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1 Introduction

In this paper we investigate and compare a number of real inversion formulas for the Laplace
transform. The focus is on the accuracy and applicability of the formulas for numerical inver-
sion. In this contribution, we study the performance of the formulas for measures concentrated
on a positive half-line to continue with measures on an arbitrary half-line.

The remaining of the paper is organised as follows. In Section 2 we formulate the inversion
formulas used to recover a measure defined on the positive half-line. Section 3 describes the
potential of these formulas for numerical inversion of a probability measure. An extension of
these formulas is given in Section 4. We compare the numerical results obtained by the original
formulas on the one hand, and their extensions on the other. Section 5 is dedicated to another
extension of the original formulas. In particular, we study the performance of the formulas
adapted for the case where the measure is concentrated on an arbitrary half-line.

2 Preliminaries

In this section we describe the general framework and give an overview of the original inversion
formulas.

Assume that µ is a bounded measure on the positive half-line. We define its Laplace transform
by

µ̂(u) :=
∫ ∞

0
e−ux dµ(x),

where u ≥ 0. We are interested in recovering µ(.) from its Laplace transform µ̂(.). For 0 ≤ y1 <
y2, denote by µ{y1; y2} the inversion of the measure µ on [y1, y2] such that

µ{y1; y2} =
1
2
µ{y1}+ µ(y1, y2) +

1
2
µ{y2} .

Here µ{y} stands for the weight or measure at the point y while µ(a, b) is shorthand for the
measure of the open interval (a, b).

For probabilistic proofs of a number of the inversion formulas used below, we refer to [8]. For
ease of reference, we briefly go through these formulas.

2.1 Post-Widder Formula [2, 10]

This is one of the classical inversion formulas and it can be found in [10]. From [8] we have for
0 ≤ y1 < y2

µ{y1; y2} = lim
n→∞

∫ y2

y1

(−n)n

Γ(n)
µ̂(n)(

n

t
)

dt

tn+1
. (1)

Note that in order to recover the measure µ by the Post-Widder formula, one has to calculate
all derivatives of the Laplace transform on the entire positive half-line.
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2.2 Widder Formula [10]

From [8] we know that for 0 ≤ y1 < y2

µ{y1; y2} = lim
n→∞

[ny2]∑

m=[ny1]+1

(−n)m

m!
µ̂(m)(n) . (2)

It follows from (2) that, in order to invert µ̂, one has to find all derivatives of µ̂ in the variable
point n, n →∞.

2.3 Shohat-Tamarkin Formula [6]

For 0 ≤ y1 < y2 we have

µ{y1; y2} =
∫ y2

y1

∞∑

k=0

n∑

k=0

n!
k!2 (n− k)!

µ̂(k)(1)Ln(u) du , (3)

where

Ln(u) =
n∑

r=0

(
n

n− r

)
(−u)r

r!
(4)

are the classical Laguerre polynomials. In order to recover the measure µ by the Shohat-
Tamarkin formula, one has to calculate the Laplace transform µ̂ and all its derivatives in the
single point 1. In [8] the formula (3) has been generalized in such a way that it requires the
Laplace transform and its derivatives at an arbitrary point on the positive half-line.

2.4 Gaver-Stehfest Formula [4, 5]

From [8] we have for 0 ≤ y1 < y2

µ{y1; y2} = lim
n→∞

n∑

k=0

bn,k

[
µ̂

(
n + k

y2
log 2

)
− µ̂

(
n + k

y1
log 2

)]
, (5)

where

bn,k =
(−1)kn

n + k

(
2n

n

)(
n

k

)
. (6)

It follows from (5) that the inversion requires the Laplace transform µ̂ in two real points but
none of its derivatives.

3 Inversion Formulas on the Positive Half-line

As our trial distribution for µ on the positive half-line, we take Gamma(α, β), α > 0, β > 0,
distribution function FG(x), x ≥ 0. The density is given by

f(x) =
βα

γ(α)
xα−1e−βx, x > 0.

