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Abstract

The Meixner process is a special type of Lévy process which origi-

nates from the theory of orthogonal polynomials. It is related to the

Meixner-Pollaczek polynomials by a martingale relation. We discuss sev-

eral properties of the Meixner process.

We apply the Meixner process to financial data. First, we shows that

the Normal distribution is a very poor model to fit log-returns of financial

assets like stocks or indices. In order to achieve a better fit we replace

the Normal distribution by the more sophisticated Meixner distribution,

taking into account, skewness and excess kurtosis. We show that the

underlying Meixner distribution allows a much better fit to the data by

performing a number of statistical tests. Secondly, we introduce stock

price models based on the Meixner process in order to price financial

derivatives. A first significant improvement can be achieved with respect

to the famous Black-Scholes model (BS-model) by replacing its Brownian

motion by the more flexible Meixner process. However, there still is a

discrepancy between market and theoretical prices. The main feature

which these Lévy models are missing is the fact that volatility or more

generally the environment is changing stochastically over time. By making

business time stochastic, an idea which was developed in [9], one can

incorporate these stochastic volatility effects. The resulting option prices

can be calibrated almost perfectly to empirical prices.
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1 Introduction

Financial mathematics has recently enjoyed considerable prestige on account of

its impact on the finance industry. In parallel, the theory of Lévy processes

has also seen exciting developments in recent years [2] [4] [26]. The fusion of

these two fields of mathematics has provided new applied modeling perspectives

within the context of finance and further stimulus for deep and intrinsically

interesting problems within the context of Lévy processes.

The Meixner distribution belongs to the class of the infinitely divisible dis-

tributions and as such give rise to a Lévy process: The Meixner process. The

Meixner process is very flexible, has a simple structure and leads to analytically

and numerically tractable formulas. It was introduced in [27] (see also [28]) and

originates from the theory of orthogonal polynomials and was proposed to serve

as a model of financial data in [15].

We will apply the Meixner distribution and the Meixner process in the con-

text of mathematical finance. More precisely, we will use the process to model

the stochastic behaviour of financial assets like stocks or indices. The most fa-

mous continuous-time model for stock prices or indices is the celebrated Black-

Scholes model [6]. It uses the Normal distribution to fit the log-returns of the

underlying: the price process of the underlying is given by the geometric Brow-

nian Motion

St = S0 exp

((

µ− σ2

2

)

t+ σBt

)

,

where {Bt, t ≥ 0} is standard Brownian motion, i.e. Bt follows a Normal distri-
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bution with mean 0 and variance t. It is well known however that the log-returns

of most financial assets have an actual kurtosis that is higher than that of the

Normal distribution. In this paper we therefore propose another model which

is based on the Meixner distribution.

In the late 1980s and in the 1990s several other similar process models where

proposed. Madan and Seneta [19] have proposed a Lévy process with Variance

Gamma distributed increments. We mention also the Hyperbolic Model [11]

proposed by Eberlein and Keller and their generalizations [23]. In the same

year Barndorff-Nielsen proposed the Normal Inverse Gaussian Lévy process [1].

Recently the CGMY model was introduced [8]. All models give a much better

fit to the data and lead to an improvement with respect to the Black-Scholes

model. In this paper we provide statistical evidence that the Meixner model

performs also significantly better then the Black-Scholes Model.

A second application can be found in the same context: the pricing of finan-

cial derivatives. First we will try to price derivatives using a model where the

Brownian motion of the BS-model is just replace by a Lévy process. Although

there is a significant improvement in accuracy with respect to the BS-model,

there still is a discrepancy between model prices and market prices. The main

feature which these Lévy models are missing, is the fact that the volatility or

more general the environment is changing stochastically over time. In order to

deal with this problem, we make (business) time stochastic as proposed in [9].

In this paper we show that by following the procedure of [9], we can almost

perfectly calibrate model prices of the Meixner model with stochastic business
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time, also called the Meixner Stochastic Volatility model (Meixner-SV model)

to market prices.

