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Abstract

We consider a model describing the waiting time of a server alternating between two
service points. This model is described by a Lindley-type equation. We are interested in
the time-dependent behaviour of this system and derive explicit expressions for its time-
dependent waiting-time distribution, the correlation between waiting times, and the distri-
bution of the cycle length. Since our model is closely related to Lindley’s recursion, we
compare our results to those derived for Lindley’s recursion.

1 Introduction

Consider a system consisting of one server and two service points. At each service point there
is an infinite queue of customers that needs to be served. The server alternates between the
service points, serving one customer at a time. Before being served by the server, a customer
must undergo first a preparation phase. Thus the server, after having finished serving a customer
at one service point, may have to wait for the preparation phase of the customer at the other
service point to be completed. Let Wn be the time the server has to wait before he can start
serving the n-th customer. If Bn is the preparation time of the n-th customer and An is the
service time of the n-th customer, then it is easy to see that Wn can be defined recursively by

Wn+1 = max{0, Bn+1 −An −Wn}, n > 1. (1.1)

A natural assumption in the above setting is that W1 = B1. This alternating service model
occurs in many applications. For example, this strategy is followed by surgeons performing eye
surgeries. Another example where (1.1) occurs comes from inventory theory, in particular from
the analysis of two-carousel systems. This application is considered in [9, 10, 13]. Specifically,
in Park et al. [13], the goal is to derive the steady-state waiting time distribution under specific
assumptions on the distributions of An and Bn that are relevant to the carousel application
considered. These results are extended in [14, 15, 16, 17], where the main focus is on the
steady-state distribution of the waiting time. Contrary to the above-mentioned work, this paper
focuses on the time-dependent behaviour of the process {Wn}. We are particularly interested in
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the distribution of Wn for any n, in the covariance between Wn and Wn+k, and in the distribution
of the length of C = inf{n > 1 : Wn+1 = 0 | W1 = 0}.

It should be clear to the reader that the recursion (1.1) is, up to the minus sign in front of
Wn, equal to Lindley’s recursion, which is one of the most important and well-studied recursions
in applied probability. Apart from trying to compute the above-mentioned quantities, another
goal of our research is to compare the complexity between the two models when it comes to
the analysis of the time-dependent behaviour. It is well known that for Lindley’s recursion,
the time-dependent waiting-time distribution is determined by the solution of a Wiener-Hopf
problem, see for example [2] and [7]. In Section 2.1, we explore the possibility of an analytic
approach. We derive an integral equation for the generating function of the distribution of Wn,
and conclude that this integral equation is equivalent to a generalised Wiener-Hopf equation,
which cannot be solved in general. This makes it appear that (1.1) may have a more complicated
time-dependent behaviour than Lindley’s recursion. However, a point we make in this paper is
that this is not necessarily the case. Using probabilistic arguments, we analyse the distribution
for exponential and phase-type preparation times. The expressions we obtain are remarkably
explicit. Thus, Equation (1.1) is a rare example of a stochastic model which allows for an
explicit time-dependent analysis. The reason is that, if B1 has a mixed-Erlang distribution, we
can completely describe (1.1) in terms of the evolution of a finite-state Markov chain; for details
we refer to Section 5. We illustrate the difference in complexity between (1.1) and Lindley’s
recursion in Section 4.

We obtain similar explicit results for the distribution of the cycle length C. In particular,
we do not need to resort to the usage of generating functions, as is necessary when analysing
the corresponding quantity in Lindley’s recursion. Note that the interpretation of C for our
model is completely different from the corresponding quantity for Lindley’s recursion. There,
C represents the number of customers that arrived during a busy period. In our setting, C
represents the number of pauses a server has until he needs to serve two consecutive customers
without any pause. In this sense C can be seen as a “non-busy period”.

If one cannot determine the limiting distribution function of the waiting time analytically,
but wants to obtain an estimation from a simulation of the system, then two relevant questions
are how big is the variance of the mean of a sample of successive waiting times, and how long the
simulation should run. For the determination of the magnitude of this variance it is necessary
and sufficient to know the covariance function of the process {Wn}. In Section 5.3 we compute
the covariance function for phase-type preparation time distributions, while we review existing
results for the covariance function for Lindley’s equation in Section 4.3.

This paper is organised as follows. In Section 2, we investigate several qualitative properties
of {Wn}. Specifically, we show that, in general, the generating function of the distribution of
Wn is determined by a generalised Wiener-Hopf equation and this equation is a contraction
mapping. In addition, we investigate several properties of the covariance function. We show
that, under weak assumptions, this function is of an alternating sign. Furthermore, we obtain
an upper bound for its absolute value, from which we conclude that the covariance function
converges to zero geometrically fast. Section 3 presents a detailed treatment of the special case
of exponentially distributed preparation times, which can be seen as an analogue of the G/M/1
queue. The analysis in this case is particularly tractable and leads to explicit and fairly simple
expressions for the distribution of Wn, the distribution of C, and the covariance between Wn

and Wn+k. These expressions are compared to the corresponding quantities for the G/M/1
queue in Section 4. This section also gives a representation for the transient G/M/1 waiting
time distribution which, to the best of our knowledge, is a new result. In Section 5 we return to
the alternating service model and extend the results of Section 3 to Erlang and mixed-Erlang
preparation times.
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2 Some qualitative properties

The goal of this section is to derive a number of qualitative results for the process {Wn}. In
particular, in Section 2.1, we derive an equation that determines the distribution of Wn, and
study some of its features, while in Section 2.2, we derive various properties of the covariance
between W1 and W1+k.

As mentioned before, we are interested in the stochastic recursion

Wn+1 = max{0, Xn+1 −Wn}, n > 1, (2.1)

with Xn = Bn+1 − An. Let X be an i.i.d. copy of X1 and let FX be the distribution function
of X. We assume that FX is continuous and that FX(0) = P[X 6 0] ∈ (0, 1). Under these
assumptions, the process {Wn} is regenerative, with the epochs n where Wn = 0 being the
regeneration points. Furthermore, it is shown in [14] that Wn converges in distribution to a
random variable W , which is the limiting waiting time of the server. Let C1 be first time after
time n = 1 that a zero waiting time occurs, i.e., C1 = inf{n > 1 : Wn+1 = 0}. Define also the
generic regeneration cycle as C = inf{n > 1 : Wn+1 = 0 | W1 = 0}. Note that, in general, C and
C1 have different distributions. Moreover, for a random variable Y we denote its distribution
(density) by FY (fY ). We can now proceed with the analysis.

2.1 An integral equation

A classical approach to Lindley’s recursion when studying the time-dependent distribution of
the waiting time is to consider the generating function of the Laplace transform of Wn; see, for
example, Cohen [7]. In this light, we first consider the generating function of the waiting times.

Therefore, define for |r| 6 1 the function

H(r, x) =
∞∑

n=0

rnP[Wn+1 6 x].

Notice that, since the distribution function of Xn+1 is continuous, (2.1) yields

P[Wn+1 6 x] = 1− P[Xn+1 −Wn > x] = 1−
∫ ∞

x
P[Wn 6 y − x]dFX(y).