We will test the inversion formulas listed above to recover the Gamma cumulative distribution
function from its Laplace transform given by

µ̂(u) =
(

1 +
u

β

)−α

, u > 0. (7)
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The Gamma family provides a rich family of distributions allowing a variety of desirable tail
behavior that can be obtained by varying the shape parameter α. If we take α = 1 then we ob-
tain the exponential distribution that plays a benchmark role. By varying the shape parameter
one obtains either heavier tails for α < 1 or lighter tails α > 1 than the tail of the exponential
distribution. We choose the scale parameter β equal to

√
α. In this way we reduce the number

of parameters to one. In what follows we will refer to the Gamma(α,
√

α) distribution as to
Gamma(α).

Consider the four inversion formulas: Post-Widder (P-W, 1), Widder (W, 2), Shohat-Tamarkin
(S-T, 3), and Gaver-Stehfest (G-S, 5). We test these formulas for different values of α and on
a number of intervals [y1, y2], 0 ≤ y1 < y2 ≤ yup, where yup is chosen such that FG(yup) ≈ 1.
More specifically, we calculate the relative errors of the numerical inversion by means of these
formulas as these errors are used as the measure of the inversion accuracy. The relative error is
calculated as |(FG(y2)− FG(y1))− µ{y1; y2}|

FG(y2)− FG(y1)
· 100%.

In all the considered inversion formulas we either need to take the limit when n goes to infinity
or to calculate an unlimited sum. For the implementation we are forced to take some finite
number, say n = N . The following range for N is recommended:

• for the Post-Widder formula (1), 70 ≤ N ≤ 130;

• for the Widder formula (2) the choice depends strongly on y2 and will be discussed below;

• in the Shohat-Tamarkin formula (3) the upper limit of the first summation is in the range
35 ≤ N ≤ 65, the larger the α the larger the N .

• for the Graver-Stehfest formula (5), 10 ≤ N ≤ 25.

3.1 The light tail case α ≥ 1

For this range of the parameter α, the Shohat-Tamarkin inversion formula (3) is almost always
the most accurate. In Figures 1–4 we plotted the relative errors of numerical inversion by means
of all four formulas on the intervals [0.01, y2] and [5, y2] for a number of values of y2 and α = 0.1·j,
j = 1, 2, . . . , 100. One can see in Figure 3 (left) that the relative error by the Shohat-Tamarkin
formula (3) does not exceed 0.16% when the probability distribution has exponential or lighter
than exponential tail (1 ≤ α ≤ 10) and y1 is very close to origin. In this case, the other formulas
give lower precision, since the Post-Widder (1), Widder (2), and Gaver-Stehfest (5) formulas
show relative errors up to 2.5% (y2 = 1; α = 10), 8% (y2 = 1; 6 < α < 9), and even over 100%
(y2 = 1; α = 10) respectively.

The inversion error increases as we increase the value of y1 regardless which of the formulas
we take. Nevertheless, the relative accuracy of each formula with respect to the others remains
approximately the same. If we take for example y1 = 5 and compare the relative errors of the
four formulas then the error by the Shohat-Tamarkin (3) goes up to 25 % (y2 = 12; 1 < α < 2),
that by the Post-Widder (1) lies below 20 %, that by the Widder (2) is up to 30 %, and that
by the Gaver-Stehfest (5) overshoots 100%. The largest error by Shohat-Tamarkin formula cor-
responds to the small values of the α that are not integers. If we considered only the integer
values, as e.g. in Figure 5, then the relative errors would lie below 1%.
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Figure 1: Relative errors on the intervals [0.01, y2] and [5, y2]. Post-Widder (P-W, 1).
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Figure 2: Relative errors on the intervals [0.01, y2] and [5, y2]. Widder (W, 2).
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Figure 3: Relative errors on the intervals [0.01, y2] and [5, y2]. Shohat-Tamarkin (S-T, 3).
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Figure 4: Relative errors on the intervals [0.01, y2] and [5, y2]. Gaver-Stehfest (G-S, 5).
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The Shohat-Tamarkin formula is inferior to the others only in the following two cases:

1. The measure of the interval is approaching one (i.e., 1− (FG(y2)−FG(y1)) < 10−5), which
corresponds to

• y1 = 0 or y1 is very close to the origin, and

• y2 is large enough, the order of magnitude of the y2 being determined by the value
of α (the larger the α, the smaller the y2).

2. α is small, 1 < α < 2, and non-integer. Compare Figure 3 and Figure 5.
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Figure 5: Relative errors on the intervals [0.01, y2] and [5, y2]; α is integer. Shohat-Tamarkin (S-T, 3).