Throughout this paper we make use of two data sets. The first data set

consists of the log-returns of the Nikkei-225 Index during a period of three

years. We show that the Meixner distribution can be fitted much more accurate

to this set than the Normal distribution. A second data set consists of the mid-

prices of a set of European call and put options on the SP500-index at the close

of the market on the 4th of December 2001. At this day the SP500 closed at

1144.80. We will calibrate different models to this set.

This paper is organized as follows: we first introduce the Meixner distribu-

tion and the Meixner Process in Section 2. Next, in Section 3, we will apply the

Meixner Process and its underlying distribution in the context of finance: we

will fit the Meixner distributions to our data set of the Nikkei-255 log-returns

and we perform a number of statistical test in order to proof the high accuracy

of the fit and we will calibrate models based on the Meixner process to our set

of option prices. We will show that the Meixner-SV model leads to option prices

which can be calibrated almost perfectly to the market prices.

2 The Meixner Process

The density of the Meixner distribution (Meixner(a, b, d,m)) is given by

f(x; a, b,m, d) =
(2 cos(b/2))2d

2aπΓ(2d)
exp

(

b(x−m)

a

)
∣

∣

∣

∣

Γ

(

d+
i(x −m)

a

)
∣

∣

∣

∣

2

,

where a > 0,−π < b < π, d > 0, and m ∈ R.
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Moments of all order of this distribution exist. Next, we give some relevant

quantities; similar, but more involved, expressions exist for the moments and

the skewness.

Meixner(a, b, d,m) Normal(µ, σ2)

mean m+ ad tan(b/2) µ

variance a2d
2 (cos−2(b/2)) σ2

kurtosis 3 + 3−2 cos2(b/2)
d 3

One can clearly see that the kurtosis of the Meixner distribution is always greater

than the Normal kurtosis.

The characteristic function of the Meixner(a, b, d,m) distribution is given by

E [exp(iuM1)] =

(

cos(b/2)

cosh au−ib
2

)2d

exp(imu)

Suppose φ(u) is the characteristic function of a distribution. If moreover for

every positive integer n, φ(u) is also the nth power of a characteristic function,

we say that the distribution is infinitely divisible. One can define for every such

an infinitely divisible distribution a stochastic process, X = {Xt, t ≥ 0}, called

Lévy process, which starts at zero, has independent and stationary increments

and such that the distribution of an increment over [s, s + t], s, t ≥ 0, i.e.

Xt+s −Xs, has (φ(u))t as characteristic function.

Clearly, the Meixner(a, b, d,m) distribution is infinitely divisible and we can

associate with it a Lévy process which we call the Meixner process. More

precisely, a Meixner process {Mt, t ≥ 0} is a stochastic process which starts at

zero, i.e. M0 = 0, has independent and stationary increments, and where the

distribution of Mt is given by the Meixner distribution Meixner(a, b, dt,mt).
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In general a Lévy process consists of three independent parts: a linear de-

terministic part (drift), a Brownian part, and a pure jump part. It is easy to

show that our Meixner process {Mt, t ≥ 0} has no Brownian part and a pure

jump part governed by the Lévy measure

ν(dx) = d
exp(bx/a)

x sinh(πx/a)
dx.

The Lévy measure ν(dx) dictates how the jumps occur. Jumps of sizes in the

set A occur according to a Poisson Process with parameter
∫

A
ν(dx). Because

∫ +∞

−∞ |x|ν(dx) = ∞ it follows from standard Lévy process theory [4] [26], that

our process is of infinite variation.

A number of stylized features of observational series from finance are dis-

cussed in [3]. One of this features is the semihaviness of the tails. Our Meixner(a, b, d,m)

distribution has semiheavy tails [16]. This means that the tails of the density

function behave as

f(x, a, b, d,m) ∼ C−|x|ρ− exp(−σ−|x|) as x→ −∞

f(x, a, b, d,m) ∼ C+|x|ρ+ exp(−σ+|x|) as x→ +∞,

for some ρ−, ρ+ ∈ R and C−, C+, σ−, σ+ ≥ 0. In case of the Meixner(a, b, d,m),

ρ− = ρ+ = 2d− 1, σ− = (π − b)/a, σ+ = (π + b)/a.

