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Chapter 1

Introduction

The resolution or resolving power of a typical light microscope is limited only by
the wavelength of visible light. The electron microscope uses electrons instead
of photons. The wavelength of electrons is much smaller than the wavelength
of photons, which makes it possible to achieve much higher magnifications than
in light microscopy.

Nowadays electron microscopy is a powerful tool for material science, biol-
ogy, nanotechnology and medical academic research. The electron microscopy
images are used for spectroscopic and chemical analysis [5], quantitative anal-
ysis of material properties [98] (e.g., average size and distribution of particles).
They are highly valued among others in semiconductor industry [31, 91], arche-
ology and paleontology [86], where they are used for production monitoring,
control and troubleshooting. Figure 1.1 shows examples of electron microscopy
images.

1.1 Motivation

The history of electron microscopy goes back to 1931, when German engineers
Ernst Ruska and Max Knoll constructed the prototype electron microscope,
capable of only 400× magnification. The simplest Transmission Electron Mi-
croscope (TEM) is an exact analogue of the light microscope. In Figure 1.2

(a) (b) (c)

Figure 1.1: Electron microscopy images from an industrial application.
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Figure 1.2: From left to right: a schematic diagram of the light microscope
and the transmission electron microscope; a schematic diagram of the scanning
electron microscope (taken from [75]).

schematic diagrams of the light microscope and the TEM are given. The illu-
mination coming from the electron gun is concentrated on a sample with the
condenser lens. The electrons transmitted through a sample are focused by an
objective lens into a magnified intermediate image, which is enlarged by pro-
jector lenses and formed on the fluorescent screen or photographic film. The
practical realization of TEM Transmission Electron Microscope (TEM) is more
complex than the diagram in Figure 1.2 suggests: high vacuum, long electron
path, highly stabilized electronic supplies for electron lenses are required [75].

The Scanning Electron Microscope (SEM) is most widely used of all electron
beam instruments [2]. In SEM a fine probe of electrons with energies from a
few hundred eV to tens of keV is focused at the surface of a sample and scanned
across it (see Figure 1.2). A current of emitted electrons is collected, amplified
and used to modulate the brightness of a cathode-ray tube. The number of
electrons reflected from each spot indicates the image intensity in a current
pixel. Scanning Transmission Electron Microscope (STEM) is a combination
of SEM and TEM. A fine probe of electrons is scanned over a sample and
transmitted electrons are being collected to form an image signal [20]. The
resolution of STEM achieves 0.05 nm nowadays. High-resolution is an imaging
mode of the electron microscope that allows the imaging of the crystallographic
structure of a sample at an atomic scale [72]. Figure 1.3(a) shows a STEM (FEI
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(a) (b)

Figure 1.3: 1.3(a) FEI scanning transmission electron microscope; 1.3(b)
STEM image recorded with in the high-resolution mode (taken from [84]).

company), and Figure 1.3(b) shows a STEM image of a LaAlO3/SrTiO3 sample
recorded in the high-resolution mode. The resolution in electron microscopy is
limited by aberrations of the magnetic lens, but not by the wavelength, as in
light microscopy.

The image recording and interpretation in electron microscopy is more com-
plicated and challenging than in light microscopy. A number of aberrations
typical for electron microscopy, such as spherical aberration, chromatic aberra-

tion, astigmatism influence the electron beam. The signal-to-noise ratio is worse
than in light microscopy due to the limited electron dose that can be applied to
a sample. In order to obtain a higher signal-to-noise ratio the microscope expo-
sure time has to be increased, which is not always acceptable for the real-world
applications that require fast image acquisition. During the image formation
process in the electron microscope a sample can be damaged, contaminated or
charged. Ferromagnetic hysteresis and coupled dynamics in the magnetic lens
system of electron microscopes degrade the microscope’s performance in terms
of steady-state error and transition time [82].

Electron microscopes are operated manually by skilled technicians, who exe-
cute complex and repetitive procedures, such as measuring nanoparticles, using
mainly visual feedback [78]. Hence, there is a need to automate these pro-
cedures. Next generation of microscopes should not only record images but
automatically extract information from the samples (chemical analysis, particle
size distribution, chemical analysis) [76, 81]. The Condor project [25] deals with
system performance and evolvability. Performance is defined as high-end image
quality and measurement accuracy, productivity (fast response time), ease-of-
use, and instrument autonomy (autotuning and calibration). Evolvability is the
adaptability to various applications and different (and changing) requirements
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Figure 1.4: The ideal goal of the Condor project is to construct the electron
microscope as a modern photocamera: we press the button, we record the image
with automatically determined sample characteristics.
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during the planned life cycle. Within this project the FEI electron microscopes
are used as an industrial reference case. The project seeks to transform the
traditional electron microscopes from qualitative imaging instruments into flex-
ible quantitative nanomeasurement tools. Simply speaking the ideal goal of
Condor would be to construct a microscope similar to a modern photocamera:
one presses the button and the image with automatically determined sample
characteristics is recorded (Figure 1.4). This thesis deals with the part of the
project, which aims for automated defocus and astigmatism correction in elec-
tron microscopy.

1.2 Problem formulation

In electron microscopy as well as in a variety of other optical devices, such as
photo cameras and telescopes, focusing is defined as an act of making the image
as sharp as possible (the image is in-focus) by adjusting the objective lens [9].
Astigmatism is the lens aberration that deals with the fact that the lens is not
perfectly symmetric, which is present in all modern magnetic lenses. Due to
astigmatism the image cannot be totally sharp, and has a different amount of
defocus in different directions.

Figure 1.5 shows a photograph of a person and its synthetically generated
versions: out-of-focus without astigmatism and out-of-focus with astigmatism.
The stigmatic image (Figure 1.5(c)) is not just unsharp. We can observe a
stretching in the particular (in this case in the horizontal) direction. Figure 1.6
shows experimental SEM images recorded with and without astigmatism. The
two parts of the cross on the stigmatic image have different levels of unsharp-
ness, while on the out-of-focus image without astigmatism they are uniformly
unsharp.

In a number of practical applications both the defocus and the twofold astig-
matism have to be corrected regularly during continuous image recording. For
instance in electron tomography, 50-100 images are recorded at different tilt
angles, where each tilting changes the defocus [84]. Other possible reasons for
change in defocus and twofold astigmatism are for instance the instabilities of
the electron microscope and environment, as well as the magnetic nature of
some samples. Nowadays electron microscopy still requires an expert opera-
tor to trigger recording of in-focus and astigmatism-free images using a visual
feedback [74, 78], which is a tedious task.

Figure 1.7 shows the scheme of correction loop. The object geometry is gen-
erally unknown. The human operator adjusts the microscope controls (defocus
and stigmators in the scope of this thesis). The controls influence the shape
of the electron beam, which produces a new final image. The human observes
the image with the eyes and adjusts the controls again in order to improve the
correction. In future the manual operation has to be automated to improve the
speed, the quality and the repeatability of the measurements.

The defocus and twofold astigmatism correction methods were studied for
various types of microscopy. Autofocus techniques were investigated for flu-



6 Chapter 1. Introduction

(a) In-focus image without
astigmatism.

(b) Out-of-focus image with-
out astigmatism.

(c) Out-of-focus image with
astigmatism.

Figure 1.5: Synthetically generated images.

(a) In-focus image without
astigmatism.

(b) Out-of-focus image with-
out astigmatism.

(c) Out-of-focus image with
astigmatism.

Figure 1.6: Experimental SEM images.



1.2. Problem formulation 7

Figure 1.7: Defocus and astigmatism correction in electron microscopy.

orescent light microscopy [69, 94], non-fluorescence light microscopy [73, 40],
scanning electron microscopy [62, 61]. Astigmatism is not important for light
microscopy nowadays, thus it was not considered in [69, 94, 73, 40]. Few meth-
ods for simultaneous autofocus and astigmatism correction for scanning electron
microscopy were proposed [16, 52]. Fourier transform-based, variance-based,
autocorrelation-based iterative autofocus techniques were implemented, tested
and compared for electron tomography [84], but astigmatism was not taken into
account.

A number of methods implemented on aberrated-corrected microscopes are
able to correct high and low aberrations, which include defocus and astigmatism.
Some of them are based on Ronchigrams (shadow images) [41, 70, 13, 32, 11].

They assume particular object geometry during the adjustment, i.e. require an
amorphous (or structureless) sample region [70, 13, 32] or a crystalline sample
[41]. Another group of methods is based on the image Fourier transform [22,
4, 95, 33, 96]. These methods as well as the method described in [52], can
hardly be used for situations where the image Fourier transform only has a few
Fourier components or is strongly influenced by unknown sample’s geometry.
The mentioned Ronchigram-based and Fourier transform-based methods are
non-iterative, they provide the absolute measure of the aberrations. These
methods correct for defocus and twofold astigmatism from a small finite number
of recorded images (for example, two images in [4], three images in [22, 95,
96]). Unfortunately, these methods are not suitable for applications that require
continuous operation since they are not fully automated [77] (a human operator
has to point to amorphous area or enter a range of parameters). Besides some
of them make use of additional equipment, such as aberration correctors or a
camera for Ronchigrams recording, which is not a part of every microscope.
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Most of the automatic focusing methods are based on a sharpness function,
which delivers a real-valued estimate of an image quality. We study sharpness
functions based on image derivative, image Fourier transform, image variance,
autocorrelation and histogram. The capacity of the modern processors allows
computations of a sharpness function within a negligible amount of time. How-
ever, image recording might require a noticeable amount of time. In particular
in scanning transmission electron microscope, one image recording can take 1-
to 30 seconds. The development of a method that requires fewer images is
therefore important. A new method for rapid automated focusing is developed,
based on a quadratic interpolation of the derivative-based sharpness function
(fast autofocus method). This function has been already used before on heuris-
tic grounds. We give a more solid mathematical foundation for this function
and get a better insight into its analytical properties.

Further we consider a focus series method, which can act as an extension
for an autofocus technique. The method is meant to obtain the astigmatism
information from the through-focus series of images. The method is based on
the moments of the image Fourier transforms. After all the method of simul-
taneous defocus and astigmatism correction is developed. The method is based
on a three-parameter optimization (the Nelder-Mead simplex method or the
interpolation-based trust-region method) of a sharpness function. We have im-
plemented all three methods (fast autofocus method, focus series method and si-
multaneous defocus and astigmatism correction method) and successfully tested
their performance as part of a real-world application in the STEM microscope.

1.3 Outline

In Chapter 2 we derive the models used in the following chapters. In particular
a linear image formation model is explained. Models for the sample object and
the microscope point spread function are given as well as the general definition
of the sharpness function.

In Chapter 3 we introduce the derivative-based sharpness function explic-
itly and investigate its behaviour with respect to the defocus. In this chap-
ter we show analytically that for the noise-free image formation the L2−norm
derivative-based sharpness function reaches its optimum for the in-focus image,
and does not have any other optima. Moreover, under certain assumptions the
function can accurately be approximated by a quadratic polynomial. The error
of this approximation can be decreased by controlling the artificial blur variable,
which is given as input to the autofocus method. The proposed quadratic poly-
nomial interpolation leads to a new autofocus method that requires recording
of three or four images only.

Chapter 4 introduces a method for defocus and astigmatism correction based
on the image Fourier transform, more precisely the mathematical moments of
the power spectrum. The method is tested with the help of a Gaussian bench-
mark, as well as with the scanning electron microscopy and scanning transmis-



1.3. Outline 9

sion electron microscopy experimental images. The method can be used as a
tool to increase the capabilities of defocus and astigmatism correction of a non-
experienced scanning electron microscopy user, as well as a basis for automated
application.

In Chapter 5 we study autocorrelation and intensity-based and variance-
based sharpness functions. Their relation with the derivative-based sharpness
function studied in Chapter 3 is discussed. The functions are demonstrated for
the experimental data from the SEM.

In Chapter 6 different autofocus techniques are applied to a variety of ex-
perimental through-focus series of SEM images with different geometries. The
techniques include the approaches described in the previous chapters 3-5 and the
histogram-based approach. The procedure of quality ranking is described. It is
shown that varying an extra parameter can dramatically increase the quality of
an autofocus technique.

Chapter 7 explains the method of simultaneous defocus and astigmatism
correction based on derivative-free optimization. Numerical simulations show
that the variance-based sharpness function reaches its maximum at the Scherzer

defocus point with zero astigmatism. This is demonstrated for the synthetic
amorphous images and the ellipsoid particles image with and without noise. The
simulations are based on the wave aberration point spread function discussed
in Chapter 2. They show that derivative-free optimization can be beneficial for
simultaneous defocus and astigmatism correction in electron microscopy. Two
methods of derivative-free optimization are discussed.

The methods described in chapters 3, 5, 7 are implemented and tested on-
line on FEI Tecnai F20 STEM. Chapter 8 describes and discusses results of this
test implementation. It will be shown that the method of simultaneous defocus
and astigmatism correction successfully finds proper control variable values with
time and accuracy compared to a human operator.

Chapter 9 provides future recommendations. The list of frequently used
symbols is provided at the end of the thesis.
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Chapter 2

Modelling

To simplify our presentation we will sometimes restrict our analysis to one-
dimensional images. It will be shown that for rotationally symmetric objective
lenses this restriction does not affect the analysis, because the two-dimensional
case in image formation is a superposition of the one-dimensional case in an
orthogonal direction. The images we are going to analyse are the elements of
L2(R

D), where the dimension D = 1 or D = 2.

2.1 Notation

For further use in the thesis we provide a few definitions below. We define the
spatial coordinate for one-dimension as x and for two-dimension as x := (x, y)T ;
the frequency coordinate for one-dimension as ω and for two-dimension as u :=
(u, v)T . The Fourier transform f̂ of a function f ∈ L2(R

D) plays a fundamental
role in our analysis and modelling

F[f(x)](u) := f̂(u) :=

∫∫ ∞

−∞
f(x)e−iu·xdx,

where · denotes the vector inner product. The inverse Fourier transform is
defined as

F−1[f̂(u)](x) :=
1

2π

∫∫ ∞

−∞
f̂(u)eiu·xdu,

For a vector w := (wi)
N
i=1 we define ‖w‖ := (

∑

i |wi|2)1/2. We define the
rotation operator Rθ : R

2 → R
2 as

Rθ[f(x)] := f(Rθx), (2.1)

where Rθ is the rotation matrix

Rθ :=

(

cos θ − sin θ

sin θ cos θ

)

, (2.2)

and the stretching operator Jw : R
2 → R

2

Jw[f(x)] := f(J wx), (2.3)
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Figure 2.1: The image formation model.

where J w is the stretching matrix

J w :=

(

w1 0

0 w2

)

. (2.4)

2.2 Image formation model

Images for which our sharpness function will be computed are the output im-
ages f of the so-called image formation model represented by Figure 2.1. We
apply the linear image formation model , which is often used for different optical
devices [7, 21, 49, 97]. We consider low-to-medium magnification of the electron
microscope (resolution coarser than or equal to 1 nm), thus the image formation
can accurately be approximated by the linear image formation model [50]. This
implies that the relevant filters are linear and space invariant which easily can
be described by means of convolution products

f0 := ψ ∗ ̺σ + ε, f := f0 ∗ gα. (2.5)

In (2.5) ε is the noise function.
The object’s geometry (or the object function) is denoted by ψ. The filter

̺σ in Figure 2.1 describes the point spread function of an optical device. The
output of the ̺σ filter is denoted by f0 and is often post-processed, cf. Figure
2.1. In our model we assume that the post-processing is a filtering of the image
f0 by a Gaussian function, which is defined for x ∈ R

D as

gα(x) :=
1

(
√

2πα)D
e−

‖x‖2

2α2 .

If no image post-processing is applied then α = 0 and f = f0. This filtering
is often applied for denoising purposes and is a simple alternative to advanced
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denoising techniques [37, 46, 55, 92]. The control variable α does not only serve
to denoise the image f0. As explained in Chapter 3, it influences approximation
errors.

2.3 Object function

We assume that the object function ψ ∈ L2(R
D). For real-world applications

this is satisfied because the function ψ will have a finite domain, i.e., the object
has a finite size. As a consequence ψ̂ is bounded and continuous.

In classical signal analysis a discrete signal ψ is modelled by a finite linear
combination of delta functions (cf.[54])

ψ(x) =

K∑

k,l=1

ak,lδ(x − µk,l). (2.6)

In our setting, the finite sequence of numbers ak,l are the intensities of ψ (or
the object pixel values) at x = µk,l. We consider an equally distributed set of
the object pixels

µk,l := τk, τ > 0, k := (k, l)T , k, l = 1, . . . ,K. (2.7)

The parameter τ in (2.7) is often referred to as a pixel width. We define the
matrix of the object pixel values as

A := (ak,l)
K
k,l=1. (2.8)

Property 2.1. For the power spectrum of the object function (2.6) we have

|ψ̂(u)|2 =
∑

n,m

ρn,me
iτn·u, n := (n,m)T , (2.9)

where
ρn,m :=

∑

k,l

ak,lan+k,m+l, (2.10)

are the autocorrelation coefficients of the object pixel values.

Proof. The Fourier transform of the object function (2.6)

ψ̂(u) =
∑

k,l

ak,l

∫ ∞

−∞
e−ix·uδ(x − τk)dx =

∑

k,l

ak,le
−iτk·u,

is a periodic function with the period 2π
τ in both directions. Then its squared

modulus |ψ̂(u)|2 is also a periodic function with period 2π
τ having the Fourier

expansion

|ψ̂(u)|2 =
( K∑

k,l=1

ak,le
−iτk·u

)( K∑

k,l=1

ak,le
iτk·u

)

=

K−1∑

n,m=−K+1

ρn,me
iτu·n,
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where

ρn,m =
τ

2π

∫∫ π
τ

−π
τ

|ψ̂(u)|2e−iτu·ndu =

τ

2π

∑

k,l

ak,l

∫ π
τ

−π
τ

ψ̂∗(u)e−iτ(k+m)·udu =
∑

l

ak,la
∗
k+n,l+m =

∑

l

ak,lak+n,l+m.

As a special example of an object function consider one for which the power
spectrum corresponds to a Gaussian function. It can be for instance an approx-
imation of a single particle object

|ψ̂(u)|2 = Ce−‖u‖2γ2

, C > 0, γ ≥ 0. (2.11)

For γ = 0 in (2.11), |ψ̂|2 is a constant, which approximates the situation when
the object is amorphous (or structureless).

2.4 Point spread function

In this section we discuss two possibilities of modelling the point spread function:
with the Lévi stable density function and with the wave aberration function.

2.4.1 The Lévi stable density function

For a wide class of optical devices the point spread function ˆ̺σ can accurately
be approximated by a Lévi stable density function [7, 8, 27]. For the optical
device parameter 0 < β ≤ 1 this function is implicitly defined by its Fourier
transform

ˆ̺σ(ω) := e−σ
2βω2β/2, 0 < β ≤ 1. (2.12)

If β = 1 in (2.12) then ̺ and ˆ̺ are Gaussian functions. A Gaussian function (or
a composition of Gaussian functions) is often used as an approximation of the
point spread function for different optical devices [46, 49, 97], including electron
microscopes [16, 48]. The parameter σ in (2.15) is known as the width of the
point spread function. For a Gaussian point spread function, the width σ is
equal to its standard deviation. Due to the physical limitations of the optical
device it has a positive lower bound: σ > σ0 > 0.

For β = 1
2 in (2.12), one obtains the Lorentzian function (or the Cauchy

function). When β = 1, ˆ̺σ has a slim tail and finite variance. When 0 < β < 1,
ˆ̺σ has a fat tail and infinite variance.

In a two-dimensional setting, due to the presence of astigmatism, the point
spread function is not always rotationally symmetric. Actually it is often taken
as a tensor product of two one-dimensional point spread functions in the x and
y directions including the possibility of system rotation

ˆ̺σ(u) := RθJσ ˆ̺1, (2.13)
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Figure 2.2: Asymmetric point spread function, schematic representation.

where
ˆ̺1 := e‖u‖

2β/2, (2.14)

σ := (σ − ς, σ + ς)T . (2.15)

For the Fourier transform it trivially follows that for all linear operators R

F[f(Rx)](u) :=

∫∫ ∞

−∞
f(Rx)e−iu·xdx =

y=Rx

1

| detR|

∫∫ ∞

−∞
f(y)e−i(R−T u)·ydy =

1

| detR| f̂(R−Tu).

Since the rotation matrix (2.2) satisfies the properties det Rθ = 1,R−T
θ = Rθ,

the rotation angle θ of the point spread function in Fourier space is equal to the
rotation angle of the point spread function in the real space

F[Rθ̺] = Rθ ˆ̺. (2.16)

Figure 2.2 shows a schematic representation of elliptic ̺σ. For ς = 0 in
(2.15) there is no astigmatism, and the point spread function is rotationally
symmetric. For ς 6= 0 and simultaneously σ = 0 (i.e. the image is stigmatic and
in-focus), ̺σ is symmetric with the width ς, which means that the image is not
totally sharp. Parameter θ in (2.13) indicates the unknown characteristic of the
optical device.

2.4.2 Wave aberration function

In this subsection we briefly describe a different point spread function model,
which takes into account the spherical aberration typical for electron microscopy.
Figure 2.3 illustrates the ray diagram in one-dimension with the spherical aber-
ration. The portion of the lens furthest from the optical axis brings rays to a
focus nearer the lens than does the central portion of the lens. Another way of
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Figure 2.3: Ray diagram in one-dimension illustrates spherical aberration.

expressing this concept is to say that the optical ray path length from object
point to focused image point should always be the same. This naturally implies
that the focus for marginal rays is nearer to the lens than the focus for paraxial
rays (those which are almost parallel to the axis). Spherical aberration is always
present in magnetic lenses [71].

