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ABSTRACT. In this paper we investigate uniqueness and nonuniqueness for nonneg-
ative solutions of the equation

ur = Lu + Vu— yuP in B" X (0,00);
(NS) u(z,0) = f(z), = € R”;
u >0,

where v >0, p>1, V€ C¥R™), 0< f€C(R") and L = E?J:l ai,j(iﬂ)#;rj +
Soisy bile) 5 with a; ;b € C(R™).

1. Statement of Results. In this article we study uniqueness for nonnegative
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solutions v € C*'(R™ x (0,00)) N C(R™ x [0,00)) to the semilinear equation
up = Lu+ Vu —yu? in R™ x (0, 00);

(NS) u(z,0) = f(z), = € R™;
u>0

’

where v, V € C*(R"), v >0,p>1,0< f € C(R") and

L = z”: a; (J})LQ—I— . bi(x) 9
J 81;18:(:] — ! ox;’

ij=1 =
with a; ;,b; € C*(R™) and EZ]‘:I a; j(z)viv; > 0, for all z € R™ and v € R™ — {0}.

In the case that V' is bounded from above, it will be useful to compare uniqueness
in the class of nonnegative solutions for the semilinear equation with uniqueness
in the class of bounded solutions u € C*!(R"™ x (0,00)) N C(R" x [0,00)) for the
corresponding linear equation:

uy = Lu+Vu in R" x (0,00);

(BL) u(z,0) = f(z);

sup sup |u(z,t)] < oo, for all T > 0,
0<t<T zE€R™

where f € C(R").

In the sequel we will sometimes use the notation NSy, NS(L,V,~)or NS¢(L,V,~)}
to specify the dependence respectively on the initial condition, on the particular
operator or on both the intial condition and the particular operator. Similarly, we
will sometimes use the notation BL(L, V). (In the linear case, the initial condition

is of course irrelevant with regard to the question of uniqueness.)

Remark. It’s well-known in the probability literature that when V' = 0, unique-
ness holds for BL if and only if the Markov diffusion process corresponding to the

operator L is nonezxplosive; that is, the process does not run out to infinity in finite
2



time. In the case that p € (1,2], the equation NS is also connected with a Markov
process; namely, with a measure-valued diffusion process. The so-called compact
support property for measure valued diffusions can be thought of as the parallel to
nonexplosiveness for ordinary diffusions. We have shown elsewhere that uniqueness
for NSy is equivalent to the compact support property holding [2]. (Actually, the
case p = 2 is treated in [2] but it extends immediately to p € (1,2].) Certain results

in this paper appeared in the case p = 2 with probabilistic proofs in [2] or [1].

We begin with a result on the existence of a minimal and a maximal solution to

NS.

Theorem 1. Let f € C(R™). There exist solutions u f.min and U f.mar of NS¢ with

the property that any solution u to NSy satisfies

U fmin § u § Ufmaz-

Remark. A similar result in the particular case of u; = Au — u? can be found in

9.

We now turn to the issue of uniqueness, beginning with a proposition which shows

in particular that if uniqueness holds for f = 0, then it holds for all 0 < f € C(R"™).

Proposition 1. Let 0 < fy < fy. If uniqueness holds for NSy, , then it also holds

for NSyg,.

Remark. We suspect that uniqueness either holds for all f or no f.

The following result guarantees uniqueness for NS if the coefficients satisfy ap-

propriate pointwise estimates.



Theorem 2. Assume that

7

(1.1a) Z a;j(z)vivy < C|1/|2(1 + |a;|)2;
(1.1b) @)l <Ot lal);
(1.1¢) V(z) <C,

for some C > 0. Assume in addition that

inf :
inf, ~v(z) >0

Then uniqueness holds for NS¢, for all f.

The following proposition is useful for determining uniqueness for BL.

Proposition 2. i-a. If V is bounded from above and uniqueness holds for BL(L,0),
then uniqueness holds for BL(L, V).

i-b. If V is bounded from below and uniqueness holds for BL(L, V'), then uniqueness
holds for BL(L,0).

w-a. If there exist mg, A\ > 0 and a positive function ¢ satisfying Lo < Ap in
R"™ — By, and lim|;| o0 #(7) = 00, then uniqueness holds for BL(L,0).

i-b. If there exist mo, N > 0, an xo € R™ satisfying |zo| > mo, and a bounded,
positwve function ¢ satisfying Lé > A in R" — B, and ¢(70) > SUpP|p|=m, A7),

then uniqueness does not hold for BL(L,0).

Remark. The uniqueness criteria in part (ii) has appeared in the probability liter-
ature under the guise of nonexplosiveness criteria for Markov diffusion process (see
the remark above following BL). Since the proof in the literature uses probabilistic
techniques [11, Theorem 6.7.1], and since the equivalence between nonexplosiveness
and uniqueness is not spelled out, we will give an alternative analytic proof.
Using the function ¢(z) = |z|? in part (ii-a) of Proposition 2 and then using part

(i-a) shows that if (1.1) is in force, then uniqueness holds for BL(L,V'). As far as
4



pointwise polynomial-type bounds are concerned, condition (1.1-a,b) is sharp for
BL(L,0). Indeed, applying part (ii-b) with the function ¢(z) = 1 — |z|7!, where
[ > 0 is sufficiently small, shows that uniqueness does not hold for BL(L,0) if
L=(1+ |x|)2+5A with é > 0and n > 3, or if L = A 4+ bV and n > 1, where
b(x) - [ 2 c|z|'+9 for large |z| and some &, ¢ > 0.

In passing, we note that the question of uniqueness of positive solutions to the
linear equation has a long history in the partial differential equations literature
going back to Widder. It is known that uniqueness of positive solutions holds if
(1.1-b,c) is in force and if (1.1a) is replaced by a two-sided bound of the form
Cilv)? (1 + |z|)? < Ezjzl a;j(x)viv; < Calv]*(1 + |z|)?, for some q € [0,2]. See, for

example, [5] and references therein.
The next result connects uniqueness for BL and NS in the other direction.

Theorem 3. Assume that uniqueness does not hold for BL(L,0) and that

n Vi(z)

> 0.

Then uniqueness does not hold for NSo(L,V,~).

Remark. For an example where the condition inf, cgn % > 0 holds and there
is uniqueness for BL but not for NS, take the class of equations in (1.6) below with
V =C > 0 and v as in Theorem 7-(ii) below.

The following comparison principle for uniqueness is useful.

Proposition 3. Assume that

and



If wuniqueness holds for NSo(L,Va,72), then wuniqueness also holds for
NS{(L,Vi,71), for all f.

Consider now the elliptic semilinear equation corresponding to steady state so-

lutions of N S:
(1.2) Lw+Vw—~w?P =0 and w >0 in R".

The next theorem gives conditions for uniqueness/nonuniqueness in terms of solu-
tions to the elliptic equation. As we shall see in the sequel, this condition is very

useful.

Theorem 4.

i. Let {fm}oo_y C C(R™) be an increasing sequence of nonnegative compactly
supported functions satisfying limy, oo fm = 00. Let Uy, .min denote the minimal
solution to NSy, . Then

(1.3) w*(z) = lim lim wuy, min(z,t)

t—o00 m—oo

ezists and is a nonnegative solution to (1.2). There exists a mazimal solution Wy,
to (1.2), and if Wymay > w*, then uniqueness does not hold for NS¢, for any f.

Furthermore, if infyepn y(x) > 0, then w* satisfies the bound

sup,epn V7T (2) )pi_l

1.4 sup w*(z) < (—
(1.4) 1,61% (v) < infzepn v(x)

where VT = max(V,0).

. If w =0 s the only solution to (1.2), then uniqueness holds for NS¢, for all f.

We will now use the entire array of results above to prove theorems on unique-
ness/nonuniqueness for two classes of semilinear parabolic equations. We will de-

termine how uniqueness depends on « for the following class of equations:
6



uy = aAu —u? in R" x (0,00);
(1.5) u(z,0) = f(z), © € R";
u > 0.
And with a relatively generic V' we will determine how uniqueness depends on ~
for the following class of equations:
uy = Au+ Vu —~u? in R" x (0, 00);
(1.6) u(z,0) = f(z), x € R™

u > 0.

Theorem 5.
i-a. Letn > 2. If

o(x) < C(1+ |2])%,

for some C > 0, then uniqueness holds in (1.5) for all f.
1-b. Let n > 2. If

a(z) = C(1+ |2)*",

for some €,C > 0, then uniqueness does not hold in (1.5) for any f.
s-a. Letn =1. If

o(z) < C(1+ |2,

for some C > 0, then uniqueness holds in (1.5), for all f.
1-b. Let n=1. If

a(z) = C(1+[a]) P,

for x >0 or for x < 0 and some €,C > 0, then uniqueness does not hold in (1.5)

for any f.



