scc] ™" we need to compute [T},,] and [T}, for
bricks k and n, but we only have to store the entries relative
to the coupled eigencurrents;

2) in view of (22) and (30) we may get [Tkn] by solving

([Plik] [ka]) [Tkn] = [Pkn][vnn]7 Vk,n, k # n;

3) the main diagonal of [gcc]_l contains the reciprocal of

Arp associated with the coupled eigenvectors; since the
corresponding eigenvalues are the largest ones, their inver-
sion is stable;

4) we do not compute [Scc], but rather solve the system by
effecting the LU factorization [22] of [Scc] ™

5) [AUU]_1 need not be built nor inverted, since we already
know A, from the spectral decomposition of [S);

6) the action of the permutation matrix [P] is accounted for
by swapping columns (rows) of the matrices by which [P]
([P]?) is being right- (left-) multiplied;

7) to calculate [¢l] in (27), we do not build nor invert the
(block diagonal) eigencurrent matrix [V] as such, but rather
we solve the Np systems

([Phe] Vi) [d] = [FL] . Yk

ensuing from the algebraic counterparts of (4) and (6);

8) (33) and (34) can be solved simultaneously for multiple
sources and, more importantly, this can also be done at later
times, provided we save and then load few relatively small
matrices (i.e., the LU-decomposed [Scc] ™", diag{\,x},
[Vir])-

Last but not least, since only NoNp eigencurrents out of
the total 2NpNp in U are likely to be coupled, the size of
the matrix to be actually handled (i.e., [Scc] 1) shrinks to
NcNp x NeNp (as compared to the possibly humongous size
2NpNp x 2NpNp of [S]™1). Accordingly, the computational
complexity of the overall LEGO-EEM approach is roughly
O(NZN3), which is to be contrasted to O(NZN3), i.e. the
number of operations needed to invert the matrix resulting from
the direct MoM solution of the same EM problem (assuming
the relevant systems are solved by LU factorization). Besides,
when the object inside Dy, happens to fill most of the brick’s
volume, a finer mesh may be necessary over 0D;, for capturing
the near field fabric accurately. However, even in the worst case
scenario, viz. 2Nr =~ N, LEGO-EEM will be convenient,
since ordinarily No < 2Np.

Finally, the time required to fill all of the transfer matrices
in (22) may be further reduced, on the one hand, by taking ad-
vantage of possible (translational) symmetries of the structure
(thereby most of the [T%,] matrices coincide and need not be
recomputed) and, on the other hand, by carrying out the cal-
culations in parallel, as evaluating [T},,] involves just a pair of
bricks at a time (see Fig. 1).

V. NUMERICAL RESULTS

We have implemented the LEGO approach along with the
MoM-EEM solution in a numerical code capable of handling
arbitrarily shaped bricks which may incorporate both PEC and
penetrable objects. A thorough assessment of the correctness of
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Fig. 4. LEGO validation: the bistatic RCS of the structure in Fig. 3; LEGO
solution with N, = 3, No = 10 (e) versus direct solution with PMCHW
BIE (— — /—). Inset: cartoon of the LEGO bricks embedding the cylinders
(top and side view), and geometrical and physical quantities.

the code and of the overall reliability of the algorithm requires
checking, among others:

1) that in the single object instance the physical quantities
(e.g. the scattered fields) derivable from the solutions of
(7) or (8) do coincide;

2) that in case of a composite structure the MoM-EEM ap-
plied to (16) does yield the same results as predicted by
the direct solution of the problem tackled with a BIE;

3) whether and how fast the EEM solution converges with
increasing number of coupled eigencurrents No Np.

The first check above clearly aims at showing the correctness
of the numerical calculation of [S]. To this end, we have con-
ducted extensive numerical experiments with different shapes
of objects and embedding bricks. Our attention has focused on
the agreement of the scattered fields in the Fraunhofer region
[26], which we derived either directly from the current densi-
ties g, induced over an object’s surface or from the scattered
current densities ¢° distributed over the boundary of the brick
embedding the object. The comparisons turned out excellent in
all cases. We omit the results for the sake of brevity, since an
analogous set of tests involving near fields was carried out in
the 2-D instance as reported in [3].