The Meixner process originates from the theory of orthogonal polynomials:

The Meixner(1, 2ζ − π, d, 0) distribution is the measure of orthogonality of the

Meixner-Pollaczek polynomials {Pm(x; d, ζ),m = 0, 1, . . .}. Moreover the monic

Meixner-Pollaczek polynomials {P̃m(x; d, ζ),m = 0, 1, . . .} [17] are martingales
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for the Meixner process (a = 1, m = 0, d = 1, ζ = (b+ π)/2):

E[P̃m (Mt; t, ζ) | Ms] = P̃m (Ms; s, ζ)

Note the similarity with the classical martingale relation between standard

Brownian motion {Wt,≥ 0} and the Hermite Polynomials {Hm(x;σ),m =

0, 1, . . .} [28]:

E
[

H̃m(Wt; t) | Ws

]

= H̃m(Ws; s)

The Meixner distribution is a special case of the Generalized z-distributions:

The Generalized z-distribution (GZ) [16] is defined through the characteristic

function:

φGZ(z; a, b1, b2, d,m) =

(

B(b1 + iaz
2π , b2 − iaz

2π )

B(b1, b2)

)2d

exp(imz),

where a, b1, b2, d > 0 and m ∈ R.

This distribution is infinitely divisible and we can associate with it a Lévy

process, such that its time t distribution has characteristic function φGZ(z; a, b1, b2, dt,mt).

The Lévy measure for this GZ-Process is given by

νGZ(dx) =















2d exp(2πb1x/a)
|x|(1−exp(2πx/a))dx x < 0

2d exp(2πb2x/a)
x(1−exp(−2πx/a))dx x > 0

.

For

b1 =
1

2
+

b

2π
and b2 =

1

2
− b

2π
,

we obtain the Meixner Process. Note that the Generalized z-distributions and

the Generalized Hyperbolic distribution [11] [23] are non-intersecting sets.
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The Meixner Process is also related to the process studied by Biane, Pitman

and Yor [5] (see also [22]):

Ct =
2

π2

∞
∑

n=1

Γn,t

(n− 1
2 )2

,

for a sequence of independent Gamma Processes Γn,t, i.e. Lévy process with

E[exp(iθΓn,t)] = (1 − iθ)−t.

In [5] one shows that Ct has Laplace transform

E[exp(−uCt)] =

(

1

cosh
√

2u

)t

This means that the Brownian time change BCt
has characteristic function

E[exp(iuBCt
)] =

(

1

coshu

)t

,

or equivalently BCt
follows a Meixner(2, 0, t, 0) distribution.

3 Applications

3.1 Fitting the log-returns of financial assets

As a first application of the Meixner Process, we try to fit its distribution to

our data set of daily log-returns of the Nikkei 225 Index in the period from

01-01-1997 until 31-12-1999. The data set consists of the 737 daily-log-returns

of the index during the mentioned period. The mean of this data set is equal

to 0.00036180, while its standard deviation equals 0.01599747. In [29] one can

find similar analyses for other indices during the same period.

To estimate the Meixner distribution we assume independent observations

and use moments estimators. In the particular case of the Nikkei-225 Index, the
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result of the estimation procedure is given by

â = 0.02982825, b̂ = 0.12716244, d̂ = 0.57295483, m̂ = −0.00112426

10

20

30

–0.02 0 0.02
x

Nikkei–225

Figure 1: Meixner density (solid) versus Normal density (dashed)

0

2
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–0.07 –0.06 –0.05 –0.04 –0.03
x

Nikkei–225

0

2

4

0.03 0.04 0.05 0.06 0.07
x

Nikkei–225

Figure 2: Meixner density tails (solid) versus Normal density tails (dashed)

From Figure 1, it is clear that there is considerably more mass around the

center than the Normal distribution can provide. Figure 2 zooms in at the

tails. As can be expected from the semiheavyness of the tails, the Meixner

distribution has significant fatter tails than the Normal distribution. This is in

correspondence with empirical observations, see e.g. [11].