Theorems 2 and 4 can be used to obtain an alternate proof of a well-known
result concerning nonexistence of nontrivial solutions of (1.2). It was shown by
Ni [10] and Kenig and Ni [6] that the equation Aw — ywP = 0 in R™,n > 3, has
no nontrivial, nonnegative solution if v(z) > C(1 + |z|)72T¢, for some C,e > 0,
and that nontrivial, nonnegative solutions do exist if v(z) < C(1 + |z[)7%27¢. Lin
[8] extended the nonexistence result to the borderline case: there is no nontrivial
solution if y(x) > C(1 + |z])~%. Here is a quick proof of this last result: Let
C > 0. By Theorem 2, uniqueness holds for NS((1 + |z[)?A,0,C). From (1.4) in
Theorem 4, it follows that w* = 0. But then since uniqueness holds and w* = 0,
it follows again from Theorem 4 that there is no nontrivial nonnegative solution to
(1+ |z])?Aw — Cw? = 0.

Note that the above proof is independent of dimension and works just as well
for n = 1,2. Using Theorem 5(i), we can also give an alternative proof of the
existence part of the above result, and more importantly, we can extend the exis-

tence/nonexistence dichotomy to dimensions n = 1, 2.

Theorem 6. Let p > 1.

1. Consider the equation
(1.7) u" —~yu? =0 in R.

There emists a positive solution to (1.7) if v(z) < C(1 + |z|)~'7P7¢, for some
C,e > 0, and there is no positive solution to (1.7) if v(z) > C(1 + |z|)~' 7P, for
some C' > 0.

1. Consider the equation
(1.8) Au—~u? =0wm R", n > 2.

There exists a positive solution to (1.8) if yv(z) < C(1+|z|)~27¢, for some C,e > 0,
>

and there is no positive solution to (1.8) if v(x) > C(1 + |z|)~2, for some C > 0.

8



Proof of Theorem 6. Consider the semilinear equation
(1.9) uy = au” —u? in R x (0,00).

If a(z) < C(1 + |z|)'*?, then it follows from Theorem 5(ii-a) that uniqueness
holds for (1.9). Also, by (1.4) we have w* = 0 for equation (1.9). Thus, we
conclude from Theorem 4(i) that there is no positive solution to au” — u? = 0 in
R. This is equivalent to the nonexistence statement in (i). On the other hand, if
a(z) > C(1+]z])'TP*¢ then by Theorem 5(ii-b) uniqueness does not hold for (1.9).
Thus, it follows from Theorem 4(ii) that a positive solution exists for au” —u? =0
in R, which is equivalent to the existence statement in (i). Part (ii) is proven in

exactly the same manner. a

We now turn to (1.6).

Theorem 7. . Let V be bounded from above. If
(z) > Crexp(—Cylz]?),

for some Cy,Cy >0, then uniqueness holds in (1.6) for all f.
ii. Let V> 0. If

7(z) < Cexp(=[a]*™),
for some C.e > 0, then uniqueness does not hold in (1.6) for f = 0.

Remark. Equation (1.6) with 0 < V < C and ~v(z) < Cexp(—|z[*T¢), with
C, e > 0 is an example where uniqueness holds for BL but not for NS. For another
example, consider L = (1+|z|)!A withn =2 and ! > 2 or withn =1 and [ > 1+p.
Let V = 0 and v = 1. Applying Proposition 2-(ii-a) with ¢(z) = log |z| if n = 2 and
with ¢(z) = |z| if n = 1 shows that uniqueness holds for BL. On the other hand,

by (1.4), we have w* = 0 while by Theorem 6, w4, # 0. Thus, by Theorem 4(i),
9



uniqueness does not hold for NS. For an example where uniqueness holds for NS
but not for BL, consider the operator L = (1+4|z[)!Ain R", n > 3, for [ > 2, and let
V = 0. Then uniqueness does not hold for BL—see the remark after Proposition 2.
On the other hand, if v > (1 + |z])'~2, then uniqueness does hold for N'S. Indeed,
by Theorem 4, it suffices to show that there is no nontrivial, nonnegative solution
w to Lw —ywP = 0 in R", or equivalently, to Aw — %Uﬂ” = 0 in R"™. But this

follows from Theorem 6. Note that in this example, inf,cpn %(;z:) = 0, as must be

the case in light of Theorem 3.

We will prove Theorem 1 in Section 2, Theorems 2-4 and Propositions 1-3 in

Section 3, and Theorems 5 and 7 in Section 4.

2. Existence of minimal and maximal solutions—proof of Theorem 1.

We will need the following standard semilinear parabolic maximum principle.

Proposition 4. Let D C R" be a bounded domain and let 0 < uy,uz € C*'(D x
(0,00)) N C(D x [0,00)) satisfy Luy + Vuy —yul — aa% < Lug 4+ Vug — yub — %,

for (z,t) € D x (0,00), uy(z,t) > uz(x,t), for (z,t) € D x (0,00) and uq(x,0) >
uz(x,0), for v € D. Then uy > ug in D x (0,00).

Proof. . Let W = u; — uy and define H(z) = %, if W(z) # 0, and
H(z) = 0 otherwise. We have LW +(V —H)W —2¥ < 0in D x(0,00), W(z,0) >0
in D, and W(z,t) > 0 on dD x (0,00). Thus, by the standard linear maximum

principle, uy > us. a

We now use the above maximum principle to get an a priori estimate on the size

of any solution to NS. In the sequel we will frequently use the notation

Br={z € R": |z| < R}.
10



Proposition 5. Let u € C*'(Bg x (0,00)) N C(Bg x [0,00)) satisfy
uy = Lu+ Vu —~yu? in Br x (0,00);
u(z,0) = f(x), z € Br:
u >0,

where f € C(Bg). Let Vg = sup,ep, V(2), if sup,ep, V(z) > 0, and let VR > 0

be arbitrary otherwise. Let vygp = infyep, v(x). Then there exists a constant Kg

such that
Vr
u(z,t) < (,yR)P T(1—exp(—(p—1)Vr(t+¢€))) 7
(2.1) +((R+€)? — |z)" 77 exp(Kgr(t + 1)), for (z,t) € Bg x [0, 0),

for sufficiently small € > 0.

Proof. For e > 0, let wy (t) = (VR)p T(1 —exp(—(p — 1)Vr(t + e)))_ﬁ and

YR

wa (7,t) = ((R+€)? — |$|2)_P3_1 exp(Kgr(t+1)). We will show below that Lw,; . +

Vwi76—7w£6 aw’ < <0, 1 =1,2. Using the fact that (wq +ws )P > w? E—I—w2 o

will then follow that the function W, = wy  + w4, satisfies LW, + VW, — WP —

oW,

5= < 0. Since lim¢ 0wy (0) = oo and lim. o w2 (z,t) = oo for |z| = R, we

conclude from Proposition 4 that u(z,t) < We(z,t) for € > 0 sufficiently small.

Returning to the inequalities above, an easy calculation shows that W (t) =

1

e(l —exp(—k(t+ e)))_Pi_l satisfies VIW — yWP — % < 0 if one choses ¢ = (V—R)PTl

YR

and k = (p — 1)Vg. This proves that Lwq  + Vwy ¢ — waie — &g;e <0.
Letting W(z,t) = (R +€)* — |:r:|2)_P—L1 exp(K(t + 1)), for |z| < R, we have

(R+ 5)2 _ |;1;|2)p2——p1 exp(K(t+ 1))(LW + VW — AP — 8£/')
4 1) <& ]
LS (i, — 2 () exp(K(p - 1)+ 1)

h,j=1

+ p%l((R te)? - |z?) Z(am(a}) +9bi()zi) + (B + €) — |22 (V(x) — K).
- 1



From this it is clear that if K = Kp is chosen sufficiently large, then the right hand

w
d

side above will be nonpositive. This proves that Lws  + Vwy . — ywl . — j’e <0.

O

Proof of Theorem 1. Construction of the minimal positive solution to NSy.
Using [7, Theorem 12.16] for example, there exists a nonnegative solution u,, €
C*1(By, x (0,00)) N C (B, x [0,0)) to the equation

uy = Lu 4+ Vu—~u?, (z,t) € By, x (0,00);
(2.2) u(z,0) = f(2), © € By

u(z,t) =0, (z,t) € 0By, x (0,00),
where f,, € C?(By) is nonnegative and compactly supported in B,,. (Actu-
ally, to apply the existence result in [7], one must make a truncation as follows.
Letting G(z,z) = V(z)z — v(2)|2|'TP, and letting Gi(z,z) be an appropriately
truncated version of G which agrees with G on {|z| < k}, one applies the exis-
tence result in [7] to obtain a solution to (2.2) with V(z)u(z,t) — y(x)u'TP(z, )
replaced by Gi(z,u(z,t)). Then using the maximum principle in Proposition
4 and the a priori estimate in Proposition 5, it follows that the solution is in
fact nonnegative and bounded, in which case the term G(z,u(z,t)) agrees with
V(z)u(z,t) — y(z)u'*P(z,t) if k is sufficiently large.) By the maximum principle
in Proposition 4, the solution to (2.2) is unique.