Consequently, for the generating function we have that

H(r, x) = P[W1 6 x] +
∞∑

n=1

rnP[Wn+1 6 x]

= P[W1 6 x] +
r

1− r
−

∞∑
n=1

rn

∫ ∞

x
P[Wn 6 y − x]dFX(y)

= P[W1 6 x] +
r

1− r
− r

∫ ∞

x
H(r, y − x)dFX(y). (2.2)

Note that this equation is similar to the equation derived in [14, Section 4] for the limiting
waiting time distribution W . It would be interesting of course to be able to solve equation
(2.2) in general. To see to which extent this is possible, we investigate various properties of this
equation.

We first show that (2.2) can be reduced to a generalised Wiener-Hopf equation, assuming
that W1 and X have densities fW1

and fX on (0,∞). Under these assumptions, we see from
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(2.2) that H(r, x) has a derivative h(r, x) on (0,∞); therefore, by differentiating with respect to
x, (2.2) yields

h(r, x) = fW1
(x) + rH(r, 0)fX(x) + r

∫ ∞

x
h(r, y − x)fX(y)dy

= fW1
(x) + rH(r, 0)fX(x) + r

∫ ∞

0
h(r, u)fX(u + x)du. (2.3)

Notice that h(r, x) =
∫∞
0 h(r, y)δ(x − y)dy, with δ being the Dirac δ-function. Combining this

with (2.3), we obtain that∫ ∞

0
h(r, y)

[
δ(x− y)− rfX(x + y)

]
dy = rH(r, 0)fX(x) + fW1

(x).

This equation is equivalent to a generalised Wiener-Hopf equation; see Noble [11, p. 233]. It is
shown there that such equations can sometimes be solved, but a general solution, as is possible
for the classical Wiener-Hopf problem (arising in Lindley’s recursion), seems to be absent.

The fact that we are dealing with a generalised Wiener-Hopf equation could indicate that
deriving the distribution of Wn for our model may be more complicated than for Lindley’s
recursion. One point we make in this paper is that this is not necessarily the case.

The integral equation (2.2) has the following property, which is proven to be valuable in
overcoming the difficulties arising by the fact that we are dealing with a generalised Wiener-
Hopf equation. We shall show that the function H is the fixed point of a contraction mapping.
To this end, consider the space L∞([0,∞)), i.e., the space of measurable and bounded functions
on the real line with the norm

‖F‖ = sup
x>0

|F (x)|.

In this space we define the mapping Tr by

(TrF )(x) = P[W1 6 x] +
r

1− r
− r

∫ ∞

x
F (y − x)dFX(y).

Then, for two arbitrary functions F1 and F2 in this space we have

‖(TrF1)− (TrF2)‖ = sup
x>0

|(TrF1)(x)− (TrF2)(x)|

= sup
x>0

∣∣∣∣r ∫ ∞

x
[F2(y − x)− F1(y − x)] dFX(y)

∣∣∣∣
6 |r| sup

x>0

∫ ∞

x
sup
t>0

|F2(t)− F1(t)|dFX(y)

= |r|‖F1 − F2‖ sup
x>0

(1− FX(x))

= |r|P[X > 0]‖F1 − F2‖.

Since |r| 6 1 and P[X > 0] < 1, we see that Tr is a contraction mapping on L∞([0,∞)) with
contraction coefficient |r|P[X > 0]. Thus, iterating Tr is an approach in order to obtain H
numerically.

Summarising the above, we see that we can either find H exactly by solving a generalised
Wiener-Hopf equation, or numerically by iterating the mapping Tr. If this first step is successful,
then one may invert H exactly or numerically (by applying the Fast Fourier Transform) to obtain
values for P[Wn 6 x]. However, generalised Wiener-Hopf equations are not solvable in general,
and in the next sections we give a direct approach which leads to explicit solutions for P[Wn 6 x],
rather than its generating function H. However, we first investigate the covariance function,
and study some of its properties when Xn is generally distributed.
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2.2 The covariance function

Let c(k) = cov[W1,W1+k] be the covariance between the first and the (k+1)-st waiting time. In
Theorem 1 we show that the covariance between two waiting times is of alternating sign, while
in Theorem 2 we bound the absolute value of c(k) to conclude that the covariance function
converges to zero geometrically fast. The result of Theorem 1 is an expected effect of the non-
standard sign of Wn in Recursion (1.1), while the conclusion we draw from Theorem 2 reinforces
the results of Vlasiou [14], where it is shown that P[Wn 6 x] converges geometrically fast to FW .
We proceed with stating Theorem 1.

Theorem 1. The covariance function c(k) is non-negative if k is even and non-positive if k
is odd. If in addition, X has a strictly positive density on an interval (a, b), 0 < a < b, and
W

D= W1, then c(k) > 0 if k is even, and c(k) < 0 if k is odd.

In order to prove this theorem we shall first prove the following lemma, which is a variation
of a result by Angus [1].

Lemma 1. Let Y be a random variable and f a non-decreasing (non-increasing) function defined
on the range of Y . Then, provided the expectations exist,

cov[Y, f(Y )] > 0 (cov[Y, f(Y )] 6 0).

Furthermore, if

P[Y ∈ {y : f(y) strictly increasing (decreasing) in y}] > 0,

then
cov[Y, f(Y )] > 0 (cov[Y, f(Y )] < 0).

Proof. We prove this lemma only for f being non-decreasing. The proof for non-increasing f
follows analogously. We use the same argument as Angus [1]. Let Z be an i.i.d. copy of Y . So,
if f is non-decreasing, then we have that(

Y − Z
)(

f(Y )− f(Z)
)

> 0.

Furthermore, let IY be the subset of the domain of f where the function is strictly increasing,
i.e., IY = {y : f(y) strictly increasing in y}. Then, if P[Y ∈ IY ] > 0, we have that

P[
(
Y − Z

)(
f(Y )− f(Z)

)
> 0] > 0.

By taking expectations, and using the fact that Y and Z are i.i.d. we obtain

E[
(
Y − Z

)(
f(Y )− f(Z)

)
] = 2cov[Y, f(Y )],

which is non-negative, and strictly positive if P[Y ∈ IY ] > 0.

Proof of Theorem 1. For k = 0 the statement is trivial. For any fixed integer k > 0 let Xi = xi,
i = 2, . . . , k + 1, where for all i, xi ∈ R. Furthermore, define recursively the functions gi as
follows;

g1(w) = w and gi+1(w) = max{0, xi+1 − gi(w)}, i = 1, . . . , k.

It can easily be shown now that g1 is non-decreasing, g2 is non-increasing and, by iterating, that
gi is non-increasing if i is even, and non-decreasing if i is odd.
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Let the first waiting time be fixed; that is, W1 = w1. Then, it is clear that, for all i =
1, . . . , k + 1, the i-th waiting time will be equal to gi(w1), cf. Recursion (1.1). Now, write

cov[W1,W1+k] =
∫
· · ·

∫
x2∈R,...,xk+1∈R

cov[W1, gk+1(W1)] dP[X2 6 x2, . . . , Xk+1 6 xk+1].

