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Summary

A self-adaptive cohesive zone model for interfacial

delamination

Interfacial failure in the form of delamination, often results in malfunction or failure
of laminated structures. Different numerical approaches have been proposed for
the simulation of this process. Due to the appealing feature of predicting both the
delamination onset and its growth, cohesive zone models have been widely used to
simulate delamination as a result of a gradual degradation of the adhesion between
two materials when they become separated.

Application of cohesive zone models for the modelling of delamination in brittle in-
terfaces in a quasi-static finite element framework suffers from an intrinsic discretiza-
tion sensitivity. A large number of interface elements are needed for the discretiza-
tion of the process zone of a cohesive crack. Otherwise, a sudden release of energy
in large cohesive zone elements results in a sequence of snap-through or snap-back
points to appear in the global load-displacement response of the system which com-
promises the numerical efficiency.

While computationally expensive path-following techniques can be used to follow
the oscillatory path, the efficiency and robustness of brittle cohesive zone models
can be significantly increased by reducing the oscillations observed in the global
load-displacement behaviour without a further mesh refinement. In line with this
purpose, the separation approximation in the process zone is enriched with an adap-
tive hierarchical extension. The linear separation approximation throughout the co-
hesive zone element is enriched with a bi-linear function, where the enrichment peak
position and the magnitude of the enrichment are regarded as additional degrees of
freedom obtained by minimization of the total potential of the global system. The
mobility of the peak of the enrichment function within individual cohesive zone ele-
ments locally adapts the discretization to the physics governing the problem.

Important numerical aspects of the proposed enrichment strategy such as its mo-
bility and uniqueness have been thoroughly investigated while its limitations are
addressed. The efficiency and robustness of the enrichment are shown through nu-
merical examples which prove the general applicability of the methodology. In fact,
application of the elaborated enrichment eliminates the need for a further mesh re-
finement while keeping the standard Newton-Raphson approach applicable in the
case of a relatively coarse mesh which saves considerable computational costs.

Extension of the proposed enrichment scheme to delamination in a three-
dimensional finite element framework has been carried out as well. Planar inter-

ix



x SUMMARY

face elements have been enriched along all edges by bi-linear functions with mobile
peaks. The effect of the proposed methodology on reducing discretization-induced
oscillations is quantitatively evaluated. To deal with planar crack growth where the
crack front is oblique with respect to element edges, a non-hierarchical enrichment
strategy is also developed and its performance is compared with its hierarchical
counterpart.

The self-adaptive finite element formulation is extended to a framework suitable for
large deformations and is applied to interfaces in microelectronics under realistic
mixed-mode loading conditions. In particular, the material/interface systems used
in miniaturized mixed-mode bending tests, which are conducted for a wide range of
mode angles, are modelled to make a direct comparison with experimental results.
The interface constitutive law that is used takes the dependence of fracture toughness
on mode-mixity into account. Thereby, the enhanced cohesive zone model can be
used for the simulation of the behaviour of brittle interfaces in an accurate, effective,
and efficient manner.



CHAPTER ONE

Introduction

Abstract

Laminated structures have gained popularity especially in mechanical, micro-
electronic, and aerospace applications among other engineering disciplines due to
their prominent thermo-electro-mechanical performance combined with unique fea-
tures such as low weight/size and high toughness. Functionality and reliability of
these structures rely not only on their constituents but also on the structural integrity.
Accumulation of damage at the interfaces between laminae results in formation and
growth of interlaminar cracks through a non-linear and irreversible process which
is known as delamination. In fact, it is one of the most common failure modes in
multi-layered systems which results in malfunction and loss of integrity and can
eventually lead to a structural collapse. Efficient and robust numerical tools veri-
fied by dedicated experiments are required to predict delamination initiation and
its growth pattern under complex thermo-hygro-mechanical loading conditions that
may arise during the lifetime of a laminated structure. It facilitates a prior assessment
of the system reliability and performance without a need to perform experiments in
individual cases.

1.1 Cohesive zone models

Lumping degradation mechanisms in a small zone around the crack tip as shown
in Figure 1.1, where cohesive forces are formed upon a displacement jump, the co-
hesive zone concept has emerged in continuum models with strong discontinuities
[10, 40, 58]. Cohesive zone models have the appealing feature of predicting both de-
lamination initiation and growth by combining stress-based and fracture mechanics-
based approaches. These models are well suited for the simulation of interfacial

1



2 1 INTRODUCTION

delamination in laminated structures where the potential crack paths are known a
priori [6, 21, 25, 82, 112, 129, 131].

Figure 1.1: Schematic representation of interfacial cohesive crack growth.

In a finite element framework, cohesive zone elements are placed at the interface
between the bulk elements of adjacent layers. The decohesion mechanism in the
process zone of a cohesive crack, as shown in Figure 1.2, is characterized by a phe-
nomenological traction-separation law reflecting the average micro-mechanical be-
havior during the degradation process (see Figure 1.2) [24, 35]. In general, interfa-
cial stresses orthogonal or parallel to laminae cause delamination in mode I (normal
opening) or modes II (sliding) and III (tearing), respectively.

Figure 1.2: Cohesive zone; left) decohesion at an interfacial point, right) phenomeno-
logical constitutive law.

The cohesive zone approach can be related to Griffith’s theory of fracture, if the area
under the traction-separation curve is equal to the corresponding fracture tough-
ness Gc [101]. Assuming a constant fracture toughness for a certain fracture mode, a
higher maximum traction (or interfacial strength) would result in a smaller process
zone and hence a more brittle interfacial behavior (see Figure 1.3).