A detailed explanation of the electron microscope wave aberration function
can be found in [30]. Here we only provide a short overview. In the Fourier
space the wave function that enters the sample is given by

G(u) = A(u)e−iχ(u), (2.17)

where the aperture function A is

A(u) =

{

1, if ‖u‖ ≤ RA

0, otherwise,
(2.18)

and the wave aberration function χ is defined as in [23, 30, 32]

χ(u) = πλ(‖u‖2d+
1

2
λ2‖u‖4Cs + Cb(v

2 − u2) +
1

2
Ccuv), (2.19)

λ, d, Cs, Cb, Cc represent the wavelength, the defocus, the spherical aberration,
the twofold astigmatism respectively. The electron wave length λ is related to
the electron energy E, the speed of light c, the electron’s rest mass m0 and the
Planck’s constant ~ (cf. [30])

λ =
~c

√

E(2m0c2 + E)
. (2.20)

The electron energy E can be set to different values within a certain range,
which depends on the particular microscope. The defocus and astigmatism
variables d, Cb, Cc can be controlled by a human operator. The defocus control
variable will be in detail discussed in the next section. The spherical aberration
Cs is the characteristics of the microscope.

The aperture radius RA in (2.18) controls the convergence semi-angle ηA of
the beam

RA =
ηA
λ
. (2.21)
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Figure 2.4: Simulations of the point spread function (2.22) for different defocus
d and astigmatism Cb values. Astigmatism parameter Cc is set to zero.
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The point spread function is the intensity of the scanning probe, that is the
inverse Fourier transform of the wave function (2.17) [30]

h(x) = C
∣
∣F−1[G]

∣
∣
2
, (2.22)

where C is a normalization constant. The microscope defocus can be used to
offset the effect of spherical aberration. The ideal control variable values for the
wave aberration model are known as Scherzer conditions (see [30]). They are
expressed through the spherical aberration of the electron microscope, i.e. the
Scherzer defocus point is defined as

dSh := −(1.5Csλ)
1/2, (2.23)

and the Scherzer aperture is defined

RASh
:=

1

λ

(6λ

Cs

) 1
4

. (2.24)

Then the Scherzer convergence semi-angle can be trivially computed as

ηASh
:= λRASh

.

Figure 2.4.2 shows the simulations of the point spread function based on
the model described in this subsection. The Scherzer defocus value in this
simulation is equal to 45 nm. We observe that the width of the point spread
function in this simulation for 45 nm defocus is smaller than the width for 0 nm
defocus.

For analytical observations in this thesis we use the point spread function
model that does not take into account the spherical aberration. The wave
aberration model explained in this section is used for numerical simulations and
experiments in Chapter 7.

2.5 Defocus and stigmator control variables

Astigmatism is a lens aberration caused by rotational asymmetry of the mag-
netic lens. Figure 2.5(a) shows a ray diagram for the astigmatism-free situation.
The lens has one focal point F. The only adjustable parameter is the current
through the lens; it changes the focal length of the lens and focuses the magnetic
beam on the image plane [52]. The current is controlled by the defocus variable
d. Astigmatism implies that the rays traveling through a horizontal plane will
be focused at a focal point different from the rays traveling through a vertical
plane (Figure 2.5(b)). Figures 2.5(a), 2.5(b) show diagrams in two-dimension,
which is different from Figure 2.3 that shows ray diagram in one-dimension.
This leads to two different focal points F1 and F2 of the lens. The image can-
not be totally sharp. Due to the presence of astigmatism, the electron beam
becomes elliptic.
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(a) (b)

Figure 2.5: Ray diagrams in two-dimensions: 2.5(a) for a lens without astig-
matism with one focal point; 2.5(b) a lens with astigmatism with two focal
points.

Figure 2.6: Typical for the electron microscope configuration of electrostatic
stigmators [52].

For astigmatism correction in electron microscopy, electrostatic or electro-
magnetic stigmators are used. They produce an electromagnetic field for the
correction of the ellipticity of the electron beam [59]. A typical configuration of
them is shown in Figure 2.5. The elliptic electron beam is depicted in the mid-
dle of the scheme. Currents of magnitude I1 pass through coils A1, A2, C1, and
C2, while currents of magnitude I2 pass through coils B1, B2, D1, and D2. The
field generated by A1, A2, C1 and C2 influences the stretching of the electron
beam along the two orthogonal axes A and C. Similarly, the field generated
by coils B1, B2, D1 and D2 influences the stretching along the two orthogonal
axes C and D [52]. The angle between axes A and B is always π

4 . Magnitude
and direction of the current through the coils A1, A2, C1 are C2 are controlled
by the x-stigmator control variable dx, and magnitude and direction of the cur-
rent through coils B1, B2, D1 and D2 are controlled by the y-stigmator control
variable dy.
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In this thesis we deal with the vector of three microscope control variables

d := (d, dx, dy)
T . (2.25)

The vector of the ideal control variable values (the setting when the output
image has the highest possible quality) is defined as

d0 := (d0, dx0
, dy0

)T . (2.26)

The goal of the autofocus procedure is to find the value of d0. The goal of the
automated astigmatism correction procedure is to find the values of dx0 , dy0

.
We define

dh := d− d0, dxh
:= dx − dx0

+ 1, dyh
:= dy − dy0

+ 1,

dh := (dh, dh)
T , dxh

:= (dxh
,

1

dxh

)T , dyh
:= (dyh

,
1

dyh

)T .

The point spread function can be expressed through the control variables as

ˆ̺σ = Td ˆ̺1,

where the operator Td : R
2 → R

2 is defined as Td[f(x)] := f(T dx) with the
transformation matrix

T d := J dh
J dxh

Rπ/4J dyh
R−π/4 =

d

2




dxh

(dyh
+ 1

dyh

) dxh
(dyh

− 1
dyh

)

1
dxh

(dyh
− 1

dyh

) 1
dxh

(dyh
+ 1

dyh

)



 .

For dy = dy0
one has

σ =
dh
2

(

dxh
+

1

dxh

)

, ς =
dh
2

(

dxh
− 1

dxh

)

, θ = 0,

and for dx = dx0 and dy = dy0

σ = d− d0, ς = 0, θ = 0.

2.6 The sharpness function

Many existing autofocus methods are based on a sharpness function S : L2(R
2) →

R, a real-valued estimate of the image’s sharpness. In the literature a number
of sharpness functions have been considered and discussed for different opti-
cal devices, such as photographic and video cameras [17, 28, 34], telescopes
[29, 47], light microscopes [6, 24, 40, 69, 73, 93, 94] and electron microscopes
[16, 53, 61, 62, 74, 84]. For a through-focus series of images the sharpness
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Figure 2.7: Sharpness function S reaches its optimum at the in-focus image.
The goal of the autofocus procedure is to find the in-focus value d0.

function is computed for different values of d given a fixed value of α. A typi-
cal sharpness function shape is shown in Figure 2.7. The image at the defocus
d = d0 is sharp or in-focus when the sharpness function reaches its optimum. An
image away from d0 is called out-of-focus. Ideally sharpness functions should
have a single optimum (maximum or minimum) at the in-focus image. The
sharpness functions are also used for studies of the hysteresis in electromag-
netic lenses [82, 83] and reconstructions of three-dimensional microscopic ob-
jects [36, 49].

In this thesis we will use the following notations: S[f ] is the sharpness
function value computed for the image f ; S(d) is the sharpness function value
computed for the image f , recorded with machine control variables d; similarly
for only autofocus problem we will use S(d); as the defocus control variable d is
closely related to the point spread function width σ it is sometimes convenient
to define the sharpness function as S(σ), or for the two-dimensional setting
S(σ).

We assume that for our autofocus procedure α is fixed and a finite number,
say N, of values for the defocus control d are chosen: d1, . . . , dN with d1 < d2 <
. . . < dN. For each of the corresponding images f1, f2, . . . , fN the value of the
sharpness function is computed

Si := S(di − d0), i = 1, . . . ,N. (2.27)

The problem of automated focusing (or autofocus) is to estimate the location d0

of the optimum of S given the points Si in (2.27). For simultaneous defocus and
astigmatism correction stigmator controls are ajusted as well, and the goal is
to estimate d0 from the values of the sharpness function computed at different
points d.

An autofocus method can be established in two different ways described
below.

• Static autofocus. A number of images is taken within a wide defocus
range and for each image the sharpness function is computed giving a
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discrete set of sharpness function values . Then the optimal image (the
in-focus image) is determined as the optimum of this discrete set of data
(course focusing). Eventually the same procedure is repeated within a
smaller defocus range around the optimum, found in the previous step
(fine focusing).

• Dynamic autofocus. Starting out with an initial defocus parameter d, an
iterative optimization method is used to find the optimal defocus value
d0, (for example, the Fibonacci search [40, 94], the Nelder-Mead simplex
method [68] or the interpolation-based trust-region method [60]).

The first approach requires recording of about 20-30 images, which can be time-
consuming for real-world applications. The goal of the second approach is to
minimize the number of images necessary to perform the autofocus. It usually
requires at least 10 images for the autofocus procedure. On the other hand, the
first approach is more robust to the local optima in the sharpness function, which
often occur in electron microscopy due to the noise in the image formation.

In the next chapters we will discuss different types of sharpness functions
based on image derivative, Fourier transform, variance, autocorrelation, inten-
sity and histogram, denoted as Sder, Sft, Svar, Sac, Sint, Shis respectively.

2.7 Discrete images

In real-world applications the image f is always camera-recorded, and therefore
discrete and bounded. Assume for X ∈ R the support of f is

X := [0, X ]D,

i.e., f(x) = 0 for x outside of X. For i = 1, . . . , N we define the grid points
xi := ∆x

2 + (i− 1)∆x, where ∆x := X
N (for the default X = 1, ∆x = 1

N ).
The microscopy images are discrete images that can be represented by a

matrix
F := (fi,j)

N
i,j=1, (2.28)

of the image pixel values
fi,j := f(xi, xj). (2.29)

We use the mid-point rule for approximation of image integration. Hence
the integration of the image with compact support over the image domain in
two-dimension is approximated by

∫

X

f(x)dx
.
= (∆x)2

∑

i,j

f(xi, xj) =
∆x=1/N

1

N2

N∑

i,j=1

fi,j, (2.30)

similarly

‖f‖Lp

.
=
( 1

N2

N∑

i,j=1

fp
i,j

)1/p

.
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Similarly for one-dimension

∫

X

f(x)dx
.
=

1

N

N∑

i=1

fi, ‖f‖Lp

.
=
( 1

N

N∑

i

fp
i

)1/p

.

For the given discrete image the sampling period ∆x is fixed. Thus considering
higher order integration will not decrease the integration error.

Below we discuss the numerical differentiation of the discrete images. By
dropping the limit in the definition of the differential operator

∂

∂x
f(x) := lim

ǫ→0

f(x+ ǫ, y) − f(x, y)

ǫ

and keeping ǫ fixed at a distance of k ∈ N pixels, we obtain a finite difference
approximation at (xi, xj)

∂

∂x
f(xi, xj)

.
=

1

(k∆x)
(fi+k,j − fi,j). (2.31)

We refer to k as the pixel difference parameter for the discrete image derivatives.
The directional derivative of f at x in the unit direction w := (wx, wy)

T ∈ R
2

is

wT∇f(x) := wx
∂

∂x
f(x) + wy

∂

∂y
f(x).

For the polar angle π/4 it follows that wπ/4 := 1√
2
(1, 1)T and

wT
π/4∇f(xi, xj)

.
=

1√
2(k∆x)

(fi+k,j − 2fi,j + fi,j+k),

for the angle −π/4 it follows that w−π/4 := 1√
2
(1,−1)T and

wT
−π/4∇f(xi, xj)

.
=

1√
2(k∆x)

(fi+k,j − fi,j+k).

Two alternative derivative interpolation solutions appear commonly in the lit-
erature: fitting polynomial approximations [3, 90] and smoothing with a filter,
for instance a Gaussian function [18, 45]

∂

∂x
f(x)

.
= Dx :=

∂

∂x
(f ∗ g) = f ∗ ∂

∂x
g. (2.32)
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Chapter 3

Derivative-based approach

In this chapter we introduce the derivative-based sharpness function explicitly
and investigate its behaviour [64, 67]. The advantage of using derivative-based
sharpness functions has been shown experimentally for SEM [61, 62] and other
optical devices [6, 49]. The use of these functions is heuristic. Usually they are
based on the assumption that the in-focus image has a larger difference between
neighbouring pixels than the out-of-focus image. In this chapter we show ana-
lytically that for the noise-free image formation the L2−norm derivative-based
sharpness function reaches its optimum for the in-focus image, and does not
have any other optima. Moreover, under certain assumptions the function can
accurately be approximated by a quadratic polynomial. The error of this ap-
proximation can be decreased by controlling the artificial blur variable, which
is given as input to the autofocus method. The proposed quadratic polynomial
interpolation leads to a new autofocus method that requires recording of three
or four images only. This provides the speed improvement in comparison with
existing approaches, which usually require recording of more than ten images
for autofocus.

For the simplification of our analysis in the beginning of this chapter (sec-
tions 3.1-3.3) we restrict the theoretical observations to a one-dimensional set-
ting. In the following sections, as well as in our numerical experiments and
real-world application two-dimensional images are used. Throughout the chap-
ter we use the notation S instead of Sder for the derivative-based sharpness
function, to be defined below.

3.1 Derivative-based sharpness function

The derivative-based sharpness function is defined (cf.[6, 34, 40, 94])

S := ‖ ∂
n

∂xn
f‖pLp

, p = 1, 2. (3.1)

For n = 0 in (3.1) we obtain a so-called intensity-based sharpness function Sint,
which will be discussed in Chapter 5. In different literature sources different
norms are applied to the image derivatives for autofocus purposes, i.e. p = 1 in
[26, 39] or p = 2 in [17, 47]. In this chapter we mostly focus on p = 2 in (3.1).
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It will be explained below that L2-norm derivative-based sharpness functions
are less sensitive to noise than L1-norm based. For the linear image formation

model (2.5), we have therefore

S = ‖ ∂
n

∂xn
(ψ ∗ ̺σ ∗ gα)‖2

L2
. (3.2)

As explained in Section 2.6 the problem of automated focusing is to estimate
the optimum location d0 of the sharpness function from the given points (2.27).
In this chapter our aim is to do this using a small number of recorded images,
i.e., N=3 or N=4, while in the literature N>10 is usually used [34, 40, 94, 97].
For this purpose we will look for the function shape which can accurately be
approximated by a quadratic polynomial. In Section 3.3 error estimates of such
an approximation for derivative-based sharpness function are provided.

In some practical applications (cf.[34, 40, 94]) an appropriate power p of the
sharpness function, i.e. the function Sp is used as a sharpness function. Here
p is usually taken to be 1

2 , 1, 2. The power p does not influence the optimum
position of the sharpness functions. However, it influences the function shape,
which can simplify the task of finding an optimum in a real-world application.

In the next sections we collect some useful properties of the derivative-based
sharpness function. First we deal with general properties of S in case the spread
function ̺σ is a Lévi stable density function. Further we restrict ourselves to
the Gaussian point spread functions and study in more detail properties of S
for a typical collection of object functions: a Gaussian benchmark and a more
general case of a digital image.

3.2 General properties

In this section we discuss basic properties of the derivative-based sharpness
function in one-dimensional setting.

Property 3.1. The sharpness function (3.2) can be expressed as follows

S(σ) =
1

2π

∫ ∞

−∞
ω2n|ψ̂(ω)|2e−σ2βω2β

e−α
2ω2

dω. (3.3)

Proof. For ψ̂, ĝ, f̂ , the Fourier transforms of ψ, g, f respectively, it holds that
f̂ = ψ̂ ˆ̺σ ĝα. Then from Parseval’s identity we find

S(σ) = ‖ ∂
∂x
f‖2

L2 =
1

2π
‖ωnf̂‖2

L2 =
1

2π

∫ ∞

−∞
ω2n|ψ̂(ω)|2| ˆ̺σ(ω)|2|ĝα(ω)|2dω.

The following corollaries follow directly from Property 3.1.
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Figure 3.1: Numerically computed sharpness functions S.

Corollary 3.1. The sharpness function (3.2) is smooth, and is strictly increas-
ing for σ < 0 and strictly decreasing for σ > 0.

Corollary 3.2. For α > 0 the sharpness function (3.2) has a finite maximum
at σ = 0

max
σ

S(σ) = S(0).

Figure 3.1 shows the numerically computed sharpness function S for different
values of α. From now on we consider a Gaussian point spread function, i.e.
β = 1 in (2.12). We set n = 1 in (3.1).

Property 3.2. For the function (2.11) and the Gaussian point spread function
we have

S(σ) =
C

4
√
π(σ2 + α2 + γ2)

3
2

.

Proof. By substituting η =
√

σ2 + α2 + γ2 into the identity

∫ ∞

−∞
ω2e−η

2ω2

dω =

√
π

2η3
, (3.4)

we obtain

S(σ) =
C

2π

∫ ∞

−∞
ω2e−(σ2+α2+γ2)ω2

dω =
C

4
√
π(σ2 + α2 + γ2)

3
2

.
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We also observe that the location d0 of the maximum of S does not depend
on α. This will be true in general. Note that for the object function (2.11) the
sharpness function to the power −2/3 is a quadratic polynomial

S−2/3(d− d0) = 3

√
π

C2
((d− d0)

2 + α2 + γ2). (3.5)

It will be shown that in the general case the function S−2/3 can be well ap-
proximated by a quadratic polynomial for suitable choices of the blur variable
α. The quadratic shape of the sharpness function makes finding its optimum
faster and more robust in the real-world applications.

3.3 Digital image object

In this section we consider a digital image object (2.11) with autocorrelation
coefficients (2.10).

Property 3.3. The sharpness function S is expressed by means of the auto-
correlation coefficients (2.10) as follows

S(σ) =
1

8
√
π(α2 + σ2)3/2

∑

m

ρm(2 − m2τ2

α2 + σ2
)e

− 1
4

m2τ2

α2+σ2 . (3.6)

Proof. After we rewrite the sharpness function (3.3) for β = 1 as

S(σ) =
1

2π(σ2 + α2)3/2

∫ ∞

−∞
ω2|ψ̂(

ω√
α2 + σ2

)|2e−ω2

dω.

and substitute the expression for the power spectrum (2.9), we achieve

S(σ) =
1

2π(σ2 + α2)3/2

∑

m

ρm

∫ ∞

−∞
ω2e

imωτ√
α2+σ2 e−ω

2

dω. (3.7)

Using the identity

1

2π

∫ ∞

−∞
ω2e−ω

2

eiηωdω =
(2 − η2)e−

η2

4

8
√
π

,

we obtain (3.6) directly from (3.7).

In the two theorems below we approximate the sharpness function S by a
function of the type C

(α2+σ)3/2 in such a way that S can be written as

S(σ) =
C

(α2 + σ2)3/2
(1 +R(σ)), (3.8)
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where C depends only on the object pixel values (2.8), i.e. C = C(a) and a
relative error R, which can be small in typical circumstances. This implies that
the function (3.5) can be expressed as

S−2/3(d− d0) = P(d)(1 + ǫ(d)),

where P is a second order polynomial. For a small error R(σ), the relative error
ǫ(d) will be small: ǫ(d)

.
= − 2

3R(σ).
In practical applications the value of σ is important in relation to the pixel

width τ . For instance if σ ≫ τ , the image is totally out-of-focus (for example,
Figure 3.2(e)). It is often the case that σ > τ , but not σ ≫ τ . However, by
controlling the blur α, the value

√
α2 + σ2 can be much larger than τ , which is

important for our error analysis in the next theorems.

Theorem 3.1. The sharpness function can be expressed as follows

S(σ) =
C1

2π(α2 + σ2)3/2
(1 +R1(σ)), (3.9)

where

|R1(σ)| ≤ K1
τ√

α2 + σ2
, (3.10)

and C1,K1 depend only on the object pixel values, i.e. ak,l in (2.8).

Proof. Splitting e
imτω√
α2+σ2 into (e

imτω√
α2+σ2 − 1) + 1 in (3.7), one obtains

S(σ) =
1

2π(σ2 + α2)3/2

( ∫ ∞

−∞
ω2e−ω

2

dω
∑

m

ρm

︸ ︷︷ ︸

C1

+

∫ ∞

−∞
ω2e−ω

2 ∑

m

ρm(e
imτω√
α2+σ2 − 1)dω

)

. (3.11)

Applying (3.4) for η = 1, one obtains

C1 =

∫ ∞

−∞
ω2e−ω

2

dω
∑

m

ρm =

√
π

2
‖a‖1.

To estimate R1 observe that

|eiη − 1| = 2| sin η
2
| ≤ |η|, η ∈ R, (3.12)

for η = mτω√
α2+σ2

, and consequently

∣
∣
∣

∑

m

ρm(e
imτω√
α2+σ2 − 1)

∣
∣
∣ ≤

(∑

m

|m|ρm
) |ω|τ√

α2 + σ2
. (3.13)
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Original image: σ=0

(a)

σ/τ=0.5

(b)

σ/τ=1

(c)

σ/τ=10

(d)

σ/τ=100

(e)

Figure 3.2: Artificially blurred images of a gold particle with different values
of σ/τ .

From the estimate (3.13) and
∫∞
−∞ |ω|3e−ω2

dω = 1 it follows that

∣
∣
∣

∫ ∞

−∞
ω2e−ω

2 ∑

m

ρm(e
imτω√
α2+σ2 − 1)dω

∣
∣
∣ ≤

(∑

m

|m|ρm
) τ√

α2 + σ2
.

Then the statement of the theorem follows directly with

K1 =
2√
π

∑

m |m|ρm
∑

m ρm

in (3.9).

It follows from the theorem that the function (3.5) can be approximated by
a quadratic polynomial at any accuracy by increasing the value of the blur α.

Now let σ ≤ τ . This means that the image is almost in-focus and might
be only slightly unsharp. Figures 3.2(a)-3.2(c) show examples of artificially
blurred images. From left to right: original image, blurred image with σ/τ =
0.5, blurred image with σ/τ = 1. We hardly detect differences between the
original and blurred images. However, if we zoom into the details (figures
3.3(a)-3.3(c)) the difference is visible. This corresponds to the fine focusing,
which is considered in the theorem below.
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Original image: σ=0

(a)

σ/τ=0.5

(b)

σ/τ=1

(c)

σ/τ=10

(d)

Figure 3.3: Artificially blurred images of a gold particle with different values
of σ/τ . The images are the magnified versions of those shown in Figure 3.2.
Only if we zoom into the small particles we observe the difference in the image
quality for the small values of σ.