From Lemma 1, we obtain that cov[W1, gk+1(W1)] > 0 if k is even and that cov[W1, gk+1(W1)] 6
0 if k is odd. This concludes the first part of the theorem.

Assume now that X has a strictly positive density on (a, b); therefore, for all a1, a2 ∈ (a, b),
with 0 < a1 < a2, we have that P[X ∈ (a1, a2)] > 0. We know already that for any set of fixed
constants {xi}, i = 2, . . . , k + 1, the functions gi are monotone (i.e., either non-decreasing or
non-increasing). Moreover, observe that if these constants have the property that xk+1 > xk >
· · · > x2, then gk+1 is strictly monotone in (0, x2).

Furthermore, since P[X ∈ (a1, a2)] > 0 and W
D= W1, we have that

P[W ∈ (a1, a2)] = P[max{0, X −W} ∈ (a1, a2)] > P[W = 0]P[X ∈ (a1, a2)] > 0,

which implies that P[W1 ∈ (a1, a2)] > 0 for all a1, a2 ∈ (a, b), with 0 < a1 < a2. So we have that
if x2 > a, then

P[W ∈ (0, x2)] > P[W1 ∈ (a, x2)] > 0,

which can be rewritten as

P[W ∈ {w : gk+1(w) strictly monotone in w}] > 0.

Therefore, by Lemma 1 we have that cov[W1, gk+1(W1)] > 0 (< 0) if k is even (odd).
Now, let S be the subset of Rk defined as follows,

S =
{
(x2, x3, . . . , xk+1) : xk+1 > xk > · · · > x2 > a

}
,

and let Sc be its complement. Then

cov[W1,W1+k] =∫
· · ·

∫
(x2,x3,...,xk+1)∈S

cov[W1, gk+1(W1)] dP[X2 6 x2, . . . , Xk+1 6 xk+1]+

∫
· · ·

∫
(x2,x3,...,xk+1)∈Sc

cov[W1, gk+1(W1)] dP[X2 6 x2, . . . , Xk+1 6 xk+1]. (2.4)

We know that the second integral at the right-hand side of (2.4) is greater than or equal to zero
if k is even and less than or equal to zero if k is odd. It remains to show that the first integral
at the right-hand side of (2.4) is strictly positive if k is even and strictly negative if k is odd.
Since we integrate over the set S, we have shown that cov[W1, gk+1(W1)] > 0 (< 0) if k is even
(odd). So it suffices to show that P[S′] > 0, where

S′ =
{
(X2, X3, . . . , Xk+1) ∈ S

}
=

{
Xk+1 > Xk > · · · > X2 > a

}
.

Indeed, take a partition {ai} of (a, b) such that ai = a + [i(b− a)]/k, i = 0, . . . , k. Then we have
that

P [Xk+1 > Xk > · · · > X2 > a] >

P [Xk+1 ∈ (ak−1, b) ;Xk ∈ (ak−2, ak−1) ; . . . ;X2 ∈ (a, a1)] =
k+1∏
i=2

P [Xi ∈ (ai−2, ai−1)] > 0,
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since X has a strictly positive density on (a, b).

This technique can be also applied to other stochastic recursions; for example, for Lindley’s
recursion the above argument shows under weak assumptions that the covariance between the
waiting time of customer 1 and k + 1 is strictly positive. Having seen that the correlations have
alternating sign, we now turn to the question of the behaviour of the covariance function c(k)
for large k.

Theorem 2. For every value of k we have that

|c(k)| 6 2 E[W1] E[X | X > 0] P[X > 0]k.

We see that c(k) converges to zero geometrically fast in k. This is consistent with the fact
that the distribution of Wn converges geometrically fast to that of W , cf. Vlasiou [14].

Proof. Write

cov[W1,W1+k] = cov[W1,W1+k ;C1 6 k] + cov[W1,W1+k ;C1 > k]. (2.5)

For the first term of the right-hand side of the above equation we have that

cov[W1,W1+k ;C1 6 k] =
k∑

j=1

cov[W1,W1+k ;C1 = j]

=
k∑

j=1

cov[W1,W1+k | C1 = j] P[C1 = j]. (2.6)

Since C1 = j, j ∈ {1, . . . , k}, implies that Wj = 0, from the Markov property we immedi-
ately conclude that W1+k is independent of W1. Therefore, for j ∈ {1, . . . , k}, we have that
cov[W1,W1+k | C1 = j] = 0. So (2.6) yields that

cov[W1,W1+k ;C1 6 k] = 0.

Thus, from (2.5) and Theorem 1 we have that

c(k) = cov[W1,W1+k ;C1 > k] > 0 (6 0), if k is even (odd).

Furthermore, observe that the following bounds hold.

cov[W1,W1+k ;C1 > k] 6 E[W1W1+k ;C1 > k] + E[W1]E[W1+k]P[C1 > k], (2.7)

cov[W1,W1+k ;C1 > k] > −E[W1+k]E[W1 ;C1 > k]− E[W1]E[W1+k ;C1 > k]. (2.8)

So, if k is even, then it is bounded from below by zero and above by the right-hand side of (2.7),
and similarly for k odd we use (2.8).

Assume now that k is even. In order to bound (2.7) note first that

{C1 > k} ⊂ {X2 > 0 ; . . . ;Xk+1 > 0} and Wk+1 6 max{0, Xk+1}. (2.9)

Therefore, for k > 1 we have for the first term of the right-hand side of (2.7) that

E[W1W1+k ;C1 > k] 6 E[W1 max{0, Xk+1} ;X2 > 0 ; . . . ;Xk+1 > 0]

= E[W1]E[Xk+1 | Xk+1 > 0]P[X > 0]k.
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So (2.7) now yields that

cov[W1,W1+k ;C1 > k] 6 E[W1]E[X | X > 0]P[X > 0]k + E[W1]E[W1+k]P[C1 > k].

Since P[C1 > k] 6 P[X1 > 0]k and E[W1+k] 6 E[X+
k+1] 6 E[Xk+1 | Xk+1 > 0], we obtain that

c(k) 6 2E[W1]E[X | X > 0]P[X > 0]k,

which is exactly what we set to prove for k even.
Assume now that k is odd. So c(k) is now bounded from below by (2.8), which implies that

|c(k)| = −cov[W1,W1+k ;C1 > k] 6 E[W1+k]E[W1 ;C1 > k] + E[W1]E[W1+k ;C1 > k]. (2.10)

All terms in this expression can be straightforwardly bounded, using again (2.9). In particular,
we obtain as before that E[W1+k] 6 E[X | X > 0] and that

E[W1 ;C1 > k] 6 E[W1]P[X > 0]k and E[W1+k ;C1 > k] 6 E[X | X > 0]P[X > 0]k.

Combining these bounds with (2.10) proves the theorem for odd values of k.

In Section 4 we shall compare these results on the covariance function with known results
for Lindley’s recursion.

3 Exact solution for exponential preparation times

In this section we analyse the alternating service queue under the assumption that the prepara-
tion times Bi, i > 1 have an exponential distribution with rate µ. In the first part, we derive an
explicit expression for the distribution of Wn. Later on, we derive the distribution of the cycle
length C, and in Section 3.3 we compute the covariance between Wn and Wn+k.