Application of cohesive zone models in a quasi-static finite element framework suf-
fers from an intrinsic mesh sensitivity. In other words, a sufficiently fine discretiza-
tion is needed within the softening process zone of the cohesive crack to capture the
strain field [122]. In case of a coarse mesh, softening of the local behavior in an in-
terfacial element will result in a sudden release of the elastic strain energy stored
in the surrounding bulk material which in turn leads to instantaneous failure of the
element. In such a case, as can be seen in Figure 1.4(b), an artificial (non-physical)
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Figure 1.3: Cohesive zone model as a spatial regularization of the fracture mechanics
model.

snap-back situation arises in the numerical solution which is also known as a solu-
tion jump [22]. It poses major numerical difficulties in solving the global system due
to the fact that a standard Newton-Raphson iterative scheme fails to converge in the
case of snap-backs. Current solution strategies with respect to this problem can be
classified in two categories:

• Strategies to eliminate or reduce the oscillations; since the observed oscillations are
discretization-induced, they are alleviated upon further mesh refinement (see
Figure 1.4(b)). Therefore, the global response of the brittle system becomes
smoother as the discretization is refined within the process zone [3,16,22,44,55,
82, 119, 122, 124].

• Strategies to deal with the oscillations; path-following techniques such as global
or local arc-length control methods have been applied to trace the non-physical
oscillatory path [4, 27, 34, 45, 46, 53, 57, 102, 110].

The first option is aimed at eliminating or reducing the oscillations; however, it is
not practical in brittle interfaces where the size of the process zone is very small
compared to structural dimensions due to unacceptably high computational costs
imposed by the large size of the system. The second remedy deals with the existing
oscillatory behavior by adding a constraint equation to the set of linearized equations
to control the load step size. As a result, snap-backs can be traced with very small
increments at the cost of heavy computations.

The solutions that have been proposed so far to avoid or to deal with numerical in-
stabilities in cohesive zone modeling within a quasi-static finite element framework
are so expensive that the applicability of these methods in large or complex struc-
tures with brittle interfaces is limited. Elimination or reduction of the oscillations
in the global response of delaminating structures without a need for a further mesh
refinement increases the efficiency and robustness of cohesive zone models consid-
erably. In line with this purpose, attempts have been made to enhance the kinematic
description within the process zone via a local enrichment of the elements by higher
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Figure 1.4: Cohesive zone model for simulation of delamination in a peel-off test.

order interpolation functions [28, 52, 119]. However, the fixed functions used do not
adequately address the adaptivity (or mobility) of the process zone within the inter-
face.

1.2 Objective of the thesis

This work is aimed at developing a self-adaptive cohesive zone model that facili-
tates the simulation of interfacial delamination in an effective and robust manner
by eliminating the need for extensive computations usually required in this class of
methods due to mesh refinements or complicated path-following techniques. More
specifically, the objective is to eliminate the mesh-induced snap-backs/oscillations while
also being numerically efficient.

1.3 Self-adaptive finite elements

In this work, an adaptive hierarchical extension is proposed to enrich the separation
approximation in the fracture process zone. The proposed methodology solves the
intrinsic shortcoming of the discretization that creates the non-physical oscillatory
load-displacement response by refining the discretization where the physics of the
underlying problem needs it. The linear separation approximation throughout the
cohesive zone element is enriched with a bi-linear function, where the enrichment
peak position and the magnitude of the enrichment are regarded as additional global
degrees of freedom. The enrichment degrees of freedom are calculated by solving the
global system of equations. The bulk elements adjacent to the enriched cohesive zone
elements are also enriched to guarantee the continuity of the displacement field.

Adaptivity of the enrichment peak position such that it mimics the growing delami-
nation front in either a two or three-dimensional setting is proposed in this work as
an alternative to traditional remedies to overcome or trace spurious discretization-
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induced oscillations encountered in cohesive zone modeling. A procedure is de-
veloped to ensure uniqueness of the solution when the enrichment peak positions in
individual elements are considered as additional global degrees of freedom while im-
posing a minimum constraint on the adaptivity of the enrichment peak positions. As
a consequence, an optimal adaptivity of the enrichment peak position is retrieved. A
noticeable reduction of the discretization-induced oscillations in the global response
obtained with a self-adaptive cohesive zone model to a level that it can be traced
with a standard Newton-Raphson iterative scheme is obtained with the proposed
methodology.

The self-adaptive finite element framework is not restricted to a particular constitu-
tive model for the cohesive zone. Moreover, its applicability to three-dimensional
delamination problems and its extension to a large deformation framework make it
suitable for general engineering applications as illustrated in this thesis.

1.4 Outline of the thesis

In this thesis, a self-adaptive cohesive zone model is developed for interfacial delam-
ination in several steps:

• In Chapter 2, the solution jump problem associated with application of the con-
ventional cohesive zone model to interfacial delamination in brittle interfaces
is addressed and a process driven hierarchical extension is proposed to enrich
the separation approximation in the process zone of a cohesive crack. A sim-
ple one-dimensional example for which an analytical solution exists is used to
demonstrate the performance of the new methodology.

• In Chapter 3, a full two-dimensional self-adaptive finite element is developed
which can be used for the simulation of irreversible mixed-mode delamina-
tion. Adaptivity of the enrichment is considerably enhanced due to the devel-
opments proposed in this chapter.

• In Chapter 4, the self-adaptive cohesive zone model is extended to model pla-
nar mixed-mode crack growth in a general three-dimensional continuum. The
effect of the proposed methodology on reducing discretization-induced oscilla-
tions is quantitatively evaluated. A non-hierarchical enrichment strategy is also
developed and its performance is compared with its hierarchical counterpart.

• In Chapter 5, the self-adaptive cohesive zone model is formulated within a
large deformation framework. The numerical results are compared with ex-
perimental results obtained from miniaturized mixed-mode bending tests per-
formed on bi-material specimens.

Finally, general conclusions and outlooks derived from the research on the self-
adaptive cohesive zone model are given in Chapter 6.





CHAPTER TWO

An enriched cohesive zone model 1

Abstract

Application of standard cohesive zone models in a finite element framework to simu-
late delamination in brittle interfaces may trigger non-smooth load-displacement re-
sponses that lead to the failure of iterative solution procedures. This non-smoothness
is an artifact of the discretization; and hence, can be avoided by sufficiently refining
the mesh leading to unacceptably high computational costs and a low efficiency and
robustness. In this chapter, a process-driven hierarchical extension is proposed to
enrich the separation approximation in the process zone of a cohesive crack. Some
numerical examples show that instead of mesh refinement, a more efficient enriched
formulation can be used to prevent a non-smooth solution.