Theorem 3.2. The sharpness function can be expressed as follows

S(σ) =
C2

2π(α2 + σ2)3/2
(1 +R2(σ)), (3.14)

where

|R2(σ)| ≤ K2
α2 + σ2

τ2
, (3.15)

and C2,K2 depend only on the object pixel values, i.e. ak,l in (2.8).

Proof. Splitting
∑

m ρm into ρ0 +
∑

m 6=0 ρm in (3.7) one obtains

S(σ) =
1

2π(σ2 + α2)3/2

(

ρ0

∫ ∞

−∞

ω
2
e
−ω2

dω

︸ ︷︷ ︸

C2

+
∑

m6=0

ρm

∫ ∞

−∞

ω
2
e
− imτω√

α2+σ2
e
−ω2

dω
)

,

C2 = ρ0

∫ ∞

−∞

ω
2
e
−ω2

dω =

√
π

2
‖a‖2.

To estimate R2 observe that

∣
∣
∣

∫ ∞

−∞

ω
2
e
−ω2

e
iηωdω

∣
∣
∣ =

∣
∣
∣

√
π

4
(2 − η

2)e−
η2

4

∣
∣
∣ ≤ 4

η2
, (3.16)

i.e. substitute η = mτ√
α2+σ2

∣
∣
∣

∫ ∞

−∞

ω
2
e
−ω2

e

imτω√
α2+σ2

dω
∣
∣
∣ ≤ 4

α2 + σ2

m2τ 2
.
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Then the statement of the theorem follows with

K2 =
8√
π

∑

m6=0
ρm

m2

ρ0

in (3.15).

Theorem 3.2 considers the situation of a very fine focusing, which is different
from Theorem 3.1, where a more general case is considered. However, it is shown
that in both situations the function S−2/3 can be approximated by a quadratic
polynomial with a given accuracy. This coincides with findings of Property 3.2
for the benchmark object (2.11).

Further we provide one more representation of the sharpness function with
a different error estimates, which is controlled by σ

α .

Theorem 3.3. The sharpness function can be expressed as follows

S(σ) =
1

2π(σ2 + α2)3/2

(∫ ∞

−∞
ω2|ψ̂(

ω

α
)|2e−ω2

dω +R3(σ)
)

, (3.17)

where

|R3(σ)| ≤ (
∑

m

|m|ρm)
τ

α
(
σ

α
)2.

Proof. It is clear that in (3.17) we have

R3 =

∫ ∞

−∞
ω2(|ψ̂(

ω√
α2 + σ2

)|2 − |ψ̂(
ω

α
)|2)e−ω2

dω =

∫ ∞

−∞
ω2e−ω

2 ∑

m

ρm(e
imτ ω√

α2+ω2 − eimτ
ω
α )dω.

Using (3.12), we obtain

|R3| ≤ 2

∫ ∞

−∞
ω2e−ω

2 ∑

m

ρm

∣
∣
∣ sin

mτ

2
ω(

1

α
− 1√

α2 + σ2
)
∣
∣
∣dω.

Moreover, we have

1

α
− 1√

α2 + σ2
=

1

α
√

1 + (σα )2
(σα )2

1 +
√

1 + (σα )2
≤ σ2

α3
.

Therefore,

|R3| ≤
σ2τ

α3

∫ ∞

−∞
ω3e−ω

2 ∑

m

|m|ρmdω = (
∑

m

|m|ρm)
τ

α
(
σ

α
)2.
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In the next section it will be shown that the role of the artificial blur control
variable α in a higher dimension becomes more important due to the possible
presence of astigmatism. If we only do the autofocus the proper choice of α
helps to avoid the multiple optima of the sharpness function. If we perform
automated simultaneous defocus and astigmatism correction, by controlling α
we can improve the shapes of the sharpness function and increase the speed of
optimization.

3.4 Two-dimensional setting

In this section we provide the general properties of the derivative-based sharp-
ness function in two-dimensional setting

Sn,m := ‖ ∂
n

∂xn
∂m

∂ym
f‖pLp

, p = 1, 2. (3.18)

Below we consider the particular case

S :=
∥
∥
∥|∇f |

∥
∥
∥

2

L2
= S1,0 + S0,1. (3.19)

Property 3.4. If f is given by (2.5) with the point spread function (2.13), then
the sharpness function (3.19) can be written as follows

S(σ) =
1

2π

∫∫ ∞

−∞
‖u‖2|ψ̂(u)|2e−‖(J

σ
Rθu)‖2β

e−‖u‖2α2

du. (3.20)

Proof. Because of Parseval’s identity we have

S(σ) =
1

2π
‖uf̂‖2

L2 +
1

2π
‖vf̂‖2

L2 =
1

2π

∫ ∞

−∞
‖u‖2|ψ̂(u)|2| ˆ̺σ(u)|2|ĝα(u)|2du.

3.4.1 Rotationally symmetric point spread function

In this subsection we consider the rotationally symmetric point spread function,
i.e. ς = 0 in (2.15). The three corollaries below follow directly from Property
3.4.

Corollary 3.3. The sharpness function (3.19) can be expressed as

S(σ) =
1

2π

∫∫ ∞

−∞
‖u‖2|ψ̂(u)|2e−σ2β‖u‖2β

e−‖u‖2α2

du. (3.21)

Corollary 3.4. The sharpness function (3.19) is smooth, and is strictly in-
creasing for σ < 0 and strictly decreasing for σ > 0.
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Corollary 3.5. The sharpness function (3.19) has a finite maximum at σ = 0
for α > 0; in particular

max
σ

S(σ) = S(0).

It follows that the basic properties of the derivative-based sharpness function
in two-dimension are similar to the properties in one-dimension, if we assume a
rotationally symmetric point spread function: for the noise-free image formation
the function has a unique optimum at the in-focus image. Further we consider
the Gaussian point spread function (β = 1 in (3.21)).

Property 3.5. The sharpness function S can be expressed by means of the
autocorrelation coefficients (2.10) as follows

S(σ) =
1

8
√
π(α2 + σ2)2

∑

n,m

ρn,m(4 − ‖n‖2τ2

α2 + σ2
)e

− 1
4

‖n‖2τ2

α2+σ2 . (3.22)

Proof. The proof is the analogue of the proof for Property 3.3.

Theorem 3.4. The sharpness function can be expressed as

S(σ) =
C4

2π(α2 + σ2)2
(1 +R4(σ)), (3.23)

where

|R4(σ)| ≤ K4
τ√

α2 + σ2
, (3.24)

and C4,K4 depend only on the object pixel values, i.e. ak,l in (2.8).

Proof. The proof is the analogue to the proof of Theorem 3.1 with

C4 =

∫∫ ∞

−∞
|u|2e−|u|2du

∑

n,m

ρn,m = π
∑

n,m

ρn,m.

and

K4 =
3

2
√
π

∑

n,m(|n| + |m|)ρn,m
∑

n,m ρn,m
.

It follows from (3.23) that the function S−1/2 can be approximated with
any accuracy by a quadratic polynomial by increasing the value of the control
variable α. This also corresponds to the findings made for the one-dimensional
setting before. The only difference is the power of the sharpness function to be
taken for a quadratic approximation. Below we examine a more general case of
a non-symmetric point spread function.
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3.4.2 Non-symmetric point spread function

Property 3.6. For the sharpness function value, the point spread function
rotation is equivalent to the object rotation

S[ψ ∗ (Rθ̺σ) ∗ gα] = S[(Rθψ) ∗ ̺σ ∗ gα].

Proof. It follows from (2.16) that

S[ψ ∗ Rθ̺σ ∗ gα] =
1

2π

∫∫ ∞

−∞
|u|2|ψ̂|2|Rθ ˆ̺σ|2|ĝα|2du =

1

2π detRθ

∫∫ ∞

−∞
|R−T

θ u|2|R−T
θ ψ̂|2| ˆ̺σ|2|R−T

θ ĝα|2du =

1

2π

∫∫ ∞

−∞
|u|2|Rθψ̂|2| ˆ̺σ|2|ĝα|2du = S[(Rθψ) ∗ ̺σ ∗ gα].

Corollary 3.6. For a rotationally invariant object (Rθψ = ψ), the point spread
function rotation does not influence the sharpness function.

Such objects often occur in practice. The benchmark (2.11) satisfies this
property as well. For further simplification of our analysis we make therefore
an assumption θ = 0 in (3.20). In this case the adjustment of the y-stigmator dy

is not necessary. Neglecting the point spread function rotation angle does not
limit the theoretical observations. However, in real-world applications defocus
and astigmatism correction still remain a three-parameter problem. It has not
been possible so far to implement point spread function rotation directly in the
hardware; thus its elliptic form can be adjusted only by a combination of the
two stigmator control variables.

Property 3.7. For the object function (2.11) and the Gaussian point spread
function the sharpness function (3.19) is given by

S(σ) =
C(ς2 + σ2 + α2 + γ2)

2
(

(ς2 + σ2 + α2 + γ2)2 − 4ς2σ2
)3/2

. (3.25)

Proof. By definition

‖ ∂
∂x
f‖2

L2
=

1

2π

∫ ∞

−∞
u2e−((ς−σ)2+α2+γ2)u2

du

∫ ∞

−∞
e−((ς+σ)2+α2+γ2)v2dv,

or

S1,0(σ) =
C

4
((ς − σ)2 + α2 + γ2)−3/2((ς + σ)2 + α2 + γ2)−1/2.

Similarly we compute ‖ ∂
∂y f‖2

L2
. Then the statement of the property is straight-

forward.
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Figure 3.4: Sharpness functions S shape for a through-focus series with non-
symmetric point spread function. When the value of the blur α increases the
local optima disappear.

By analysing the derivative of the sharpness function (3.25)

S′(σ) =
2Cσ

(

(α2 + γ2 − σ2) + ς2(2ς2 + σ2 − α2 − γ2)
)

(

(ς2 + σ2 + α2 + γ2)2 − 4ς2σ2
)3/2

we find that for
√

α2 + γ2 <
√

2ς the sharpness function has three optima: a
minimum at σ0 = 0 and a maximum at σ1 and σ2, where

σ1,2 = ± 1√
2

√

ς
√

8α2 + 8γ2 + 9ς2 − 2α2 − 2γ2 − ς2.

If
√

α2 + γ2 ≥
√

2ς the sharpness function has a maximum at σ = 0 and does
not have any other optima. Figure 3.4 shows functions (3.25) computed for
ς = 1, γ = 0 for different values of α. For a small value (α = 0.1) the function
has two local maxima. For a larger value (α = 1) the distance between the
optima decreases, and their amplitudes are smaller. In both cases the sharpness
function has a minimum instead of a maximum at the in-focus position (σ = 0).
For α = 2 >

√
2ς the function has a unique optimum at σ = 0. This benchmark

example is important, because it shows that due to the presence of astigmatism
a standard autofocus procedure might fail. However, the proper choice of the
artificial blur control variable α might help to deal with it.

Property 3.8. For the object function (2.11) and the Gaussian point spread
function the sharpness function in the two-parameter space S = S(σ) has a
maximum at σ = (0, 0)T and does not have any other optimum for any value
of the artificial blur α.

Proof. It is straightforward that partial derivatives of the function (3.25)

∂

∂σ
S(0, 0) =

∂

∂ς
S(0, 0) = 0.
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Figure 3.5: Sharpness functions S shape in a two-parameter space.

Further it is clear that for ς ≥ 0

∂

∂σ
S(σk, ς) 6= 0,

∂

∂ς
S(σk, ς) 6= 0, k = 1, 2.

Figure 3.5 shows the sharpness function shape in a two-parameter space
computed for α = 0.1 and α = 2. In both cases the sharpness function has a
maximum at σ = (0, 0)T and does not have any other optima. This is convenient
for simultaneous defocus and astigmatism correction, which could be done by
optimizing the sharpness function in two-parameter space [68, 60]: the local
optima that the sharpness function obtains in one-dimension are not optima
anymore in higher dimensions. Still, tuning the artificial blur α makes the shape
of the sharpness function closer to convex, which might increase the speed of
optimization.

The corollary below follows directly from Property 3.4.

Corollary 3.7. For the benchmark object (2.11) and the symmetric Gaussian
point spread function (ς = 0) the sharpness function (3.19) is given by

S(σ) =
C

2(σ2 + α2 + γ2)2
. (3.26)

In this case the sharpness function to the power −1/2 is a quadratic poly-
nomial

S−1/2(d− d0) = 2

√
π

C
((d − d0)

2 + α2 + γ2).

3.5 Discretization

Using discrete integration (2.30) and discrete differentiation (2.31) for the image
matrix (2.28), we trivially obtain a discrete version of the sharpness function
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(3.1) for n = 1

Sx
.
= sder

x :=
1

N2+pkp

∑

i,j

|fi,j − fi,j+k|p, p = 1, 2, k ∈ N. (3.27)

where k (the pixel difference) adjusts the sensitivity of the sharpness function to
the noisy images. It is clear that for n = 2 in (3.27) larger differences between
pixels are stronger weighted than smaller ones. This leads to the suppression
of the contribution made by noise [88]. To improve the robustness to noise a
threshold Θ is often applied to the difference between pixels, which is taken into
account [39]

sder
x,Θ :=

1

N2+nkn

∑

i,j

|fi,j − fi,j+k|n, |fi,j − fi,j+k|n > Θ, Θ > 0. (3.28)

The threshold Θ is determined experimentally [88]. In SEM and STEM often the
difference between only the pixels in horizonal direction is taken into account,
because the SEM scanning is performed in horizontal direction and therefore
noise is correlated there. This sharpness function can fail for certain image
geometries (for example, a number or uniform horizontal stripes). Let sder

y,Θ be
the function that computes the norm of the pixel difference in vertical direction.
Then the form that generalizes derivative-based sharpness function is

sder,c
Θ := sder

x,Θ + νsder
y,Θ, ν = {0, 1}. (3.29)

Usually in applications only pixel difference parameter values k = 1, 2 are used
[6], [69]. In Chapter 6 we experimentally show that the larger values of k often
provide better results.

If we consider derivative interpolation by a convolution with a Gaussian
derivative kernel (2.32), we obtain

sder,c
Θ =

∑

i,j

((F∗G1)
2
i,j +(F∗G2)

2
i,j), ((F∗G1)

2
i,j +(F∗G2)

2
i,j) > Θ, (3.30)

where the Gaussian derivative kernels G1,G2 could be for instance defined as

G1 =






−1 0 1

−2 0 2

−1 0 1




 , G2 =






1 2 1

0 0 0

−1 −2 −1




 . (3.31)

The form of Gaussian kernels (3.31) is known in application literature as Sobel
operators [69].

3.6 The fast autofocus algorithm

As mentioned in Section 1.2 the image recording in electron microscopy might
require a noticeable amount of time, thus the function evaluations in our prob-
lem are very expensive. Quadratic interpolation is therefore a convenient ap-
proach for computing a quadratic polynomial approximation of the sharpness
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Figure 3.6: Sharpness function S computed for different values of the blur α.

function. In our autofocus method we take the minimum of the polynomial
as the minimum of the sharpness function. For the given data points Sk :=
S(dk), k = 1, 2, 3 we interpolate the function S−1/2 by a polynomial P(d) :=
c0 + c1d+ c2d

2. So one has

S−1/2(d) = P(d)(1 + ε(d)),

where P (dk) = S
−1/2
k , k = 1, 2, 3.

From Theorem 3.4 we conclude that the error ε(d) can be decreased by
increasing α. Theoretically the error of this approximation can be made as
small as needed by dramatically increasing the value α. However, if α → ∞
then S(d) → 0 and all its derivatives, which may cause numerical errors and can
make it difficult to find the optimum of the function. Figure 3.6 shows three
sharpness functions computed for different α-values. In the next section it will
be shown how large values of α influence the shape of the sharpness function
computed for experimental through-focus series.

The above observations lead to the following algorithm.

Algorithm 3.1. Autofocus

1. Let d2 be the current defocus control value of the optical device. Choose
a ∆d, then d1 := d2 − ∆d, d3 := d2 + ∆d.

2. Record three images at d1, d2, d3 and compute S
−1/2
1 , S

−1/2
2 , S

−1/2
3 .

3. Interpolate three points with a quadratic polynomial. Estimate the sharp-
ness function optimum

dopt = − c1
2c2

as the optimum of the polynomial.
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Table 3.1: Overview of carbon cross grating experimental through-focus series.

N Magnification Pixel width Defocus range Defocus step Image number

τ [nm] (dN − d1) [nm] ∆d [nm] N

1 10 000× 42 36000 2000 19

2 10 000× 42 10000 500 21

3 200 000× 2.1 20000 1000 21

4 200 000× 2.1 10000 500 21

5 400 000× 1.05 900 50 19

The main goal of the autofocus method described in this chapter is to try to
estimate the in-focus image position from three or four recorded images. For a
more precies autofocus an iterative algorithm could be used (see Appendix A).
The convergence properties of such an algorithm should be a topic of the future
research.

3.7 Numerical experiments with STEM images

Ten experimental through-focus series are obtained with the FEI STEM micro-
scope. Two different samples are used: a carbon cross grating sample and a
gold particles sample. Carbon cross grating is the standard sample for STEM
calibration. The gold particle sample is a typical image example, which could
be used for investigation by particle analysis algorithms. The size of each image
in the series is 512 × 512 pixels. The series are recorded at different magnifi-
cations and with different defocus steps. Figures 3.7-3.8 show the first image
in the series, the in-focus image, and the computed sharpness function values
plotted versus the values of defocus control. Every figure represents five series,
described in the tables 3.1-3.2 (carbon cross grating sample and gold particles
sample respectively). The line numbers in the tables N=1,2,3,4,5 correspond to
the columns of figures 3.7-3.8 (from left to right). For each series two functions
are computed: with α = 0 (dotted line) and with α > 0 (dashed line). The
values of both functions are scaled between 0 and 1. Computed derivative-based
sharpness functions with α > 0 can accurately be approximated by a quadratic
polynomial.

The series shown in the second columns of figures 3.7-3.8 are recorded with
a small defocus step. The qualities of the first image in the series and the in-
focus image do not differ so much: we can see the details on the first images
from the series, only the edges are a bit unsharp. It is shown in tables 3.1-
3.2 (N=2) that these series have relatively small defocus ranges and defocus
steps for particular magnification. For these cases the sharpness function has
a shape nearly quadratic even with α = 0, as follows from Theorem 3.2. The
sharpness function shape is different in a broader defocus range for the same
sample at the same magnification (Figure 3.7, first column and Figure 3.8, first
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Figure 3.7: Sharpness functions S−1/2 computed for experimental STEM through-
focus series of a carbon cross grating sample. From left to right: the first image
in the series, in-focus image from the series, sharpness functions with and without
artificial blur plotted versus defocus. From top to bottom: five different experimental
through-focus series.
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Figure 3.8: Sharpness functions S−1/2 computed for experimental STEM through-
focus series of a gold particles sample. From left to right: the first image in the series,
in-focus image from the series, sharpness functions with and without artificial blur
plotted versus defocus. From top to bottom: five different experimental through-focus
series.
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Table 3.2: Overview of gold particles experimental through-focus series.
N Magnification Pixel width Defocus range Defocus step Image number

τ [nm] (dN − d1) [nm] ∆d [nm] N

1 10 000× 42 31500 450 70

2 10 000× 42 4704 96 50

3 56 000× 7.5 800 16 51

4 56 000× 7.5 5600 80 71

5 115 000× 3.75 2800 40 71
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Figure 3.9: Sharpness function S−1/2 computed for different values of the blur
α for experimental through-focus series of gold particles (N=1,2), Table 3.2.

column). The functions with α = 0 have shapes similar to a Gaussian, but not a
quadratic polynomial. In this case the functions have a nearly quadratic shape
after applying the blur α to the images.

The fourth series of carbon cross grating (Figure 3.7, fourth column) is
the only experimental series recorded with the presence of astigmatism. For
other experimental series astigmatism of the magnetic lens is corrected before
the recording. The lens with astigmatism is not perfectly symmetric and as a
consequence has more than one focal point [53], which results in the asymmetry
of the point spread function. Consequently the recorded image cannot be totally
sharp. The sharpness function might have local optima due to the presence of
astigmatism [16, 68]. Two local minima can be seen in the plot. They disappear
after applying the artificial blur.

In the last experiments (figures 3.7-3.8, fifth column) the magnification of
the microscope is higher and as a consequence the influence of noise on the
image quality increases. We can see that in these cases the blur α helps to deal
with noise in the sharpness function.

Figure 3.9 shows the sharpness function S−1/2 computed for different values
of the blur α for experimental through-focus series of gold particles (N=1,2).
For the large α = 20 the function becomes noisy and does not provide useful
information anymore. It follows that for the proper performance of the method
we have to make a proper choice of the value α that should not be too large
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neither too small. This choice might depend on the sample geometry as well
as on the defocus range (how far away we are actually from the ideal d0). The
choice does not have to be made every time, but once for a particular application,
where we deal with the class of geometrical objects.



Chapter 4

Fourier transform-based approach

The Fourier transform is an important mathematical tool for image quality
improvement in electron microscopy, as well as in other types of optical devices,
such as telescopes, ophthalmoscopes and endoscopes [28]. It is widely used
for so-called blind deconvolution procedures [8, 85], for automated defocus and
astigmatism correction in electron microscopy [4, 22, 33, 52, 77, 87, 95, 96]. To
this end, one needs on one hand a careful analysis of the Fourier transform,
on the other hand the analysis must be fast. Even if the image f is real-
valued its Fourier transform f̂ is a complex function in general. The principal
method for visualization is computing the power spectrum |f̂ |2, i.e. the square
of the magnitude of the image Fourier transform. The power spectrum is for
instance used as a visual support for non-automated corrections performed by
an experienced human operator.