In the first case, it is, as a rule, the Post-Widder formula (1) that allows to get the most accurate
numerical inversion. Note however that (P-W, 1) is not applicable for y1 = 0, and in that case
(G-S, 5) would be the best choice. Despite the fact that the Shohat-Tamarkin formula yields
to the other formulas on the intervals whose measure is close to one, it still provides relatively
good precision with the largest relative error being less than 1%. Compare this to the largest
relative errors by the Post-Widder and Gaver-Stehfest formulas that are equal to 0.3% and 0.4%
respectively (see Figure 1 (left) and Figure 4 (left)).

3.2 The heavy tail case α < 1

It turns out that the inversion by (S-T, 3) is no longer recommended. As α decreases and/or we
move the interval [y1, y2] to the right, the error becomes very large. For example, the relative
error overshoots 100% when α = 0.5 and the formula is applied to invert the measure on the
interval [1, 10]. Here, again, the Post-Widder approach (2) is, as a rule, the best alternative.

3.3 Global comparison

In Table 1 we give the average relative errors of inverting the Gamma(α) probability distribution
function on the compact intervals [y1, y2], y1 = 0.01, y2 = 1+0.1 ·j, j = 1, 2, . . . , 110, by the four
formulas and for 11 different values of α. The errors are quoted in per cent. The precision of the
Shohat-Tamarkin and Gaver-Stehfest formulas does not depend much on whether or not we take
y1 = 0 or y1 = 0.01. The precision of the Widder approach however does depend on this fact as
on average it gives better accuracy when the origin is not included. The Post-Widder approach,
as already mentioned, cannot be tested for y1 = 0. Taking this into account we calculated the
average errors on the intervals that start at 0.01 and let y2 go from 1 to 12. As mentioned
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before, the Shohat-Tamarkin formula may perform differently for values of α, integral or not.
Compare, for example, the relative errors for α = 1; 1.3; 1.8; 2; 2.1 in Table 1.

α 0.05 0.5 1 1.3 1.8 2 2.1 4 5.5 7 9
P-W 0.33 0.05 0.12 0.14 0.18 0.18 0.19 0.22 0.24 0.29 0.47

W 12 7.2 2.8 1.5 0.5 0.4 0.3 0.2 0.3 0.4 0.4

S-T 170 4 8·10−9 0.09 0.016 2·10−7 4·10−3 4 ·10−5 7 ·10−4 3 ·10−4 2 ·10−3

G-S 0.4 0.27 0.23 0.18 0.22 0.27 0.32 0.8 1.8 2.4 6.7

Table 1: Average relative errors of inversion formulas on compact intervals [0.01, y2], 1 ≤ y2 ≤ 12,
for given α.

Table 2 presents the average by α relative errors of inverting the same probability measure on
10 different intervals. Averaging is done over the values α = 0.05 + 0.3 · j, j = 0, 1, . . . , 30. As
the performance of the Shohat-Tamarkin and Gaver-Stehfest formulas depends significantly on
whether or not the tail of the distribution to invert is heavier than exponential, we give the
average relative errors on compact intervals for α > 1 and α < 1 separately in Tables 3 and 4.

Interval [0, 0.5] [0, 1] [0, 2.5] [0, 4.9] [0, 7.5] [0, 9] [0, 12.5] [1, 5.5] [2.5, 7.5] [5, 9]
P-W 0.3 1.2 17

W 16.4 6.5 3.7 4.1 4.3 4.5 4.9 1.6 0.8 17.5

S-T 0.07 0.05 0.02 0.18 0.64 0.68 14 0.2 0.5 4.7

G-S 78 39 3.2 1 0.2 0.06 0.01 2.3 2.8 52

Table 2: Average relative errors of inversion formulas on given compact interval, 0 < α < 10.

Interval [0, 0.5] [0, 1] [0, 2.5] [0, 4.9] [0, 7.5] [0, 9] [0, 12.5]
S-T 0.16 0.4 0.14 1.38 4.8 5.05 105

G-S 0.8 0.4 0.08 0.1 0.04 0.02 0.01

Table 3: Average relative errors of Shohat-Tamarkin and Gaver-Stehfest inversion formulas on
given compact interval, α < 1.