1Reproduced from: M. Samimi, J.A.W. van Dommelen, and M.G.D Geers. An enriched cohesive zone
model for delamination in brittle interfaces. Int. J. Numer. Meth. Engng. 80:609-630, 2009.

7



8 2 AN ENRICHED COHESIVE ZONE MODEL

2.1 Introduction

Increasing demands for high wear, corrosion, thermal resistance and toughness,
combined with reduction in weight and/or size in mechanical, micro-electronic, and
aerospace applications have led to the development of multi-layered material sys-
tems. The presence of different materials from metals to polymers, and complicated
thermo-hygro-mechanical loading conditions in such systems make their reliability
or mechanical response more difficult to be analyzed in a predictive manner with ex-
isting tools. Since the quality, robustness, and reliability of multi-layered structures
such as microsystems depend, to a large extent, on the adhesion and durability of
interfaces, interlaminar damage or delamination is one of the predominant forms of
their failure, especially when there is no reinforcement in the thickness direction.

The simulation of delamination is usually divided into delamination initiation and
delamination propagation. Several methodologies have been developed for numer-
ical simulation and prediction of interfacial delamination. Interface stress is com-
monly used as a failure criterion in an interface fracture mechanics based finite ele-
ment analysis of delamination [43]. In stress-based approaches, stress at or near the
interface is compared to the critical stress levels to indicate the interfacial regions
most prone to delamination. Such methods assume perfect adhesion between mate-
rials (no defect state), and therefore overestimate the loading capacity. For microsys-
tems, brittle fracture often occurs in which the size of the failure process zone is small,
and hence, linear elastic fracture mechanics (LEFM) concepts can apply [11, 67].

Finite element based techniques such as the J-integral [101], virtual crack closure
(VCC) [97, 105], and virtual crack extension (VCE) [56] have been introduced within
the LEFM framework for the prediction of crack growth. The simplified Griffith en-
ergy balance states that the mechanical energy supplied to the system, will be stored
as an elastic internal energy or dissipated through generating new crack surfaces [51].
Therefore, delamination propagates when the energy available for crack propagation
exceeds the fracture toughness, or the critical energy release rate, which is a mechan-
ical parameter of the interface. However, simulation of crack propagation is more
complex in the case of a mixed mode delamination where a transverse shear in the
contact zone of a crack tip can raise the energy required for failure [74, 120, 121]. An-
other drawback of this class of methods is that explicit knowledge of the location and
size of an initial interlaminar crack is necessary.

Moreover, a high mesh density in the crack front region is usually required in order to
capture the singularity in the asymptotic crack tip fields with the conventional finite
element method. In enriched finite element methods, incorporating the asymptotic
crack tip fields in the trial functions allows for an accurate computation of fracture
parameters [15, 48]. However, the mesh generation and regeneration as the crack
grows constitutes a major drawback of LEFM approaches. In order to avoid remesh-
ing, finite elements with embedded discontinuities and the element-free Galerkin
method (EFGM) have been successfully applied to crack problems [66, 118].

The extended finite element method (X-FEM), which was first developed in a two-
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dimensional LEFM context using the concept of partition of unity [13, 84], can cope
well with problems associated with discontinuity of the displacement field across the
crack faces. As an advantage to this approach, the need for a further mesh refinement
is eliminated to a great extent. To avoid a non-physical singular stress field at the
crack tip, the crack growth is accompanied by a cohesive law on crack faces using the
partition of unity property of finite elements [83, 134]. However, in an X-FEM based
approach, the crack tip position is commonly prescribed inside an element, allowing
to determine the elements to be enriched by a discontinuous function or by near-tip
asymptotic functions [84]. As an alternative, the discontinuity is often (if not mostly)
extended across a complete element such that the crack tip touches the next element
boundary [134]. Regarding the oscillatory nature of the singular stress in the vicinity
of the crack tip, appropriate crack tip asymptotic displacement functions have been
added to the finite element approximation for bi-material interface cracks [116].

Although a comparison of crack driving forces in several interfaces provides a qual-
itative impression of the most vulnerable interface in a multi-layered system, it is
still too hard to describe the cases where some cracks may be arrested or evolve
simultaneously even in two-dimensional problems when using LEFM-based meth-
ods. Furthermore, none of these methods are able to simulate both initiation and
propagation of delamination together. To simulate both initiation and propagation
of delamination as a result of gradual degradation of the adhesion between laminae,
cohesive zone models (CZMs) are proposed that do not suffer from the limitations of
the previously mentioned methods when multiple cracks exist.

CZMs were originally introduced by Barenblatt [10] and Dugdale [40] as an alterna-
tive to elasticity-based fracture mechanics, which leads to infinite stresses at the crack
tip, in perfectly elastic-brittle materials. The earlier approaches were extended in the
sense that a cohesive crack could develop anywhere in a specimen or a structure, and
not only ahead of a pre-existing crack tip [58].

CZMs are used to describe a broad range of fracture and damage processes in a wide
variety of material systems form ductile void growth [126] to fracture in brittle mate-
rials [20]. Using CZMs, the behavior of the structure is lumped in two parts; the dam-
age free continuum with an arbitrary material law, and cohesive interfaces between
continuum elements that specify the damage of the material. For the modeling of
delamination, decohesion elements are placed at interfaces between laminae. Using
these elements, the traction with respect to separation across boundaries is defined
with a traction-separation law (TSL). An overview of TSLs that have been developed
can be found in [24]. The influence of the shape of the traction-separation law on the
response and numerical performance of CZMs are also investigated in some recent
publications [2, 24].

Application of CZMs in a quasi-static framework is accompanied by severe numer-
ical difficulties in the case of relatively brittle interfaces where the solution of the
discretized problem rapidly suffers from an intrinsic mesh size dependency. If the
mesh is not sufficiently fine, the global load-displacement response of the system
shows a non-smoothness that totally compromises the numerical efficiency [3]. In
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fact, as delamination propagates, there should be sufficient interface elements in the
softening process zone to capture the strain field [122]; otherwise, softening of the
local behavior in an interfacial element will result in a sudden release of the elastic
strain energy stored in the surrounding bulk material which in turn leads to instanta-
neous failure of the element. In such a case, an artificial (non-physical) limit point in
the form of a snap-through or a snap-back situation arises in the numerical solution
which is also known as a solution jump [22].