3.1 The time-dependent distribution

Although in the alternating service example, one has by default that W1 = B1, we would like
to allow for a more general initial condition. Therefore, we assume that W1 = w1. Throughout
this section, all probabilities are conditioned on this event. We first analyse the distribution of
W2. Write for x > 0,

P[W2 > x] = P[B2 > A1 + w1 + x] =
∫ ∞

0
e−µ(y+w1+x)dFA(y) = e−µ(x+w1)α(µ). (3.1)

We see that P[W2 > x | W2 > 0] = e−µx, that is, the distribution of W2 is a mixture of a mass
at zero and the exponential distribution with rate µ. In order to compute the distribution of
Wn+1, n > 2, observe that

P[Wn+1 > x] = P[Wn+1 > x | Wn = 0] P[Wn = 0] + P[Wn+1 > x | Wn > 0] P[Wn > 0]. (3.2)

To calculate all terms that appear in (3.2) we need to compute the distribution of Wn+1 condi-
tioned on the length of the previous waiting time. To this end, we have that, for n > 2,

P[Wn+1 > x | Wn = w] = P[Bn+1 −An − w > x | Wn = w]

=
∫ ∞

0
P[B > x + y + w | Wn = w]dFA(y)

=
∫ ∞

0
e−µ(x+w)e−µydFA(y) = e−µ(x+w)α(µ). (3.3)
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For w = 0 we readily have the first term at the right-hand side of (3.2), i.e.,

P[Wn+1 > x | Wn = 0] = e−µxα(µ), n > 2. (3.4)

Another implication of (3.3) is that, for n > 2,

P[Wn+1 > x | Wn+1 > 0,Wn = w] =
P[Wn+1 > x | Wn = w]
P[Wn+1 > 0 | Wn = w]

= e−µx. (3.5)

Thus, the distribution of Wn+1, provided that Wn+1 is strictly positive, is exponential and
independent of the length of the previous waiting time. We can extend (3.5) to the following
more general property. For any event E of the form E = {W2 ∈ A2, . . . ,Wn ∈ An}, with
Ak ⊆ [0,∞), 2 6 k 6 n, we have, by applying (3.5) and the Markov property,

P[Wn+1 > x | E,Wn+1 > 0] =
∫ ∞

0+

P[Wn+1 > x | E,Wn+1 > 0,Wn = y]dP[Wn 6 y | E,Wn > 0]

=
∫ ∞

0+

P[Wn+1 > x | Wn+1 > 0,Wn = y]dP[Wn 6 y | E,Wn > 0]

=
∫ ∞

0+

e−µxdP[Wn 6 y | E,Wn > 0] = e−µx. (3.6)

By taking E = {W2 > 0, . . . ,Wn > 0} we see that (3.6) implies that

P[Wn+1 > x | Wn+1 > 0] = e−µx. (3.7)

Thus, the distribution of Wn is a mixture of a mass at zero and the exponential distribution
with rate µ. This property is valid for all n > 2; for n = 2 it was shown below (3.1).

We now get back to Equation (3.2). Write, for n > 2,

P[Wn+1 > x | Wn > 0] = P[Wn+1 > x, Wn+1 > 0 | Wn > 0]
= P[Wn+1 > x | Wn+1 > 0,Wn > 0]P[Wn+1 > 0 | Wn > 0]
= e−µx · (1− P[Wn+1 = 0 | Wn > 0]), (3.8)

where we applied (3.6) with E = {Wn > 0} in the final step. We obtain the probability that
appears at the right-hand side of (3.8) as follows.

P[Wn+1 = 0 | Wn > 0] = P[Bn+1 6 An + Wn | Wn > 0]

=
∫ ∞

0
P[Bn+1 6 An + x | Wn > 0]µe−µxdx,

where we applied (3.7) to Wn in the last step . Since Bn+1 is independent of Wn, we have that
the previous equation becomes, for n > 2,

P[Wn+1 = 0 | Wn > 0] =
∫ ∞

0

∫ ∞

0
(1− e−µye−µx)µe−µxdx dFA(y)

= 1−
∫ ∞

0
e−µy

∫ ∞

0
µe−2µxdx dFA(y) = 1− 1

2
α(µ). (3.9)

Combining (3.8) and (3.9) we have that, for n > 2, the third term at the right-hand side of (3.2)
is given by

P[Wn+1 > x | Wn > 0] =
1
2

α(µ)e−µx. (3.10)
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The last term we need to compute in order to obtain the transient distribution of the waiting
times is the probability that the n-th waiting time is equal to zero, cf. (3.2). From (3.1) we
readily have that P[W2 = 0] = 1− e−µw1α(µ). Moreover, for n > 2, we have that

P[Wn+1 = 0] = P[Wn+1 = 0 | Wn = 0] P[Wn = 0] + P[Wn+1 = 0 | Wn > 0] P[Wn > 0].

which implies that (cf. (3.3) and (3.9))

P[Wn+1 = 0] = (1− α(µ))P[Wn = 0] +
(

1− 1
2

α(µ)
)

(1− P[Wn = 0])

= 1− 1
2
α(µ)− 1

2
α(µ)P[Wn = 0].

This gives a first order recursion for P[Wn+1 = 0]. With simple manipulations it is easy to show
that the solution to this recursion is given by,

P[Wn+1 = 0] =
2− α(µ)
2 + α(µ)

+
(
−α(µ)

2

)n−1 (
P[W2 = 0]− 2− α(µ)

2 + α(µ)

)
, n > 2. (3.11)

Summing up the results we obtained in Equations (3.2), (3.4), (3.10), (3.11), we have that the
distribution of Wn+1 is given by the following theorem.

Theorem 3. If W1 = w1, then for every n > 1 the time-dependent distribution of the waiting
times is given by,

P[Wn+1 6 x] = 1− e−µx

[
2α(µ)

2 + α(µ)
+

(
−α(µ)

2

)n−1 (
2− α(µ)
2 + α(µ)

− P[W2 = 0]
)]

, (3.12)

with P[W2 = 0] = 1− e−µw1α(µ).

Note that (3.12) is indeed also valid for n = 1, since in this case (3.12) simplifies to P[W2 6
x] = 1 − P[W2 > 0]e−µx, which is consistent with (3.1). Naturally, the term in the brackets at
the right-hand side of (3.12) is the probability P[Wn+1 > 0].

In the alternating service example given in the introduction, it is reasonable to assume that
the server has to wait for a full preparation time at the beginning, implying that W1 = B1. In
this case it is easy to show that P[W2 = 0] = P[B2 6 A1 + B1] = 1 − 1

2α(µ), which yields the
following corollary.