We consider now each of the formulas separately and point out their pros and cons.

Post-Widder formula. The formula can be recommended for small vales of α, 0 < α < 2,
especially when y1 is close (but not equal) to 0. Then the relative error does not exceed 0.4%.
It is often possible to obtain a higher precision by choosing larger N , however the upper limit
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Interval [0, 0.5] [0, 1] [0, 2.5] [0, 4.9] [0, 7.5] [0, 9] [0, 12.5]
S-T 0.057 6 · 10−4 3 · 10−4 6 · 10−4 1.4 · 10−3 0.02 0.62

G-S 80 40 3.4 1.3 0.22 0.07 0.006

Table 4: Average relative errors of Shohat-Tamarkin and Gaver-Stehfest inversion formulas on
given compact interval, α > 1.

for N is 143 for computer (Matlab) implementations.

Widder formula. This formula can be recommended

• to invert a distribution with very light tail, α ≥ 10, on the [0, y2] where y2 is large, e.g.
y2 ≥ 10; the relative error is then in the range of [10−6%, 10−4%]; in this case the estimates
are obtained with small values of N such as 8 ≤ N ≤ 16;

• to invert a heavy-tailed distribution, α < 0.5, on short intervals to the right from the
mean, the relative error being less than 1%; here N ≥ 20.

In general, the choice of N depends on y2 (the larger the y2 the smaller the N); this is caused
by the limited capacity of the computer to manage factorials of the kind [N · y2]! appearing in
the summation. As in the Post-Widder case, the maximal possible value of N is 143.

For α < 2 the formula exhibits different behavior depending on whether or not the value of 0 is
included in the interval. In Figure 6 one can see that the error may be reduced if we exclude
zero; this fact holds for α < 2 and all values of y2. However from α ≥ 2 the estimates become
undistinguishable.
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Figure 6: Relative errors on the intervals [0, y2] and [0.01, y2]. Widder (W, 2).

Shohat-Tamarkin formula. The formula provides the best inversion in the majority of the
considered cases. If we invert the Gamma(α) distribution function on a fixed interval [y1, y2],
then the error tends to increase as the Gamma parameter α increases, however the error growth
is not monotone. In particular, the accuracy for integer values of α is typically higher than for
non-integer values. For a fixed y2, the error increases as y1 increases, and this holds for all α.

8



For fixed y1 and α, the error increases as the values of y2 become larger.

Gaver-Stehfest formula. Similar to the Post-Widder approach (1), the Gaver-Stehfest for-
mula allows to obtain rather precise inversion for any value of α when y1 and y2 are such that
1− (FG(y2)−FG(y1)) < 10−5. This is the case, for example, when y1 is close to the origin while
y2 is large. The formula performs better when the distribution has a heavier than exponential
tail, i.e. when α < 1. However, in both cases one can obtain a higher accuracy of inversion
using the Post-Widder approach when y1 > 0. Therefore, the Gaver-Stehfest is only sensibly
applicable when y1 = 0.

For a fixed y2, the error by Gaver-Stehfest increases as y1 increases; this holds for any value of
α. For a fixed y1, the error decreases as we increase the length of the interval. However, the
error as a function of α is again not monotone.

4 Refined Formulas

Let µ be a probability measure on [0,∞). Introduce the integrated tail of µ by the expression

µ1(y) :=
∫ y

0
(1− µ(x)) dx.

Then its Laplace transform is given by

µ̂1(s) = s−1(1− µ̂(s)).

It is quite clear that the integral formulas given in Section 2 have a special version in the case
when the measure µ has a derivative. For example, the Post-Widder case leads to

dµ(y)
dy

= lim
n→∞

(−n)n

Γ(n)
µ̂(n)(

n

y
)

1
yn+1

.

But then these density formulas can be applied to recover the measure µ from the Laplace
transform of µ1. This then leads to a direct formula for the measure µ. Applying this procedure
to the integral inversion formulas among (1)–(5) we obtain some refinements.

Post-Widder formula. From (1) for y ≥ 0 we have

µ(y) = lim
n→∞

n∑

`=0

1
`!

(
−n

y

)l

µ̂(`)

(
n

y

)
. (8)

The latter formula has been discovered by Stadtmüller-Trautner in [7]. See also [8].