We use different tools for testing the goodness of fit: QQ-plots and χ2-
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tests. It will be shown that we obtain an almost perfect fit. So we arrive at the

conclusion that the daily log-returns of the asset can be modeled very accurately

by the Meixner distribution.

3.1.1 QQ-plots

The first evidence is provide by a graphical method: the quantile-quantile plot

(QQ-plot). It is a qualitative yet very powerful method for testing the goodness

of fit. A QQ-plot of a sample of n points plots for every j = 1, . . . , n the

empirical (j− (1/2))/n)-quantile of the data against the (j− (1/2))/n)-quantile

of the fitted distribution. The plotted points should not deviated to much from

a straight line.

For the classical model based on the Normal distribution, the deviation from

the straight line and thus the Normal density is clearly seen from the next QQ-

plot in Figure 3.

–0.05

0

0.05

–0.05 0 0.05
x

Normal

Figure 3: Normal QQ-plot

It can be seen that there is a severe problem in the tails if we try to fit the

data with the Normal distribution. This problem almost completely disappears
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when we use the Meixner distribution to fit the data, as can be seen in Figure

4.

–0.05

0

0.05

–0.05 0 0.05
x

Meixner

Figure 4: Meixner QQ-plot

The Meixner density shows much better fit. It indicates a strong preference

for the Meixner model over the classical Normal one.

3.1.2 χ2-tests

The χ2-test counts the number of sample points falling into certain intervals

and compares them with the expected number under the null hypothesis. We

consider classes of equal width as well of equal probability. We take N =

32 classes of equal width. If necessary we collapse outer cells, such that the

expected value of observations becomes greater than five. In our Nikkei-225

Index-example, we choose −0.0225+ (j − 1) ∗ (0.0015), j = 1, . . . , N − 1, as the

boundary points of the classes.

We consider also the case with N = 28 classes of equal probability, the class

boundaries are now given by the i/N -quantiles i = 1, . . . , N − 1 of the fitting

distribution.
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Because we have to estimate for the Normal distribution two parameters we

taken in this case N − 3 degrees of freedom. In the Meixner case, there has to

be estimated 4 parameters, so we take in this case N − 5 degrees of freedom.

Table 1 shows the values of the χ2-test statistic with equal width for the

Normal null hypotheses and the Meixner null hypotheses and different quantiles

of the χ2
29 and χ2

27 distributions.

Table 2 shows the values of the χ2-test statistic with equal probability for the

Normal null hypotheses and the Meixner null hypotheses and different quantiles

of the χ2
23 and χ2

25 distributions.

In Tables 1 and 2 we also give the so-called P -values of the test-statistics.

The P -value is the probability that values are even more extreme (more in the

tail) than our test-statistic. It is clear that very small P -values lead to a rejection

of the null hypotheses, because they are themselves extreme. P -values not close

to zero indicate that the test statistic is not extreme and lead to acceptance of

the hypothesis. To be precise we reject if the P -value is less than our level of

significance, which we take 0.05, and accept otherwise.

χ2
Normal χ2

29,0.95 χ2
29,0.99 PNormal-value

47.45527092 42.55696780 49.58788447 0.01672773

χ2
Meixner χ2

27,0.95 χ2
27,0.99 PMeixner-value

29.21660289 40.11327207 46.96294212 0.35047500

Table 1: χ2
1 test-statistics and P -values (equal width)
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χ2
Normal χ2

25,0.95 χ2
25,0.99 PNormal-value

47.87381276 37.65248413 44.31410490 0.00386153

χ2
Meixner χ2

23,0.95 χ2
23,0.99 PMeixner-value

20.44369064 35.17246163 41.63839812 0.61502001

Table 2: χ2
2 test-statistics and P -values (equal probability)

We see that the Normal hypotheses is in both cases clearly rejected, whereas

the Meixner hypotheses is accepted and yields a very high P -value.

3.2 Pricing of Derivatives

Throughout the text we will denote by r the daily interest rate. We assume

our market consist of one riskless asset (the bond) with price process given by

Bt = ert and one risky asset (the stock) with price process St. Given our market

model, let G({Su, 0 ≤ u ≤ T}) denote the payoff of the derivative at its time of

expiry T .