We have already shown in the previous chapter that the image power spec-
trum has a direct relation with the derivative-based sharpness function. Though
the image Fourier transform was considered only for analytical computations. In
this chapter we introduce a semi-automated method for defocus and astigmatism
correction based on the Fourier transform, where the numerical computations
of the discrete Fourier transform are involved. Three operators Hq, q = 0, 1, 2
corresponding to the three control variables d, dx, dy (sharpness operator, x-
stigmatic operator, y-stigmatic operator) are chosen to simplify the defocus and
astigmatism correction for a non-experienced human operator. The power spec-
trum’s mathematical moments are expressed in terms of these operators [65].
The three real-valued functions Sft

q , q = 0, 1, 2 (sharpness function, x-stigmatic
function, y-stigmatic function) derived from sharpness/stigmatic operators are
used as a basis for an automated application. In the largest part of this chapter
we use the notation Sq instead of Sft

q for the Fourier transform-based sharpness,
x-stigmatic and y-stigmatic functions.

In Section 4.1 the general properties of the discrete Fourier transform are
introduced. Section 4.2 discusses the relation of a power spectrum orientation
with defocus and astigmatism based on the practical example with the Gaussian
point spread function. Section 4.3 defines the typical power spectrum bench-
marks that we are going to use further. Section 4.4 explains the method of
orientation identification, which involves computing sharpness/stigmatic oper-
ators as well as computing sharpness/stigmatic functions. Section 4.6 connects
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Figure 4.1: Power spectrum in one-dimension before and after the shift.

the Fourier transform-based sharpness/stigmatic functions with the derivative-
based sharpness function studied in the previous chapter. In Section 4.7 we
explain the way of computing the sharpness/stigmatic operators and functions
for the discrete power spectrum. Section 4.8 illustrates results of numerical
experiments with Gaussian benchmarks and SEM experimental images.

4.1 Discrete Fourier transform

The components of the discrete Fourier transform of the discrete image (2.28)
are defined as, cf. [19, 42, 43]

f̂k,l :=

N−1∑

i,j=0

fi,je
−2πi ik+jl

N , (4.1)

with the inverse discrete Fourier transform components

fi,j :=
1

N2

N−1∑

k,l=0

f̂k,le
2πi ik+jl

N . (4.2)

By letting i, j, k, l = −∞, . . . ,∞, by direct substitution in (4.1) and (4.2) it can
be shown that the discrete Fourier transform and its inverse components are
periodic in both directions, i.e.

f̂k,l = f̂k+N,l = f̂k,l+N = f̂k+N,l+N , fi,j = fi+N,j = fi,j+N = fi+N,j+N .

This periodicity is just a mathematical property of the discrete Fourier trans-
forms. In general the image f is not periodic. Usually only the values of
i, j, k, l = 0, . . . , N − 1 are considered. The origin of the Fourier transform
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Figure 4.2: The shift of the Fourier transform two-dimensions.

Figure 4.3: SEM experimental image, its power spectrum before and after the
shift.

(the zero-frequency component) is equal to the sum of the entries in the image

f̂0,0 =
∑

i,j fi,j .
Figure 4.1 shows a power spectrum in one-dimension. The shift operator

moves the zero-frequency component to the center of the computed array. It is
used for visualizing the Fourier transformed functions with the zero-frequency
component in the middle of the spectrum [44]. Figure 4.2 shows schematically
the shift operator for the two-dimensional case. Figure 4.3 shows a SEM ex-
perimental image, and its power spectra before and after applying the shift
operator. If not mentioned otherwise we visualize power spectra after the shift.

We can premultiply the images by a window function, for instance by

W (u) :=

{

(1 + cos(π ‖u‖
U ))/2, if ‖u‖ ≤ U,

0, otherwise,
(4.3)

where U is the support size of the Fourier transform. Figure 4.4 shows the differ-
ence between the power spectra of the non-windowed image and the windowed
image. The non-windowed power spectrum (Figure 4.4(c)) has two orthogonal
lines crossing the origin. They are missing in the windowed power spectrum
(Figure 4.4(d)). The lines in the non-windowed power spectrum (Figure 4.4(c))
are results of the image discontinuity on the boundary. The would reduce the
efficiency of the method described below. We will apply the window function
to all images described below, before computing their Fourier transforms.

The power spectrum’s entries vary quite nonlinearly: low frequencies (pixels
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(a) Non-windowed (b) Windowed

(c) Power spectrum non-windowed (d) Power spectrum windowed

Figure 4.4: 4.4(a) A SEM experimental image of gold-on-carbon (a non-
windowed image); 4.4(b) the experimental image multiplied by the window
function (a windowed image); 4.4(c) power spectrum of the experimental non-
windowed image; 4.4(d) power spectrum of the experimental windowed image.
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Figure 4.5: SEM experimental image and its power spectrum before and after
logarithmic scale.

with indices close to (i, j) = (0, 0)) have much larger values than high frequen-
cies. Therefore, following a suggestion from [30], we use a logarithmic scale for
its vizualization

p̌ := log(C + |f̂ |2). (4.4)

To ensure that the values of the logarithmic scale are positive the value of
C = 1 is usually applied [19]. Figure 4.5 shows the SEM experimental image
and its power spectrum before and after logarithmic scaling. All the figures
in this chapter related to the experiments with the real-world data show the
logarithmic scale (4.4) of power spectra.

4.2 Power spectrum orientation

We illustrate the relation between the power spectrum orientation and defocus
and astigmatism with the help of three numerical (synthetic) examples. The left
column of figures 4.6-4.8 shows identical experimental SEM image (we consider
it as an object function ψ) of tin balls and its power spectrum, which is nearly
rotationally symmetric. The object ψ is convolved with a Gaussian point spread
functions with parameters (2.15) σ = 1, ς = 0 (Figure 4.6), σ = 5, ς = 0 (Figure
4.7), σ = 4, ς = 1, θ = 0 (Figure 4.8). The top row of each figure contains the
spatial representation, and the bottom row shows the frequency representation,
where convolution becomes multiplication. The influence of the point spread
function’s parameters is visible in the result of the convolution in the spatial
representation (image f - the top right of each of the figures), as well as in the
frequency representation.

For a rotationally symmetric point spread function with a relatively small
width (Figure 4.6) the final image f resembles its original ψ. Its rotationally
symmetric power spectrum has a relatively large width. For a rotationally sym-
metric point spread function with a larger width (Figure 4.7), its power spec-
trum has a smaller width, as well as the power spectrum of f (power spectrum’s
intensity decreases), and the image f itself looks more blurred than in Figure



50 Chapter 4. Fourier transform-based approach

Figure 4.6: The top row represents real space; from left to right: experimental
SEM image, which is considered to be the object function ψ, Gaussian point
spread function g (σ = 1, ς = 0), numerical result of their convolution f . The
bottom row shows them in the Fourier space. PS denotes the Power Spectrum.
PSF denotes the point spread function.

Figure 4.7: Similar to Figure 4.6 numerical computation, but with the Gaus-
sian point spread function parameters σ = 5, ς = 0. PS denotes the Power
Spectrum. PSF denotes the point spread function.
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Figure 4.8: Similar to Figure 4.6 numerical computation, but with the Gaus-
sian point spread function parameters σ = 4, ς = 1, θ = 0. PS denotes the
Power Spectrum. PSF denotes the point spread function.

4.6. Finally for a non-symmetric point spread function, the power spectrum of
f becomes non-symmetric as well (Figure 4.8).

The above presented characteristics of the power spectrum are used by a
human operator for defocus and astigmatism corrections. For instance for an
amorphous object (which has a rotationally symmetric power spectrum) the op-
erator tries to obtain an image f with a rotationally symmetric power spectrum
as intense as possible. If the power spectrum of an object ψ is not rotationally
symmetric (the object has a strong preferential direction) the situation is more
complex. In this case it is important to compare the difference between power
spectra obtained for different values of the controls d and to find a center of
symmetry [52].

Looking at the power spectrum’s shape, it is often difficult for a non-experienced
human operator to understand which of the controls d has to be adjusted in
which direction. In the next section we provide a method to assist a human
operator to correct the image. In fact this method can be used as a basis for
automated defocus and astigmatism correction.

4.3 Power spectrum benchmarks

Power spectra of images recorded by a number of optical devices including
electron microscopes can accurately be approximated by a Lévi stable density
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Figure 4.9: One-dimensional cut of the power spectrum of the SEM experi-
mental image of tin balls (dotted line), its approximation with the Lévi stable
density function (solid line). The data is plotted with the logarithmic scale.

function [7, 8]

|f̂ |2 = A ·
(

|ĝ1|2 ◦ Ja ◦ Rζ

)

, (4.5)

where the operators Ja,Rζ are defined in (2.1), (2.3), a := (a, b)T ∈ R
2 and

A is a constant. The function ĝ1 is defined in (2.14), where it depends on the
Lévi stable density parameter β. Figure 4.9 shows a one-dimensional cut of the
power spectrum of the SEM experimental image of tin balls, used in the previous
section as the object function (dotted line). Its approximation with the Lévi
stable density function is plotted as a solid line. The data are on logarithmic
scale. If β = 1 in (2.14), the power spectrum is a Gaussian function.

Below we will use polar coordinates in frequency representations

(r, ϕ) ∈ {R
+ × [0, 2π)}, u = r cosϕ, v = r sinϕ.

Property 4.1. For the linear image formation model, a Gaussian point spread
function and a benchmark object (2.11), the image power spectrum is a Gaussian
function.

Proof. According to the definitions

|f̂ |2 = |ψ̂|2| ˆ̺σ|2 = Ce−γ
2‖u‖2JσRθe

−‖u‖2

=

Ce
−r2
((

(σ+ς)2+γ2
)

cos2(ϕ+ζ)+
(
(σ−ς)2+γ2

)
sin2(ϕ+ζ)

)

.

Corollary 4.1. It follows that in the case of the Gaussian benchmark the power
spectrum parameters a and ζ can be expressed as

a2 = (σ + ς)2 + γ2, b2 = (σ − ς)2 + γ2, ζ = θ.
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Figure 4.10: Bessel functions of the first kind and modified Bessel functions
of the first kind for k = 0, 1.

4.4 Orientation identification

Based on the polar coordinates in the frequency representation u = r cosϕ, v =
r sinϕ, we define three operators Hq : R

2 → R
+, q = 0, 1, 2 as

H0f := H0[f(x)](r) :=

∮ 2π

0

|f̂ |2dϕ, (4.6)

H1f := H1[f(x)](r) :=

∮ 2π

0

|f̂ |2 cos 2ϕdϕ, (4.7)

H2f := H2[f(x)](r) :=

∮ 2π

0

|f̂ |2 sin 2ϕdϕ. (4.8)

In (4.7) and (4.8) cos 2ϕ and sin 2ϕ play the roles of the weight functions. Below
it will be illustrated how they help to obtain information about the directions
of the stigmators dx and dy.

For the Gaussian benchmark power spectrum one can rewrite the expressions
for the sharpness operator and stigmatic operators (4.6) - (4.8) as follows

H0f = 2πe−
1
2 (a2+b2)r2I0(

1

2
(a2 − b2)r2), (4.9)

H1f = 2πe−
1
2 (a2+b2)r2I1(

1

2
(a2 − b2)r2) cos 2ζ, (4.10)

H2f = 2πe−
1
2 (a2+b2)r2I1(

1

2
(a2 − b2)r2) sin 2ζ. (4.11)

Here Ik is the modified Bessel function of the first kind , which can be expressed
as, cf. [1]

Ik(z) :=
1

π

∫ π

0

ez cosϕ cos kϕdϕ,

which is related to the Bessel function of the first kind as in [1]

Ik(z) := i−kJk(iz).

Figure 4.10 shows the Bessel functions of the first kind and modified Bessel
functions of the first kind for k = 0, 1. From the representation (4.9)-(4.11) it
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is clear that for the Gaussian benchmark H0f is always positive and the sign
of H1f , H2f is constant for r ∈ R

+ and depends on the point spread function
parameters in the following way

sgn(H1f) = sgn(a2 − b2)sgn(cos 2ζ) = sgn(ς)sgn(cos 2θ),

sgn(H2f) = sgn(a2 − b2)sgn(sin 2ζ) = sgn(ς)sgn(sin 2θ).

As a consequence the directions of the stigmator control variables can easily be
identified from the signs of stigmatic operators

sgn(dx − dx0
) = sgnH1f, sgn(dy − dy0

) = sgnH2f.

It is important to note that for a = b both stigmatic operators are uniformly
zero.

Figure 4.13 shows the sharpness and stigmatic operators computed for the
Gaussian benchmark. The signs of the operators suggest the stigmator controls
needed for correction and their direction. A more detailed description of the
figure is provided below in Subsection 4.8.1. It is important to note that one
image is not enough for astigmatism correction. An elliptic power spectrum
does not necessarily imply a stigmatic image. If we consider a Gaussian elliptic
benchmark object we will observe that its power spectrum is elliptic as well,
even without any astigmatism present. In order to estimate the presence of
astigmatism in the system in general one needs to record a few images with
different control values. This leads to the focus series method, explained next.

4.5 The focus series method

The operators (4.6)-(4.8) are related to the mathematical moments of the power

spectrum |f̂ |2

Mk,l :=

∫∫ +∞

−∞
ukvl|f̂ |2du =

∫ ∞

0

rk+l+1

∮ 2π

0

|f̂ |2 cosk ϕ sinl ϕdϕdr,

which are widely used in various applications for orientation identification and
other purposes [80, 97, 99]. The 0-th moment is given by

M0,0 =

∫ ∞

0

r(H0f)dr. (4.12)

The image f in this thesis is real-valued, which implies that its Fourier
transform is conjugate symmetric about the origin f̂(u) = f̂∗(−u). Thus the
power spectrum is also symmetric about the origin

|f̂(u)|2 = |f̂(−u)|2. (4.13)

The symmetry of the power spectrum (4.13) implies that the 1-st moments
are equal to zero, i.e. M1,0 = M0,1 = 0, or

∮ 2π

0

|f̂ |2 cosϕdϕdr = 0,

∮ 2π

0

|f̂ |2 sinϕdϕdr = 0.
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The 2-nd moments are:

M2,0 =

∫ ∞

0

r3
∮ 2π

0

|f̂ |2 cos2 ϕdϕdr =
1

2

∫ ∞

0

r3(H0f + H1f)dr, (4.14)

M0,2 =

∫ ∞

0

r3
∮ 2π

0

|f̂ |2 sin2 ϕdϕdr =
1

2

∫ ∞

0

r3(H0f −H1f)dr, (4.15)

M1,1 =

∫ ∞

0

r3
∮ 2π

0

|f̂ |2 cosϕ sinϕdϕdr =
1

2

∫ ∞

0

r3(H2f)dϕdr. (4.16)

Let us further introduce three sharpness/stigmatic functions applied to the
image f

Sq[f ] :=

∫ ∞

0

r3(Hqf)dr, q = 0, 1, 2. (4.17)

Note that we have the relation to the second mathematical moments as follows

M2,0 =
1

2
(S0 + S1), M0,2 =

1

2
(S0 − S1), M1,1 =

1

2
S2.

In a more general case one could consider

S(ϑ)
q [f ] :=

∫ ∞

0

ϑ(r)(Hqf)dr, q = 0, 1, 2, (4.18)

where ϑ plays the role of a weight function. For instance the sharpness function

S
(r)
0 based on the 0-th mathematical moment (4.12) is widely used for autofocus

in different applications. In a generalized case it is defined (cf. [52, 87])

S0,0 :=

∫∫

Ω

|f̂ |2dx =

∫ rmax

rmin

r

∫ 2π

0

|f̂ |2dϕdr, (4.19)

where Ω := {(x, y) ∈ R
2, r2min < x2 + y2 < r2max}, and rmin and rmax

are the low frequency band and high frequency band. In the next subsec-
tion next to the functions (4.17), which can be expressed through (4.18) as

Sq[f ] = S
(r3)
q [f ], q = 0, . . . , 2, we will consider S

(r)
q , q = 0, 1, 2. In the general

case ϑ is not necessarily related to the mathematical moments of the power
spectrum.

4.5.1 A Lévi stable density benchmark

For the Lévi stable density power spectrum it follows that

S0 =
A

4
πΓ(1 +

2

β
)

1

ab

a2 + b2

a2b2
, (4.20)

S1 =
A

4
πΓ(1 +

2

β
)

1

ab

b2 − a2

a2b2
cos 2ζ, (4.21)

S2 =
A

4
πΓ(1 +

2

β
)

1

ab

a2 − b2

a2b2
sin 2ζ, (4.22)
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Figure 4.11: Sharpness and stigmatic functions for the Gaussian benchmark
power spectrum.

and

S
(r)
0 = AπΓ(1 +

1

β
)

1

ab
, (4.23)

S
(r)
1 = AπΓ(1 +

1

β
)

1

ab

b− a

a+ b
cos 2ζ, (4.24)

S
(r)
2 = AπΓ(1 +

1

β
)

1

ab

a− b

a+ b
sin 2ζ, (4.25)

where Γ is the Gamma function

Γ(z) :=

∫ +∞

0

tz−1e−tdt, z > 0.

These observations lead to the focus series method. One can record a
through-focus series in order to find the optimum of the sharpness function
and to identify the defocus value d0. From the same experimental data stig-
matic functions can be computed, which would provide the information about
the astigmatism. It is important to note that they do not produce directly the
ideal stigmator control values dx0

and dy0
. However, one can clearly identify

whether stigmators are supposed to be adjusted, and in which direction.
Figure 4.11 shows the Fourier transform-based sharpness and stigmatic func-

tions computed for the Gaussian power spectrum with ς > 0, θ = 0, plotted as a
function of σ. For the particular case of a Gaussian power spectrum β = 1, and
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it follows that Γ(1 + 2
β ) = Γ(3) = 2 in (4.20)-(4.22). The function S0 shows the

general behaviour of the ideal sharpness function: It reaches its single optimum
at σ = 0. The functions S1, S2 have a different behaviour, which is related to
the stigmator control variables. For instance, the stigmatic function S1 is equal
to zero at σ = 0 and has two local optima: a maximum and a minimum. It
means that the x-stigmator control dx has to be adjusted, the distribution of the
optima signs around zero identifies direction of this adjustment. The function
S2 is uniformly zero, which means that dy = dy0

.
The parameter ζ can be calculated directly from the values of S1 and S2

ζ =







1
2 arctan(S2

S1
), if S1 6= 0,

π
4 , if S1 = 0, S2 6= 0,

R, if S1 = 0, S2 = 0.

(4.26)

4.6 A link to the derivative-based approach

In this section we denote the functions (4.17) as Sft
q . We show the connection

between the Fourier transform-based sharpness/stigmatic functions (4.17) and
the derivative-based sharpness function studied in the previous chapter.

Sder
k,l := ‖ ∂

k

∂xk
∂l

∂yl
f‖2

L2.

We find using Parseval’s identity

Sder
k,l =

1

2π
‖ukvlf̂‖2

L2 =
1

2π

∫∫ ∞

−∞
u2kv2l|f̂ |2du.

From this it follows that the derivative-based sharpness function is related to
the moments of the power spectrum as

M2k,2l = 2πSder
k,l [f ].

The Fourier transform-based sharpness and x-stigmatic functions can be ex-
pressed via the derivative-based sharpness function as

Sft
0 = 2π(Sder

1,0 + Sder
0,1 ), (4.27)

Sft
1 = 2π(Sder

1,0 − Sder
0,1 ). (4.28)

From the definition of stigmatic operators we then have

H1Rπ/4f = 2

∮ π

0

|Rπ/4f̂ |2 cos 2ϕdϕ = 2

∮ π

0

|f̂ |2 cos 2(ϕ+
π

4
)dϕ = −H2f,

and as a consequence

Sft
2 [f ] = −Sft

1 [Rπ/4f ] = 2π(Sder
0,1 [Rπ/4f ] − Sder

1,0 [Rπ/4f ]). (4.29)
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Thus the Fourier transform-based sharpness/stigmatic functions can be eas-
ily computed through the derivative-based sharpness function (4.27)-(4.29).
However, for the computations of sharpness/stigmatic operators discrete Fourier
transform calculations are required. It is clear that though analytically the ex-
pressions for the Fourier transform-based functions and the derivative-based
functions are equal, numerically we will obtain different results due to a variety
of numerical errors. The experimental comparison of the quality of these results
will be provided in Chapter 6. In this section all numerical computations are
based on the discrete Fourier transform using the scheme explained in the next
section.

It is important to note that for the numerical computation of the right
hand side of (4.29) we do not necessarily need to rotate the discrete image,
but can compute a directional derivative instead. Computations of directional
derivatives for the discrete image is discussed in Section 2.7.

Similarly for the intensity-based sharpness function

Sint := ‖f‖2
L2,

we have
M0,0 = S

ft,(r)
0 [f ] = 2πSder

0,0 [f ].

4.7 Discretization

In this section we explain how the Fourier transform-based sharpness/stigmatism
operators and functions can be computed numerically. Due to the power spec-
trum’s symmetry about the origin (4.13) we have

H0(r) := 2

∮ π

0

|f̂ |2dϕ, (4.30)

H1(r) := 2

∮ π

0

|f̂ |2 cos 2ϕdϕ, (4.31)

H2(r) := 2

∮ π

0

|f̂ |2 sin 2ϕdϕ. (4.32)

The representation (4.30)-(4.32) enables us to do the numerical evaluation
faster.

To execute the method we first need to discretize the functions. Let us
assume that the continuous power spectrum |f̂ |2 has a period 2U . Define the
frequency mesh points as ui := i∆u, i = −n, . . . , n, where

∆u :=
2U

(2n+ 1) − 1
=
U

n
, (4.33)

and define
pi,j := |f̂(ui, uj)|2. (4.34)
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Figure 4.12: Linear interpolation of the power spectrum values.