Corollary 1. If W1 = B1, then for every n > 1 the time-dependent distribution of the waiting
times is given by

P[Wn+1 6 x] = 1− e−µx

[
2α(µ)

2 + α(µ)
+

(
−α(µ)

2

)n−1 (
1
2
α(µ)− 2α(µ)

2 + α(µ)

)]
,

Another result we can infer from Theorem 3 is the speed of convergence of the time-dependent
distribution P[Wn 6 x] towards the steady-state distribution P[W 6 x]. It is clear from (3.12)
that this speed of convergence is geometrically fast at rate 1

2α(µ). It is interesting to observe
that this rate is twice as fast as predicted by the upper bound (obtained by a coupling argument)
in [14]. In Lindley’s recursion this speed of convergence towards steady state is closely related
to the tail behaviour of the cycle length C. In the next section, we see that the same constant
1
2α(µ) appears in a crucial way in the distribution of C.
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3.2 The distribution of the cycle length

As we have mentioned before, {Wn} is a regenerative process; regeneration occurs at times when
Wn = 0. Let C be the random variable describing the length of a generic regeneration cycle,
i.e.,

C = inf{k : W1+k = 0 | W1 = 0}.

The main goal of this section is to derive the distribution of C. By definition, we have that

P[C = n] = P[Wn+1 = 0,Wn > 0, . . . ,W2 > 0 | W1 = 0].

The main result of this section is the following theorem.

Theorem 4. Let C be the length of a regeneration cycle. Then the distribution of C is given by

P[C = n] =

{
1− α(µ) n = 1[
1− 1

2 α(µ)
] [

1
2 α(µ)

]n−2
α(µ) n > 2.

(3.13)

Proof. For n = 1, we readily have from (3.3) that

P[C = 1] = P[W2 = 0 | W1 = 0] = 1− α(µ). (3.14)

For n > 2 we shall prove our assertion by induction. For n = 2 we have that

P[C = 2] = P[W3 = 0,W2 > 0 | W1 = 0]
= P[B3 6 A2 + W2 | W2 > 0,W1 = 0]P[W2 > 0 | W1 = 0].

Furthermore,

P[B3 6 A2 + W2 | W2 > 0,W1 = 0] =
∫ ∞

0
P[B3 6 A2 + x | W2 > 0,W1 = 0]µe−µxdx,

since (3.5) implies that P[W2 6 x | W2 > 0,W1 = 0] = 1− e−µx. Moreover, since B3 and A2 are
independent of W2 and W1, we have now that

P[C = 2] = P[W2 > 0 | W1 = 0]
∫ ∞

0

∫ ∞

0
(1− e−µye−µx)µe−µxdx dFA(y) = α(µ)

[
1− 1

2
α(µ)

]
,

which satisfies (3.13) for n = 2.
Next, assume that

P[C = k] =
[
1− 1

2
α(µ)

] [
1
2

α(µ)
]k−2

α(µ) (3.15)

for all k > n, with n > 2. To complete the proof, we must show that

P[C = n + 1] =
[
1− 1

2
α(µ)

] [
1
2

α(µ)
]n−1

α(µ).

Since P[C > n + 1] = 1− P[C 6 n], (3.14) and (3.15) imply that

P[C > n + 1] =
[
1
2

α(µ)
]n−1

α(µ).

11



Therefore, we have that

P[C = n + 1] = P[Wn+2 = 0,Wn+1 > 0, . . . ,W2 > 0 | W1 = 0]
= P[Wn+2 = 0 | Wn+1 > 0, . . . ,W2 > 0,W1 = 0]P[Wn+1 > 0, . . . ,W2 > 0 | W1 = 0]
= P[Wn+2 = 0 | Wn+1 > 0, . . . ,W2 > 0,W1 = 0]P[C > n + 1]

= P[Wn+2 = 0 | Wn+1 > 0, . . . ,W2 > 0,W1 = 0]
[
1
2

α(µ)
]n−1

α(µ).

It suffices to show that

P[Wn+2 = 0 | Wn+1 > 0, . . . ,W2 > 0,W1 = 0] = 1− 1
2

α(µ). (3.16)

We have that

P[Wn+2 = 0 | Wn+1 > 0, . . . ,W2 > 0,W1 = 0]
= P[Bn+2 6 An+1 + Wn+1 | Wn+1 > 0, . . . ,W2 > 0,W1 = 0]

=
∫ ∞

0
P[Bn+2 6 An+1 + x | Wn+1 > 0, . . . ,W2 > 0,W1 = 0]µe−µxdx, (3.17)

since
P[Wn+1 6 x | Wn+1 > 0, . . . ,W2 > 0,W1 = 0] = 1− e−µx,

which follows from (3.6) with E = {Wn > 0, . . . ,W2 > 0} and w1 = 0. Equation (3.17) yields

P[Wn+2 = 0 | Wn+1 > 0, . . . ,W2 > 0,W1 = 0]

=
∫ ∞

0

∫ ∞

0
(1− e−µye−µx)µe−µxdx dFA(y) = 1− 1

2
α(µ),

which is exactly Equation (3.16) that remained to be proven.

3.3 The covariance function

We are interested in the covariance between two waiting times. By definition, we have that

cov[Wn,Wn+k] = E[WnWn+k]− E[Wn]E[Wn+k].

The terms E[Wn] and E[Wn+k] can be directly computed, for example, from Theorem 3. For
the expectation of the product of the two waiting times we have that

E[WnWn+k] =
∫ ∞

0
wE[Wn+k | Wn = w] dP[Wn 6 w].

Write

E[Wn+k | Wn = w] = E[Wn+k | Wn+k > 0,Wn = w]P[Wn+k > 0 | Wn = w]

=
1
µ

P[W1+k > 0 | W1 = w],

where in the last step, we applied the Markov property as well as the fact that Wn+k, given that
Wn = w and Wn+k > 0, is exponentially distributed with rate µ. The latter follows from (3.6).
Thus, in order to compute the covariance between Wn and Wn+k, we need the distribution of

12



W1+k, conditioned on W1 = w. This distribution has been derived in Theorem 3, from which it
follows that

P[W1+k > 0 | W1 = w] =
2α(µ)

2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]

+
(
−α(µ)

2

)k−1

α(µ)e−µw.

Combining the last three equations, we obtain

E[WnWn+k] =
1
µ

∫ ∞

0
w

2α(µ)
2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]

dP[Wn 6 w]

+
1
µ

(
−α(µ)

2

)k−1

α(µ)
∫ ∞

0
we−µwdP[Wn 6 w]

=
E[Wn]

µ

2α(µ)
2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]

+
(
−α(µ)

2

)k−1

α(µ)
∫ ∞

0
we−µwµe−µw P[Wn > 0]

µ
dw

=
E[Wn]

µ

2α(µ)
2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]
− E[Wn]

2µ

(
−α(µ)

2

)k

.

Note that the above expression is valid only for n > 2, since we have substituted dP[Wn 6 w] by
µe−µwP[Wn > 0]dw, cf. Theorem 3. However, if we make the assumption that W1, given that
W1 > 0, is (like all other Wn’s) exponentially distributed with rate µ then the above expression
is valid for n = 1 too.