We now use an interior parabolic Schauder estimate, an interior LP estimate and
the Sobelev embedding theorem to show that there exists a unique nonnegative
solution to (2.2) under the assumption that 0 < f,, € C4(B,,). This same technique
will be used numerous times in the sequel and will be referred to as the standard
compactness arqument.

Let {fmx} C C*(By,) be a uniformly bounded sequence of compactly supported,

nonnegative functions which converge pointwise to f,, in By, and let u,, ; denote
12



the corresponding solution to (2.2). For R > 0 and 0 < e < T < oo, let Qr 7. =

{(z,t) : x € Bgr, t € (&,T)}. Since Lup  + Vum i — aua’;""“ = ’yuﬁhk, it follows
from an interior parabolic Schauder estimate [7, Theorem 4.9] and the assumption

on L,V and ~ that there exists a C'c > 0 such that

|2+a71+%§9m—6,T,6 g C(€||UJ7n7k||057%§an—%7T-|-57 % °

(|| - |l24a,1+a,4 denotes the space of C*'- functions on A C R™ x (0,00) whose
second order mixed partial derivatives in space are uniformly a-Holder and whose

first order derivative in time is uniformly §-Hdélder.)

By Proposition 5, the solutions w,, ; are uniformly bounded on B, x (0, 0c0);

2
thus by an interior L? estimate |7, Theorem 7.13], it follows that {g;g}”f 122, and
0T

a“a”;“‘“ }%2, are uniformly bounded in LP(Bg

) for each p > 1. It then

777,—%,T-|—267 %

follows from the Sobolev embedding theorems [4] that {||um k|la,2:9,._ < 4.« Fiet
27 12

is uniformly bounded. Using this in conjunction with (2.3) shows that the sequence

{tm k}72, 1s precompact in the || - ||2.1,0 —norm. Thus there exists a subse-

m—e, T, e

quence which converges to a function u,, which satisfies the parabolic equation in
(2.2).

It remains to show that wu,, satisfies the initial condition and the boundary
condition. This is done via appropriate barrier functions. For M > 0, let W]\j; €
C*Y (B x (0,00)) N C (B, x (0,00)) N C(By, x [0,00)) denote the solutions to the
linear inhomogeneous boundary-initial value problems

wy =Lw+ M, (x,t) € By, x (0,00);
w(z,0) = f(z), ¥ € Bp;
w(z,t) =+M, ¥ € 0By, t > 0.
By the a priori bound (2.1), it follows that for sufficiently large M, |V, —

yub ] < M and 0 < um i < M on By, x (0,1), for & = 1,2,... Thus, for such
13



an M, it follows by the linear maximum principle that Wy, < up,p < W]\"Z on
By, x(0,1). Thus, im0 (2, t) = lime 0 im0 tm k(2,t) = f(z), for 2 € By,.
To show that the zero Dirichlet boundary value is satisfied, one makes a similar
argument using the barrier functions Z3s which satisfies
z¢ =Lz + Mz, (2,t) € By, x (0,00);
z(z,0) =M, © € Bpy;
z(x,t) =0, x € 0B,,,t > 0.
For each T' > 0, choose M7 such that 0 <y, 1 < M7 and [V, p — 7uﬁ27k| < My
on By x [0,T], for K = 1,2,... Then 0 < upm i < Zp, on By, x [0,T); thus
lim,; 58, Um(z,t) =0, for t > 0.
We are now ready to construct the minimal solution to N.Sy. Assume first that
0 < f € C(R") is compactly supported. Let mg be such that f is supported in
B,,,. For m > myg, let u,, denote the solution constructed above in B, with initial
condition f. Arguing as above, the sequence {un, }°°_, is compact in the C*'-norm
on Qp, 7, for any integer £ > mp and 0 < € < T < co. By the maximum principle
in Proposition 4, the sequence {um}ﬁf:mo is nondecreasing. Thusu ¢ = limy, o0 Um
exists and is a classical solution to the semilinear equation in R™ x (0, c0).
We now show that lim; ,ous(z,t) = f(z). Fix 2o € R™ and let By(zg) C R"
denote the ball of radius 1 centered at xg. For M > 0, let W]\:Z € CHY(By(z) x
(0,00)) N C(Bm x (0,00)) N C(B,, x [0,0¢)) denote the solutions to the linear

inhomogeneous boundary-initial value problems

w; = Lw + M in By (zg) x (0,00);
w(z,0) = f(z), v € Bi(zo);
w(z,t) =+M, x € 0B1(20), t € (0,00).
By the a priori bound (2.1), it follows that for sufficiently large M, |Vu]c—’yu]}| <M

and 0 < u < M on By(zg) x (0,1). Thus, for such an M, it follows by the linear
14



maximum principle that W;; < uy < W3 on Bi(zg) x (0,1), which proves that
lims o ug(z0,t) = f(z0).

To show the minimality of uy, let U be any solution of NSy. In light of the
zero Dirichet boundary condition on u,,, it follows from the maximum principle in
Proposition 4 that u, < U. Letting m — oo shows that uy < U. This completes
the proof of the existence of a minimal solution to NSy when the initial condition

f is compactly supported.

Now consider the case that the initial condition satisfies 0 < f € C'(R?). Take an
increasing sequence of continuous, compactly supported functions {f,,} satisfying
f =limp oo frn and let uy, be the minimal solution to NSy, . By the maximum
principle, it follows that {uy, }o°_; is monotone. By the a priori estimate in (2.1)
and the parabolic estimates and Sobolev embedding theorem used above, it follows
that uy = limp, oo uy,, solves the semilinear equation. The same argument used
in the case that f is compactly supported shows that lim; ,ou¢(z,t) = f(z). The
proof of minimality follows easily from the minimality in the compactly supported

case. This completes the proof of the existence of a minimal solution to N.S¢.

Construction of the mazimal positive solution to NSy. For m > 0 and a positive

integer k, let ¢, 1 € C*°(R") satisfy

Um(z) =0, |z <m and |z] >2m +1
1
(24) brms(z) = by < fa] < 2m

Using [7, Theorem 12.16] again, there exists a nonnegative solution
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Uni € C?'(Bam x (0,00)) N C(BQm x [0,00)) to the equation

ug = Lu+ Vu —yuP + o i, (2,1) € Baym x (0, 00);
(2.5) u(z,0) = fm(x), © € Bam;

u(z,t) =0, (z,t) € 0Bam x (0, 00),
where f,, € C?(Bam) is nonnegative and compactly supported in Byy,. Using the
standard compactness argument and barrier functions as above in the proof of the
existence of a minimal solution, this then extends to the case that the initial data
fm 18 continuous, nonnegative, and compactly supported in By,,.

Since Uy, i satisfies the homogeneous semilinear equation in By, (because ¢y,
vanishes there), the functions {Us, 1 } 32, all satisfy the a priori estimate (2.1) with
e = 0 (and with R replaced by m). By the maximum principle in Proposition
4, U, 1s increasing in k. From this and the standard compactness argument it
follows that U, = limg_yec Uk exists, Uy, € C*' (B, x (0,00)), and U,, satisfies
the semilinear equation in B,,. The barrier function argument given above in the
case of the minimal solution shows that lim¢_o Uy, (2,t) = fi(2), for € B,,,. We

will prove below that

(2.6) lién U (z,t) = 00, t € (0,00).

r—0B,,

Using this, the proof of the existence of a maximal solution goes as follows. For
f € C(R"), let f,, and U,, be as above with f,, chosen so that f = f,, on By,. By
the same reasoning as has already been used several times above, Uy = limp, 500 Un,
exists and solves the semilinear equation. Again by the proof used in the case of
the minimal solution, we have lim;_,o U¢(z,t) = f(2); thus, Uy solves NSf. To see
that Uy is maximal, let u be any solution to N.Sy. Then by (2.6) and the maximal
principle in Proposition 4, we have u < U, on By,; thus, u < Uy.

We now turn to the proof of (2.6). For e > 0, we will constuct a function w,

which satisfies Lw, + Vw, — yw? — aa% > 0in Byt and we(m + €,t) = co. From
16



the maximum principle, we then obtain U,, > w, in By,+.. From the construction,
it will follow that w = lim._,o w, satisfies lim,_,5p,, w(z) = co. To implement this,

we need a number of preliminary results.