Remedies such as artificially reducing the interfacial strength to increase the size
of the process zone, performing a dynamic analysis or using viscous regularization
techniques, and using a non-local formulation for the interface model are either non-
realistic or computationally expensive and inefficient. A mesh refinement can over-
come this problem without yielding unrealistic results. However, for realistic inter-
face parameters with a small process zone size, the element size has to be extremely
small, which results in unacceptably high computational costs. An adaptive mesh
refinement around the process zone is a possible way to reduce the computational
cost. However, the method itself has extra costs and complexities.

Practically, using the standard iterative Newton-Raphson method under load or dis-
placement control often fails to converge when confronted to the mentioned limit
points. Reducing the increment size does not solve the problem, whereas the valid-
ity of the solution with large increment sizes can be questioned since several interface
nodes may fail simultaneously in a single increment [22]. Therefore, path following
techniques such as the cylindrical arc-length control method have been proposed to
overcome the non-smoothness even in the case of relatively sharp snap-backs [57].
Since all degrees of freedom contribute with an equal weight in a global path fol-
lowing approach, convergence problems still exist in case of a severely localized de-
formation, such as interfacial delamination. Therefore, local control techniques are
employed to overcome this type of problem [45].

The complicated combination of local path following techniques and line searches
can be used at the cost of heavy computations [4], since very small increments are
needed to trace a non-physical path. Elimination or at least reduction of the oscilla-
tions observed in the global load-displacement behavior of systems involving brittle
interfaces without mesh refinement will enhance the efficiency and robustness of co-
hesive zone models. Local enrichment of the elements in the vicinity of the softening
process zone with hierarchical polynomial shape functions is considered a means to
reduce these oscillations [28].

In this chapter, a process driven hierarchical extension is proposed to enrich the
separation approximation in the process zone of a cohesive crack. The enrichment
solves the intrinsic shortcoming of the discretization that creates the non-physical
oscillatory load-displacement behavior. In the new formulation, the linear separa-
tion approximation throughout the cohesive zone element is enriched by adding a
piece-wise linear enrichment function such that the enrichment peak can be located
at an arbitrary position within a cohesive zone element. In this approach, the loca-
tion of the enrichment peak and the magnitude of the enrichment form additional
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degrees of freedom. Moreover, continuity of the displacement field requires that
bulk elements adjacent to the enriched cohesive zone elements be enriched as well.
The principle of virtual work is used to establish the weak form of the equilibrium
equations [143]. Numerical examples using a bi-linear TSL show that the proposed
enrichment scheme can be used to improve the global load-displacement response
of the system discretized by a relatively coarse mesh without a need for further mesh
refinement.

2.2 Problem statement; mode I delamination

In order to illustrate the response resulting from a cohesive zone model, a simplified
peel-off test is considered for which an analytical solution can be easily retrieved. In
this test, a bulk material is pulled from a rigid substrate.

2.2.1 Geometry, interface model, and material behavior

In cohesive zone models, a traction-separation law describes the nonlinear relations
between the separation vector δ and the traction vector t. Since the precise form
of the TSL is not the subject of interest here, a bilinear TSL is considered, which
acts in the normal direction denoted by the vector n. The normal traction tn linearly
increases with increasing normal separation δn until it reaches a maximum tn,max. The
separation δn,c corresponds to the maximum traction. More separation will result in
a decrease of the interfacial stiffness (see Figure 2.1).

Figure 2.1: Bilinear traction-separation law.

The bi-linear TSL that is depicted in Figure 2.1 is defined by:

tn(δn) =







kp δn if δn 6 δn,c
tn,max + kn(δn − δn,c) if δn,c < δn 6 δn,f
0 if δn > δn,f

(2.1)
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in which δn,f is the failure separation. The slopes of the traction-separation curve in
hardening and softening regimes are denoted by kp and kn, respectively; see Figure
2.1. The maximum normal traction is defined as:

tn,max = kp δn,c . (2.2)

Although unloading does not occur in the numerical examples considered further on,
the behavior of the interface is irreversible upon unloading by following the secant
stiffness [3].

The cohesive zone approach can be related to Griffith’s theory of fracture, if the area
under the traction-separation curve is equal to the corresponding fracture tough-
ness Gc [101]. Assuming a fixed value of Gc for a certain fracture mode, a higher
maximum traction would result in a smaller process zone and hence a more brittle
interfacial behavior. In fact, maintaining a constant fracture toughness, an interface
model is often interpreted as a regularization of the fracture mechanics singularity
by planar lumping of the process zone [22]. In order to investigate the effect of the
brittleness on the behavior of the cohesive zone models, two sets of constitutive pa-
rameters are used to characterize the interfacial behavior with respect to the level of
brittleness, which is related to the size of the process zone (see Table 2.1).

Table 2.1: Cohesive zone parameters.

parameter set characteristic separation tensile strength fracture toughness
δn,c (mm) tn,max (MPa) Gc (N/mm)

1 0.002 50 0.25
2 0.001 100 0.25

The linear elastic bulk material is characterized by a stiffness of Cnn = 27GPa in
normal direction and zero shear stiffness, Csn = 0 (to retrieve an easy analytical solu-
tion), and all displacements and/or separations occur in the normal direction. Figure
2.2 shows the geometry and boundary conditions. A linear normal displacement is
prescribed in an incremental manner along the upper edge of the bulk layer as fol-
lows:

u(s) = α ū(s) = α

(

ūL −
ūL − ūR

L
s

)

, 0 6 α 6 1, (2.3)

where the parameter α controls the magnitude of the prescribed displacement in the
longitudinal direction denoted by s and where the prescribed displacement of the
left and right top edge of the bulk layer are given by ūL = 0.0135mm and ūR =
0.0045mm, respectively.
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Figure 2.2: Mode I delamination; geometry and boundary conditions.