By contrast, we do discuss the validation of the EEM ap-
proach, for it constitutes a novelty with respect to the procedure
described in [3], and it is a key ingredient of the present 3-D
LEGO method. Specifically, to validate the EEM we consider
the scattering from the aggregate of three dielectric cylinders
in Fig. 3(a), embedded in as many hexagonal LEGO bricks as
shown in Fig. 3(b). This structure fits our needs, in that its direct
solution with the MoM is available. In our tests, we have com-
puted the bistatic radar cross section (RCS) [27]—in response
to a plane wave impinging from above—in two ways:

1) directly, i.e. from g, calculated through a set of PMCHW
equations and the MoM, with Np = 2 x 216 RWG func-
tions on each cylinder;

2) with LEGO, from ¢°, with Np = 3 hexagonal bricks,
(No = 2 x 216, 2Np = 2 x 756 on each brick), using
NeNp = 30 coupled eigencurrents (No = 10 < 2Np).

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 57, NO. 11, NOVEMBER 2009

Fig. 5. To study LEGO-EEM convergence: a composite structure made of ten
PEC spheres arranged in a rectangular lattice (a) is represented with as many
LEGO cubic bricks (b); both spheres’ and bricks’ boundaries are modelled with
a 3-D triangular-facet mesh on which RWG functions are defined.

In Fig. 4 we have plotted the results obtained with the two ap-
proaches, in both the E- and H-planes: the RCS’s predicted by
either method are in excellent agreement, thus confirming the
effectiveness of LEGO as well as the validity of the coupled-un-
coupled eigencurrent notion outlined in Section IV.

Concerning this, as anticipated, it is also expedient to study
the convergence of the solution as a function of the total number
of coupled eigencurrents retained to form [tg’cc]*1 in (31). To
this purpose, we have investigated a more complicated structure,
shown in Fig. 5, comprised of ten PEC spheres (kga = 0.733,
No = 408) arranged in a two-by-five rectangular lattice aligned
to the z-axis. We have embedded the spheres in Np = 10 cubic
bricks (2Np = 648) and computed the RCS (through ¢°) for
different values of N¢: Fig. 6 shows the RCS in the E- (top)
and H-plane (bottom).

The RCS obtained with N = 40 (—) can be assumed as the
reference result, since it is practically indistinguishable from the
case Nc = 30 (e); thus, we conclude that in this instance the
convergence is reached upon using a total amount of No Np =
300 coupled eigencurrents. This number should be contrasted
to the (virtual) size of the total inverse scattering matrix (24),
ie. 2NpNp = 6480, in order to appreciate the power of the
EEM approach. From Fig. 6 we also notice that the convergence
is indeed fast, as there are quite small differences between the
cases N = 20 (W) and N = 30 (). Finally, with just No =
10 (4), even though the agreement with the reference solution
is not completely satisfactory as per the RCS levels, nonetheless
the trend (as in the predicted number and positions of the nulls)
is remarkably good.

The latter numerical experiment on the one hand leads us to
conclude that the EEM applied to (23) does converge; on the
other, it tells us a posteriori how many eigencurrents are neces-
sary to achieve convergence. In reality, a recipe for picking up
the minimum N¢ a priori would be desirable, but we recognize
that a general criterion is quite hard to establish. As a rule of
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thumb, N¢ is mostly affected by the electrical size and distance
of the objects in the bricks (based on the established multipole
expansion methods [10], [28], one also expects the scattering
matrix (29) to become increasingly close to a true diagonal ma-
trix as the bricks are set farther and farther away). Thereby, a
sensible statement is that the more electrically close are the ob-
jects enclosed in the LEGO bricks, the stronger is the coupling
among the nearest ones, and the higher is the number of cou-
pled eigencurrents required for the solution to converge. In this
respect, however, since the strongest interactions most certainly
take place among adjacent bricks, a preliminary assessment of
the EEM convergence for a given problem can be conducted
with just few neighboring bricks—which turns out to be a rel-
atively fast procedure and can yield a reliable indication about
the minimum N¢, before facing the solution of the whole large
structure.