We first show that

(2.7) kh—>Holo Um k(z,t) = oo, for m < |z| < 2m and t > 0.
Fix N > 0 and define W (x,t) = Nt <l2 —(m+ % +1— |:L’|)2), where [ = %(m — %)
Note that W > 0 in the annulus A, 1 5, = {m + 1 < |z| < 2m} and vanishes on
Ay 1 om- Fix T > 0. Clearly LW + VW —yW? — Wy is bounded in A, 4 1 5, X
[0,T]. Thus for k sufficiently large, we have LW + VW — WP — W; + ¢y, p > 0 in
Apitom % [0,T]. Since W(z,0) = 0 and W vanishes on 94, 1 5,,, it follows by
the maximum principle in Proposition 4 that U = W in A, 1 5., x (0,77, for k
sufficiently large. Letting k& — oo, we obtain Up,(z,t) > Nt ((%)2 — (?% — |$|)2),
for m <|z| <2m and 0 <t < T. Since N and T are arbitrary, (2.7) follows.

We will need the function ¢ described below. It is well-known from the theory of

travelling waves [3] that for p > 0 sufficiently small, there exists a strictly increasing

function g € C?([0,00)) satisfying

g" —pg'+g9—g"”=0o0n[0,00);

(2.8) g(0) =0, 1i>m g(s) =1;
g >0, ¢g" <o.

For m > 0 define

bm(z) = AN(m2 — |2[2)"5T, 2 € Bp,
17



where \,[ > 0. We have

(2.9)
1, . 2 , 81%(p + 1 e
S = P (Lo + Vb = 1h) = LD a4 3 0oy
ij=1
8I(1—1 _ &
4 D ot ) 3 (o) +
i j=1
4l & ‘ _
e = o) Do) + aiba(e)) + V(@) = o) 3 (0)

=1

In light of the strict ellipticity, it is easy to see that if [ > 0 is chosen sufficiently
large, then the sum of the second and third terms on the right hand side of (2.9) is
nonnegative on B,,, and that if A > 0 is chosen sufficiently small, then the sum of
the first term and the last two terms on the right hand side of (2.9) is nonnegative.

Fixing such an [ and a A, we conclude that
(2.10) Loy + Vi — oL, > 0in By,.

We can now define the function w, as follows:

Sme(x)g(c(t + |z[* — (m + €)?)),
(2.11) we(z,t) = if (z,t) € Bmge N {t + 2| — (m + 6)2 >0}
0, if (2,t) € Bpye N {t + |z — (m +¢€)? <0}.

Using the ellipticity and the fact that ¢’ and V4 - ﬁ are nonnegative, it follows

that

zn: 0 Ag(e(t + |$|;g;_i (m+€)*))) 3(%5;;(1:)) >0,

(2.12)

i,5=1

if (2,t) € Bpye N {t 4 |z]* — (m + €)* > 0}.

In the sequel, when ¢ appears without an argument, it is to be understood that the
18



argument is ¢(t + |z|? — (m + 6)2). From (2.10)-(2.12) we have

Ow,
Lw, + Vw, —yw? — a“; > hmacL(g(c(t + |;z;|2 ~(m+ 6)2)))
5 [ (9 t+ 2 _ + 2
+ 9Ldmic + Vgbmye — 797 b e — Omte (gle(t +|z]? — (m +€)?)))
(2.13) T

O(g(c(t + |z = (m + €)*)))
ot

7@ ge(g — 7)., i (2,8) € B N {t +]a| — (m + &) > 0},

> dmacLlglet + 2> = (m +€)%))) — dmte

Using the fact that ¢’ > 0 and ¢” < 0, it’s easy to check that for any § > 0, one

can choose ¢ = ¢5 > 0 sufficiently small so that

2 2 Agle(t +|zf* — (m +€)*)))
.14, Lttt F Il = (m ) - =
if Biye Nt + |z — (m +¢)* > 0}.

>48(g" — pg'),

Choosing ¢ = inf,ep,, . v(2) fn__i_le(:r;), we conclude from (2.8), (2.13), and (2.14)

that

oggy Ve = G (o~ omelo — ") 20
if (2,1) € Bmge N {t + |z]* — (m +€)* > 0}.

Let De = Bpyg N {t + |2|*> — (m 4 €)* > 0}. Note that w, vanishes on the part
of 8D, where t + 22 — (m + 6)2 = 0. Also, since w, is bounded on D., it follows
from (2.7) that we < Up, & on OB+ ¢, for k sufficiently large. Thus, since Up, . > 0
and satisfies the semilinear equation in D, it follows from the maximum principle
of Proposition 4 that for k sufficiently large, w, < Ug , in D,. Letting k& — oo and

then letting e — 0 gives

Um(z,t) > Am2 = [22) " 57 g(e(t + 2> — m?)),
(2.16)
if (2,t) € By N{t + |z —m?* > 0}.

Now (2.6) follows from (2.16). O

3. Proofs of Theorems 2-4 and Propositions 1-3. We will prove the results

in the order of their presentation in Section 1.
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Proof of Proposition 1. Uniqueness holds for NS if and only if ufmin =

U f:maez- Thus, in order to prove the proposition, it suffices to show that
(31) Ufismaxr — Uf ;min 2 Ufoimaxr — Ufoymin, if 0 § fl § f2'

The construction of the minimal and maximal solutions revealed that for f €
C(R"™), Ufimar = Mmoot imar a0d Ufimin = lUMyso0 Uf, imin, Where {fm}
is an increasing sequence of compactly supported functions which converges point-
wise to f. Thus, it suffices to prove (3.1) in the case that fi, f; are compactly
supported. That construction also revealed that v ¢;:mer = limy, oc limp_o0 vaf?ka
where for m sufficiently large so that supp(f;) C Bm, Ufé?k solves (2.5) with f,,
replaced by f;. Since f; is compactly supported, the constuction also showed that
Ufsimin = LMy oo u%), where for m sufficiently large so that supp(fi) C Bm,
uly e C*Y(By, x (0,00)) N C(B,, x [0,00)) and satisfies

uy = Lu+ Vu —~uP in By, x (0,00);
(3.2) u(z,0) = fi(z), for € Bpy;

u(z,t) =0, for x € B, and t > 0.

Thus (3.1) will follow if we show that
(3.3) U,(nl)k — ugln)l > Ufj)k — ugi)l, for (z,t) € Bam % (0,00) and m,k = 1,2, ...

Fix m and k and let W; = Uf?i)k — uégl By the strong maximum principle,

Wi > 01in By, x (0,00). We have

ow;
ot

(UD (@)= (ul) (w,0))"
h Gl ’t — m,k:' 2m
where Gi(e.1) = = e

Since f1 < f3, it follows from the maximum

principle in Proposition 4 that UfnZ)k > Ufnl)k and ugi)l > ugln)l One can easily check
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p_

= r_zp, for 0 <y < z < oo is increasing in each of its

that the function H(z,y)

variables. Thus, we have
(3.5.) Gy > Gy > 0.

Letting Z = Wy — W, and using the fact that Wy > 0, we obtain from (3.4) and
(3.5) that
0z
(3.6) LZ+(V = G)Z ~ 5 <0,
Noting that Z(z,0) = 0 for * € By, and that Z(z,t) = 0 for z € 8By, and

t > 0, it follows from (3.6) and the standard linear parabolic maximum principle

that Z > 0. 1.

Proof of Theorem 2. By Proposition 1, it suffices to consider the case f = 0.
We need to show that ug;mer = 0. We will build an appropriate family of test
functions which will be compared to ug;maer. Fix € € (0,1). For R > 1, choose
¢r(z) € C*(Bg) such that

(3.7) or(x) = (14 |2)7 (R — |z|) 777, for |2] > e,

and such that

4 ox;

i,j=1

"9 "L 02
(3.8) > aﬁﬂ + ) f;j| < Cehr(z), for 2] < e,
i=1 ! J

where C. > 0 is independent of R. This is possible because from the definition of

¢r in (3.7), it follows that the inequality in (3.8) holds for |z| = e. Define
ug(z,t) = ¢r(z)exp(K(t + 1)), for x € Br and ¢t > 0.

We have
exp(—K(t 4+ 1))(Lug + Vugr — ’yu% — ag—tR)({L',t)
(39 = Lon() + Von(s) — (o) exp(K(p— 1)(t +1)) — Kén(a),

for x € R® and t > 0.
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We will show below that

Lor
¢k

From (3.9) and (3.10), we conclude that there exists a K independent of R such

(3.10)

is bounded above uniformly in R.

that
Our
(3.11) LuR+VuR—’yu%—W§0for (z,t) € Br x (0,00).
Since ug;maz(z,0) = 0, ug > 0, and lim, ,5p, ur(z,t) = oo, it follows from

(3.11) and the maximum principle in Proposition 4 that

(3.12) Uo;maz(2,t) < upg(z,t), (z,t) € Br x [0, 00).

Letting R — oo, it follows from (3.7) and (3.12) that
Uo;maz(2,t) =0, (z,t) € (R" — B¢) x [0, 00).