We define the radial mesh points rk := k∆r + ∆r
2 , k = 0, . . . , N − 1, where

∆r := U
N , and the angular mesh points ϕl := l∆ϕ+ ∆ϕ

2 , l = 0, . . . ,M−1, where
∆ϕ := π

M . Further we define radial mesh points

u(k,l) := rk cosϕl, v(k,l) := rk sinϕl. (4.35)

Each point (u(k,l), v(k,l)) is between four mesh points

ui−1 ≤ u(k,l) ≤ ui, vj−1 ≤ v(k,l) ≤ vj , i, j ∈ {−n+ 1, . . . , n}.

We compute entries of P̃k,l ∈ R
N×M using bilinear interpolation (see Figure

4.12)

P̃k,l = ((1− δu
∆u

)pi−1,j−1 +
δu
∆u

pi,j−1)(1−
δv
∆v

)+((1− δu
∆u

)pi−1,j+
δu
∆u

pi,j)
δv
∆v

,

where

δu := u(k,l) − ui−1, δv := v(k,l) − vj−1.

For k ∈ {1, . . . , N} we approximate the values of H0f(rk),H1f(rk),H2f(rk)
with the repeated midpoint numerical integration rule

H0f(rk)
.
= 2∆ϕ

M∑

l=1

P̃k,l, (4.36)

H1f(rk)
.
= 2∆ϕ

M∑

l=1

P̃k,l cos 2ϕl, (4.37)

H2f(rk)
.
= 2∆ϕ

M∑

l=1

P̃k,l sin 2ϕl. (4.38)
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Figure 4.13: Numerical computations for a Gaussian benchmark power spec-
trum.
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Then the sharpness/stigmatic function values are approximated with the mid-
point rule as well

Sq
.
= ∆r

N∑

k=1

r3khq(rk), q = 1, 2, 3. (4.39)

4.8 Numerical experiments

In this section we consider two situations to illustrate the performance of the
method: a Gaussian benchmark and SEM experimental data.

4.8.1 A Gaussian benchmark

First we consider a Gaussian function sampled at (2n+1)×(2n+1) = 101×101
frequency mesh points. To compute the sharpness and stigmatic operators
H0f,H1f,H2f , for the discretization of the polar radius r we choose for N =
n = 50 data points and for the discretization of the polar angle ϕ we choose for
M = 2(2n + 1) = 202. We take ∆u = 1 in (4.33), thus U = n. Each row in
Figure 4.13 shows a Gaussian function with particular parameter values a, b, ζ
and corresponding H0f,H1f,H2f functions. The rotation angle ζ is numerically
estimated according to (4.26) and indicated by two orthogonal lines plotted
above each of the Gaussian functions.

From these pictures we observe the following:

1. Figures 4.13(a)-4.13(d): the Gaussian is rotationally symmetric (a = b =
20). For this reason the computed values of H1f and H2f are equal to
zero.

2. Figures 4.13(e)-4.13(h): the Gaussian is rotationally symmetric (a = b =
10). The values of H1f and H2f are equal to zero. The Gaussian width
is smaller than in Figure 4.13(a). The integral of the function H0f in Fig-
ure 4.13(f) decreases in comparison with the previous experiment (Figure
4.13(b)). The goal of a human operator in this case is to find the con-
trol variables with the smallest point spread function width, and as a
consequence with the intensity of H0f as large as possible.

3. Figures 4.13(i)-4.13(l): an elliptic Gaussian. The widths a > b and as a
consequence all values of H1f are smaller than zero. The values of H2f
are equal to zero, because ζ = 0.

4. Figures 4.13(m)-4.13(p): an elliptic Gaussian. The widths b > a and as
a consequence all values of H1f are larger than zero. The values of H2f
are equal to zero, because ζ = 0.

5. Figures 4.13(q)-4.13(t): an elliptic Gaussian with a > b, ζ = π
4 . As a

consequence H1f = 0,H2f < 0.
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(a) Image (b) Power spectrum
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Figure 4.14: From left to right, from top to bottom: in-focus astigmatism-free
tin balls image, logarithmic scale of its power spectrum, numerically computed
operators H0f(r),H1f(r),H2f(r).

6. Figures 4.13(u)-4.13(x): an elliptic Gaussian with a > b, ζ = −π
6 . As a

consequence H1f < 0,H2f > 0.

The numerical results agree with the analytical observations and can guide an
unexperienced human operator, giving visual suggestion about a proper choice
of stigmator controls and their directions.

4.8.2 SEM images

In the next example the operators H0f,H1f,H2f are computed for power spec-
tra of real-world SEM images. The rotation angle ζ is numerically estimated
using (4.26). Each of the figures 4.14-4.18 show

• SEM experimental image;

• Logarithmic scale of its power spectrum;

• Operators H0f,H1f,H2f computed with (4.36)-(4.38).

The size of each experimental image is (2n+ 1) × (2n+ 1) = 441 × 441 pixels.
The following values are chosen for discretization ∆u = 1, N = n = 220,M =
2(2n + 1) = 882. For each operator H0f,H1f,H2f the values of S0, S1, S2

are computed with (4.39). Further, the angle ζ is identified using (4.26). Two
orthogonal lines above each power spectrum visualize the observed value of
ζ. The operators H0f,H1f,H2f shown in the figures are computed for the
logarithmic scale of the power spectrum for a convenient visualization. The
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(a) Image (b) Power Spectrum
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Figure 4.15: From left to right, from top to bottom: tin balls image with
astigmatism, logarithmic scale of its power spectrum, numerically computed
operators H0f(r),H1f(r),H2f(r).

angle ζ shown by the two orthogonal lines is estimated from sharpness/stigmatic
function values before the logarithmic scale.

Figure 4.14 shows the experiment for gold-on-carbon stigmatic image. Ad-
justment of both dx and dy is necessary to improve the image quality. The signs
of the curves H1f and H2f indicate the direction of change. Figure 4.15 shows
in-focus astigmatism-free image of tin balls. Both H1f and H2f is just numer-
ical noise around zero: hence astigmatism correction is not needed in this case.
Figure 4.16 shows an out-of-focus stigmatic image of the same sample. We can
see how the image quality decreases and power spectrum shape changes. The
y-stigmatic operator suggests the change of dy, while adjustment of dx is not
necessary. Figure 4.17 shows a magnified image of tin balls. The image does
not show a lot of details and as a consequence its power spectrum has only a
few values of low frequencies different from noise. Because of the lack of infor-
mation in the Fourier space of the image, it is difficult to analyse this power
spectrum and to draw the conclusions about the presence of astigmatism in the
image. For this type of samples the method of orientation identification as well
as other Fourier transform-based methods might fail. In such a case the method
of simultaneous defocus and astigmatism correction described in Chapter 7 will
be more useful than the Fourier transfrom-based techniques. Figure 4.18 shows
one more out-of-focus and stigmatic image. We can clearly see that correction
of both dx and dy is needed.

Figure 4.19 shows sharpness and stigmatic functions (Sq on the left and S
(r)
q

on the right) computed for experimental gold-on-carbon through-focus series.
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(a) Image (b) Power Spectrum
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Figure 4.16: From left to right, from top to bottom: SEM experimental im-
age, logarithmic scale of its power spectrum, numerically computed operators
H0f(r),H1f(r),H2f(r).
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Figure 4.17: From left to right, from top to bottom: gold-on-carbon image
with astigmatism, logarithmic scale of its power spectrum, numerically com-
puted operators H0f(r),H1f(r),H2f(r).
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(a) Image (b) Power spectrum
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Figure 4.18: From left to right, from top to bottom: SEM experimental im-
age, logarithmic scale of its power spectrum, numerically computed operators
H0f(r),H1f(r),H2f(r).

The shapes of the functions are similar to the shapes obtained for the bench-
marks. They indicate the astigmatism presence in the through-focus series.

The alternative approach to extracting power spectrum parameters could be
simply fitting it with a continuous model [8] by minimizing least square differ-
ence of continuous and experimental data with the help of an iterative method
(for instance the Newton method). In [8] this is done for one-dimensional case
under the assumption that the power spectrum is rotationally symmetric. For
the one-dimensional case this would take much longer computational time than
computing of sharpness/stigmatic operators, which is non-iterative.

Another approach for extracting sharpness/stigmator information from power
spectrum could be based on a non-iterative fitting of discrete power spectrum
with a set of basis functions, for instance via the projection method [66]. In this
case the sharpness/stigmatic operator could be pre-computed analytically for
the given set of basis functions. However, for the set of basis function explored so
far, the approach is still slower than direct computation of sharpness/stigmatic
operator described in this chapter. More details on this approach can be found
in Appendix B.
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Figure 4.19: Sharpness, x-stigmatic and y-stigmatic functions computed for
SEM experimental gold-on-carbon through-focus series. Horizontal axes show
defocus in arbitrary units.
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Statistics-based approaches

In this chapter we discuss alternative sharpness functions: autocorrelation-based
[63], variance-based, intensity-based and histogram-based sharpness functions
denoted as Sac, Svar, Sint and Shis respectively. In the next chapter these func-
tions will be applied to a set of SEM experimental data.

5.1 Autocorrelation-based sharpness function

In Subsection 5.1.1 we define the autocorrelation operator and its properties.
Then two sharpness functions based on the first and second derivatives of the im-
age’s autocorrelation are introduced and discussed in Subsection 5.1.2. The sec-
ond derivative autocorrelation-based sharpness function turns out to be equiv-
alent to the derivative-based sharpness function (3.19). In Subsection 5.1.3 a
formulation of the discrete sharpness functions is given.

5.1.1 Image autocorrelation

The autocorrelation of a continuous image f ∈ L2(R
2) is defined as

f̆(x) =

∫∫ ∞

−∞
f(x′)f∗(x′ − x)dx′.

Property 5.1. The autocorrelation function reaches its maximum at the origin

max
x

f̆(x) = f̆(0, 0).

Proof. See for instance [38].

Corollary 5.1. The autocorrelation’s maximum is equal to the squared L2-norm
of the image

f̆(0) = ‖f‖2
L2
.

Corollary 5.2. The Fourier transform of the autocorrelation is equal to the
image power spectrum

Ff̆ = |f̂ |2.
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(a) In-focus image (b) Two-dimensional auto-
correlation

(c) One-dimensional autocor-
relation

(d) Out-of-focus image (e) Two-dimensional autocor-
relation

(f) One-dimensional autocor-
relation

Figure 5.1: In-focus and out-of-focus SEM experimental images and their
autocorrelations. Most important in the autocorrelation function is the shape
of its peak, which indicates the sharpness of the image.

Corollary 5.3. For the object benchmark (2.11) and a Gaussian point spread
function, image autocorrelation is a Gaussian function

f̆(x) =
C
√
π

√

γ2 + σ2 + α2
e
− ‖x‖2

4(γ2+σ2+α2) . (5.1)

5.1.2 The sharpness function

A number of autocorrelation-based sharpness functions can be found in the
literature [24, 53, 88]. These functions are based on heuristic knowledge of the
autocorrelation behaviour for in-focus and out-of-focus images. One example
of such a behaviour is shown in Figure 5.1. In general the sharp edges in the
image result in a small amount of highly correlated regions. Out-of-focus images
contain large smooth areas, which are highly correlated. As a consequence
the autocorrelation peak of the in-focus image is narrow and high, while the
autocorrelation peak of the out-of-focus image is broad and low [28]. These
observations lead to the following sharpness function based on the first derivative
of the image autocorrelation (cf. [88, 89])

Sac1 :=
∂

∂x
f̆
∣
∣
∣
x=(ǫ,0)

, ǫ > 0, (5.2)
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where ǫ is small.

Property 5.2. For the benchmark object (2.11) and a Gaussian point spread
function, the autocorrelation-based sharpness function (5.2) is given by

Sac1(σ) =
C
√
πǫ

2(γ2 + σ2 + α2)3/2
e
− ǫ2

4(γ2+σ2+α2) . (5.3)

Proof. The proof follows directly from the definition of the sharpness function
(5.2) and Corollary 5.3.

The derivative of the sharpness function (5.3)

∂

∂σ
Sac1 =

C
√
πσ(ǫ2 − 6(γ2 + σ2 + α2))e

− ǫ2

4(γ2+σ2+α2)

4(γ2 + σ2 + α2)7/2

has roots at

σ0 = 0, σ1,2 = ±
√

−γ2 − α2 +
ǫ

6
.

In order for the sharpness function to have a single optimum at σ0 = 0, we
can choose ǫ < 6(γ2 + α2) for the benchmark. In general it is difficult to guess
a proper value of ǫ, since the value depends on the object function ψ. For a
very small ǫ the sharpness function will be very sensitive to noise in the image
formation. In practice for most applications ǫ is determined experimentally
[88, 89].

A more natural way to define the parameter-independent autocorrelation-
based sharpness function is the evaluation of the second derivative of the auto-
correlation at the origin

Sac2(σ) := − ∂2

∂x2
f̆
∣
∣
∣
x=(0,0)

.

For instance for the benchmark (5.1), the autocorrelation second derivative
changes monotonically with the width of the point spread function. Below
we link the autocorrelation-based sharpness function and the derivative-based
sharpness function

Sder := ‖ ∂
∂x
f‖2

L2
, (5.4)

that was studied in Chapter 3.

Property 5.3. The autocorrelation-based and derivative-based sharpness func-
tions are identical

Sac2 = Sder.

Proof. It follows from Corollary 5.2 that

− ∂2

∂x2
f̆ = − ∂2

∂x2
F−1|f̂ |2 =
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− 1

2π

∂2

∂x2

∫∫ ∞

−∞
eiu·x|f̂ |2du =

1

2π

∫∫ ∞

−∞
u2eiu·x|f̂ |2du.

Because of Parseval’s identity we have

Sac2 = − ∂2

∂x2
f̆
∣
∣
∣
x=(0,0)

=
1

2π

∫∫ ∞

−∞
u2|f̂ |2du =

1

2π
‖ωf̂‖2

L2
= ‖ ∂

∂x
f‖2

L2
=: Sder.

5.1.3 Discretization

The autocorrelation coefficients for the discrete image are defined as in [88]

f̆k,l :=
∑

i,j

fi,jfi+k,j+l. (5.5)

An approximation of the autocorrelation-based sharpness function sac1 is found
by taking finite difference (cf. [88, 89])

Sac1 .
= sac1 := f̆0,0 − f̆l,0. (5.6)

The discrete derivative-based sharpness function sder is defined as in (3.28)

Sder .= sder :=
∑

i,j

(fi,j − fi+k,j)
2. (5.7)

This follows directly from a two-point finite difference approximation for the first
derivative and the mid-point numerical integration rule. It is straightforward
to check that the discrete derivative-based sharpness function and the discrete
second-derivative autocorrelation-based sharpness function are identical

sder =
∑

i,j

f2
i,j − 2

∑

i,j

fi,jfi+k,j +
∑

i

f2
i+k,j =

2(
∑

i,j

f2
i,j −

∑

i,j

fi,jfi+k,j) = 2(f̆0,0 − f̆k,0) =

−f̆−k,0 + 2f̆0,0 − f̆k,0 = sac2
.
= Sac2 .

5.2 Variance- and intensity-based sharpness func-

tions

For an image f with compact support X, its mean value E[f ] is defined as

E[f ] := f̄ :=
( ∫∫

X

fdx
)/(∫∫

X

dx
)

(5.8)
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The variance-based sharpness function is defined as (cf. [16, 84])

Svar[f ] := ‖f − f̄‖2
L2
. (5.9)

A discussion on this variance-based sharpness function’s robustness with respect
to the image noise can be found in Appendix C. Consider the amplitude image
function

f (A) := f − f̄ .

It follows from the definition that the mean value of the image amplitude func-
tion is equal to zero

E[f (A)] =
(∫∫

X

fdx − f̄

∫∫

X

dx
)/(∫∫

X

dx
)

= 0.

In some applications the amplitude image function f (A) is used instead of f for
the sharpness analysis (cf. [16]). In this case we obtain Svar[f (A)] = Svar[f−f̄ ] =
‖f‖2

L2
, which is known as the intensity-based sharpness function

Sint := ‖f‖2
L2
. (5.10)

The intensity-based sharpness function is equal to the height of the autocorre-
lation peak, and for this reason is intuitively used for autofocus [53].

In the property and two corollaries below we consider a rotationally-symmetric
point spread function, i.e. ς = 0 in (2.15).

Property 5.4. The sharpness function (5.10) can be expressed as follows

Sint(σ) =
1

2π

∫∫ ∞

−∞
|ψ̂(u)|2e−σ2β‖u‖2β

e−α
2‖u‖2

du. (5.11)

Corollary 5.4. The sharpness function (5.10) is smooth, and is strictly in-
creasing for σ < 0 and strictly decreasing for σ > 0.

Corollary 5.5. For α > 0 the sharpness function (5.10) has a finite maximum
at σ = 0

max
σ

Sint(σ) = Sint(0), ∀α > 0.

For the benchmark object (2.11) and the Gaussian point spread function the
intensity-based sharpness function can be computed directly

Sint(σ) =
1

2π

∫ ∞

−∞
e−((ς−σ)2+α2+γ2)u2

du

∫ ∞

−∞
e−((ς+σ)2+α2+γ2)v2dv =

1

2π

(

(ς2 + σ2 + α2 + γ2)2 − 4ς2σ2
)1/2

.

It trivially follows that in this case ∂
∂σS

int has three roots σ for ς >
√

α2 + γ2

and one root at σ = 0 otherwise. Thus the intensity-based sharpness function
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(a) Histogram of an in-focus image (b) Histogram of an out-of-focus image

Figure 5.2: Histograms computed for in-focus and out-of-focus SEM experi-
mental images of the same object.

has a single optimum even for larger amounts of astigmatism than the derivative-
based sharpness function, which has local optima if ς > 1√

2

√

α2 + γ2 (Chapter

3).
For the discrete image the mean value is approximated by

f̄
.
= F̄ :=

∑

i,j ∆x2fi,j
∑

i,j ∆x2
=

1

N2

∑

i,j

fi,j (5.12)

and the discrete variance-based sharpness function is

Svar .
= svar :=

1

N2

∑

i,j

(fi,j − F̄ )2. (5.13)

Similarly applying the mid-point rule and considering the threshold param-
eter as in [69], we obtain

Sint .= sint =
∑

i,j

|fi,j |2, fi,j > Θ. (5.14)

5.3 Histogram-based sharpness function

In most applications the unscaled image F is a matrix of natural intensity values.
Let

f̃ = (f̃k)
L
k=1, f̃k−1 < f̃k,

be a set of all pixel values in the image F, i.e. fi,j ∈ F ⇔ ∃k such that

fi,j = f̃k ∈ f̃ . The vector h = (hk)
L
k=1, where hk is the number of pixels with

the value f̃k in the image F, is called the histogram of the image F. Then the
probability of a pixel value equal to f̃k is hk

N2 .
Figure 5.2 shows the histograms of in-focus and out-of-focus SEM experi-

mental images. The horizontal axis on each diagram represents the pixel gray
values, and the vertical axis the number of counts h. The in-focus image has
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the whole range of the pixel values, including pixels equal to 0 and to 255. The
out-of-focus image has less contrast, and its values in this case are spread be-
tween 12 and 130. These observations lead to the histogram-based sharpness
function, known as histogram range [69]

Shisr := max
k,hk 6=0

hk − min
k,hk 6=0

hk. (5.15)

It is clear from the above example that the larger the range the more contrast
the image has, and the more information it contains. Other histogram-based
sharpness functions are the entropy (cf. [51])

Shise := −
∑

k,hk 6=0

hk
N2

log2

hk
N2

. (5.16)

and the threshold image count (cf. [69])

Shist :=
n∑

k=1

hk, f̃n ≤ Θ f̃n+1 > Θ. (5.17)
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Chapter 6

Assessing sharpness functions

For SEM static autofocus applications (see Section 2.6) this chapter is devoted
to determine a sharpness function that will properly perform for a large variety
of samples. To this end we consider the discrete sharpness functions intro-
duced above, namely the derivative-based sharpness function (Section 3.5), the
autocorrelation-based sharpness function (Subsection 5.1.3), the variance-based

and the intensity-based sharpness functions (Section 5.2), the histogram-based

sharpness function (Section 5.3). This collection of sharpness functions includes
the ones from the classical paper on autofocus [69] that assesses them for fluo-
rescence light microscopy. In addition our derivative-based and autocorrelation-
based sharpness functions are extended with parameters, which lead to improve-
ments. We consider another group of sharpness functions based on the image
Fourier transform, cf. Section 4.5.

The Fourier transform-based sharpness functions were not included in the
earlier assessments [69, 73, 40] of the sharpness functions because of the fact
that they require more CPU time. With the desktop CPU’s available nowadays
the calculation of the discrete Fourier transform only takes milliseconds. In
particular in electron microscopy the Fourier transform computation of an image
in a through-focus series takes less time than the acquisition of another image.
Thus the image Fourier transform can easily be computed without slowing down
the autofocus procedure.

We discuss how to rank sharpness functions and apply them to 14 exper-
imental SEM through-focus series of the samples with different geometries ,
some of which contain astigmatism. Our ranking procedure is a modified ver-
sion of [40, 69]. For the ranking we use the electron microscopy instead of the
light microscopy images, as in [40, 69]. Based on our ranking procedure the
derivative-based sharpness function scores best, the Fourier transform-based
function scores almost equal.