We note that, as the EEM approach relies on the eigencur-
rents v,()k) of a single brick (see Section IV-B), the problem of
computing them accurately with the MoM deserves attention.
This means that in general on a brick’s boundary 0Dj, we have
to set up a dense enough triangular mesh, say at least ten facets
per wavelength, in accordance with a commonly accepted rule
[19]. As an exception to this criterion, when LEGO bricks are
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Fig.7. Case study: 3-D PEC finite-thickness “snowflakes” arranged in a hexag-
onal lattice for increasing number of elements; the largest configuration (Np =
217) is shown (see also the insets of Figs. 8 and 9).
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¢ = 90°, 270°. Inset: cartoon of the LEGO brick embedding the “snowflake”
(top and side view), geometrical quantities and source.

either relatively far from one another or large as compared to the
embedded object, the mesh density on the brick may be coarser
than the one on the object without losing accuracy [12, p. 131].

Finally, in order to discuss the time requirements of LEGO,
we studied the scattering (in free space) from an aggregate of
Np PEC finite-thickness 6-arm “snowflakes” (L = 0.5\, 2a =
0.1Xg), arranged in a hexagonal lattice (d = 0.35X\g, h =
0.2)¢) with an increasingly larger number of concentric rows
(from 1 to 8). In Fig. 7 we show the largest configuration (eight
rows, Np = 217) we analyzed. Each snowflake is embedded
in a regular hexagonal brick modelled with a triangular 3-D
mesh, which results in 2Np = 1080 RWG functions per brick.
Then we solved (23) with No = 10, with the structure illu-
minated by a magnetic dipole (i.e., an elemental electric cur-
rent loop) aligned to the Z-axis and placed thereon at z; =
—0.125)¢ below the structure. As an example, the fields radi-
ated by the calculated scattered currents ¢° and the magnetic
dipole are shown in Fig. 8 for Np € {19,127}.

Calculations were carried out on a Linux-based x86_64 work-
station equipped with an Intel Xeon 2.66-GHz processor and
8-GB RAM. In Table IV we report, as a function of Np, the
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TABLE 1V
CPU TIMES VS CHARACTERISTIC SIZES OF THE PROBLEM IN FIG. 7

2N p=1080, No=10

ND ND(ND —1) QNFND NCND CPU time [\]
7 42 7560 70 188
19 342 20520 190 287
37 1332 39960 370 319
61 3660 65880 610 361
91 8190 98280 910 607

127 16002 137160 1270 940

169 28392 182520 1690 1272

217 46872 234360 2170 1633

1500

= 1000t
o
£
=
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%

Fig. 9. Overall CPU time as a function of the number of LEGO bricks forming
the structure in Fig. 7 (for visualization’s sake the square marks are joined with a
dashed line). Inset: cartoon of three realizations of the structure with increasing
number of snowflakes/bricks.

number Np(Np — 1) of transfer matrices [T,%] to be com-
puted, the total number 2NpNp of unknowns (which is the
size of [S]™1), the total number NoNp of coupled eigencur-
rents retained for computation and the overall CPU time. If one
compares the size NoNp x NcNp of [S’cc]_1 to the size
2NrNp x 2NpNp of [S]71, then the effectiveness of LEGO
in handling large EM problems appears quite evident, and es-
pecially so for increasing Np. Nevertheless, as the number of
transfer matrices [T,x] grows roughly as N2, one would ex-
pect the CPU time to grow quadratically too, but this is not the
case. In fact, by taking advantage of the translational symme-
tries of this structure (see Fig. 7)—which means that we can
identify groups of identical transfer matrices—and obtaining
the contributions from electrically distant bricks as described in
Appendix A, we were able to fill [S’cc]_1 considerably faster
than if we had computed all of the [T,,%] independently. As a
result, the computational time is seen to grow just linearly with
Np, as confirmed by the plot in Fig. 9.