Since € > 0 is arbitrary we conclude that u = 0.
We now return to prove (3.10). Letting r = |z| and resolving L into spherical

coordinates, we have

92
L =A(x) 52 + B(l’)—r + terms involving differentiation not only in r.

By assumption, there exists a C' > 0 such that 0 < A(z) < C(1 + |z])* and

|B(z)] < C(1+ |z|), for x € R™. A simple, direct calculation now reveals that

(3.10) holds. O

Proof of Proposition 2. i-a. Let u,, v denote the solution to u; = (L + V)u in
B, x (0,00) with u(z,0) = 0 in By, and u(z,t) = 1 on 0B, x (0,00). By the
maximum principle, uniqueness holds for BL(L, V) if and only if limy,, o0 tm,v =

0. We will show that if V' is bounded from above and limp, o0 tmo = 0, then
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limy 00 Um,v = 0. Let A = sup,cgn V(2) and define Z(z,t) = um,o(z,t)exp(At).
Then LZ +V Z — %—f <0in By, x (0,00), Z(2,0) = 0 in By, and Z(z,t) > 1 on
0By, x (0,00). Thus, by the maximum principle, 0 < tp v < upm oexp(At) and
consequently, limy, o0 Um,v = 0.

i-b. The proof is very similar to the proof of (i-a).

it-a. Denote by u, the function that was called u,, ¢ in the proof of part(i). We
need to show that lim,, st = 0. Continue the function ¢ appearing in the
statement of the proposition so that it is defined on all of R™ as a smooth, positive
function. By increasing A if necessary, we have Lo < \¢ in R". Let Up,(z,t) =
mﬂﬁ%e}(p(”)' Then LU,, — aaLtm < 0in By x (0,00), Up(2,0) > 0 in By,
and Up,(z,t) > 1 on 0B, x (0,00). Thus, it follows from the maximum principle
that Up, >ty > 0in By, x (0,00). Using the assumption that lim ;o ¢(z) = oo,

we obtain limy, .o Uy = 0, and thus, lim, o0 Uy, = 0.

it-b. Assume to the contrary that uniqueness does hold for BL(L,0). Let Z(z,t) =

exp(—AMt)p(z) in (R™ — Bpy) x [0,1]. By assumption, we have LZ + % > 0. in

(R™ — Bm,) X (0,1). For m > mg, let U, denote the solution to the equation

uy+ Lu=01in (By — Bm,) X (—00,1);
(3.13) u(z,1) = exp(—=\)¢(z) on By — Bumy;
u(z,t) = ¢(x) on (0By U OBp,) X (—oo,1).

By the maximum principle,
(3.14) Z <Up in (Bpy — Bmy) % [0,1].

Now Let V,,, denote the solution to
ut + Lu =0 in (Bp — Bm,) X (—00,1);

(3.15) u(z,1) = exp(—N)¢(x) on By, — Bpy;

u(z,t) =0 on 0B, x (—o0,1), u(x,t) = ¢(x) on OB, X (—oc,1).
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We will now show that the uniqueness assumption for BL(L,0) guarantees that

(3.16) lim Up = lim V.

m— 00 m— 00

Let Wy, = Uy, — Vi From (3.13) and (3.15) we have

85@ + LW, =0 in (By — Bm,) X (—o0,1);

(3.17) Wn(z,1) =0 on By, — Buy;
W(z,t) = ¢(x) on OBy, x (—o0,1), Wp(z,t) =0 on 0By, X (—o0,1).
Let vm(z,t) = cum(z,1 —t), where u,, is as in part(ii-a) and ¢ = supj,|=p,, ¢(y)-

Then v,, satisfies ag;“ + Loy, = 0in (By, — Bm,) X (=00, 1). Taking into account

the boundary conditions, we conclude from (3.17) and the maximum principle that
0 < Wpn(z,t) <vm(x,t) = cum(x,1 —t). We have assumed that uniqueness holds
for BL(L,0) which is equivalent to the assumption that lim,, o tm = 0. Thus we
conclude that lim,, oo Wy, = 0, which proves (3.16).

From (3.14) and (3.16) we conclude that

(3.18) Z < lim Vi in (R" — Bp,) % [0,1].

m— 00

By the maximum principle,

(3.19) h_I)Il Vin <max( sup o¢(y),exp(—A) sup ¢(z)) in (R"™ — Bp,) X [0,1].
mores ly|=mo lz|>mo

By the assumption on ¢ in the proposition, there exists an zg € R™ — B, such that
¢(xo) is strictly larger than the righthand side of (3.19). Recall that Z(z0,0) =
¢(xo). Using these two facts along with (3.18) and (3.19) gives a contradiction.

Thus, in fact uniqueness for BL(L,0) does not hold. O

Proof of Theorem 3. We must show that ug,;mar # 0. Recall from its construc-
tion that wo;mer = limpm— o0 Um, where Uy, > 0 satisfies the semilinear equation in

B, and lim,; 9B, Un(z,t) = oo, for t > 0.
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By assumption, uniqueness does not hold for BL(L,0). Thus there exists a func-
tion wg # 0 satisfying (wp)¢ = Lwg, wo(z,0) = 0 and SUPg<s<7 SUP e Rn lwo(z,t)| <
oo, for all T' > 0. In fact then, there exists a nonnegative function w* # 0 satis-
fying the same conditions. To see this, note that if wy does not change sign, then
we can choose w™ = fwy. Thus, assume that wg changes sign. Fix T' > 0 such
that supg<;<7 sup,egn wo(z,t) > 0. Let wi denote the solution to uy = Lu in By,
with u(z,0) = 0, for € B,,, and u(x,t) = N, for x € 0B, and t > 0, where

N = supgci<r Sup,epn wo(z,t) > 0. By the maximum principle,

(3.20) max (0, wp) < wh, 2 eR", 0<t<T,

m?

and w is monotone nonincreasing in m. By the standard compactness argument,
it follows that w™ = lim,,— . w}, is a solution to BL(L,0), and by (3.20), w* > 0.

Now let Z = kw™, where k > 0. Then

(3.21) LZ+VZ —~ZP — %—f :VZ_»yZP:kaJr(%_(kar)p—l)_

Since w™ is bounded on R™ x [0,7T] and since by assumption, inf,¢gn %(:1:) > 0,
it follows that the right hand side of (3.21) is nonnegative on R™ x [0,T] if £ > 0
is chosen sufficiently small. Since Z(z,0) = 0, it then follows from (3.21) and the

maximum principle in Proposition 4 that
Un > Z, on By, x [0,T].

Letting m — oo, we conclude that ug.mes > kw™ in R™ x [0, 7. O

(2)

Oimaz denote the maximal solution for

Proof of Proposition 3. Let u
NSo(L,Vi,~i). In light of Proposition 1, to prove the theorem, it suffices to show

that

(3.22) ul) <)

O;mazr — “0Ojmax”
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Similar to the proof of Proposition 1, we have u(()i)mar = limy oo lMp 500 vaf)ka

where Ur(rf)k solves (2.5) with V,~ and f,, replaced respectively by Vi,v; and 0.

Thus it suffices to prove that

3.23 U ZU(I), for (z,t) € By X (0,00) and m, k= 1,2, ...
m,k m,k
(1)
Since LU, + ViU, — (@ — Dk =y, while LUP), + ViU, —
aU(Q)

NUD P — =28 = g+ (Vi = VAU, + (12 = 1)UL < ~om i, (3.23)

follows from the maximum principle in Proposition 4. O
We prepare for the proof of Theorem 4 with the following result.

Proposition 6. Let {f,,}5°_; be an increasing sequence of nonnegative compactly

supported functions satisfying lim,, oo fm = 0o. Then

Uoso;min = "}1_1;%0 U f,.1min
and
Uoosmar = lim Uf, imazx
m—o00

exist and are independent of the particular sequence {fn}. They solve NS with

wnitial condition f = oo and they are monotone nonincreasing in t. Furthermore

(3.24) w*(z) = lIm Uegymin(z, 1)

t—o0

is @ solution to (1.2) and

(3.25) Winar(T) = M Useman(T,1)

t—o0
is the mazimal, nonnegative solution to (1.2).

Proof. By the maximum principle and the construction of minimal and maximal

solutions, % ¢, .min and U, .ma, are monotone in m. Thus, the existence of the limits
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and the fact that weo;min and Ueo;mas satisfy NS with initial condition f = oo follow
from the standard compactness argument and the a priori bounds in (2.1). The
fact that the above procedure is independent of the particular sequence follows from
the existence plus the fact that given two such sequences, one can construct a new
increasing sequence of compactly supported functions using infinitely many of the

functions from each of the two original sequences.