One can hardly compare the performance of the newly introduced formula to the original one
because it inverts intervals starting at 0 while the original does not. Table 5 shows the average
by α relative errors of inverting Gamma(α) probability function on the same intervals as in
Table 2. One can immediately see that the refined Post-Widder formula outperforms all the
others on large intervals and yields only to Shohat-Tamarkin on small intervals.

Shohat-Tamarkin formula. Starting from (3) we obtain for y ≥ 0

1− µ(y) = 1− µ̂(1)−
∞∑

`=1

µ̂(`)(1)
`!

∞∑

n=`

{
n∑

k=`

(−1)k−`

(
n
k

) n∑

k=0

(
n
k

)
(−y)k

k!

}
. (9)

9



Interval [0, 0.5] [0, 1] [0, 2.5] [0, 4.9] [0, 7.5] [0, 9] [0, 12.5]

P-W 7.8 3 0.8 0.25 0.02 0.002 10−4

Table 5: Average relative errors of the refined Post-Widder (P-W, 8) inversion formula on given
compact interval, 0 < α < 10.

We apply expression (9) to numerically recover 1−FG(y) from its Laplace Transform, and com-
pare the results to the inversion of µ{y,∞} by the original Shohat-Tamarkin approach (3).

The newly introduced formula allows to improve the precision of the numerical inversion for
0 < α < 1, especially in the tail. The errors are further reduced at least by factor 3 (see Fig-
ure 7). As we increase α, say 1 < α < 3, the accuracy of (9) remains still higher than that of
(3) for y > 6, whereas it is lower closer to the origin (see Figure 8(a)). For α > 3, however the
initial formula (3) works better (see Figure 8(b)).

Gaver-Stehfest formula. Let µ come from a probability measure without mass at the origin,
then its Laplace transform takes on the values 0 = µ̂(∞) and 1 = ˆµ(0). We can take y2 = ∞ in
(5) to get the Gaver-Stehfest inversion formulas for the tail

1− µ(y) = lim
n→∞

n∑

k=0

bn,k

[
1− µ̂

(
n + k

y
log 2

)]
, y ≥ 0, (10)

where bn,k as defined in (6).

Alternatively we can take y1 = 0 to get another version of this formula

µ(y) = lim
n→∞

n∑

k=0

bn,k · µ̂
(

n + k

y
log 2

)
, y ≥ 0. (11)

For given y and n both (10) and (11) provide, obviously, the same value. However, formula (11)
allows in average to get more exact approximations of µ(y) due to another choice of n. The
accuracy by formula (11) is slightly lower for 0 < α < 1.25 and significantly higher for α > 1.25
than the accuracy by (10). In Figure 9(a) we plotted the Gamma(6.05) tail, 1−FG(y), together
with its approximation by (8), (9), (10), and (11). The solid line corresponds to the approxima-
tion by formula (10) while the dash-dot line to the approximation by (11). One can immediately
see that formula (11) provides higher accuracy than its counterpart (10) when 3 < y < 6.

As in the former discussion for a compact interval, the refined Shohat-Tamarkin formula remains
less accurate when α < 1 (see e.g. Figure 9(b)).

5 Inversion Formulas on an Arbitrary Half-line

Let us now allow the measure to be spread over a half-line that is not necessarily the positive
real line. Assume that ν is a bounded measure concentrated on the interval [−a,∞) where we
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Figure 7: Original (S-T, 3) vs refined (S-T, 9) Shohat-Tamarkin formulas, 0 < α < 1

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Relative errors. Original and refined Shohat−Tamarkin

y

%

 

 
Original, alpha = 2.05
Refined, alpha = 2.05

(a) 1 < α < 3

2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

y

%
Relative errors. Original and refined Shohat−Tamarkin  

 

 
Original, alpha = 5.05
Refined, alpha = 5.05

(b) α ≥ 3
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suppose that a ≥ 0. The Laplace transform is then given by

ν̂(u) :=
∫ ∞

−a
e−ux dν(x) = eau

∫ ∞

0
e−uyµ(dy) =: eauµ̂(u) , (12)

where
µ(dy) := ν(−a + dy) ,

is a measure concentrated on the non-negative real line. We can recover the measure ν(.) once we
know the Laplace transform µ̂(.). Following the notations introduced in Section 2, the measure
ν on [ω1, ω2], −a ≤ ω1 < ω2, is given by

ν{ω1; ω2} = µ{a + ω1; a + ω2}. (13)

Now we can apply any inversion formula on a compact interval to the right-hand side of (13).