According to the fundamental theorem of asset pricing (see [10]) the arbi-

trage free price Vt of the derivative at time t ∈ [0, T ] is given by

Vt = EQ[e−r(T−t)G({Su, 0 ≤ u ≤ T})|Ft],

where the expectation is taken with respect to an equivalent martingale measure

Q and F = {Ft, 0 ≤ t ≤ T} is the natural filtration of S = {St, 0 ≤ t ≤ T}. An

equivalent martingale measure is a probability measure which is equivalent (it

has the same null-sets) to the given (historical) probability measure and under
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which the discounted process {e−rtSt} is a martingale. Unfortunately for most

models, in particular the more realistic ones, the class of equivalent measures is

rather large and often covers the full no-arbitrage interval. In this perspective

the Black-Scholes model, where there is an unique equivalent martingale mea-

sure, is very exceptional. Models with more than one equivalent measures are

called incomplete.

3.2.1 The Meixner model

In real markets traders are well aware that the future probability distribution

of the underlying asset may not be lognormal and they use a volatility smile

adjustment. Typically the implicit volatility is higher in the money and out of

the money. This smile-effect is decreasing with time to maturity. Moreover,

smiles are frequently asymmetric. Instead of using one volatility parameter σ

for the stock, one is thus using for every strike K and for every maturity T

another parameter σ. This is completely wrong since this implies that only

one underlying stock/index is modeled by a number of completely different

stochastic processes.

Another more natural method is by replacing the Brownian motion in the

BS-model, by a more sophisticated Lévy process. The model which produces

exactly Meixner(a, b, d,m) daily log-returns for the stock is given by

St = S0 exp(Mt).

Next, we have to choose a equivalent martingale measure. Following Gerber

and Shiu ([13] and [14]) we can by using the so-called Esscher transform easily

15



find an equivalent martingale measure. With the Esscher transform our equiv-

alent martingale measure Q follows a Meixner(a, aθ + b, d,m) distribution (see

also [15]), where θ is given by

θ =
−1

a

(

b+ 2 arctan

(− cos(a/2) + exp((m− r)/(2d))

sin(a/2)

))

Although the Esscher-transform is easy to obtain it is not clear that in reality

the market chooses this kind of (exponential) transform. Another way to obtain

an equivalent martingale measure Q is by mean correcting the exponential of a

Lévy process. In this case the risk-neutral process is given by

Sriskneutral
t = S0 exp(Xt)

exp(rt)

E[exp(Xt)]

For the Meixner process, Q follows now follows a Meixner(a, b, d,mriskneutral),

with

mriskneutral = r − 2d log

(

cos(b/2)

cos((a+ b)/2)

)

.

If the payoff is only depending on the value of the asset at its time of expiry T ,

i.e. G(St, 0 ≤ t ≤ T ) = G(ST ), then the price of the derivative can be obtained

by the Feynman-Kac Formula or by a Fourier inversion method.

If the price V (t,Mt) at time t of the such a derivative satisfies some regularity

conditions (i.e. V (t, x) ∈ C(1,2) (see [21])) it can be obtained by solving a partial

differential integral equation (PDIE) with a boundary condition:

rV (t, x) = γ
∂

∂x
V (t, x) +

∂

∂t
V (t, x)

+

∫ +∞

−∞

(

V (t, x+ y) − V (t, x) − y
∂

∂x
V (t, x)

)

νQ(dy)

V (T, x) = F (x),
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where νQ(dy) and γ is the Lévy measure and the drift of the risk-neutral dis-

tribution. This PDIE is the analogue of the Black-Scholes partial differential

equation and follows from the Feynman-Kac formula for Lévy Processes [21].

A more explicit pricing method which can be applied in general when the

characteristic function of the risk-neutral stock price process is known, was de-

veloped by Carr and Madan [7] for the classical vanilla options. More precisely,

let C(K,T ) be the price of a European call option with strike K and maturity

T . Let α be a positive constant such that the αth moment of the stock price

exists. Carr and Madan then showed that

C(k, T ) =
exp(−α log(K))

π

∫ +∞

0

e−iv log(K)ψ(v)dv

where

ψ(v) =
e−rTE[exp(i(v − (α+ 1)i) log(St))]

α2 + α− v2 + i(2α+ 1)v
.