2.2.2 Analytical solution

An analytical solution of the peel-off problem is determined first. Due to the lack
of shear stiffness in the bulk material, the constitutive relationship governing the
displacement inside the bulk material can be written as

tbulk,n(s) = E ǫn(s) , (2.4)

where ǫn(s) is the normal strain within the bulk material. Equilibrium and compati-
bility equations for the whole domain imply:

tbulk,n(s)− tcz,n(s) = 0 , (2.5)

H ǫn(s) + δn(s) = u(s) , (2.6)

Assuming the condition (E + H kn > 0) to avoid a physical solution jump, two un-
knowns, ǫn and δn, are calculated using the above equations:

[

ǫn(s)
δn(s)

]

=































1

E +H kp

[

kp u(s)
E u(s)

]

if δn(u(s)) 6 δn,c

1

E +H kn

[

tn,max + kn(u(s)− δn,c)
E u(s)−H(tn,max − kn δn,c)

]

if δn,c < δn(u(s)) 6 δn,f
[

0
u(s)

]

if δn(u(s)) > δn,f

(2.7)
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Next, the locations sc and sf along the interface in which the normal separation of
the cohesive zone equals δn,c and δn,f , respectively, are determined:

sc =
L

uL − uR

(

uL −
E +H kp

E
δn,c

)

, (2.8a)

sf =
L

uL − uR

(

uL −
kn − kp
kn

δn,c

)

. (2.8b)

Using Equations (2.7) and (2.8) and assuming that uL > uR, the behavior of the sys-
tem with respect to the prescribed displacement can be identified in different stages,
based on normal separations at left and right edges of the cohesive zone element,
δn,L = δn(0) and δn,R = δn(L), respectively:

• δn,L , δn,R 6 δn,c: The whole interface is intact; that is, no reduction in interface
stiffness (or any damage) has occurred, which implies that the response is linear
(see Figure 2.3(a)).

• δn,c < δn,L 6 δn,f and δn,R < δn,c: The left edge of the interface has started soft-
ening but has not failed yet while the right edge is intact, which implies that
the separation profile is bi-linear (see Figure 2.3(b)).

• δn,L > δn,f and δn,R < δn,c: The left edge of the interface has failed while the
right edge is intact. The separation profile becomes tri-linear (see Figure 2.3(c)).

• δn,L > δn,f and δn,c 6 δn,R < δn,f : The left edge of the interface has failed while
the right edge is softening but did not fail yet. The separation profile through-
out the interface is bi-linear (see Figure 2.3(d)).

• δn,L , δn,R > δn,f : The whole interface has failed which implies that the separa-
tion profile is linear (see Figure 2.3(e)).

2.2.3 Numerical solution

For the problem sketched in Figure 2.2, the bulk material domain is discretized uni-
formly along the s-axis by one layer of quadrilateral 4-node elements while cohesive
zone elements are placed between bulk elements and the rigid substrate. First, a
coarse mesh of 10 non-enriched (standard) bulk and interface elements in the longi-
tudinal direction is used for both parameter sets described in Table 2.1. The variation
of the total applied force on the upper edge of the bulk material with respect to the
prescribed displacement at the same edge is illustrated in Figure 2.4, revealing os-
cillations in the response of the parameter set 2. A finer mesh of 100 standard bulk
and interface elements is also used for the same set of parameters. As can be seen in
Figure 2.4, the numerical solution obtained with the coarse mesh oscillates around
the smooth refined solution, as expected.
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(a) Linear separation profile (b) Bi-linear separation profile

(c) Tri-linear separation profile (d) Bi-linear separation profile

(e) Linear separation profile

Figure 2.3: Peel-off test; analytical opening profile in different stages of interface
opening.

The oscillations observed in the global load-displacement behavior of the system
discretized by a coarse mesh (see Figure 2.4) directly result from the inaccurate sep-
aration approximation in the cohesive zone. In other words, the number of nodes
in the process zone is too small to describe the process zone accurately for the rela-
tively brittle interface. Figure 2.4 also shows that reducing the initial stiffness of the
interface while maintaining a constant fracture toughness (i.e. increasing the char-
acteristic separation, δn,c) does eliminate the oscillations observed but unrealistically
underestimates the peak in the global load-displacement behavior.
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Figure 2.4: Force-displacement responses of the peel-off problem without enrich-
ment.

2.3 Cohesive zone enrichment

The finite element formulation of both interface and bulk material will be enriched in
order to more accurately describe the opening profile of a crack. This improvement
should result in a reduction of the non-smoothness observed in the general load-
displacement behavior of the system which is an artifact of the discretization of the
opening profile. In fact, as delamination propagates in brittle interfaces, the strain
field in the process zone should be captured with enough accuracy to avoid a sudden
release of the elastic strain energy stored in the surrounding bulk material, which in
turn results in a snap-back response in the numerical solution. This can be avoided
by refining the mesh in the process zone or by using an enriched model that can
predict the position of the discontinuity in the strain field.

2.3.1 Interface elements

The separation approximation of the cohesive zone element will be enriched to im-
prove the separation approximation in the process zone of a cohesive crack (see Fig-
ure 2.5).