We now turn to the monotonicity in ¢. Fix tg > 0. Let vy, (z,t) = us, min(z,t +
to) and v(z,t) = Uso;min(2,t + to). By the already-proved part of the theorem, we
have lim, o0 v = v and v solves NS with initial condition f(2) = teg;min(z,t0).
Let Z be any solution to NS with initial condition f(z) = woo;min(z,tq). Since
vy, is the minimal solution to N.S with initial condition f(z) = uy,,min(z,t0) and
since U, min(Z,t0) < Uosoymin(2,10), it follows from the maximum princple and
the construction of minimal solutions that v, is less than or equal to the minimal
solution of NS with initial condition f(z) = so;min(z,tq). Consequently, v, < Z,
and letting n — oo gives v < Z. Thus v 1s in fact the minimal solution of NS with
initial condition f(z) = weo(x,tp). But then again by the maximum principle and
the construction of minimal solutions, and by the definition of %sc;min, it follows

that v < Uso;min, which proves the monotonicity of uoe;min in t.

Now let V(z,t) = too;maz(2,t+1tg). By the already-proved part of the theorem, V/
is a solution of N.S with initial condition f(z) = too;maz(,t0). Thus, V is less than
or equal to the maximal solution of NS with initial condition f(z) = tec;maz(2,t0),
and by the maximum principle, the construction of maximal solutions, and the
definition of so;maz, the maximal solution of NS with initial condition f(z) =
Uoo:maz (2, 10) 1s less than or equal t0 Use;mazr- Thus V' < teemaz, which proves the

monotonicity of Use:maez 10 t.

We now show that w* and wpmers are solutions to (1.2). Let wvs(z,t) =
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Uoo;min(Z,t + s). Then from the monotonicity in ¢, the standard compactness
argument and the a priori bounds in (2.1), it follows that lim, ., v, exists and
solves NS. Since w*(z) = lims_, o vs, we conclude that w* is a solution to (1.2).
A similar proof works for w,qz.

Finally, we show that w4, is the maximal nonnegative solution to (1.2). To
show this, we will prove that if w is a nonnegative solution to (1.2), then
Usosmaz(2,t) > w(z) for (z,t) € R™ x [0,00). From the definition of %ec:maz,
it suffices to prove the above inequality with wsc.maez replaced by uy, .mer and
R™ replaced by B;,_ for m sufficiently large, where lim,, oo [, = co. From the
construction of the maximal solution, it follows that uy, maer = limg_ U,Em),
where U,Em) solves the semilinear equation in By, U,Em)(l’,()) = fm(z) in By and
lim, 58, U,(Cm)(:z:,t) = oo for t > 0. Thus, it suffices to show that U](cm)(l‘,t) > w(x)
in By, x[0,00). Since w satisfies the semilinear parabolic equation, it follows from
the maximal principle in Proposition 4 that U,(Cm)(a:,t) > w(z) in By x [0,00) if [
satisfies f,, > w in B;. Since f,, is increasing and converges pointwise to oo, we
can construct a sequence [,,, satisfying lim,, o, [, = co and such that f,, > w on

B; . This completes the proof of the maximality of wpqz. O

Proof of Theorem 4. . The ground work for the proof has been prepared in
Proposition 6 above. Note that the claims that w* solves (1.2) and that there exists
a maximal solution w4, to (1.2) follow from Proposition 6. The key additional

step is the following inequality:
(326) Uocoymar — Uocoymin < Uo;maz-

Letting t — oo in (3.26) and using (3.24) and (3.25) shows that if wy,as > w*, then
uo;maez 7 0. This, in conjunction with Proposition 1, proves that uniqueness does

not hold for NSy for any f and completes the proof except for (1.4).
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From the definition of #oo;maz and tUee;min in Proposition 6, (3.26) will follow if

we show that

(327) Ufimar — Uf;min < U0, maz>

for compactly supported, nonnegative f. From the construction of the maximal
solution, U f.mar = liMy, oo limg o0 Ufnji)k and U fymin = iMoo u%{), where for m
sufficiently large so that supp(f) C Bam, U;{)k satisfies (2.5) with f,,, replaced by
f and u satisfies (3.2) with f; replaced by f. Thus, (3.27) will follow if we show

that
(3.28) ULl —uld) < U in By % [0,00).

Let W = Ufnf)k — qu It follows from the maximum principle in Proposition 4 that

W > 0. From that maximum principle, (3.28) will hold if we show that

ow
(3.29) LW+ VW —~yWP — o > —thm & In Byy, x [0, 00),

where ¥,  is as in (2.5). We have LW +VW — % = —Umk —I—Py[(Ufn{)k)p — (ué{r)l)p]
Thus,

ow
(8:30) LW + VW =y W? = S =~ e +9[(U) ) = (wi)? = (U — a7,

Now (3.29) follows from (3.30) and the inequality ¥ —a? —(b—a)? > 0, for 0 < a < b.
We now turn to the proof of (1.4). Let 8 = sup,cps VT(z) and let a =
infyepr v(z). By assumption, a > 0 and we may assume that 3 < oo since other-

wise there is nothing to prove. Define

_1_

H(t) = { (H7a jexp(—(P— 1)Bt))” 7T, if B> 0
(m)ﬁ, if 3=0.

Then an easy calculation shows that

oH
(3.31) LH +VH —yH" — &= <0.
29



By the construction of the minimal solution, uy, .min = limjoc Um 1, where for [
sufficiently large so that supp(fm) C Bi, tum, solves (3.2) with f; replaced by fi,
and B, replaced by B;. By (3.31) and the maximum principle of Proposition 4, it
follows that wy,, (z,t) < H(t) for (z,t) € By x [0,00). Thus, uy, min(z,t) < H(t)
for (z,t) € By x [0,00). Letting m — oo and then letting t — oo now shows that
(1.4) holds.

. By the construction of the maximal solution, ug;maer = limpy oo limg_ oo Uff?k
where UY solves (2.5) with f,, replaced by 0. Let ¢ > 0 and define W(z,t) =
U,(y?) (z,t+1o). It follows by the maximum principle in Proposition 4 that W > Uff’)k
on B, x[0,00); thus Ur(r?,)k is monontone nondecreasing in ¢ and the same is true of
Uo;mar- By the same type of argument used to show that w* solves (1.2), if follows
that limy_, oo wo;maz solves (1.2). By assumption, w = 0 is the only nonnegative
solution to (1.2); thus, limy_ oo Uoymar = 0. In light of the monotonicity in ¢, we
conclude that ug.maer = 0. This proves uniqueness for NSy, and in conjunction with

Proposition 1, uniqueness for all f. a

4. Proofs of Theorems 5 and 7. We will need a semilinear elliptic maximum

principle.

Proposition 7. Let D C R™ be a bounded domain and let 0 < uy,us € C*(D) N
C(D) satisfy Luy + Vuy — yul < Lug + Vuy —yub in D, and uy; > us on 9D.

Assume that V < 0. Then uy > ug in D.

Proof. Let W = u; —uy and define H(z) = %, ifW(z) #0,and H(z) =0

otherwise. Then H > 0 and we have LW +(V — H)W <0in D and W > 0 on 9D.

Since V. — H < 0, it follows from the standard linear elliptic maximum principle

that W >0 in D. O

Proof of Theorem 5. i-a. The result follows directly from Theorem 2.
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i-b. Under the assumption on the coefficients, the right hand side of (1.4) equal 0
and thus w* = 0. Therefore, by Theorem 4, it suffices to show that there exists a

nontrivial, nonnegative solution to the elliptic equation
(4.1) aAw —w? =0 in R".

We note that if a nontrivial, nonnegative solution of (4.1) exists for & = o, then one
also exists for @ = aa, if as > ay. The reason for this is as follows. The maximal
nonnegative solution wpq, to (4.1) is obtained as Wmqee = Moo My, o0 Wi &
where w,, r satisfies aAw — w? in By and w(z) = m on 0Bj. (The existence of
Wk follows from the method of upper and lower solutions—see the paragraph
following (4.12) for more detail.) To distinguish between «;, 1 = 1,2, we will use
the notation wgk and w%)ax We have alAwg?k — (wfi’)k)p = 0 while

(0%
a1 Awl?, — ()P = (a1 — az)Aw), = (5 -

(2)
1 P <.
ao )(wm,k) —

(1)

m,k

Thus, by the elliptic maximum principle in Proposition 7 wg?k > w in By, and
we conclude that if wg,%()w # 0, then wg,%()w # 0.