Section 6.1 lists the sharpness functions to be ranked. Sections 6.2 and
6.3 describe the experimental SEM data sets and the ranking procedure respec-
tively. Section 6.4 provides the ranking results. Finally in Section 6.5 we discuss
the numerically computed sharpness functions, in particular which aspects of
the sharpness functions mainly influence their positions in the ranking.
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6.1 The sharpness functions

For the discrete image F := (fi,j)
N
i,j=1 we list a number of the sharpness func-

tions to be assessed. For k ∈ N, p = {1, 2} and Θ ∈ R
+ the discrete derivative-

based sharpness function is defined as in (3.27)

sder
x :=

∑

i,j

|fi,j − fi,j+k|p, |fi,j − fi,j+k|p > Θ. (6.1)

We remark that k (pixel difference) and Θ (threshold) influence the noise sen-
sitivity of the sharpness function. The papers [6], [69] only use k = 1, 2. Below
we experimentally show that larger values of k often lead to higher scores in
the assessment. Let sder

y be the sharpness function that computes the norm
of the pixel difference in vertical direction. Then the form that generalizes
derivative-based sharpness functions is

sder :=
1

2
(sder

x + vsder
y ), v ∈ {0, 1}. (6.2)

We also consider the discrete derivative-based sharpness (cf. (3.30))

sder,t :=
∑

i,j

((F ∗G1)
2
i,j + (F ∗G2)

2
i,j), ((F ∗G1)

2
i,j + (F ∗G2)

2
i,j) > Θ, (6.3)

where G1,G2 are the so-called Sobel operators, defined in (3.31), and ∗ denotes
discrete convolution.

The discrete autocorrelation difference sharpness function is defined as in
(5.6), Subsection 5.1.3

sacrx := f̆0,k − f̆0,k+l. (6.4)

Similarly to the derivative-based sharpness function both vertical and horizontal
directions can be considered

sacr :=
1

2
(sacr,x + vsacr,y), v = {0, 1}. (6.5)

For p = {1, 2} the discrete variance-based sharpness function and the intensity-

based sharpness functions are defined as in (5.13), (5.14) Section 5.2

svar :=
∑

i,j

(fi,j − F̄ )2, (6.6)

sint :=
∑

i,j

|fi,j |p, fi,j > Θ. (6.7)

The histogram-based sharpness functions are defined, as in (5.15)-(5.17)

shisr := max
k,hk 6=0

hk − min
k,hk 6=0

hk. (6.8)
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(a) Cross sections (b) Cross sections (c) Tin balls (d) Tin balls

(e) Tin balls (f) Integrated circuits (g) Hard disk head (h) Hard disk head

Figure 6.1: In-focus images from experimental SEM through-focus series with-
out astigmatism.

shise := −
∑

k,hk 6=0

hk
N2

log2

hk
N2

. (6.9)

shist :=

n∑

k=1

hk, f̃n ≤ Θ, f̃n+1 > Θ. (6.10)

The discrete Fourier transform-based sharpness function is defined (cf. [52, 87])

sft :=
∑

i,j

∣
∣
∣f̂i,j

∣
∣
∣

2

, i, j ∈ {h, . . . , n0 − l} ∪ {n0 + l, . . . , N − h}, (6.11)

where l and h are the low and the high band frequencies, n0 = mod(N/2) + 1.

In (6.11) f̂i,j are the entries of the discrete Fourier transform. Before comput-
ing the discrete Fourier transform the images are premultiplied by the window
function (4.3).

6.2 The images

Fourteen experimental through-focus series are recorded with a FEI Strata SEM
at magnifications from 15.000× to 25.000×. The number of images in a through-
focus series varies from 11 to 53. Figures 6.1 and 6.2 show the in-focus images
from each of the series. The size of each image is 442×442 pixels. The images
shown in Figure 6.1 are from astigmatism-free through-focus series. Those in
Figure 6.2 are from the through-focus series with astigmatism.

Figures 6.1(c), 6.1(d), 6.1(e), 6.2(c), 6.2(d) show the images of a tin balls

sample; Figures 6.1(a), 6.1(b), 6.2(a), 6.2(b) show images of a cross sections
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(a) Cross sections (b) Cross sections (c) Tin balls

(d) Tin balls (e) Integrated circuits (f) Gold-on-carbon

Figure 6.2: In-focus images from experimental SEM through-focus series with
astigmatism.

sample; Figures 6.1(f), 6.2(e) show images of a integrated circuits sample; Fig-
ures 6.1(g), 6.1(h) show images of a hard disk head sample; Figure 6.2(f) show
images of a gold-on-carbon sample.

The images contain various details. Series of images, such as in Figure 6.1(c),
contain fine details, i.e. the distance between neighbouring objects in an image
is several pixels. Other series, like in Figure 6.1(b) and Figure 6.1(g), contain
only course details (the distance between two objects is more than 100 pixels).
There are also periodic images (such as in Figure 6.1(a)).

6.3 Assessment

In the recent paper with the assessment of sharpness functions [40] several
ranking scores, based on the previous papers [69, 73] are explained. We consider
the four ranking scores described in [40].

• Accuracy score zacc measures the distance between the best focus posi-
tion, determined by a professional human operator and the maximum of
a sharpness function.

• Local maxima score zlm counts the number of local (false) maxima in
a sharpness function.

• Range score zran estimates the interval around a sharpness function
global maximum, where the function is concave.



6.3. Assessment 79

• Noise score znoise estimates the noise amplitude in a sharpness function.

We do not consider the dynamic ranking scores defined in [40], because in this
chapter we discuss only static autofocus (see Section 2.6). We omit the ranking
score that estimates the half width at half maximum of a sharpness function
peak [40, 73]. The narrow sharpness function peak is not always beneficial for
static autofocus in electron microscopy: if the defocus step in a through-focus
series is large (course focusing), the sharpness function peak can be unobserved
and autofocus procedure will fail. Earlier the computational time required by
a sharpness function was also considered as an ranking score [69]. Nowadays
the computational time of all sharpness functions considered in this chapter is
lower than the image acquisition time in electron microscope. In general the
sharpness function value for a current image in a through-focus series can be
computed in parallel to the acquisition of the next image in the through-focus
series at no extra cost time.

Consider a vector of the sharpness function values computed for a through-
focus series of K images with the k0-th image being in-focus

s := (sk)
K
k=1. (6.12)

The sharpness function values are scaled between 0 and 1, i.e. sk ∈ [0, 1]. Figure
6.3 schematically shows possible examples of the sharpness function behaviour
forK = 7, k0 = 3. The notation SF in the figure means the Sharpness Function.
We take

ϑ :=

{

1 if maxk sk ∈ {s1, sK},
0 otherwise.

In Figure 6.3 ϑ is qual to 1 for the sharpness function on the right and is equal
to 0 for other functions.

Let δacc be the number of defocus steps between the in-focus image and
the sharpness function maximum. Then the maximum number of defocus steps
between the in-focus image and the sharpness function maximum is

δacc ≤ δmax
acc := max(K − k0, k0 − 1).

Let δlm be the number of the local maxima in the sharpness function, then

δlm ≤ δmax
lm := ⌊K − 1

2
⌋ − 1 + ϑ.

Let δran be the monotonicity range in defocus steps around the maximum, then

δran ≤ δmax
ran := (K − 1) − 2 + ϑ.

Let δnoise be the noise amplitude in the sharpness function, then

δnoise < δmax
noise := K − 3 + ϑ.
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The ranking results in scores which are real numbers

zacc, zran, zlm, znoise ∈ [0, 1].

They are equal to 1 in the ideal situation and equal to 0 in the worst situation.
We define

zscore := 1 − δscore
δmax
score

,

where score denotes either accuracy, local maxima, range or noise.
For the total overall score of sharpness function values we use the weighted

sum of scores described above

ztot =
1

2
(zacc +

1

3
(zran + zlm + znoise)) ∈ [0, 1].

Equal weight is given to zacc and the sum of zran, zlm, znoise. The reason for this
choice is the importance of accuracy for static autofocus and the fact that the
scores zran, zlm, znoise are most likely correlated. If a sharpness function does not
have local optima then zran = zlm = znoise = 1, and the overall score is high.
However, if the maximum of such a sharpness function is far away from the
in-focus position (see SF5, Figure 6.3), this sharpness function is meaningless
for the autofocus. For an ideal sharpness function, such as SF1, ztot = 1. The
ranking score values for sharpness functions from Figure 6.3 are shown in Table
6.7.

The ranking systems described previously are comparative [40, 69, 73]. For
instance in [40] the accuracy ranking score is equal to the difference between
sharpness function maximum and the in-focus image in defocus steps. The
minimum value is equal to zero and is considered to be the best. The maximum
value is limited by the number of images in a through-focus series , which
depends on a particular experiment. In our assessment procedure the value of
each score belongs [0, 1] independently of the number of images in a through-
focus series.

Based on the examples presented in Figure 6.3 and in Table 6.7 we illustrate
our ranking procedure.

• Accuracy. The accuracy score of SF1, SF2, SF4 is equal to 1, because
their maxima coincide with the in-focus position. The accuracy of SF5 is
equal to 0, because its maximum is as far from the in-focus position as
possible. For SF3 the number of defocus steps between sharpness function
maximum and the in-focus image is δacc = 1, thus zacc = 1 − δacc

δmax
acc

= 2
3 .

• Local maxima. For seven images δmax
lm = 3. Thus for SF1 and SF5

zlm = 1, for SF2 and SF4 zlm = 0, and for SF3 with the number of local
maxima δlm = 1, zlm = 1 − δlm

δmax
lm

= 1
2 .

• Range. The functions SF1 and SF5 have zran = 1, because they are
monotone on both sides of the global maximum. The functions SF2 and
SF4 have zran = 0, because because their monotonicity interval around
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Figure 6.3: Benchmark examples of a general sharpness function behaviour.
The notation SF denotes the Sharpness Function. The benchmark functions
are ordered according to the ranking, i.e. SF1 scores best and SF5 - worst (see
Table 6.7 for the details).

Table 6.1: Ranking of the sharpness function benchmarks, shown in Figure
6.3. The notation SF denotes the Sharpness Function.

SF Accuracy Local maxima Range Noise Total score

zacc zlm zran znoise ztot

SF1 1.00 1.00 1.00 1.00 1.00

SF2 1.00 0.00 0.00 0.45 0.58

SF3 0.67 0.506 0.25 0.68 0.57

SF4 1.00 0.00 0.00 0.00 0.50

SF5 0.00 1.00 1.00 1.00 0.50

the global maximum is minimal (two defocus steps). For SF3 this area is
δran = 3 defocus steps, then for SF3 zran = 1 − δran

δmax
ran

= 1
4 .

• Noise level. For SF1 and SF5, znoise = 1, because they do not have local
maxima and minima. For SF4, znoise = 0, because it has as much maxima
and minima as possible, with the highest sum amplitude. For SF3 the total
amplitude of global minima and maxima is δnoise = 0.8 + (1 − 0.5) = 1.3,
znoise = 1 − δnoise

δmax
noise

= 1 − 1.3
4 = 0.675.

More details about our ranking procedure can be found in [62].

6.4 Ranking results

The sharpness functions are applied to each of the images in the SEM through-
focus series described in Section 6.2 and then ranked according to the proce-
dure described in the previous section. The results are averaged for all given
through-focus series. Parameterized sharpness functions are evaluated for var-
ious parameter values. For example, the derivative-based sharpness function
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Table 6.2: The derivative-based sharpness functions (6.2)-(6.3) ranking. The
squared gradient without threshold that takes into account the difference be-
tween pixels in vertical and horizontal directions scores best. Rows 1-8 represent
the function (6.2). Row 9 represents (6.3). The function (6.3) has the lowest
overall score.

Sharpness function parameters Ranking scores

Vert.d. Power Pix.diff. Thresh. Accur. False max. Range Noise Overall

N v p k Θ [%] zacc zlm zran znoise ztot

1 0 2 1 . . . 441 0 0.9767 0.9627 0.9033 0.9591 0.9592

2 1 1 1 . . . 441 0 0.9940 0.9449 0.8766 0.9485 0.9587

3 1 2 1 . . . 441 0 0.9583 0.9565 0.9033 0.9569 0.9486

4 0 1 1 . . . 441 0 0.9767 0.9140 0.8376 0.9291 0.9351

5 1 1 1 0 . . . 100 0.8773 0.8081 0.5574 0.8297 0.8045

6 0 2 1 0 . . . 100 0.8267 0.8449 0.5589 0.8471 0.7885

7 0 1 1 0 . . . 100 0.8273 0.8068 0.5856 0.8331 0.7846

8 1 2 1 0 . . . 100 0.8178 0.8506 0.5186 0.8427 0.7776

9 - - - 0 . . . 100 0.7809 0.8277 0.5744 0.8554 0.7667

Table 6.3: The Fourier transform-based sharpness functions (6.11) ranking.
The Fourier transform-based sharpness function with the zero low frequency
band scores best.

Sharpness function parameters Ranking scores

Low freq. band High freq. band Accur. False max. Range Noise Overall

N l h zacc zlm zran znoise ztot

1 0 1. . . 219 0.9708 0.9472 0.9070 0.9604 0.9545

2 2 1. . . 219 0.9734 0.9416 0.8850 0.9518 0.9498

Table 6.4: The statistics-based sharpness functions (6.5)-(6.6) ranking. Rows
1-4 represent the function (6.5). Row 5 represents (6.6). The autocorrelation-
based sharpness scores best.

Sharpness function parameters Ranking scores

Vert.d. Autocor. coeff. Autocor. coeff. Accur. False max. Range Noise Overall

N v k l zacc zlm zran znoise ztot

1 0 1 1. . . 50 0.9311 0.9208 0.8587 0.9450 0.9197

2 1 1 1. . . 50 0.9726 0.8839 0.7801 0.8868 0.9115

3 0 1. . . 50 1 0.9264 0.8840 0.8226 0.9097 0.8992

4 1 1. . . 50 1 0.9482 0.8579 0.7131 0.8839 0.8832

5 - - - 0.8713 0.9038 0.7383 0.9191 0.8625

Table 6.5: The histogram-based sharpness functions (6.8)-(6.10) ranking.
Sharpness function parameters Ranking scores

Sharpness function Thresh. Accur. False max. Range Noise Overall

N Θ [%] zacc zlm zran znoise ztot

1 shist 0 . . . 100 0.8787 0.8855 0.5671 0.8811 0.8283

2 shise - 0.7359 0.8273 0.4769 0.8662 0.7297

3 shisr - 0.2856 0.6944 0.1954 0.7367 0.4139
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Table 6.6: The intensity-based sharpness functions (6.7) ranking. Squared
intensity has the highest overall score. Absolute intensity has the lowest overall
score.

Sharpness function parameters Ranking scores

Power Thresh. Accur. False max. Range Noise Overall

N p Θ [%] zacc zlm zran znoise ztot

1 2 0 . . . 100 0.8207 0.8376 0.6294 0.8679 0.7995

2 1 0 . . . 100 0.1304 0.8110 0.3574 0.8045 0.3940

Table 6.7: The sharpness function (6.1)-(6.8) ranking.
Sharpness function family Accuracy Local maxima Range Noise Overall score

N zacc zlm zran znoise ztot

1 Derivative 0.9767 0.9627 0.9033 0.9591 0.9592

2 Fourier transform 0.9708 0.9472 0.9070 0.9604 0.9545

3 Statistics 0.9311 0.9208 0.8587 0.9450 0.9197

4 Histogram 0.8787 0.8855 0.5671 0.8811 0.8283

5 Intensity 0.8207 0.8376 0.6294 0.8679 0.7995

(6.2) is applied to the gold-on-carbon through-focus series (Figure 6.2(f)) for
v = 0, p = 2, Θ = 0 and the pixel difference parameter k = 1, . . . , 441. For
each k we obtain a different one-dimensional sharpness function with different
zscore values. The results with the highest ztot is chosen. The same procedure is
repeated for each of the through-focus series. Ranking scores obtained for each
through-focus series are averaged, and the final result can be seen in in first row
(N=1) of Table 6.2. Table 6.2 shows the performance of derivative-based sharp-
ness functions when varying of different parameters separately (for the details
see columns sharpness function parameters). The results for each of the 5 sharp-
ness function families are shown in 5 different tables Tables 6.2-6.6. Table 6.7
summarizes the results according to the highest overall scores ztot from Tables
6.2-6.6. The derivative-based and Fourier transform-based sharpness functions
have shown the best overall performance.

Table 6.4 shows that the variance-based sharpness function (N = 5) scores
considerably lower than the autocorrelation-based sharpness functions (N =
1, . . . , 4) probably because we score the best (variation over several parameters)
to a single variance-based score. Through Table 6.5 we can see the histogram-
based sharpness function with threshold count (6.10) has much higher ranking
score than entropy (6.9) and range (6.8). We note that entropy and range
functions as well as the variance are "single-parameter" scores. Table 6.6 shows
that the intensity-based sharpness function (6.7) shows a better performance
for p = 2.
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(a) Sharpness function values are scaled between 0 and 1.

−10 −8 −6 −4 −2 0 2 4 6 8 10
100

200
300

400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Defocus
Pixels difference

N
or

m
al

iz
ed

 d
er

iv
at

iv
e−

ba
se

d 
sh

ar
pn

es
s 

fu
nc

tio
n

(b) Sharpness function values are scaled between 0 and 1.
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(c) Sharpness function values are not scaled.
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(d) Sharpness function values are not scaled.

Figure 6.4: Derivative-based sharpness functions (6.2) computed for a gold-
on-carbon through-focus series with astigmatism for p = 2,Θ = 0.
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6.5 Numerical results

The ranking of some of the sharpness functions in the previous section is ob-
tained by maximization over a range of parameters. This section will address
results for specific parameter choices.

For derivative-based sharpness functions it is clear that varying the pixel
difference parameter gives much better results than varying the threshold. Two
sharpness functions with pixels difference parameters k = 1, 10, corresponding
to N = 1 in Table 6.2 are plotted for the gold-on-carbon through-focus se-
ries with astigmatism (Figure 6.2(f)). For k = 1 the sharpness function has
a double-peak. This behaviour was discussed and demonstrated analytically
for the benchmark in Section 3.4. In Figure 6.4(a) for k = 1, one obtains
ztot = 0.7431 due to the error in accuracy, one local maximum and a lower
monotonicity range. For k = 10 the double-peak disappears and ztot = 1. Fig-
ures 6.4(c) and 6.4(b) show the sharpness function surface for k ∈ {1, . . . , 441}
for the gold-on-carbon series with astigmatism (Figure 6.2(f)). In Figure 6.4(c)
the sharpness functions are not scaled. In figures 6.4(b) and 6.4(a) the sharp-
ness function values are scaled between 0 and 1 for each value of k. Figure
6.4(d) shows sharpness function for several defocus values plotted versus k.

The size of each image in the through-focus series is 442×442 pixels. Ranking
shows that for k ∈ {6, . . . , 421} ztot = 1. The same effect is observed for most
of the other experimental through-focus series: the derivative-based sharpness
functions do not fail even if the pixel difference k is large. For the threshold
parameter Θ = 0, the power parameter p = 2 and v = 0 in (6.1), we get a
sharpness function that takes into account the difference between pixels only in
horizontal direction with the highest overall score from table Table 6.2 (N = 2)

sder
x =

N∑

i=1

N−k∑

j=1

(fi,j − fi,j+k)
2 =

N∑

i=1

N−k∑

j=1

f2
i,j +

N∑

i=1

N∑

j=k+1

f2
i,j − 2

N∑

i=1

N−k∑

j=1

fi,jfi,j+k. (6.13)

The first two terms of (6.13) are intensity-based sharpness functions (6.7), ap-
plied to the parts of the image. The third term is a discrete autocorrelation
coefficient f̆0,k, defined in (5.5). When k is increasing the autocorrelation coef-
ficient tends to zero. Thus for k → ∞ the derivative sharpness function (6.13)
converges to the sum of the intensity-based sharpness function values (6.7) ap-
plied to small parts of discrete image. This is clearly observed in Figure 6.4(c)
and Figure 6.4(d): with increasing k the sharpness function peak-width first
increases and then decreases.

It was shown in Section 3.4 that for the benchmark the derivative-based
sharpness function has a local minimum in the in-focus position in the case
of astigmatism. Due to the non-amorphous nature of most of the samples this
minimum could be shifted to left or right. Because the first and the second terms
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Figure 6.5: Scaled Fourier transform-based sharpness function for gold-on-
carbon through-focus series with astigmatism and its ranking scores .
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of (6.13) are the intensity-based sharpness function applied to different parts of
an image, there is a high chance that the local minimum of both functions will
be obtained in different positions. Thus the composition of the two will average
the local minimum effect or even will help to get rid of it.

Figure 6.5 shows the Fourier transform-based sharpness functions for a low
frequency band equal to 2 with different high frequency bands for gold-on-
carbon series with astigmatism. The high frequency band is changing from 1
to 219. For certain high frequencies the similar double peak effect, as for the
derivative-based sharpness function is observed. It shows the change of the
ranking scores zacc, zran, zlm, ztot described in Section 6.3 due to the change of
the high frequency band parameter. It clearly shows, how the sharpness function
parameter varying can influence the sharpness function quality.

Figures 6.6-6.9 show the autocorrelation-based, derivative-based and intensity-
based sharpness functions applied to four of the through-focus series. For in-
stance for the autocorrelation-based sharpness function computed for the gold-
on-carbon: Figure 6.7(a) shows the function itself plotted versus defocus and
different values of parameter l. Similarly for the derivative-based and intensity-
based sharpness functions, the parameters k and Θ are varied. Figure 6.7(d)
shows the plots of the sharpness function quality ranking. The horizontal axis
corresponds to the changing parameter (in this case l) and the vertical axis
shows the ranking scores. Figure 6.7(d) shows the legend with the score param-
eter identification: blue - accuracy, red - local maxima, green - monotonicity
range, cyan - robustness to noise. Most important is the black solid line, which
corresponds to the total score z ∈ [0, 1]. If z = 1 the sharpness function has the
ideal shape.

For the tin balls (see Figure 6.6) all three functions have comparably high
score: the functions have a single optimum at the in-focus image. For the
gold-on-carbon (see Figure 6.5) the autocorrelation-based and derivative-based
functions have a double peak for the small values of parameters l and k re-
spectively, as the result of the astigmatism present in the through-focus series.
However, the intensity-based sharpness function does not show such behaviour
for the same set of experimental data. This is also visible at the quality ranking
plots and correspond to the theoretical observations about the intensity-based
function (Section 5.2).

For the integrated circuits (see Figure 6.8) we again observe a double peak
in the autocorrelation-based and derivative-based functions. The double peak
of the intensity-based function is not that visible with the eyes. However, the
ranking plot shows that the monotonicity range of the intensity-based sharp-
ness function is poor as well. The possible reason is the stronger amount of
astigmatism present in the through-focus series.