5.1 Post-Widder Formula

From [8] we have for −a ≤ ω1 < ω2

ν{ω1;ω2} = lim
n→∞

∫ ω2

ω1

(−n)n

Γ(n)
µ̂(n)

(
n

a + v

)
dv

(a + v)n+1
. (14)

The link between the derivatives of µ̂ and those of ν̂ is given by the following expression

µ̂(k)(u) = e−au
k∑

`=0

(
k

`

)
(−a)k−` ν̂(`)(u) (15)

that can be obtained from (12) by applying Leinitz’s differentiation formula.

5.2 Widder Formula

From [8] we have for −a < ω

ν{−a;ω} = lim
n→∞

[n(a+ω)]∑

`=0

(−n)`

`!
µ̂(`)(n)

[n(ω+a)]−`∑

r=0

e−an (an)r

r!
. (16)

5.3 Shohat-Tamarkin Formula

The extension of the Shohat-Tamarkin formula (3) for −a ≤ ω1 < ω2 is

ν{ω1;ω2} =
∫ ω2

ω1

∞∑

n=0

µ̂(n)(1)
n!

tn(a, v) dv, (17)

where

tn(a, v) =
∞∑

m=0

e−a (−a)m

m!
cn+m(a + v)

(n + m)!
,

and where in turn

ck(u) =
∞∑

n=k

n!
(n− k)!

Ln(u) ,

with Ln(u) as defined in (4).
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For numerical implementation it is convenient to rearrange the terms in the right-hand side of
(17) in such a way that there remains only one unlimited sum:

ν{ω1;ω2} =
∫ ω2

ω1

∞∑

`=0

∑̀

n=0

`! µ̂(n)(1)
n!

Ln(a + v)
l−n∑

m=0

e−a (−a)m

m!(n + m)!
l!

(l − n−m)!
dv.

5.4 Gaver-Stehfest Formula

We have for −a ≤ ω1 < ω2

ν{ω1; ω2} = lim
n→∞

n∑

k=0

bn,k

[
2−

a(n+k)
a+ω2 ν̂

(
n + k

a + ω2
log 2

)
− 2−

a(n+k)
a+ω1 ν̂

(
n + k

a + ω1
log 2

)]
, (18)

where bn,k has been defined in (6).

5.5 Stadtmüller-Trautner Formula [7]

If ν(x) is a probability measure on [−a,∞) then for −a < x we have

ν(x) = lim
n→∞

n∑

m=0

µ̂(m)(n
x )

m!
(−n

x
)m

n−m∑

r=0

e−
na
x

(na
x )r

r!
. (19)

5.6 Numerical Results

As an example of a bounded measure on [−a,∞), a ≥ 0, we take the shifted Gamma(α) distri-
bution whose Laplace transform is

ν̂(u) = eauµ̂(u) = eau ·
(

1 +
u√
α

)−α

,

where µ̂ is the Laplace transform of the Gamma distribution as defined in (7). Then the
derivatives of µ̂ can be calculated as

µ̂(k)(u) = e−au
k∑

l=0

(
k
l

)
(−a)k−lν̂(l)(u) =

e−au
k∑

l=0

(
k
l

)
(−a)k−leau

l∑

j=0

(
l
j

)
al−j

((
1 +

u√
α

)−α
)(j)

.

We invert the Laplace transform on the intervals [ω1, ω2], where −a ≤ ω1 < ω2. There are
two formulas, the Shohat-Tamarkin and Gaver-Stehfest, that can be used not only for −a = ω1

but also for −a < ω1. Both of them, however, provide higher accuracy when ω1 = −a. We
illustrate this in Figures 10(a) and 10(b) where we plotted the absolute errors of the Shohat-
Tamarkin and Gaver-Stehfest numerical inversion on [ω1, ω2] for the fixed ω1 = −9, varying
ω2 = −8.5,−8, . . . , 2, two different values of a: a = −ω1 = 9 and a = 12 > −ω1. One can see on
the graph that the errors are significantly larger when ω1 > −a. It implies that it is preferable
to take a = −ω1 in order to recover a (probability) measure on the interval [ω1, ω2].