All that is left in order to compute the covariance of Wn and Wn+k is to compute E[Wn] and
E[Wn+k]. To this end, note that for k > 1

E[Wn+k] = E[Wn+k | Wn+k > 0]P[Wn+k > 0] =
1
µ

P[Wn+k > 0]

=
1
µ

∫ ∞

0
P[Wn+k > 0 | Wn = w]dP[Wn 6 w]

=
1
µ

2α(µ)
2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]

+
α(µ)

µ

(
−α(µ)

2

)k−1 ∫ ∞

0
e−µwdP[Wn 6 w]

=
1
µ

2α(µ)
2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]

+
α(µ)

µ

(
−α(µ)

2

)k−1 (
P[Wn = 0] +

P[Wn > 0]
2

)
which implies that

E[Wn]E[Wn+k] =
E[Wn]

µ

2α(µ)
2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]

− E[Wn]
µ

(
−α(µ)

2

)k (
2P[Wn = 0] + P[Wn > 0]

)
.

Putting everything together we obtain

cov[Wn,Wn+k] = E[WnWn+k]− E[Wn]E[Wn+k]

=
E[Wn]

µ

(
2P[Wn = 0] + P[Wn > 0]

) (
−α(µ)

2

)k

− E[Wn]
2µ

(
−α(µ)

2

)k

. (3.18)

13



Simplifying this formula, using P[Wn = 0] + P[Wn > 0] = 1, we obtain the following theorem,
which is the main result of this section.

Theorem 5. For n > 2, the covariance function between Wn and Wn+k, k > 1, is given by

cov[Wn,Wn+k] =
E[Wn]

µ

(
P[Wn = 0] +

1
2

) (
−α(µ)

2

)k

. (3.19)

Furthermore, if W1, given that W1 > 0, has an exponential distribution with rate µ, then the
above expression is valid for n = 1 too.

Equation (3.19) is not valid for k = 0. The proof fails, for example, when computing
E[Wn+k]. For k = 0 we proceed as follows. Since Wn conditioned on Wn > 0 has an exponential
distribution with rate µ, we have that

var[Wn] =
P[Wn > 0](2− P[Wn > 0])

µ2
.

Theorem 5 can be applied to compute the covariance between waiting times in the alternating
service example, where W1 = B1. A particularly tractable case arises when we assume that
P[W1 > 0] = 2α(µ)/

(
2 + α(µ)

)
, which makes {Wn} a stationary process. In this case, we obtain

the following expression for the covariance function.

Corollary 2. If {Wn} is stationary, then for k > 1, we have that

cov[W1,W1+k] =
2α(µ)

2 + α(µ)

(3
2
− 2α(µ)

2 + α(µ)

) 1
µ2

(
−α(µ)

2

)k

.

In the next section, we compare our results with existing results for Lindley’s equation.

4 A comparison to Lindley’s recursion

In Section 3 we have seen that the distribution of Wn and other characteristics of {Wn} are
quite explicit if B has an exponential distribution. Since our recursion is, up to a sign, identical
to Lindley’s recursion, it is interesting to compare the complexity of both recursions. Let WL

n ,
n > 1 be driven by Lindley’s recursion, i.e.,

WL
n+1 = max{0, Xn+1 + WL

n },

with Xn+1 = Bn+1 − An as defined before. Naturally, WL
n+1 can be interpreted as the waiting

time of the (n + 1)-st customer in a G/G/1 queue.
In this section we compare the results we have derived so far to the analogous cases for

Lindley’s recursion. In other words, for the G/M/1 queue we derive the time-dependent distri-
bution of the waiting times in Section 4.1 and we review results on the length of the busy cycle
in Section 4.2. Furthermore, we present some known results on the covariance function for the
G/G/1 queue in Section 4.3.

4.1 The time-dependent distribution

The literature on time-dependent properties of Lindley’s recursion and other queueing systems
usually involves general expressions for the double transform

∑∞
n=0 rnE[e−sW L

n+1 ], which are de-
rived using Spitzer’s identity and the Wiener-Hopf method; see e.g. Asmussen [2] and Cohen [7].
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For the distribution of WL
n , note that the following representation holds. Let Qn be the

number of customers in the system when the n-th customer arrives, and let Q1 = q1 > 0. Then,
since all service times (in particular the residual service times) are exponential with rate µ, WL

n

has a mixed-Erlang distribution, with mixture probabilities P[Qn = k], k = 0, . . . , n + q1. This
result is stated as Equation (3.97) in [7, p. 229]. The probabilities P[Qn = k] can be computed
explicitly for the M/M/1 queue if q1 = 0; see, for example, Equation (2.26) in [7, p. 185]. For the
G/M/1 case, it is possible to give an expression for the generating function

∑∞
n=0 rnP[Q1+n = j]

if q1 = 0, see the equation below (3.72) in [7, p. 221]. We conclude that the mixed-Erlang
representation for the distribution of WL

n is not very explicit.
We now give an alternative form of the distribution of WL

n , which we could not find in the
literature and which we derive by means of some simple probabilistic arguments. First, let G
be a random variable with P[G = n] = (1 − r)rn, independent of everything else. Then, by
conditioning on G, we have for r ∈ [0, 1] that P[WL

G+1 > x] = (1− r)fL(r, x), with

fL(r, x) =
∞∑

n=0

rnP[WL
n+1 > x]

the generating function of P[WL
n+1 > x]. Thus, to get an expression for fL(r, x), it suffices to

obtain the distribution of WL
G+1.

For this, we use two more probabilistic ideas. Assume that WL
1 = 0. Then we have that

WL
n+1

D= maxk=0,...,n Sk, with S0 = 0 and Sn = X1 + · · · + Xn; see e.g. Asmussen [2, Chapter
8]. Finally, we reduce the problem to computing the distribution of the all-time maximum of
a related random walk. For this, we define an i.i.d. sequence of random variables A′

i, i > 1 as
follows. For any i we let A′

i = Ai with probability r and A′
i = ∞ with probability 1− r. We see

that we can interpret G as the first value of i such that A′
i = ∞. Define S′n = X ′

1 + · · · + X ′
n,

with X ′
i = Bi+1 −A′

i. Since S′n = −∞ if n > G and Sn = S′n if n < G, it follows that

WL
G+1

D= max
k=0,...,G

Sk
D= max

k>1
S′k =: Mr.

We see that WL
G+1 has the same distribution as the supremum Mr of a random walk S′n, n > 1

with exponentially distributed upward jumps. For such random walks it is well known (see
Theorem 5.8 in [2, p. 238]) that

P[Mr > x] = (1− η(r)/µ) e−η(r)x,

with η(r) the unique positive solution of the equation

µ

µ− η(r)
E[e−η(r)A′

1 ] = 1. (4.1)

We conclude that, for the G/M/1 queue,

(1− r)
∞∑

n=0

rnP[Wn+1 > x] = (1− η(r)/µ) e−η(r)x.

The only case where η(r) has an explicit expression seems to be the case where A is expo-
nentially distributed with rate λ. In that case we get

η(r) =
1
2

(
µ− λ +

√
(λ− µ)2 + 4λµ(1− r)

)
.
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If, in addition ρ = λ/µ = 1, then η(r) further simplifies to µ
√

1− r. Using the power series
expansions

ey =
∞∑
i=0

yi

i!
, and (1− r)a =

∞∑
j=0

(
a

j

)
(−r)j ,

we then see that

fL(r, x) =
1

1− r

(
1−

√
1− r

)
e−µ

√
1−r x

=
∞∑

n=0

(−µx)n

n!