The images of the hard disk head are very noisy. This results in oscillations
in all three sharpness functions (see Figure 6.9). We can see that the derivative-
based sharpness function is most sensitive to noise. Increasing the values of the
corresponding parameters l, k,Θ helps to decrease the amount of noise in the
sharpness function.
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Figure 6.6: Sharpness functions and their scores for a tin balls through-focus
series in Figure 6.1(c).
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Figure 6.7: Sharpness functions and their quality ranking scores computed for
the gold-on-carbon through-focus series with astigmatism (Figure 6.2(f)).
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Figure 6.8: Sharpness functions and their quality ranking scores computed for
the integrated circuits through-focus series with astigmatism (Figure 6.2(e)).
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Figure 6.9: Sharpness functions and their quality ranking scores computed for
the hard disk head through-focus series (Figure 6.1(g)).
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Chapter 7

Simultaneous defocus and

astigmatism correction

In this chapter we introduce a method for simultaneous autofocus and twofold
astigmatism correction for application to an arbitrary sample in a low-to-medium
magnification (i.e. resolution 1 nm or larger). This magnification is typical
for many STEM applications that require automation (electron tomography
[31, 35, 84, 98], Critical Dimension STEM [91]). Our method corrects de-
focus and astigmatism determining the optimum of a sharpness function in
the space of the three microscope control variables d (defocus, x-stigmator, y-
stigmator). In particular we apply the variance-based sharpness function (5.9).
The variance-based sharpness function has been applied earlier to the images
from the various types of microscopy [84, 69, 16]. For fluorescent light mi-
croscopy it is shown experimentally that out of a large amount of sharpness
functions variance is the better one [40], for non-fluorescence microscopy nor-
malized variance is the better one [73].

This chapter consists of two sections. In Section 7.1 we describe numerical
simulations based on a linear image formation model and the wave aberration
point spread function explained in Chapter 2 and realistic physical values. Nu-
merical simulations show that the variance-based sharpness function reaches
its maximum at the Scherzer defocus point with zero astigmatism. This is
demonstrated for the synthetic amorphous images and the ellipsoid particles
image with and without noise. From observations about the behaviour of the
variance-based sharpness function we draw the conclusion that it is important to
optimize the function in the space of the three control variables simultaneously.

Section 7.2 discusses derivative-free optimization general properties required
by simultaneous defocus and astigmatism correction. A brief summary of the
Nelder-Mead simplex method and the interpolation-based trust-region method
for the three-parameter optimization is provided. The results of the method’s
on-line performance in the STEM microscope will be illustrated in Chapter 8.
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Table 7.1: Realistically chosen physical values of the STEM parameters Cs
and E used for the numerical computations of STEM point spread function.
The wavelength λ is computed through the electron voltage E. Scherzer values
ηASh

, RASh
, dSh are computed from (2.21), (2.23) and (2.24).

Parameter name Notation Value Units

Spherical aberration Cs 1.07 mm

Electron energy E 300 keV

Electron wavelength λ 1.9 × 10−3 nm

Aperture radius RASh
5.3 nm

Scherzer defocus dSh -55.2 nm

Convergent semi angle ηASh
10.2 mrad

7.1 Simulations

In this section we simulate the variance-based sharpness function in order to
study its behaviour. In particular we show that for a given object function the
image variance reaches its maximum in a three parameter space at the Scherzer
defocus point with zero astigmatism (2.26).

7.1.1 Description

Figure 7.1 shows the amorphous object function (Figure 7.1(a)) and the ellip-
soid particles object function (Figure 7.1(b)) simulated by procedure described
in [68]. A choice for the object function of an amorphous sample of uniform
thickness is a random draw from a Poisson distribution with mean value equal to
the expected number of atoms [14]. For the second object the ellipsoid particles
are dispersed on an amorphous background. All particles have parallel main
axes with different widths in orthogonal directions. This results in a strong
preferential direction in the image, as is evidenced by the Fourier transform
(Figure 7.1(d)), differently from the Fourier transform of amorphous object
function (Figure 7.1(c)), that has a circular shape. The preferential direction
could cause difficulties for the Fourier transform-based correction methods, be-
cause in general we expect elliptic shape of Fourier transform in the case of
astigmatism.

The size of both objects is 100 × 100 pixels. We assume the pixel width to
be 0.5 nm for both objects. We use the physical model described in Section
2.4.2 in order to obtain a synthetic experimental image, i.e. a simulated object
function convolved with a point spread function. The noise ε is simulated as a
Poisson distribution applied to the synthetic image

Table 7.1 shows the parameter values used in the computations. We took
the realistic values for the spherical aberration Cs and the electron voltage
E. The wavelength λ is computed through the electron voltage E [12]. The
Scherzer values ηASh

, RASh
, dSh are computed from (2.21),(2.24) and (2.23).

The largest defocus deviation that does not influence the image quality is known
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(a) (b)

(c) (d)

Figure 7.1: 7.1(a) Amorphous object function; 7.1(b) ellipsoid particles object
function; 7.1(c) the Fourier transform of the amorphous object function; 7.1(d)
the Fourier transform of the ellipsoid particles object function. The Fourier
transform of the ellipsoid particles object function is elliptic die to the ellipticity
of the particles.
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Table 7.2: Defocus and astigmatism ranges and steps used for numerical cal-
culations of the variance-based sharpness function domain.

Parameter name Notation Value Units

Defocus step size ∆d 9.2 nm

Astigmatism step size ∆Cb 9.2 nm

∆Cc 9.2 nm

Amount of defocus steps Nd 40 -

Amount of astigmatism steps NCb
20 -

NCc 20 -

Defocus boundary values [dmin, dmax] [-239.2, 128.8] nm

Astigmatism boundary values [Cbmin
, Cbmax ] [-92,92] nm

[Ccmin , Ccmax ] [-92,92] nm

as a tolerable defocus error and is defined (cf. [68]), as

det :=
λ

2η2
ASh

. (7.1)

For our simulation we take the defocus step equal to the tolerable defocus error

∆d = det. (7.2)

Parameters Cb and Cc in (2.19) indicate the distance between the two focal
points in the case of astigmatism. We can thus set the astigmatism step sizes
equal to the defocus step sizes

∆Cb = ∆Cc = ∆d. (7.3)

The numerical computations are performed for Nd defocus d steps around the
Scherzer defocus dSh, NCb

steps of Cb around Cb0 and NCc steps of Cc around
Cc0 , i.e. the parameter domain Ω is

Ω = [dmin, dmax] × [Cbmin , Cbmax ] × [Ccmin , Ccmax ], (7.4)

where

dmin = dSh −
Nd
2

∆d, dmax = dSh +
Nd
2

∆d, (7.5)

Cbmin = Cb0 −
NCb

2
∆Cb, Cbmax = Cb0 +

NCb

2
∆Cb, (7.6)

Ccmin = Cc0 −
NCc

2
∆Cc, Ccmax = Cc0 +

NCc

2
∆Cc. (7.7)

The computed values are shown in Table 7.2.
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(a) (b)

(c) (d)

Figure 7.2: The synthetic ellipsoid particles image at the Scherzer defocus
point with zero astigmatism 7.2(a): without noise; 7.2(b): with noise. The
variance-based sharpness function computed for synthetic ellipsoid particles im-
ages 7.2(c): without noise and 7.2(d): with noise.
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Figure 7.3: Graphs of the variance-based sharpness function for the ellipsoid
particles images without noise. 7.3(a): For Cb = 0 nm, the variance-based
sharpness function reaches its maximum at the Scherzer defocus point, while for
Cb = −92 nm variance has a local minimum at the Scherzer defocus point and
two maxima on the left and the right. The variance-based sharpness functions
plotted in two-parameter spaces for the fixed values of the third parameter
7.3(b): Cc = −92 nm; 7.3(c): d = 50 nm; 7.3(d): d = dSh (Scherzer defocus).
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7.1.2 Numerical results

Four numerical experiments are carried out: 1) amorphous without noise; 2)
amorphous with noise; 3) ellipsoid particles without noise; 4) ellipsoid particles
with noise. In all four cases the simulated variance-based sharpness function
reaches its maximum at the Scherzer defocus point with zero astigmatism within
the defocus and astigmatism errors (7.2)-(7.3).

Figure 7.2 shows the results of numerical computations for the ellipsoid
particles object without and with noise. The figure shows the variance functions
in the space of parameters d and Cb for a fixed Cc = 0. In our simulation in the
noise-free case the variance function has no other maxima. We can clearly see
that when noise is added to the images, the variance function becomes noisy
as well, i.e. it may have a lot of local optima, especially further away from the
global optimum. A similar shape of the variance function is obtained for the
amorphous object.

It is important to note that the variance has local optima in one-parameter
and two-parameter spaces, which are no longer the optima in the encompass-
ing three-parameter space. For instance the variance has a local minimum

at the Scherzer defocus point with the astigmatism Cb ≫ 0 (figures 7.3(a)-
7.3(b)). This local minimum is not a minimum anymore in the two-parameter
space (Figure 7.2(c)). This corresponds to the earlier observations: in [16] it
is shown analytically for SEM that the variance function has local optima in
one-parameter spaces. In [16] the symmetry between the two local optima in
case of an amorphous object is used for the calibration of defocus and astigma-
tism. In the general case of a non-amorphous object the positions of the two
local maxima are not exactly symmetric (see for instance Figure 7.2(a)). This
was also shown in experiments for SEM [62, 61]. Similar phenomena are ob-
served in a two-parameter space: variance as a function of Cb and Cc reaches a
local minimum at the zero astigmatism if the defocus value is far away from the
Scherzer point (figures 7.3(c)-7.3(d)). These minima are not minima anymore in
a three-parameter space. From the above observations that the variance reaches
its maximum at the Scherzer defocus point and zero astigmatism, and from the
existence of the local maxima with unpredictable behaviour in lower dimensions
we draw the conclusion that it is important to optimize the sharpness function
in the three-parameter space at the same time.

7.2 Derivative-free optimization

A few things are worth mentioning for the optimization of the sharpness function
S in electron microscopy

• The sharpness function S might have local optima due to noise in the
image formation;

• The sharpness function S might have local optima due to the objects’s
geometry ψ;
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• At different time points t1, t2 we may have

St1(d) 6= St2(d) (7.8)

not only due to noise in the image formation, but also due to instabilities,
such as sample drift, sample contamination and hysteresis of the magnetic
lens;

• Determining the sharpness function value is much faster than an the
recording of an image. Therefore, and also because repeated recordings
can damage or destruct the sample, one has to optimize the defocus and
astigmatism with just few recordings (few function evaluations);

• Analytical derivative information is not available. Calculating (approxi-
mate) derivatives with finite differences would dramatically increase the
amount of necessary image recordings, and is therefore not a serious op-
tion. Besides it would not be very accurate due to noise.

The Nelder-Mead simplex method is designed to find a local optimum of a
function (in our case it is the variance-based sharpness function). It makes no
assumptions about the shape of the function and does not use derivative infor-
mation. The Nelder-Mead simplex method has successfully been applied before
to industrial problems, where derivative-free optimization is necessary (see for
instance [79]). A detailed description of the Nelder-Mead simplex method for n
dimensions can be found in [10, 58].

A simplex is a geometrical object in n dimensions that consists of n + 1
points. In the case of defocus and twofold astigmatism correction n = 3, and
the simplex is a tetrahedron. The Nelder-Mead simplex method requires n+ 1
points, defining an initial simplex to start. Let the initial value of the defocus
and astigmatism parameters be dinit. Then the column entries of the initial
simplex D ∈ R

n×n+1 are constructed as

Di = dinit + ∆diei−1, i = 1, . . . , 4, (7.9)

where e0 = 0, ei, i = 1, . . . 3 is a unit vector, and

∆d ∈ R
3 (7.10)

is the input parameter for the optimization.
During every iteration the Nelder-Mead simplex method first evaluates the

variance function for a finite number of points (between 1 and n + 2 = 5).
In our case one function evaluation corresponds to one image recording and
the computation of the sharpness function values. It means that between 1
and 5 images may be recorded during one iteration of the Nelder-Mead simplex
method. Then the vertex corresponding to the lowest function value in a simplex
is replaced by a new point with a higher function value. The algorithm stops if
for a stopping tolerance criterion dtol

‖d(1) − d(2)‖ < dtol, (7.11)
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where d(1) and d(2) are the two points of the simplex, corresponding to the
highest variance values. We have to keep in mind that the defocus and stigma-
tor control variable values in a real-world machine have different scalings. Thus
we actually have to separate the tolerances for different dimensions. The sec-
ond method we consider is the interpolation-based trust-region method (or the
Powell method), following Powell’s UOBYQA (Unconstrained Optimization BY
Quadratic Approximation) [57]. The interpolation-based trust-region method
employs a series of local quadratic models that interpolate m sample points
of the sharpness function. The quadratic model is constructed using standard
Lagrangian basis functions and is minimized within the trust-region to obtain a
trial point. The repeated quadratic model minimization converges to the near-
est local minimum [60]. Each computed trial point is accepted or rejected based
on an iteration. Each trust-region iteration replaces at most one interpolation
point in the set, keeping m fixed. In other words, at most only one function
evaluation per iteration is required. When an interpolation point in the set is
replaced by a new one, the Lagrangian functions are adapted as well, leading
to a new quadratic model of the sharpness function. The iterative process is
stopped if the length of the trial step is below the stopping tolerance or the
maximum allowable number of function evaluations is reached. The detailed
description of Powell’s UOBYQA can be found it [56, 57]. In the next chapter
we show for a real-world application that for an image of a general sample the
algorithms converge to the optimal value of the control variables in typically
20-50 image recordings.
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Chapter 8

On-line STEM application

The automated defocus and astigmatism correction methods described in the
previous chapters are implemented and tested on-line. In the previous chapters
all outputs were computed off-line, i.e. for the data recorded in advance. The
on-line testing described in this chapter implies that the algorithms run (i.e the
algorithms are executed) in a control loop with the electron microscope.

8.1 The experimental set-up

The automated defocus and astigmatism correction methods described in the
previous chapters are implemented and tested on-line. Figure 8.1 shows the
three main parts of the experimental set-up:

• The prototype of a FEI Tecnai F20 STEM acquires the images.

• A Java-based experimental platform (called EXPLA), which consists of a
core that connects to the TEMScripting interface for a FEI microscope
control, and an application control framework. EXPLA is used to extract
the images from the microscope for the specific control settings of the
microscope. It can be controlled using Matlab [68].

• The particle analysis algorithm includes as a substep the automated de-
focus and astigmatism correction. All the methods are implemented in
Matlab V7.5 (R2007b).

The goal of the particle analysis algorithm is to analyse the nanoparticle
distribution, in particular to count the amount of specific particles that only
occur sparsely in another carrier, and to estimate the statistical distribution of
their locations and sizes. The algorithm records images at different stage posi-
tions and magnifications. The ideal control variables (defocus and stigmators)
value d0 depends on the machine control changes (stage position and magni-
fication) as well as on the sample and environment instabilities. If the image
is stigmatic or out-of-focus, the particle analysis algorithm might give errors.
For this reason it is important to run the algorithms of automated defocus and
astigmatism correction with a certain time periodicity.
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Figure 8.1: Experimental set-up. The diagrams are taken from [15].

Within the Condor project the experimental set-up is referred to as a Con-
cept Car [15]. This chapter describes and discusses the outputs obtained within
the Concept Car framework, related to the automated defocus and astigmatism
correction. It involves three different algorithms, related as shown in Figure
8.2. The three algorithms are numbered according to the list below.

1. The focus series algorithm (introduced in Section 4.5). It is applied to
improve the starting guess dinit, which is used to determine the initial
simplex (7.9). The output of one of the runs of the algorithm is described
in Section 8.2.

2. The simultaneous defocus and astigmatism correction algorithm. This
algorithm is based on the three-parameter derivative-free optimization,
described in Chapter 7. It turns out that the algorithm successfully finds
proper control variable values at a speed and with an accuracy comparable
to a human operator (Section 8.3).

3. The fast autofocus algorithm. This algorithm implements the derivative-
based approach described in Chapter 3. The ideal defocus control variable
value d0 in electron microscopy is drifting much faster than the ideal stig-
mator control variables values dx0

, dy0
. For this reason the fast autofocus

algorithm must be executed more often than the simultaneous defocus
and astigmatism correction. It also requires much less image recordings
than the simultaneous defocus and astigmatism correction. The outputs
of the algorithm’s runs are described in Section 8.4.

In the runs described below the electron voltage of the microscope is taken
200 keV, camera length - 200 nm, spot size - 7, dwell time - 5 µs. If not
mentioned otherwise, the image sizes in each run are 256×256 pixels, the pixel
depth is 16 bits. The defocus values are given either in µm or nm. Stigmator
values are given in non-physical machine units (arbitrary units). The runs take
place at low-to-medium magnifications. We premultiply the discrete image by
the window function (4.3) before the discrete Fourier transform computation.
All power spectra shown are in logarithmic scale.
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Figure 8.2: The simplified workflow diagram of the particle analysis algorithm
and defocus/astigmatism correction.

8.2 The focus series algorithm

Figure 8.3 contains a STEM image used by the particle analysis algorithm. The
image power spectrum and the Fourier transform-based sharpness and stigmatic
operators (4.6)-(4.8) are displayed. The outputs shown in Figure 8.3 are similar
to those described in Section 4.8.2 for SEM. The only difference is that the
computations are running on-line for a real-world application, instead of off-
line data recorded in advance. From the behaviour of the sharpness/stigmatic
operators we can see that the image is strongly stigmatic and the microscope
requires adjustments of both stigmator control variables (as explained in Section
4.4).

Figure 8.4 shows Fourier transform-based sharpness and stigmatic functions
computed for the through-focus series of the images with particles (the image

shown in Figure 8.3 is one of the images from this through-focus series). The
functions give a suggestion for the initial step for the simultaneous defocus and
astigmatism optimization: the optimum of the sharpness function points to the
defocus values which is close to ideal. The shapes of the stigmatic functions
indicate the directions of change of the stigmator control variables, as was ex-
plained in Section 4.5. For illustration purpose, the number of the images in the
through-focus series is 41 (too high for a real-world application). Most on-line
runs use around 9 images.

8.3 Simultaneous defocus and astigmatism cor-

rection

In this section we describe the outputs of the simultaneous defocus and astigma-
tism correction algorithm, which is based on the sharpness function optimization
introduced in Chapter 7. In order to obtain in-focus astigmatism-free images
the variance-based sharpness function (5.13) is optimized with the Nelder-Mead
simplex method in a three-parameter space of defocus and stigmators control
variables. The Nelder-Mead simplex method implementation is the modified
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Figure 8.3: The output of the focus series algorithm. The Fourier transform-
based sharpness and stigmatic operators (4.6)-(4.8) are computed for the STEM
image.
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based sharpness and stigmatic functions (4.17) are computed for a STEM
through-focus series.
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Figure 8.5: Simultaneous defocus and astigmatism correction for a gold par-
ticle with a radius of about 20 nm. The first row, from left to right shows
1st function evaluation, 6th function evaluation, 17th function evaluation, 31st
function evaluation; the second row contains the Fourier transforms of the four
images; the third row displays the image variance, defocus, x-stigmator and
y-stigmator values plotted versus the numbers of image recordings.

version of the code available in the Matlab Optimization Toolbox V3.1.2 (fmin-

search function). We provide the outputs of the algorithm for gold particle sam-
ples (Subsection 8.3.1) and the carbon cross grating sample (Subsection 8.3.2),
which are designed for microscope calibration. Subsection 8.3.3 describes the
experimental comparison of the Nelder-Mead simplex method and the Pow-
ell interpolation-based trust-region method in the content of the simultaneous
defocus and astigmatism correction.

8.3.1 Gold particle samples

In this subsection we discuss three outputs of the simultaneous defocus and
astigmatism correction algorithm for three gold particles samples. The image
size in each run is 512×512 pixels.

First the simultaneous defocus and astigmatism correction is performed for
the out-of-focus stigmatic image of a gold particle with a radius of 20 nm shown
in Figure 8.5. As mentioned in Section 7.2 during defocus and astigmatism op-
timization one function evaluation corresponds to one image recording and the
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Figure 8.6: Simultaneous defocus and astigmatism correction for a gold par-
ticle sample. The figure shows images before and after optimization, their
Fourier transforms, and the values of image variance, defocus, x-stigmator and
y-stigmator plotted versus the numbers of image recordings.
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Figure 8.7: Simultaneous defocus and astigmatism correction for a gold par-
ticle sample. The figure shows images before and after optimization, their
Fourier transforms, and the values of image variance, defocus, x-stigmator and
y-stigmator plotted versus the numbers of image recordings.
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Figure 8.8: Simultaneous defocus and astigmatism correction for a carbon
cross grating sample at the magnification 40 000×. The figure shows images
before and after optimization, their Fourier transforms, and the values of image
variance, defocus, x-stigmator and y-stigmator plotted versus the numbers of
image recordings.

computation of the sharpness function values. The figure shows the images of
four image recordings (1st, 6th, 17th, 31st), image variance, defocus and stig-
mator values plotted versus image recording numbers. The Fourier transforms
of the images only have a few Fourier components. For this reason the sam-
ple would be difficult to analyze with Fourier transform-based techniques. The
Nelder-Mead simplex method converges in 31 function evaluations. The image
quality at the last function evaluation is equivalent to the one obtained by a
human operator. The accuracy is estimated visually as well as by comparing
the image variance values. The original gold particle is a bit elliptic, which
causes the Fourier transform of the final image to be a bit elliptic as well.

Figures 8.6 and 8.7 show outputs for the different gold particles samples.
Each figure displays images before and after optimization, their Fourier trans-
forms, and the values of image variance, defocus, x-stigmator and y-stigmator
plotted versus the numbers of image recordings. The images in Figure 8.6 show
mostly a carrier and a small gold particle on the left bottom. The run shown
in Figure 8.7 requires a larger number of function evaluations due to a smaller
stopping tolerance (7.11) value.