As was the case for a = 0, the Post-Widder formula (14) it is not applicable for ω1 = −a, in
analogy to (1) where it was not applicable for y1 = 0. Taking this into account, the inversion

13
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Figure 10: Absolut errors depending on whether ω1 = −a or ω1 > −a.

by (14) is done on (−a, ω2]. The relative errors of the inversion for the fixed ω1 = −9 and two
values of a: a = 9.01 ≈ −ω1 and a = 12 > −ω1 are plotted in Figure 10(c). The inversion with
a ≈ −ω1 is obviously more accurate.

The Widder formula (16) is derived for a = −ω1 only. In Figure 10(d) we plot the relative errors
of recovering the probability measure for different values of α. Clearly, the accuracy decreases
as α decreases.

Finally, we study the performance of the inversion formulas for varying a. We take ω1 = −a
for convenience. We illustrate how the increase of a influences the precision of the formulas by
taking three arbitrary values of a, say a = 0, a = 5, and a = 9, and comparing the corresponding
inversion errors. For the Shohat-Tamarkin formula, the dependency of the precision on the
value of a is obvious (see Figure 11(a)) while for the other formulas it is not so clear. As seen
in Figure 11, larger errors correspond typically to the larger values of a, but there are also
exceptions. In particular, one can see in Figure 11(e) that the errors by Gaver-Stehfest formula
are of the same order of magnitude for the three considered values of the parameter a.

14



−8 −6 −4 −2 0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3Relative errors. Gamma(2). Shohat−Tamarkin

ω
2

 

 
a = 0
a = 5
a = 7.5

(a) Shohat-Tamarkin

−8 −6 −4 −2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

ω
2

er
ro

r, 
%

Relative errors. Post−Widder. Gamma(2)

 

 

a = 0
a = 5
a = 9

(b) Post-Widder

−8 −6 −4 −2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8
Relative errors. Widder. Gamma(2)

ω
2

er
ro

r, 
%

 

 
a = 0
a = 5
a = 9

(c) Widder

−8 −6 −4 −2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8
Relative errors. Stadtmuller−Trautner. Gamma(2)

ω
2

er
ro

r, 
%

 

 
a = 0
a = 5
a = 9

(d) Stadtmuller-Trautner

−8 −6 −4 −2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

ω
2

er
ro

r, 
%

Relative errors. Gaver−Stehfest, Gamma(2)

 

 
a = 0
a = 5
a = 9

(e) Gaver-Stehfest

Figure 11: Dependence of the inversion errors on the value of a.
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6 Inversion of measures in the entire real line

It seems tempting to adapt the above procedures to the case where the measure µ is no longer
restricted to a half-line, i.e. when

µ̂(u) :=
∫ ∞

−∞
e−ux dµ(x) .

However, a number of comments need to be made.

• None of the given procedures seems adaptable for application on the entire real line. In
principle one could imagine that it should be possible to let a tend to ∞ in the formulas
of Section 5. For an early example of such an approach, see [3].

• An alternative would be to find direct formulas that immediately apply to inversion for
measures on the entire real line. An example of this kind has been recently derived by
Yabukovich [9]. However, a number of numerical experiments suggest that the approxi-
mations show very large errors.

• It is well known that the µ̂(s) exists only in a strip (σ− , σ+) where the value of σ−
(σ+) depends on the exponential decay of the right (left) tail of the measure µ. In many
practical cases both quantities will be finite implying that one needs to look for inversion
formulas that only use the function µ̂(u) in values of u that satisfy σ− < <u < σ+. This
simple observation suggests that only a potential formula of the Shohat-Tamarkin type is
feasible.

It remains a challenging problem to construct accurate real inversion formulas for the two-sided
Laplace transform.

7 Conclusions

In the above we have compared the performance of a number of real inversion formulas for
the Laplace transform of measures concentrated on a half-line. Overall, the inversion by the
Shohat-Tamarkin formula seems to perform best for compact intervals while the Post-Widder
and Gaver-Stehfest are preferable for the tail behavior. We have not compared the used inversion
formulas with other common inversion techniques that apply approximations by functions of a
special type. For a survey of the latter we refer to [1].
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