In light of the above, we may assume without loss of generality that o(z) =
C|z)?*e for |z| > 1, where ,C > 0. Let 0 < h € C'(R") satisfy h(z) = |z|* for
|z| > 1, where § = 57 Writing w = hi and dividing through by A, one sees

that the existence of a positive solution to (4.1) is equivalent to the existence of a

positive solution to
(4.3) AAw 4+ BVw + Vw — w? =0 in R",

where A(z) = C|z|?, B(z) = 206z, and V = C6(8 + n — 2) for |z| > 1. To show
that there exists a positive solution to (4.3) we will show that that w* # 0 for the

parabolic equation

(4.4) us = AAu + BVu + Vu—uP =0in R™ x (0, 00).
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Let ¢5 = (C6(6 +n — 2))17—;1 (Note that if we had V = Cé(6+n —2) on all of
R™, then the constant ¢5 would be a positive solution to (4.3).) For m > 1, let uy,

denote the solution to

uy = AAu + BVu, (z,t) € (B, — By) x (0,00);

(4.5) u(z,0) =c¢5, * € By, — By;

u(z,t) =0, x € 0B, UJBy,t > 0.
By the linear maximum principle, 0 < u,, < ¢5 and u,, 1s nondecreasing in m and
Uy, _ p—1

—uP =
Bt —C(; Um Uy, =

nonincreasing in t. We have AAu,,, + BVu,, + Vum —ub —
um(cg_1 —ul~1) > 0in (B, — By) x (0, ). Recalling the definition of w* in (1.3),

we conclude from the maximum principle in Proposition 4 that

(4.6) w*(x) > lim lm wmy,(z,t).

T {Soo m—oo
Let @, denote the solution to (4.5) when the boundary condition u(z,t) = 0 on
0B, is changed to u(z,t) = c¢5. Note that by the maximum principle, @y, is
nonincreasing in m. By the standard compactness argument, U = lim,, o0 %, and

A

U = limy,—s00 tUm both solve

u; = AAu+ BVu, (z,t) € (R, — B1) x (0, 0);
(4.7) u(z,0) = cs, * € R" — By;

u(z,t) =0, (z,t) € 0By x (0,00).
Because of the bounds given above on A and B, uniqueness holds in the class of
bounded solutions for (4.7) as we shall now show. Thus we conclude that U = U. To
see that uniqueness holds, note that the difference v of any two bounded solutions

to (4.7) will satisfy the following equation for some C' > 0 and every m > 0:
v = AAv + BV, (2,t) € (Bm — B1) x (0, );

v(z,0) =0, z € By, — By;

v(z,t) =0, (z,t) € dB; x (0, 00);

lv(z,t)| < C, (x,t) € OBy % (0,00).
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One can check that v(z,t) = (1 + |z|*)exp(\t) satisfies AAY + BV — %—lf <0,
if A > 0 is sufficiently large. Thus, taking into account the boundary conditions,
it follows from the maximum principle that |v(z,t)] < C(1 + |m|?)"'¢(z,t) for
(z,t) € By x [0,00). Letting m — oo gives v = 0.

Letting r = |z|, the radial form of the elliptic operator on the right hand side of
(4.7) is Cr? £ a >+ C(n—1428)rZ, for r > 1. Letting [ =n —2+2§ > 0, it is easy
to show that ¢, (z) = s = e l_ll solves AA¢ + BV¢ =0 in B, — By with ¢(z) =
on 0By and ¢(x) = ¢5 on 0B,,. By the maximum principle, tmy,(2,t) > ¢m(x).
Letting m — oo and using the fact that U = U, we conclude from (4.6) that
w*(z) > es(1 —|z|7") in R — By.

11-a. By Theorem 4, it suffices to show that there is no positive solution to the

elliptic equation
(4.8) aw” —wP =0 in R.

Let 0 < h(z) € C*(R) satisfy h(x) = |z| for |z| > 1. Writing w = h and dividing
through by AP, one sees that the nonexistence of a positive solution for (4.8) is

equivalent to the nonexistence of a positive solution to

(4.9) aw'" +bw' +Vw —wP =0 in R,

where a = b=2ak and V = . By the assumption on «, it follows that

hp hp—1> hP

a(z) < C(1+ |.TL‘|) , b(z)] < C(1+ |£L’|) and V(m) < C, for some C > 0. Thus, it

follows from Theorem 2 that uniqueness holds for the parabolic equation
(4.10) up = au” + bu' + Vu—u?P =0in R x (0, 00)

associated with (4.9). But then by Theorem 4, the w* corresponding to the equation

(4.10) must coincide with the maximal nonnegative solution of (4.9). Thus to
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complete the proof, it suffices to show that w* = 0 for (4.10). Since h” is compactly
supported, it follows that V(:v) = 0 except on a bounded set. (This is where the
one-dimensionality enters since A|z| = 0 only in dimension 1. Also, note that if 14
were everywhere nonpositive then we could conclude from (1.4) that w* = 0.)

Choose mg > 0 such that V =0 on R — (—=mg, mg). Let ¢ denote the minimal
positive solution to

aw'" +bw' —w? =0 in {|z| > mo};
(4.11)

w(+mg) = oc.

The existence of ¢ is proven below. Let U(z,t) = pil T T + ¢(x) for |z| > mg

and t > 0. Using the inequality (z 4+ y)? > 2P 4+ y?, for z,y > 0, it is easy to check
that aU"" +bU' —UP —U; <0, for |z| > mg and t > 0. Since U(+myg,t) = U(z,0) =
oo, it follows from the maximum principle in Proposition 4 that any solution u of
(4.10) with initial condition f € C(R) satisfies u(z,t) < U(x,t) for |z| > mg and
t > 0. Letting ¢ — oo and recalling the definition of w* in Theorem 4 then shows
that w* < ¢. We also know from Theorem 4 that w* is a solution to (4.9). To show
that in fact w* = 0, we will show that the zero solution is the only nonnegative
solution to (4.9) which is dominated by ¢. The proof will require a number of steps.
We begin by constucting the function ¢.

Let {5, }52 be an increasing sequence of smooth functions satisfying ¢, (z) = n
for |z| < mg — %, Yn(z) = 0 for |z| > mg and 0 < ¢, < n. For m > mg, let ¢y,
denote the solution to

aw” +bw' +Vw —w? + 1, =0, |z| < m;
(4.12)
w(+m) = 0.

The existence of ¢, follows by the standard method of upper and lower solu-

tions. Recall that a lower (upper) solution satisfies (4.12) with the equal sign in

the first line changed to > (<) and the equal sign in the second line changed to
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< (>). If there exists a lower solution ¢ and an upper solution ¢  such that

o < 95—'171,117 then there exists a solution ¢, satisfying ¢, , < dmn < 49—'17—1,71
[12]. Clearly, ¢, ,(z) = 0 is a lower solution and ¢}, , (z) = C' is an upper solution
if C' (depending on n) is sufficiently large. By the elliptic maximum principle in
Proposition 7, ¢ » 1s nondecreasing in n and m. Actually, Proposition 7 does not
apply directly since V is not nonpositive in all of R. However, recalling how the
operator in (4.12) was obtained from the original operator in (4.8), it follows that
®m,n solves (4.12) if and only if h¢y, , solves aw’ — wP + hPy, = 0 for |z| < m
and w(+m) = 0. From this and the fact that Proposition 7 holds for the original
operator, it follows that the maximum principle holds for the transformed one.

Using the standard compactness argument, it will follow that ¢, = lim, o0 dm.n
is a solution to aw’ +bw’ —w? = 0in {mg < |z| < m} with w(£m) = 0 if we show
that {¢m n}o2, is uniformly bounded on (mg + €, m) for each € > 0.

To show the uniform boundedness, let g(z) = A(|z| — mo)_P%l. An easy cal-
culation shows that ag” + bg’ — g? < 0 on (mg,m) if A > 0 is chosen sufficiently
large. Thus, by the elliptic maximum principle in Proposition 7 (recall that V=0
in (mg,m)), it follows that ¢, » < g(z) on (mg, m), proving the uniform bounded-
ness.

We now prove that limg|jm, #m(z) = co. Let Z(z) = A(|z| —m + 26)_1’—% for
mg — € < |z| < mg + €. One can check that there exists a p > 0 such that if

e, A\ € (0,p), then

(4.13) aZ" +02' +VZ —~ZP > 0in {mo — e < |z| < mg + €}.
Choose A > 0 even smaller if necessary so that

(4.14) Z(z) < ¢pm,1(z), for |z| =mo+e.

Now extend Z to be smooth and positive on {|z| < mg — €}. Since ¢, (2) = n for
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|z] < mg — %, it is clear that for sufficiently large n,
(4.15) aZ"+bZ’+VZ—7Zp+¢n >0, for |z| < mg —e.

From (4.13)-(4.15) and the maximum principle in Proposition 4, it follows that
Z(z) < ¢mnlz) for |z|] < mo + € and n sufficiently large. Letting n — oo,

we obtain liminf|,|m, ¢m(z) > /\(26)_1’—%. As € is arbitrary we conclude that

M| mg @m () = o0.

Letting m — oo and using the standard compactness argument and the maxi-
mum principle, it follows that ¢ = limy, 00 ¢ is a positive solution to (4.11). By
the maximum principle, any positive solution w to (4.11) satisfies w > ¢y, . Thus
w > ¢, proving that ¢ is minimal.