The most obvious enrichment is presented in Figure 2.6, where a linear separation
approximation is enriched by adding a piecewise linear enrichment function multi-
plied by enrichment scaling factors to determine the magnitude of the enrichment at
the top and bottom edges of the interface element. The bi-linear enrichment function,
φ, is defined as:

φ =
1

a
ξ −

1

a (1− a)
R (ξ − a) , (2.9)
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(a) Cohesive zone (b) Non-enriched
model

(c) Enriched model

Figure 2.5: Schematic representation of a cohesive zone and its discretization.

with the ramp function, R, defined as:

R (ξ − a) =

{

0 if ξ ≤ a
ξ − a if ξ > a

, (2.10)

where ξ ∈ [0, 1] represents the non-dimensional coordinate:

ξ =
s

L
, (2.11)

where L is the length of the cohesive zone element in the initial configuration. The
enrichment peak position inside the cohesive zone element is denoted by a which
is considered to depend on an additional degree of freedom. The enrichment func-
tion becomes singular when the enrichment peak approaches the interface element
boundaries ξ = 0 or ξ = 1. On the other hand, in such situations the proposed en-
richment is not required anymore since a linear opening profile remains. Therefore,
an auxiliary parameter z is defined as a degree of freedom such that the peak of the
bi-linear enrichment function is forced to remain inside the cohesive zone element:

a =
1

2
+

1

π
arctan(z) . (2.12)

Figure 2.6: Hierarchical enrichment of standard linear finite element interpolation
functions with a bi-linear enrichment function.
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The two-dimensional conventional interface element depicted in Figure 2.7(a), is
characterized by a traction-separation relationship in normal direction (see Section
2.2.1). Here, no shear separation is considered. The cohesive zone element has zero
thickness in the undeformed state where the normal separation δn is zero through-
out the element. Element coordinates {s,n} are defined with the shear or tangential
direction, s, oriented along the edge from node 1 to node 2 in the initial configu-
ration, and the normal direction n perpendicular to the shear direction. As can be
seen in Figure 2.7(b), the piecewise linear function is employed to enrich the normal
separation approximation which corresponds to mode I delamination.

(a) Without enrichment. (b) With enrichment.

Figure 2.7: Deformation of a cohesive zone element.

In the enriched cohesive zone element, displacements at the top and bottom edges
along the normal direction, un,t and un,b respectively, are approximated by:

un,t = NL un,4 +NR un,3 + φ ht , (2.13a)

un,b = NL un,1 +NR un,2 + φ hb , (2.13b)

where ht and hb are unknown enrichment scaling factors for the top and bottom
edges of the interface element, respectively. The subscripts L and R refer to the left
and right edges of the cohesive zone element, respectively. The linear interpolation
functions depicted in Figure 2.6 are defined as:

NL = 1− ξ , (2.14a)

NR = ξ . (2.14b)

The field variable of interest is the normal separation of cohesive surfaces which can
be expressed as:

δn = un,t − un,b = Bu,cz u
˜
+Bh,cz h

˜
, (2.15a)

with

Bu,cz =
[

−NL −NR NR NL

]

, (2.15b)
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u
˜
T = [ un,1 un,2 un,3 un,4 ] , (2.15c)

Bh,cz = [ −φ φ ] , (2.15d)

h
˜
T = [ hb ht ] . (2.15e)

The equilibrium equation for a cohesive zone element can be written as:

tn(s) =

{

t̄n,t(s) at the top edge
t̄n,b(s) at the bottom edge

, (2.16)

where t̄n,t(s) and t̄n,b(s) represent the external normal traction at the top and bottom
edges of the cohesive zone element, respectively, which establish the equilibrium af-
ter the cohesive zone element is separated from the rest of the model. The principle
of virtual work is used to establish the weak form of the equilibrium equations and
is valid for nonlinear as well as linear stress-strain relations. Application of this prin-
ciple in the present cohesive zone model states that for an arbitrary small normal
separation perturbation dδn, the work done by the internal forces equals the work
done by the external forces. It can be expressed as:

∫

Γ

dδn tn dΓ =

∫

Γ

(dun,t t̄n,t + dun,b t̄n,b) dΓ, (2.17)

where dun,t and dun,b represent the normal displacement perturbations at the top and
bottom edges, respectively. The normal separation perturbation dδn can be expressed
as:

dδn =
∂δn
∂u

˜

du
˜
+
∂δn
∂h

˜

dh
˜
+
∂δn
∂φ

∂φ

∂a

∂a

∂z
dz

= Bu,cz du
˜
+Bh,cz dh

˜
+Bz,cz dz ,

(2.18)

where:

Bz,cz =
∂(Bh,cz h

˜
)

∂a

da

dz
=

da

dz
Ba,cz , (2.19a)

Ba,cz =

[

−
∂φ

∂a

∂φ

∂a

]

h
˜
. (2.19b)

Substitution of the relations for the normal separation perturbation in the principle
of virtual work (Equation (2.17)) results in the following expression:

du
˜
T f

˜ i,cz
+ dh

˜
T g

˜ i,cz
+ dz bi,cz = du

˜
T f

˜ e,cz
+ dh

˜
T g

˜e,cz
+ dz be,cz . (2.20)

In the above expression, f
˜ i,cz

, g
˜ i,cz

, and bi,cz collect the internal forces adjoint to nodal

displacements, u
˜
, enrichment scaling factors, h

˜
, and the auxiliary parameter, z (which

defines the position of the enrichment peak, a, by Equation (2.12)), respectively. Ex-
ternal forces are collected in f

˜ e,cz
, g

˜e,cz
, and be,cz. The internal forces are defined as:
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f
˜ i,cz

=

∫

Γ

BT
u,cz tn dΓ, (2.21a)

g
˜ i,cz

=

∫

Γ

BT
h,cz tn dΓ, (2.21b)

bi,cz =

∫

Γ

Bz,cz tn dΓ. (2.21c)

The equilibrium Equation (2.20) should hold for arbitrary nodal displacement pertur-
bations, du

˜
, arbitrary perturbations of enrichment scaling factors, dh

˜
, and arbitrary

perturbations of the position of the enrichment peak, da (or equivalently, dz). A
derivation of the tangential stiffness matrix is given in Section 2.7. In order to calcu-
late the stiffness matrix and internal force components, a Gauss integration scheme is
adopted, where in the case of an enriched cohesive zone element, integration is car-
ried out in both parts of the element separated by the enrichment peak (see Figure
2.7(b) where the location of integration points are indicated by I.P.).

The TSL is defined in local (element) coordinates {s,n} whereas nodal coordinates
and displacement degrees of freedom are defined in global (cartesian) coordinates
{x,y}. Before the global assembly of the system, all vectorial field variables derived
in element coordinates are converted to the global coordinates in a standard manner.