∞∑
k=0

((n
2 − 1

k

)
−

(n−1
2

k

))
(−r)k

=
∞∑

k=0

rk(−1)k
∞∑

n=0

(−µx)n

n!

((n
2 − 1

k

)
−

(n−1
2

k

))
.

By identifying this expression as a power series in k we see that, for the M/M/1 queue with
ρ = 1,

P[WL
k+1 > x] = (−1)k

∞∑
n=0

(−µx)n

n!

((n
2 − 1

k

)
−

(n−1
2

k

))
.

We compare this expression with the distribution of Wn+1 in the M/M case with W1 = 0 and
λ = µ. Using Theorem 3, and α(µ) = λ/(λ + µ) = 1/2, and P[W2 = 0 | W1 = 0] = 1/2, we get

P[Wn+1 > x | W1 = 0] =
[
2
5
− 1

10

(
−1

4

)n]
e−µx.

We conclude that there is a considerable difference in complexity between the distribution of Wn

and WL
n . We have shown in Theorem 3 that the distribution of Wn is a simple mixture of an atom

at zero and an exponential distribution, and the distribution of WL
n can only be represented by

its generating function, or by a mixed-Erlang representation of which the mixture probabilities
are given by a generating function.

4.2 The busy cycle

For the busy cycle CL = inf{n > 1 : WL
n+1 = 0 | WL

1 = 0}, the generating function can be
extracted from Equation (3.89) in Cohen [7, p. 226]. Translated to our notation, we have

E[rCL
] =

r − λ(r)
1− λ(r)

,

with λ(r) the smallest root in absolute value of the function z − rα(µ(1− z)). It can be shown
that λ(r) = 1− η(r)/µ, with η(r) determined by (4.1). This implies that

E[rCL
] =

η(r)− µ(1− r)
η(r)

.

For the M/M/1 queue with load ρ, an explicit expression is available, see for example Equation
(2.43) in Cohen [7, p. 190], which states that

P[CL = n] =
1

2n− 1

(
2n− 1

n

)
ρn−1

(1 + ρ)2n−1
.

Again the difference in complexity between Lindley’s recursion and our recursion is clear, cf.
Theorem 4.

16



4.3 The covariance function

The literature on the covariance function of the waiting times for the single-server queue seems to
be sporadic. For the G/G/1 queue, Daley [8] and Blomqvist [5, 6] give some general properties.
In particular, in [8] it is shown that the serial correlation coefficients of a stationary sequence of
waiting times are non-negative and decrease monotonically to zero. Comparing these results to
the ones we have obtained in Section 2.2, we first observe that the result of Theorem 1 is not
surprising. It is rather a natural effect of the minus sign that appears in front of Wn in (1.1).
However, the condition implied by Theorem 2 for the stationary sequence is that E[B] < ∞,
which is less restrictive than demanding that the third moment of the service times is finite,
as is the case for Lindley’s recursion. Furthermore, from Theorem 2 we immediately have that
the infinite sum of all correlations is finite. For Lindley’s recursion, the finiteness of the third
moment of B is not sufficient to guarantee this. Even in this case, the series may be converging
so slowly to zero, that the sum is infinite. As it is stated in Theorem 2 of [8], what is necessary
and sufficient is that the fourth moment of B is also finite.

For the GI/M/1 queue Pakes [12] studies the covariance function of the waiting times. The-
orem 1 of [12] gives the generating function of the correlation coefficients of the waiting times
in the stationary GI/M/1 queue in terms of the unique positive solution of a specific functional
equation. Furthermore, the correlation coefficients themselves are also given, but now in terms
of the probabilities that no other waiting time than W0 is equal to zero, up to time n. These
expressions involve the probability generating function of the distribution of the number of cus-
tomers served in a busy period, and are not very practical for numerical computations. Blanc [3]
is concerned with the numerical inversion of the generating functions of the autocorrelations of
the waiting times, as they are given in [12] and in Blomqvist [4], who derives for the M/G/1
queue results analogous to those in [12].

To summarise, the time-dependent analysis of (1.1) when A is generally distributed and B
is exponential is far more easy, and leads to far more explicit results, than the analysis and
the results obtained for the G/M/1 queue. In the following section we shall extend the results
presented in Section 3 to Erlang, and eventually mixed-Erlang preparation times Bn.

5 Exact solution for Erlang preparation times

In this section we assume that, for all n, the i.i.d. random variables Bn follow an Erlang distri-
bution with N phases and parameter µ. Although the analysis is not as straightforward as in
Section 3, the idea we shall utilise in the following is very simple. Namely, if all Bn follow an
Erlang distribution, then we can completely describe the system in terms of a finite-state Markov
chain. Thus, it suffices to compute the one-step transition probabilities of this Markov chain.
This is done in Section 5.1 and is applied to show that Wn has a mixed-Erlang distribution.
Subsequently, we derive expressions for the distribution of the cycle length and the covariance.

5.1 The time-dependent distribution

Let A be a generic service time and Ei be a random variable that follows the Erlang Gi distri-
bution with i phases and parameter µ. Define Fi to be the number of remaining preparation
phases that the server sees after his (i − 1)-th service completion, that is, at the moment he
initiates his i-th waiting time. Observe that {Fn} is a Markov chain, and let

pij = P[Fn+1 = j | Fn = i].
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Then, for i, j ∈ {1, . . . , N} we have that

pij = P[exactly N − j exponential phases expired during [0, A + Ei)]

=
∫ ∞

0

(µx)N−j

(N − j)!
e−µxdP[A + Ei ≤ x]

=
(−µ)N−j

(N − j)!
L(N−j)

A+Ei
(µ),

where L(N−j)
Y is the N − j-th derivative of the Laplace-Stieltjes transform of a random variable

Y ,

=
(−µ)N−j

(N − j)!

N−j∑
`=0

(
N − j

`

)
α(N−j−`)(µ)

(( µ

µ + s

)i
)(`)

∣∣∣∣∣
s=µ

=
(−µ)N−j

(N − j)!

N−j∑
`=0

(
N − j

`

)
α(N−j−`)(µ)

[(
− 1

2µ

)` (i + `− 1)!
2i(i− 1)!

]

=
(−µ)N−j

2i

N−j∑
`=0

(
i + `− 1

i− 1

)
α(N−j−`)(µ)
(N − j − `)!

(
− 1

2µ

)`

.

Furthermore, for j ∈ {1, . . . , N} we have that

p0j = P[exactly N − j exponential phases expired during [0, A)]

=
(−µ)N−j

(N − j)!
α(N−j)(µ).

The rest of the transition probabilities can be computed by the relations

p00 = 1−
N−1∑
i=0

(−µ)i

i!
α(i)(µ) and pi0 = 1−

N−1∑
j=0

(−µ)j

2i

j∑
`=0

(
i + `− 1

i− 1

)
α(j−`)(µ)
(j − `)!

(
− 1

2µ

)`

.