The overall computation time may be deconstructed into var-
ious contributions, viz. the time required: 1) to compute the
scattering matrix [Skx] (once for all), 2) to perform its spectral
decomposition (once for all), 3) to compute [7,x] and then fill
[Sce] ! and 4) to formally invert [Scc] L. The first two contri-
butions are fixed and are dominant for relatively small numbers
of bricks (up to 37 in our experiment). However, for Np suffi-
ciently large, it is the time needed to fill [S’cc]_1 that becomes
dominant: this explains why the onset of the linear rate of in-
crease of CPU time does not occur until Np = 61.
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VI. CONCLUSION

We have described a novel formulation for 3-D radiation and
scattering problems based on the LEGO approach and an in-
tegral equation involving the total inverse scattering operator
of the structure under study. In the LEGO concept, the objects
forming the structure are embedded in EM bricks, each charac-
terized by its own scattering operator. We then solve the rele-
vant equation through the MoM and the EEM, which enables
us to address the solution of electrically very large structures
(with virtually hundreds of thousands of unknowns) effortlessly
and fast. In fact, for a sequence of structures of many identical
bricks we have demonstrated that the computation time eventu-
ally scales linearly with the number of bricks. On the other hand,
although we have presented numerical results in the notable in-
stance when all bricks are equal to one another, the formula-
tion we have proposed is general as per both the shape of the
bricks and their contents. In this respect, the local optimization
of a large structure can be effected efficiently upon identifying a
designated (target) brick—where the EM properties are allowed
to vary—and solving once for all the part of the system which
does not change. This topic as well as examples of application
to real-life devices will be the subject of forthcoming papers.

APPENDIX A
ASYMPTOTIC EVALUATION OF [Py, ]

If the spatial extent of the structure spans many wavelengths,
then most LEGO EM bricks are likely located in the Fraunhofer
region [26] of one another. Under this assumption, the entries
of the propagators [Py,] in (22)—which are double surface in-
tegrals stemming from the application of MoM to (15) with due
regard to the definition of Py, in Table I—can be rephrased as
combinations of 2-D Fourier transforms of basis and test func-
tions. This significantly speeds up the filling of the matrix.

Specifically, letting £, (9,,,) be a test (basis) RWG function
on D} (0D,,), T the position vector of the center of Dy, with
respect to the center of Dy, &, é' the local position vectors of
f kp> Ing> respectively, and also a the maximum chord of D,,,
then for 7 >> 2a?/\ we have

R=lr—7r|=-&+rI~r7+7-(E-€) (306)

G(R) = G(r)exp (—jwT - (€~ &) 37)
V.G(R) = jkTG(T) exp (—jrT - (€ — &) (38)
whence, following the definition of Py, in Table I and the

nomenclature therein, after a little straightforward algebra, the
entries of the nonnull blocks of [Py,,] are found to be

(Prnlor )y — GO fup) vt -+ Folgug}er (39
([Prnl22) g RiKG(T) [Fo{ Frp}—nt-FolGng tnr
—Folfrpt—nt TFo{Gng}ue 7] (40)

where, e.g.,

Falgughor = [ €0, explint €)@
and similarly for Fo{ f kp}—;c,-i-' Thanks to (39) and (40), when

7 > 2a?/\ the process of filling [P,,] reduces essentially to
the closed-form calculation of (at most) 2Ny Fourier transforms
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[29, Appendix C] in contrast to the numerical evaluation of 2V 2
double surface integrals normally required.
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