2.3.2 Bulk elements

Two-dimensional 4-node quadrilateral elements are used to model the bulk material
(see Figure 2.8(a)). Similar to the cohesive zone elements, field variables in the bulk
elements are described in a cartesian coordinate system with the basis {s,n} which
is aligned with the cohesive zone element coordinates. Only displacements in n-
direction, un, between the undeformed state and the deformed state of a material
point, are considered, and hence, the strain field in a two-dimensional configuration
considering the small strain/displacement framework will be identified as:

ǫ
˜
(r) =

[

ǫn(s, n)
γsn(s, n)

]

=

[

∂un/∂n
∂un/∂s

]

. (2.22)

Ignoring body forces in the continuum, the standard static equilibrium equation with
respect to {s,n} is given by:

∂σn
∂n

+
∂τsn
∂s

= 0 , (2.23)

where the constitutive behavior of the bulk material is defined as

σ
˜
=

[

σn(s, n)
τsn(s, n)

]

= f
˜
(ǫ
˜
) . (2.24)
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(a) Without enrichment. (b) With enrichment.

Figure 2.8: Deformation of a 2-D bulk element.

As mentioned earlier, continuity of the displacement field requires that bulk ele-
ments adjacent to the enriched cohesive zone elements be enriched as well (see Fig-
ure 2.8(b)). Therefore, a weighted piecewise linear enrichment function, φ, added
to the weighted sum of interpolation functions Ni, approximates the displacement
along the normal direction in the enriched model discussed here:

un = N u
˜
+ ψ h , (2.25a)

N =
[

N1 N2 N3 N4

]

, (2.25b)

u
˜
T = [ un,1 un,2 un,3 un,4 ], (2.25c)

where the interpolation and enrichment functions are defined by using normalized
coordinates, ξ, η ∈ [0, 1] with the origin in node 1:

N1 = (1− ξ) (1− η) , (2.26a)

N2 = ξ (1− η) , (2.26b)

N3 = ξ η , (2.26c)

N4 = (1− ξ) η , (2.26d)

ψ = (1− η)φ . (2.26e)

The enrichment function, φ, is defined in Equation (2.9). Using Equations (2.22) and
(2.25a), the strain field in the bulk material can be approximated as follows:

ǫ
˜
(r) =

[

ǫn(s, n)
γsn(s, n)

]

= Bu,bulk u
˜
+B

˜
h,bulk h , (2.27a)
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where:

Bu,bulk =

[

∂N1/∂n ∂N2/∂n ∂N3/∂n ∂N4/∂n

∂N1/∂s ∂N2/∂s ∂N3/∂s ∂N4/∂s

]

, (2.27b)

B
˜ h,bulk =

[

∂ψ/∂n
∂ψ/∂s

]

. (2.27c)

The displacement approximation and the subsequent strain approximation are com-
patible with the neighboring cohesive zone element and other conventional bulk el-
ements. Equilibrium conditions are enforced in an integral way by application of the
principle of virtual work, which can be expressed as

∫

Ω

dǫ
˜
T σ

˜
dΩ =

∫

Γ

du
˜
T t̄

˜
dΓ, (2.28)

where dǫ
˜

represents a small strain perturbation and Γ represents the circumferential
boundary coordinate. The external forces are denoted by t̄

˜
which includes all forces

that establish equilibrium if the element is isolated from the surrounding material.
The small strain perturbation can be written as:

dǫ
˜
=
∂ǫ

˜
∂u

˜

du
˜
+
∂ǫ

˜
∂h

dh+
∂ǫ

˜
∂ψ

∂ψ

∂a

∂a

∂z
dz

= Bu,bulk du
˜
+B

˜ h,bulk dh+B
˜ z,bulk dz ,

(2.29)

where:

B
˜ z,bulk =

∂(B
˜
h,bulk h)

∂a

da

dz
=

da

dz
B
˜ a,bulk , (2.30a)

B
˜
a,bulk =

[

∂2ψ/∂n ∂a
∂2ψ/∂s ∂a

]

h . (2.30b)

Substitution of the relations for the strain perturbation in the principle of virtual
work (Equation (2.28)) results in the following expression:

du
˜
T f

˜ i,bulk
+ dh gi,bulk + dz bi,bulk = du

˜
T f

˜ e,bulk
+ dh ge,bulk + dz be,bulk . (2.31)

In the above expression, f
˜ i,bulk

, gi,bulk, and bi,bulk collect the internal forces adjoint to

nodal displacements, u
˜
, the enrichment scaling factor, h, and the auxiliary parameter,

z, respectively. External forces are collected by f
˜ e,bulk

, ge,bulk, and be,bulk. The internal

forces are defined as:

f
˜ i,bulk

=

∫

Ω

BT
u,bulk σ˜

dΩ , (2.32a)
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gi,bulk =

∫

Ω

B
˜
T
h,bulk σ˜

dΩ , (2.32b)

bi,bulk =

∫

Ω

B
˜
T
z,bulk σ˜

dΩ . (2.32c)

The equilibrium Equation (2.31) should hold for arbitrary nodal displacement per-
turbations, du

˜
, arbitrary perturbations of the enrichment scaling factor, dh, and ar-

bitrary perturbations of the position of the enrichment peak, da (or equivalently,
dz). A derivation of the tangential stiffness matrix is given in Section 2.7. In order
to calculate the stiffness matrix and internal force components, a Gauss numerical
integration scheme is adopted, where in the case of an enriched bulk element, inte-
gration is carried out in both parts of the element separated by the enrichment peak
(see Figure 2.8(b)).

2.4 Implementation aspects

2.4.1 Penalty factor

The considered cohesive zone element separation profile remains linear when the
whole interface within an element is still intact or the whole element is failed or
when the element is entirely within the process zone. In such cases, no discontinuity
is present in the separation profile within the cohesive zone element; and hence, an
enrichment is not required. The linear solution is retrieved when the scaling factors
are zero and in that case the solution is not affected by the value of a, which remains
undetermined. Therefore, no unique solution exists. In order to obtain a unique
solution, a penalty term based on the discontinuity position, a, is added to the total
potential of the system, Π:

Π̄ = Π + p (a− ā)2 , (2.33)

where p is a small penalty factor and ā is an arbitrary fixed position within the co-
hesive zone element; i.e., the middle of the element. The additional term, p (a − ā)2,
is to be taken sufficiently small in order not to influence the solution in the physical
sense if the crack tip passes through the cohesive zone element.