Let P = (pij) be the transition matrix and define G0(x) = 1. Then, the distribution of Wn is
given by

P[Wn 6 x] =
N∑

i=0

P[Wn 6 x | Fn = i]P[Fn = i]

=
N∑

i=0

Gi(x)P[Fn = i].

Let $n,i = P[Fn = i | W1 = w] and $n be the column-vector ($n,0, . . . , $n,N )T. Then

$n = P$n−1 = Pn−2$2. (5.1)
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It remains to compute $2. In the same way we computed pij we get, for j > 1,

$2,j = P[exactly N − j exponential phases expired during [0, A + w)]

=
(−µ)N−j

(N − j)!
L(N−j)

A+w (µ)

=
(−µ)N−j

(N − j)!

N−j∑
`=0

(
N − j

`

)
α(N−j−`)(µ)

(
e−sw

)(`)

∣∣∣∣∣
s=µ

= (−µ)N−je−µw
N−j∑
`=0

(−w)`

`!
α(N−j−`)(µ)
(N − j − `)!

. (5.2)

This also characterises $2,0. Putting everything together, we obtain the main result of this
section.

Theorem 6. For every n > 2, Wn has a mixed-Erlang distribution with parameters µ and
$n,0, . . . , $n,N , i.e.

P[Wn 6 x | W1 = w] =
N∑

i=0

$n,iGi(x),

with $n given by Equations (5.1) and (5.2).

It is interesting to note that Wn has a phase-type distribution with N +1 phases for all n > 2.
This is strikingly different from Lindley’s recursion: In Section 3.1, we saw that for the G/M/1
queue, WL

n has a mixed-Erlang distribution with at least n + 1 phases, which is unbounded in
n.

5.2 The distribution of the cycle length

As before, define the cycle length C to be given by

C = inf{k : W1+k = 0 | W1 = 0} = inf{k : F1+k = 0 | F1 = 0}.

We have that P[C = n] = P[C > n]− P[C > n + 1] and

P[C > n] =
N∑

i0=1

P[Fn+1 = i0, F2 · . . . · Fn > 0 | F1 = 0]. (5.3)

Let t
(n)
0,i0

be the probability that, conditioning on the fact that F1 = 0, we shall go to state i0 in
n steps without passing through state 0 while doing so. Then we have that

t
(n)
0,i0

= P[Fn+1 = i0, F2 · . . . · Fn > 0 | F1 = 0]

=
N∑

i1=1

P[Fn+1 = i0, Fn = i1, F2 · . . . · Fn−1 > 0 | F1 = 0]

=
N∑

i1=1

P[Fn+1 = i0 | Fn = i1, F2 · . . . · Fn−1 > 0, F1 = 0]P[Fn = i1, F2 · . . . · Fn−1 > 0 | F1 = 0]

=
N∑

i1=1

pi1i0t
(n−1)
0,i0

=
N∑

i1=1

N∑
i2=1

· · ·
N∑

in−1=1

pi1i0 pi2i1 · . . . · pin−1in−2P[F2 = in−1 | F1 = 0]
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Then from (5.3) we have that

P[C > n] =
N∑

i0=1

N∑
i1=1

· · ·
N∑

in−1=1

pi1i0 · . . . · pin−1in−2 p0in−1. (5.4)

So, if we define Q to be the matrix that we obtain if we omit the first line and the first row of
the matrix P, q to be the first row of P apart from the first element, I to be the N ×N identity
matrix, and e to be the N×1 vector with all its entries equal to one, then (5.4) can be rewritten
in a more compact form, which is done in the following theorem.

Theorem 7. For every n > 1 we have that the distribution of the cycle length is given by

P[C = n] = qQn−1(I−Q)e.

5.3 The covariance function

It should be clear by now that extending the results of Section 3 to Erlang distributed preparation
times is feasible, although not as straightforward as before. The results now are given implicitly,
in terms of the transition matrix of a finite-state Markov chain. When computing the covariance
function between Wn and Wn+k the calculations become more complex, and rather long and
tedious. In this section we shall only outline the procedure of computing cov[Wn,Wn+k] when,
for all n, Bn follows an Erlang distribution.

As before, it suffices to calculate the expectation E[WnWn+k], since E[Wn] and E[Wn+k] can,
in principle, be computed directly from the time-dependent distribution. Therefore, it suffices
to compute E[Wn+k | Wn = w]. To this end, we have that for all k > 1

E[Wn+k | Wn = w] = E[W1+k | W1 = w]

=
N∑

i=0

E[W1+k | F1+k = i, W1 = w]P[F1+k = i | W1 = w]. (5.5)

Clearly, for any event E depending only on W1, . . . ,Wn−1, we have that for n > 2

P[Wn 6 x | Fn = i, E] = Gi(x).

This equation is analogous to Equation (3.6). So (5.5) now becomes

E[Wn+k | Wn = w] =
N∑

i=0

i

µ
P[F1+k = i | W1 = w].

From Section 5.1 we have that for all n > 3, $n = Pn−2$2, and the vector $2 is computed, cf.
(5.2). From this, we infer that, for all k > 1, P[F1+k = i | W1 = w] is a polynomial of degree
N − i multiplied by e−µw. Let c1+k, j , j = 0, . . . , N − i be the constants of this polynomial.
Then, for n > 2 and k > 1 we have that

E[WnWn+k] =
N∑

i=0

i

µ

N−i∑
j=0

c1+k, j

∫ ∞

0
wj+1e−µwdP[Wn 6 w].

A lengthy but straightforward computation, using Theorem 6, shows that∫ ∞

0
wj+1e−µwdP[Wn 6 w] =

(
1
2

)j+1 N∑
`=0

$n,`
(` + j)!

2`(`− 1)!
.
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Using Theorem 6, we can also compute E[Wn] and E[Wn+k]. Unfortunately, the resulting ex-
pression for the covariance is rather complicated and therefore omitted. We close this section
with two remarks.

Remark 1. If the preparation times do not have an Erlang distribution, but a mixed-Erlang
distribution, the analysis stays completely the same, except for the computation of the transition
probabilities pij and $2,j in Section 5.1.

Remark 2. The analysis in this section is also applicable to the non-alternating service model
which is discussed in [15].

6 Conclusions

We have examined the time-dependent behaviour of an alternating service queue, which is
described by a recursion that coincides with Lindley’s recursion up to a minus sign. We have
derived a number of qualitative properties of the time-dependent waiting time distribution of
the server in Section 2. In Section 3, we have shown that the time-dependent performance of
the system can be evaluated explicitly if the preparation times have an exponential distribution.
To illustrate the tractability of our model, we compared it to Lindley’s recursion in Section 4.
In Section 5, we extended our results of Section 3 to Erlang and mixed-Erlang preparation
times. One subject which we find interesting for future research is a closer investigation of the
distribution of the cycle length C, in particular its tail behaviour. We conjecture that, for any
choice of the distribution of the preparation time, there exist constants c1 > 0 and c2 ∈ (0, 1)
such that P[C > n] ∼ c1c

n
2 . This could potentially lead to more information about the speed of

convergence of P[Wn 6 x] to P[W 6 x] as n →∞.
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