For g > 0 define

d? d

_ el 7 a1
Ag—ade—l—bdx—l—V Yg

and recall that V = 0 in a neighborhood of +00. We will now show that ¢ is
a positive solution of minimal growth at f£oo for the operator A4. What this
means is that if W > 0 and A¢W = 0 in a neighborhood of +oo then ¢ < CW
in a neighborhood of +oo, for some C' > 0. By the maximum principle and the
construction of ¢, it will follow that ¢ is a positive solution of minimal growth
at +oo for A if we show that for m > 2mg the solution Wy, to AyW,, = 0 in
(2mg,m), W(2mg) = ¢m(2mg) and Wy, (m) = 0 satisfies limy, oo Wi, = ¢. An
identical argument of course works at —oo. Since ¢, satisfies Ay  oém = 0 in
(2mg, m) and has the same boundary values as W,,, and since ¢,,, < ¢, it follows
from the maximum principle that W, < ¢,,,. Thus letting W, = lim,, 00 Wiy, we

have

(4.16) We < ¢, for |z]| > 2my.
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Converting Ag, ¢m = 0 and AgW,, = 0 into integral equations by integrating
twice, and using the boundary conditions, and then letting m — oo and using the

monotone convergence theorem, we obtain

We(e) = o(2ma) —ewe. [ dyess(= [ Zirjan)+

o /2 m dy exp(— /2 i é(r)dr)nz i a(lz)expzz; é(r)dr)¢p_1(z)Woo(z)dz
and

o) = ét2zmo) o [ dyesp(= [* Zryar)
4.18 . L, L e )
o /modye}‘p“/m()g(”d” /m aé) eXp</2mO9<r>dr>¢P—1<z>¢<z>dz,
where

cw., = ¢(2mo)+

/200 dl’eXp(_/zr E(T)dr)/; 1 exp(/:’ é(r)dr)gép—l(y)wm(y)dy’

mo mo a mo a(y) mo a

and c4 1s defined by the same formula except that the term W, is replaced by
¢. By (4.16) it follows that cw_ < ¢4. If it were true that cw.. < ¢4, then from
(4.17) and (4.18) we would have W/ (2mg) > ¢'(2my). Since W (2mg) = ¢(2myo),
this would contradict (4.16). We conclude that ew,_ = ¢4. Thus, since Wy, and ¢
and their first derivatives agree at 2mg, and since they solve the same second order
linear equation, it follows from the uniqueness theorem for ODE’s that W, = ¢.
This completes the proof that ¢ is a positive solution of minimal growth for A4 at
+o0.

Let Z be a solution of minimal growth at +oo for A,«. Since w* < ¢ and since
¢ is a solution of minimal growth at +oo for Ay, it follows from the maximum

principle and the above method of construction of solutions of minimal growth that

¢ < CZ in a neighborhood of +oo, for some C' > 0. Thus, we have w* < CZ in
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a neighborhood of oo, where w* solves A,«w* = 0 in all of R and Z is a positive
solution of minimal growth at +oo for A,»«.

We will show that the operator A, is so-called subcritical and that for a sub-
critical operator, it is impossible for a positive solution in the whole space to be
dominated at oo by a solution of minimal growth; thus we will conclude that
w* = 0. For an exposition on criticality theory for elliptic operators, see [11, chap-
ter 4], and for the result we have just mentioned, see [11, Theorem 7.3.9]. However,
since we are dealing with the one-dimensional case in which it is possible to keep
everything self-contained without too much work, we will derive everything we need
below.

An elliptic operator of the form A = a(x) (;‘l—; +b(x) % + ¢(x) is called subcritical
if there exists a function f > 0 satisfying Af < 0in R. If 2 > 0 and we define
the so-called h-transformed operator A" by A" f = %A(hf), then clearly A" is
subcritcal if and only if A is. Similarly, if p > 0, then the operator pA is subcritical

if and only if A is. Finally we note that in the case ¢ = 0, the operator is subcritical

if and only if

(4.19) /OO d excp(— /0 b (y)dy) < 0.

oo a
To see this, first assume that f > 0 satisfies Af = —g < 0. Solving Af = —g¢g
directly via two integrations reveals that f > 0 is impossible if (4.19) does not hold.
On the other hand, for any compactly supported g > 0, if one solves Af = —g for

f, one finds that a positive solution f does exist if (4.19) holds.

Assume now that w* # 0. Then by the strong maximum principle, w* > 0.

The operator Gj—; + b% + V was obtained from the original operator L = a%
by an hA-transform followed by multiplication by the scalar —hpl_l. Thus the op-

erator A, is obtained via h-transform and scalar multiplication from the op-

erator L — ~(w*)P"'h?~'. The operator L — v(w*)?P~'h?~1 is subecritical since
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(L — v(w*)P~Th?=1)1 < 0. Tt then follows that A, is subcritical.
Since w* > 0, we can make an h-transform with h = w*. Using the fact that

Aypxw* = 0, we obtain Ag: = a({d—; + B%, where B = b + QCL(QZJ—**)I. Recalling

that Z is a solution of minimal growth at +oo for A, and that w* < CZ in a

neighborhood of +00, we conclude that ¥ = wZ* is a solution of minimal growth at

+o0 for Ag: and that Y > (7 in a neighborhood of +o0, where Cy > 0. Now Ag:
is subcritical since A« is, and therefore (4.19) holds with b replaced by B. Thus,
we can define the function

M(z) = { S dyexp(= [ £()dz), @ >1

ffoo dy exp(— Oy g(z)dz), r < —1.

The fact that M solves Ag:]\l = 0 in a neighborhood of +oo and satisfies
lim|;| oo M(z) = 0 contradicts the fact that Y is a solution of minimal growth

bounded away from zero. Thus, we conclude that w* = 0.

11-b. We will prove the claim under the assumption that the condition on « holds
for + > 0. Under the assumption on the coefficients, the right hand side of (1.4)
equal 0 and thus w* = 0. Therefore, by Theorem 4, it suffices to show that there

exists a nontrivial, nonnegative solution to the elliptic equation
(4.20) aw” —w? =0 in R.

By the argument following (4.1), we may assume that a(z) = C|z|'TP+¢ for |z| >
mg, where €, C' > 0. The maximal, nonnegative solution wy,q, of (4.20) is obtained
as Wmap = lMp_yoo limy, 400 Wik where wy, ; satisfies aw” — w? = 0 in (—Fk, k)
with w(+k) = m.

Let W(z) = ¢(x —mO)H'PETl for © > mg and W(z) = 0 for © < mg. Then W is a
C? function except at z = myg. It is easy to check that if ¢ > 0 is sufficiently small,

then aW"” — WP > 0 for x € R — {mg}. One can easily check that the maximum
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principle in Proposition 7 goes through in the present case even though W is not

twice differentiable at mqg. Thus, wmpmer > W. O

Proof of Theorem 7. i. Let U(z,t) = uomaz(7,t) exp(—Clz|*(t + J)), for some

C,6 > 0. Then U satisfies

AU 4+ 4C(t+ 8§z - VU + (4)z]*(t +8)*°C* + 2nC(t 4 §) + V — C|z|*)U
(4.21)

— Cy exp(—Cylz|*)exp(C(p — V)|z|*(t + §))UP — Uy > 0 in R™ x (0, 0).

2
16C3
p—12

Fixing § = % and C' > we obtain from (4.21)

(4.22) AU +4C(t+8)x - VU + (2nC(t +6) + V)U —UP — U, > 0 in R™ x (0,9).

Note that the coeflicients of the operator on the left hand side of (4.22) satisfy the
requirements in Theorem 2. (They depend on ¢ unlike in Theorem 2, but this is
not important.) Thus, it follows from the maximum principle that for any R > 1,

the super solution in Br x (0,00) constructed in the proof of Theorem 2 is larger

or equal to U in Bg x (0,d). That is,
Ulz,t) < (1+|2))77 (R — |z|)" 77 exp(K (¢ + 1)) in Bg x (0,5).

Letting R — oo shows that U = 0 in R" x (0,4), and thus the same is true for
Uo;maz- As the original equation was time homogeneous, it is clear that in fact
Uo;mar = 0 In R™ x (0, 00).

i, Writing u(z) = exp((1 + |2|?)'*7)4 and dividing through by exp((1 + |z|?)'*7)
one sees that nonuniqueness for the initial condition f = 0 in (1.6) is equivalent to

nonuniqueness for the initial condition f = 0 in an equation of the form
(4.23) us = Au + BVu + Vu— Aul,

where B(x) - |§—| > Cylz|'t3, V > ¢ and 4 < C, for constants Cy,C > 0. Unique-
ness does not hold for BL(A+ BV, 0) as was shown in the remark following Propo-
sition 2. Thus, by Theorem 3, uniqueness does not hold for the initial condition
f=0in (4.23). O
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