8.3.2 Carbon cross grating sample

This subsection describes five outputs of simultaneous defocus and astigmatism
correction runs for a carbon cross grating sample at five different magnifications.
The pixel width in the microscope changes linearly with the inverse magnifica-
tion. The magnifications and pixel widths corresponding to each of the runs
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Figure 8.9: Simultaneous defocus and astigmatism correction for a carbon
cross grating sample at the magnification 225 000×. The figure shows images
before and after optimization, their Fourier transforms, and the values of image
variance, defocus, x-stigmator and y-stigmator plotted versus the numbers of
image recordings.
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Figure 8.10: Simultaneous defocus and astigmatism correction for a carbon
cross grating sample at the magnification 630 000×. The figure shows images
before and after optimization, their Fourier transforms, and the values of image
variance, defocus, x-stigmator and y-stigmator plotted versus the numbers of
image recordings.



110 Chapter 8. On-line STEM application

10 20 30

1.8

2

2.2

2.4
x 10

6

Image recording number

V
ar

ia
nc

e

10 20 30

−150

−100

−50

0

50

Image recording number

D
ef

oc
us

 [n
m

]

10 20 30

−0.09

−0.088

−0.086

−0.084

−0.082

Image recording number

S
tig

m
at

or
−x

 [a
.u

.]

10 20 30

−3

−2

−1

0

1

2

3
x 10

−3

Image recording number

S
tig

m
at

or
−y

 [a
.u

.]

Figure 8.11: Simultaneous defocus and astigmatism correction for a carbon
cross grating sample at the magnification 1 800 000×. The figure shows images
before and after optimization, their Fourier transforms, and the values of image
variance, defocus, x-stigmator and y-stigmator plotted versus the numbers of
image recordings.
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Figure 8.12: Simultaneous defocus and astigmatism correction for a carbon
cross grating sample at the magnification 7 200 000× (high-resolution imaging
mode). The figure shows images before and after optimization, their Fourier
transforms, and the values of image variance, defocus, x-stigmator and y-
stigmator plotted versus the numbers of image recordings. The same Fourier
transforms but with a threshold are shown above the images.
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Table 8.1: A summary of the magnifications and the pixel widths correspond-
ing to the five runs of the simultaneous defocus and astigmatism correction
algorithm for the carbon cross grating sample (figures 8.8-8.12). The pixel
width in the electron microscope changes linearly with its magnification.

N Magnification Pixel width [nm]

1 40 000× 10.5

2 225 000× 1.9

3 630 000× 0.6596

4 1 800 000× 0.2309

5 7 200 000× 0.0577

are summarized in Table 8.1. Figures 8.8-8.12 show the output of the five runs,
which correspond to the rows N=1-5 in Table 8.1. Magnification increases from
figure to figure as a consequence.

In the first run (Figure 8.8) the Fourier transform of the images is strongly
influenced by crosses from the sample’s geometry. It is difficult to detect dif-
ferences between the Fourier transforms before and after improvement, though
difference are visible in the real space: the corrected image shows more details
than the image before the correction.

In the next run (Figure 8.9) the original image is strongly stigmatic. The
presence of astigmatism shows as stretching in the image itself and as elliptic
shape of its Fourier transform. It is important to note that the Fourier transform
of the original stigmatic image has only a few frequency components, which
might be difficult to analyze with Fourier transform-based methods.

In run three (Figure 8.10) the stopping tolerance of the Nelder-Mead simplex
method (7.11) is lowered. Here Nerlde-Mead requires 47 function evaluations,
which is more than in the previous runs. However, during the last 15 recordings
the variance value is almost constant, it does not increase anymore. A proper
choice of the stopping tolerance is important in order to achieve a high-quality
image while simultaneously avoiding unnecessary function evaluations.

In run four (Figure 8.11) the stopping tolerance (7.11) value is increased.
The algorithm requires 35 function evaluations. The maximum value of the
variance function is obtained in the last recording. Probably if the stopping
tolerance would be smaller, the image quality could be improved even further.
As in the previous runs we do not observe a large difference between the Fourier
transforms of the images before and after the improvement.

The last run (Figure 8.12) is executed in the high-resolution mode of the
electron microscope (the mode that allows imaging at atomic scale). Fourier
transforms with a threshold equal to 164 [pixel gray value] are displayed above
the images to illustrate the image quality improvement. In general we remark
that running the algorithm in the high-resolution mode is tricky due to instabil-
ities caused by the environment and/or the microscope (for instance, image drift
and contamination). In this mode the object can be strongly displaced and con-
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Table 8.2: Nelder-Mead vs. Powell: the experimental comparison for the
simultaneous defocus and astigmatism correction.

Powell Nelder-Mead

N Magnifi- Improvement Evaluations Improvement Evaluations Ratio

cation v E vNM ENM R

1 10000× 3.16 22 2.5 49 2.81

2 10000× 7.45 25 4.15 66 4.74

3 10000× 10.38 24 10.8 35 1.4

4 40000× 2.03 20 2.24 31 1.4

5 40000× 8.09 27 8.16 28 1.03

6 160000× 20.49 18 21.71 23 1.21

taminated between two image acquisitions, which influences the sharpness func-
tion to be optimized. The application of the algorithm to the high-resolution
images should be the topic of the future research.

8.3.3 Nelder-Mead vs. Powell

In this subsection we describe six experiments, summarized in Table 8.2. Each
experiment consists of two runs of the simultaneous defocus and astigmatism
correction algorithm. The first run uses the Nelder-Mead simplex method (or
the Nelder-Mead method), the second run uses the interpolation-based trust-

region method (or the Powell method). The methods are executed for the same
starting point d0 ∈ R

3 with identical initial parameters. The initial simplex for
the Nelder-Mead method, consisting of n + 1 = 4 points, is a subset of initial
trust-region for the Powell method, consisting of 1

2 (n+ 1)(n+ 2) = 10 points.

In all cases summarized in Table 8.2 both methods turn out to converge, i.e.
they both correct defocus and astigmatism successfully. However, the number of
required function evaluations is different. The first column of Table 8.2 indicates
the experiment number, the second column shows the related magnification of
the microscope. The columns Improvement correspond to the relative variance
improvement

v :=
Sfinal − Sinitial

Sinitial
(8.1)

for Nelder-Mead and Powell methods respectively. In (8.1) Sinitial := S(d0).
We take into account the relative value of variance change (8.1) instead of the
absolute value, because the absolute value changes due to noise and instabilities
(7.8). The columns Evaluations indicate the number of function evaluations for
each of the methods. The final ratio is computed as a ratio of the average
sharpness function growth per iteration for both methods

R := (
vP
EP

)/(
vNM
ENM

). (8.2)
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Figure 8.13: Simultaneous defocus and astigmatism correction. Illustration
for experiments 1,4,7 from Table 8.2.
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Figure 8.14: Simultaneous defocus and astigmatism correction for the carbon
cross grating sample. Parameters changes in Experiment 4 from Table 8.2.

We can see that in all six cases R > 1, which indicates that the Powell method
shows a better performance than the Nelder-Mead method, i.e. it requires fewer
function evaluations in order to achieve the same quality image as the Nelder-
Mead method. In some cases this difference is large (Experiment 2) and in other
the performances of the algorithms is almost equal (Experiment 5).

Figure 8.13 illustrates the performance of the algorithms for the experiments
1,4,7 from Table 8.2. Figures 8.13(a), 8.13(b), 8.13(c) show out-of-focus, stig-
matic images of a carbon cross grating sample before the optimization. For
every experiment both the Powell method and the Nelder-Mead method are
executed and lead to the similar final outputs. Figures 8.13(d), 8.13(e), 8.13(f)
show images after optimization. The change of variance versus function eval-
uations for Nelder-Mead is shown in figures 8.13(g), 8.13(h), 8.13(i) and for
Powell in figures 8.13(j), 8.13(k), 8.13(l). These plots clearly show that though
Powell requires a larger number of function evaluations to start up it reaches
the optimum faster. We can observe that the variance magnitude (along the
vertical axes of the plots) changes ten times, when magnifications changes from
10000× to 40000×. It deals with the fact that the observed sample’s geometry
changes. It is one of the reasons why it is important to observe relative change
in variance, while the absolute value of it does not play any role.

Figure 8.14 shows the change of the three components of d in Experiment 4
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from Table 8.2. Both the Nelder-Mead method and the Powell method converge
to similar vectors d, though Nelder-Mead requires more function evaluations.
Note that stigmator values in this experiment are initially close to ideal, while
defocus is far off.

As mentioned in Section 7.2 one function evaluation corresponds to one
image recording and the computation of the sharpness function. One image
recording in STEM costs about 1-30 seconds depending on microscopic param-
eters such as the dwell time (time required for recording of one pixel) and the
number of pixels in the image. The total optimization time for instance for
Experiment 1 is about 1 minute 25 seconds for the Nelder-Mead method and
35 seconds for the Powell method.

The experiments described in this subsection show that the Powell method
uses fewer function evaluations than Nelder-Mead. The possible explanation for
it could be that the Powell method uses 1

2 (n+1)(n+2) = 10 points (and hence
10 function evaluations) to initialize the method. These points are used to ap-
proximate the derivative of the sharpness function [60], which helps the method
to make a rapid initial step towards the optimum, as can be clearly seen in the
fourth row of Figure 8.13. The use of the quadratic approximation improves
the overall performance of the method because of the explicit approximation
of the gradient and the Hessian of the objective function. On the other hand,
Nelder-Mead uses only n+ 1 = 4 points (and hence 4 function evaluations) to
initialize the method. Thus there is less information available to determine the
search direction.

8.4 Fast autofocus method

In this section we describe five on-line runs of the fast autofocus algorithm,
which was introduced in Section 3.6. The outputs of one run for a carbon cross

grating and four runs for a gold particles sample are illustrated.
Figure 8.15 shows the output for carbon cross grating. The initial position

of the machine defocus is d1 = −3 µm. The defocus step ∆d = 5 µm is chosen.
The two intermediate images with d2 = −8 µm and d3 = 2 µm are obtained. For
each of the images the derivative-based sharpness function (3.19) is computed.
The position of the in-focus image is calculated from the given three images and
corresponds to d4 = 0.3 µm, which is within the tolerable defocus error for the
given machine settings. The improvements of the image quality are visible in
Figure 8.15.

The output of four fast autofocus algorithm runs is shown in Figure 8.16.
The first two columns show autofocus based on three images, and the third
and the fourth columns show autofocus based on four images. For the four-
image autofocus we used the least squares fitting described in Appendix A.
The recording of the fourth image might improve the final image quality (the
sharpness function has a lower value). The improvement takes place, but it is
not that strong. The difference between the fourth and the fifth output images
in these runs is not distinguishable by a standard human eye.
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Figure 8.15: Derivative-based fast autofocus algorithm, image improvement
for the carbon cross grating sample. The plot shows the fitting of the three data
points with a quadratic polynomial and thus obtaining the in-focus image.

For all runs of the algorithm within our experimental setup the value of the
artificial blur parameter α defined in Section 2.2 is equal to 3. As it is described
in Section 4.8.2, the choice of the artificial blur is made experimentally by
computing the sharpness function for experimental data off-line and fitting it
with a quadratic polynomial. The value of α corresponding to the smallest
approximation error is chosen.

The values of parameter ∆d are chosen experimentally as well. It is clear that
∆d would be larger than the tolerable defocus error, but not too large. In the
real-world application ∆d should change proportionally to the magnification.
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Figure 8.16: Fast autofocus. Defocus improvement via interpolation of the
derivative-based sharpness function by a quadratic polynomial.
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Chapter 9

Future recommendations

Several methods introduced for automated focusing and astigmatism correction
have been examined and tested on-line for SEM and STEM with a variety
of samples. The methods do not require any special hardware and most of
them are generally applicable. They could be used in a number of applications,
such as particle analysis or electron tomography, as well as for other types of
microscopes and different optical devices. Below we provide a list of suggestions
for possible topics of the future study.

• Automatic choice of input parameters. Though the methods are
automated, they do require input parameters. For instance the simulta-
neous defocus and astigmatism correction method requires the size of the
simplex and the stopping tolerance as input. The fast autofocus method
requires the size of initial step and the artificial blur value. These param-
eters can be used for entire families of sample geometries and for similar
microscope settings. An investigation of the automatic choice of these
parameters might be a valuable contribution.

• Noise quantification. Noise usually leads to local peaks in the sharpness
functions (see for instance the simulation results in Subsection 7.1.2). The
quantification of the influence of noise on the methods could be a topic of
a study.

• Alternative sharpness functions for optimization. The method
of simultaneous defocus and astigmatism correction (Chapter 7) makes
use of the variance-based sharpness function. However, other sharpness
functions (for example, derivative-based) could be used instead for opti-
mization in a three-parameter space. A different choice of the sharpness
function might improve the performance of the method.

• Performance improvement. The capacity of modern processors allows
computations of the sharpness function values within a negligible amount
of time. However, image recording might require a noticeable amount of
time. The simultaneous defocus and astigmatism correction method de-
scribed in Chapter 7 is iterative, and requires about 30-50 image record-
ings. The run-time of the method can be lowered by decreasing the input
image size, subsampling the input image, decreasing the dwell time (time
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required for recording of one pixel) or choosing a faster derivative-free op-
timization alternative to the Nelder-Mead simplex method or the Powell
method.

• Application to high-resolution images. We have applied the meth-
ods on-line to images with low-to-medium magnification. In general we
observed that applying the method in high-resolution mode is not always
easy due to instabilities of the environment or the microscope (for in-
stance, image drift and contamination). The application of the methods
to high-resolution images should be the topic of future research.



Appendix A

Fast autofocus iterative algorithm

Algorithm A.1. Fast autofocus (iterative algorithm)

1. Let d2 be the current defocus control value of the optical device. Choose
a ∆d, then d1 := d2 − ∆d, d3 := d3 − ∆d.

2. Record three images at d1, d2, d3 and compute S
−1/2
1 , S

−1/2
2 , S

−1/2
3 . We

set N=3.

3. Fit N given points with a quadratic polynomial for instance with the least
squares and estimate dN+1, the optimum of the quadratic polynomial.

For N > 3 we obtain the overdetermined system






1 d1 d2
1

. . . . . . . . .

1 dN d2
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
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︸ ︷︷ ︸

D






c0

c1

c2
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


︸ ︷︷ ︸

c

=






S1

. . .

SN






︸ ︷︷ ︸

s

.

This can e.g. be solved by least squares, giving

DTDc = DT s,

compute c; estimate the sharpness function optimum

dN+1 = − c1
2c2

.

as the optimum of the polynomial.

4. If for the given tolerance dtol ∈ R, |dN − dN+1| < dtol, stop. Else, compute
SN+1 = S(dN+1) and go to the previous step.

The parameter dtol can be determined from the knowledge of the property
of the optical device. For instance in electron microscopy the tolerable defocus
error is defined in (7.1). More steps (N>3) of the iterative method are required
only if very accurate focusing is needed. In the third step of Algorithm A.1
different numerical methods could be used. The choice of the method is not
very important for N=4, however.
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Appendix B

Power spectrum analytical

approximation

The goal of this appendix is to explore ways of fast and accurate approximation
of the logarithm of the power spectrum p̌. We approximate it with a finite linear
combination s of analytical shapes ai, i.e.,

s(u) =
∑

i

ciai(u). (B.1)

To this end a projection method is employed. From (B.1) it follows that

∫∫ ∞

−∞
(p̌− s)aidu = 0 ∀i. (B.2)

As a consequence

∑

j

cj

∫∫ ∞

−∞
aiajdu

︸ ︷︷ ︸

Ai,j

=

∫∫ ∞

−∞
p̌aidu

︸ ︷︷ ︸

bi

. (B.3)

The vector c := (cj)
M
j=1 is a solution of the system Ac = b, which can be

solved by a direct solver. The method does not have a restriction with respect
to the power spectrum rotational symmetry. As typical shape functions ai, the
monomials could be used in order to obtain the mathematical moments. For
numerical robustness Legendre polynomials or Chebyshev polynomials could be
applied.

Let the matrix S be the approximation of the discrete power spectrum log-
arithm Š. The least squares difference between them is defined as

‖P̌ − S‖LS :=
( 1

N2

∑

i,j

(P̌ i,j − Si,j)
2
)1/2

. (B.4)

If the least squares difference (B.4) is of the same order as the noise level in the
image, the approximation has a reasonable quality.
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Table B.1: Projection method, computational time.
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Figure B.1: A tin balls sample: power spectrum, its approximation and their
profiles before the shift.

Experimental images of two samples are recorded with a FEI Strata SEM.
The size of every image is 442 × 442 pixels. We apply the projection method
with Chebyshev polynomials as basis functions to M = 202 basis functions. The
method is applied before the shift operator (see Figure B.1). The appropriate
power spectra p̌ and the related projection approximation s are shown in figures
B.2-B.3. Figure B.1 corresponds to the second column of Figure B.2 except for
the shift. In Figure B.1 results are shown before the shift operator. The least
square difference reaches about 5%, which is not large if we take into account
the high amount of noise in the power spectrum.

Table B.1 shows an overview of the computational time required on a modern
laptop computer. The computation of the matrix A takes most of the time.
However, it can be computed in advance because it does not depend on the
power spectrum itself. The calculation of the vector c takes only around 2
seconds.

The method can be used for the fast fitting of the recorded discrete data to
the analytical model. It can be useful for the blind deconvolution techniques
and automated defocus and astigmatism correction algorithms. The method
can be used as well as a power spectrum noise reduction technique.
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Figure B.2: A tin balls sample: power spectrum, its approximation and their
profiles after the shift.
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Figure B.3: A cross sections sample: power spectrum, its approximation and
their profiles after the shift.



Appendix C

The image variance, robustness to

noise

In order to avoid the influence of noise on the sharpness function it is suggested
to compute the covariance of two images recorded at the same sample area

cov[f1, f2] := E[(f1 − E[f1])(f2 − E[f2])],

instead of the variance of a signle image [16]. Consider two images corresponding
to the same object and the same point spread function corrupted by different
noise functions

f1 := f0 + ε1, f2 := f0 + ε2, (C.1)

where the natural property of the noise function holds

E[ε1] = 0, E[ε2] = 0.

The noise functions in (C.1) are independent on each other and on the image
f0, thus

cov[ε1, ε2] = 0, cov[f0, ε1] = 0, cov[f0, ε2] = 0.

Consequently

Svar[f1] = Svar[f0] + Svar[ε1], Svar[f2] = Svar[f0] + Svar[ε2],

cov[f1, f2] = Svar[f0].

Thus the covariance of two images appears to be noise-independent. However,
in real-world situations this would not always hold, due to the environment and
machine instabilities, such as sample drift and contamination. Also recording
two images might be time consuming. The technique described above might be
better applicable to SEM than to STEM, due to a shorter image recording time
and more stable characteristics of the microscope.
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Frequently used symbols

ak,l Object pixel values

Cs Spherical aberration

d Defocus control variable

dx X-stigmator control variable

dy Y-stigmator control variable

d Vector of control variables

d0 Ideal value of control variables

dSh Scherzer defocus value

F Fourier transformation

f Continuous image function

f̂ Image Fourier Transform

f̄ Image mean value

f̆ Image autocorrelation

fi,j Image pixel values

F Discrete image matrix

g Gaussian function

Hq Defocus/stigmator operators

i Complex number
√−1

Jw Stretching operator

J
w

Stretching matrix

Mk,l Moments of the power spectrum

Rθ Rotation operator

Rθ Rotation matrix

r Polar radius in Fourier space

S Sharpness function

Sder Derivative-based sharpness functions

Sft Fourier transform-based sharpness functions

Sac Autocorrelation-based sharpness functions

Sint Intensity-based sharpness functions

Svar Variance-based sharpness functions

Shis Histogram-based sharpness functions

u Frequency coordinate

v Frequency coordinate

u Vector of frequency coordinates

x Spatial coordinate

y Spatial coordinate

x Vector of spatial coordinates

X Image domain

α Artificial blur control variable

β Lévi stable density function parameter

γ Benchmark object parameter

ε Noise function

ζ Power spectrum rotation angle

θ Point spread function rotation angle

λ Wavelength of electrons

ψ Object function

̺ Lévi stable density function

σ Width of the point spread function

ς Astigmatism parameter of the point spread function

τ Pixel width

ω Frequency variable in one-dimensional setting

ϕ Polar angle in Fourier space

χ Wave aberration function

Γ Gamma function

Θ Pixel threshold parameter
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Summary

Automated focusing and astigmatism correction
in electron microscopy

Nowadays electron microscopy still requires an expert operator in order to
manually obtain in-focus and astigmatism-free images. Both the defocus and the
twofold astigmatism have to be adjusted regularly during the image recording
process. Possible reasons are for instance the instabilities of the environment
and the magnetic nature of some samples. For some applications the high level
of repetition severely strains the required concentration. Therefore, a robust and
reliable autofocus and twofold astigmatism correction algorithm is a necessary
tool for electron microscopy automation.

Most of the automatic focusing methods are based on a sharpness function,
which delivers a real-valued estimate of an image quality. In this thesis we study
sharpness functions based on image derivative, image Fourier transform, image
variance, autocorrelation and histogram. A new method for rapid automated
focusing is developed, based on a quadratic interpolation of the derivative-based
sharpness function. This function has been already used before on heuristic
grounds. In this thesis we give a more solid mathematical foundation for this
function and get a better insight into its analytical properties.

Further we consider a focus series method, which could act as an extension
for an autofocus technique. The method is meant to obtain the astigmatism
information from the focus series of images. The method is based on the mo-
ments of the image Fourier transforms. After all the method of simultaneous
defocus and astigmatism correction is developed. The method is based on a
three-parameter optimization (Nelder-Mead simplex method or interpolation-
based trust region method) of a sharpness function.

All the three methods are employed for the scanning transmission electron
microscopy. To be more specific, we have implemented them in the FEI scanning
transmission electron microscope and successfully tested their performance as
a part of a real-world application.
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