The Fast Fourier Transform can be used to invert the generalized Fourier trans-

form of the call price. Put options can be priced using the put-call parity. This

Fourier-method was generalized to other types of options, like power options

and self-quanto options in [25].

Typically Lévy models, including the Meixner case, incorporate by them-

self a smile effect [29] [12]. However, if we estimate the model parameters by

minimizing the root mean square error between market close prices and model

prices, we can observed still a significant, although smaller than for the BS-

model, difference as can be seen in Figure 5 for the SP500-index options.
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Figure 5: Black Scholes (σ = 0.2119) and Meixner (a = 0.1277, b = −1.8742, d =

2.2603)calibration on SP500 options (o’s are market prices, +’s are model prices)

3.2.2 The Meixner-SV model

The main feature which the above described Lévy models are missing is the fact

that volatility or more generally the environment is changing stochastically over

time. It has been observed that the volatilities estimated (or more general the

parameters or uncertainty) change stochastically over time and are clustered as

can be seen in Figure 6, were the log-returns of the SP500-index over a period

of 32 years is plotted. One clearly sees that there are periods with high absolute

log-returns and periods withlower absolute log-returns.

In order to incorporate such an effect Carr, Madan, Geman and Yor [9]

proposed the following: One increase or decrease the level of uncertainty by

speeding up or slowing down the rate at which time passes. Moreover, in order

to build clustering and to keep time going forward one employs a mean-reverting

positive process as a measure of the local rate of time change. They use as the
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Figure 6: Volatility clusters: log-returns SP500-index between 1970 and 2001

rate of time change the classical example of a mean-reverting positive stochastic

process: the CIR process y(t) that solves the SDE

dyt = κ(η − yt)dt+ λy
1/2
t dWt.

The economic time elapsed in t units of calender time is then given by Y (t)

where

Y (t) =

∫ t

0

ysds

The characteristic function of Y (t) is explicitly known:

φ(u, t) =
exp(κ2ηt/λ2) exp(2y(0)iu/(κ+ γ coth(γt/2)))

(cosh(γt/2) + κ sinh(γt/2)/γ)2κη/λ2
,

where

γ =
√

κ2 − 2λ2iu
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The (risk-neutral) price process St is now modeled as follows:

St = S0
exp(rt)

E[exp(XY (t))]
exp(XY (t)),

where Xt is a Lévy process with

E[exp(iuXt)] = exp(tψX (u)).

The characteristic function for the log of our stock price is given by:

E[exp(iu log(St)] = exp(iu(rt+ logS0))
φ(−iψX(u), t)

φ(−iψX(−i), t)iu
.

The model parameters can be estimated by minimizing the root mean square

error between market close prices and model option prices and this over all

strikes and maturities. An almost perfect calibration can be done. In Figure

7, one can see that the Meixner-SV model is a considerable improvement over

the Meixner model, which on his turn was a considerable improvement over the

BS-model.

For comparative purposes, we compute for the Black-Scholes model, the

Meixner model and the Meixner SV model, the average absolute error as a

percentage of the mean price. This statistic, which we will denote with ape, is

an overall measure of the quality of fit. We have

apeBS = 15.66%, apeMeixner = 6.00%, apeMeixnerSV = 2.10%.

Once you have calibrated the model to a basic set of options, you can price

other (exotic) options using the available pricing techniques or by Monte-Carlo

simulations. Moreover, after obtaining the risk-neutral parameters, a compar-
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SP500 − 04−12−2001 − Meixner SV model − ape = 2.10%

Figure 7: Meixner-SV calibration (a = 0.0279, b = −0.1708, d = 22.0914, κ =

7.7859, η = 3.6548, λ = 12.2254, y0 = 6.7871) on SP500 options (o’s are market

prices, +’s are model prices)

ison with the statistical measure can lead to a better understanding of the

measure change.
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