2.4.2 Adaptive enrichment strategy

Enrichment of all interface elements and their neighboring bulk elements results in
a large increase of the total number of degrees of freedom. However, interface ele-
ments that are still intact or those that have already failed do not need to be enriched.
Therefore, only the elements located within the process zone are enriched and the rest
remain non-enriched. For this purpose, at the start of each increment, the following
enrichment scheme based on the results obtained from the previous one, is used:
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• δn(s) 6 ̺ δn,c ; ∀ s ∈ [0, L]: The entire interface element is in the linear hardening
regime which implies that an enrichment is not required. The coefficient ̺ ∈
[0, 1] is defined with respect to the size of increments to ensure that enrichment
in an element is switched on when necessary.

• δn(s) > δn,f ; ∀ s ∈ [0, L]: The entire interface element is failed and an enrich-
ment is not required anymore; hence, prior enrichment degrees of freedom are
removed.

• ̺ δn,c < δn(s) < δn,f ; ∀ s ∈ [0, L]: Due to the near existence of a piece-wise linear
separation profile, an enrichment is activated in the interface element.

The scheme remains unchanged throughout all iterations performed in an increment.
At the end of the increment, the enrichment scheme is updated; i.e. as delamination
grows, the enrichment in some elements is activated, whereas it is de-activated in
failed elements. As a result, the total number of degrees of freedom and the col-
umn of degrees of freedom may slightly vary from increment to increment in order
to enhance the efficiency of the proposed technique, but their total amount remains
limited. An adaptive enrichment strategy is particularly beneficial when analyzing
domains including several interfaces where multiple cracks may develop simultane-
ously.

2.5 Application to the example problem

In the simplified mode I delamination example explained in Section 2.2, the new
enrichment scheme is used to improve the response obtained from the cohesive zone
model. Figure 2.9 shows the interfacial separation profile and the traction along the
interface characterized by parameter set 2 of Table 2.1 for an applied load given by
α = u/ū = 0.39. A coarse mesh of 10 bulk and interface elements in the longitudinal
direction is used for the numerical simulation, for which both standard and enriched
elements have been used. The enriched case clearly shows a more accurate traction
profile compared to the standard case (see Figure 2.9(a)). Likewise, the enriched
separation profile (Figure 2.9(b)) is obviously close to the analytical solution (Figure
2.9(d)) in contrast to the standard case (Figure 2.9(c)).

Local enrichment of the kinematics of the cohesive zone element improves the oscil-
latory behavior noticed in Figure 2.4 (parameter set 2, 10 bulk/interface elements).
Figure 2.10 shows that the enrichment considerably reduces the oscillations that oc-
cur around the exact solution of the problem. The minor remaining oscillations in
the numerical response of the enriched model are due to the presence of a tri-linear
separation regime inside interface elements, especially at the last stages of loading
(see Section 2.2.2). Here, the response obtained from the analytical solution is used
as a reference. The adaptive enrichment strategy significantly improves the results
whereas the total number of degrees of freedom is only slightly and locally increased.
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(a) Traction profiles.

(b) Separation profile; coarse mesh without enrich-
ment.

(c) Separation profile; coarse mesh with enrichment.

(d) Analytical separation profile.

Figure 2.9: Interfacial traction and separation profiles of the peel-off problem when
α = 0.39.

Figure 2.10: Force-displacement responses of the peel-off problem with and without
enrichment.

2.6 Discussion and conclusion

Cohesive zone models have the appealing feature of predicting both delamination
initiation and growth. These models are also linked to traditional fracture mechan-
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ics by relating the traction at the interface to the separation through a non-linear
softening relationship, for which the area under the traction-separation curve equals
the fracture toughness. However, application of these models to brittle interfaces is
accompanied by some numerical difficulties. The oscillatory load-displacement be-
havior that is often observed for such interfaces is an artifact of the relatively coarse
mesh size (with respect to interface parameters) and can break down the compu-
tations unless complicated path-following techniques are employed. On the other
hand, using a sufficiently refined mesh so that the separation field of a cohesive crack
is approximated with acceptable accuracy, results in a noticeable increase in the size
of the computations. The discretization-induced oscillations are not affected by the
integration scheme even when an analytical integration of cohesive zone elements is
carried out. Application of an enrichment to the conventional model considerably
enhances the robustness of cohesive zone models, thereby avoiding an expensive
mesh refinement.

To this purpose, an adaptive hierarchical extension has been presented to enrich the
separation approximation in the process zone of a cohesive crack. In the proposed
formulation, the linear separation approximation throughout the cohesive zone el-
ement is enriched by a piece-wise linear function. The finite element formulation
of the enriched bulk and interface elements is elaborated and an adaptive enrich-
ment strategy is used for a maximum efficiency. The numerical example shows that
the proposed enrichment scheme improves the global load displacement response of
the system discretized by a relatively coarse mesh without a need for further mesh
refinement.

In the formulation, the peak point of the enrichment function can be located at any
arbitrary position within an interface element. The position and scaling factor used
in the enrichment function are treated as additional degrees of freedom. The mov-
ing peak of the bi-linear enrichment function relates to the moving process zone and
provides a more accurate numerical approximation of the physical problem where
delamination grows in an interface. This feature makes the new enrichment scheme
distinct from conventional hierarchical enrichments where only scaling factors as-
sociated with higher order enrichment functions are calculated while the crack tip
position is prescribed beforehand. Whereas an X-FEM approach relies on a position
of the crack tip to be prescribed inside an element or from element edge to edge, the
moving discontinuity in the proposed methodology naturally retrieves this position
from the global solution of the equilibrium equations.

Using the current bi-linear enrichment function, a tri-linear separation profile within
a single interface element can only be captured approximately, which may leave mi-
nor oscillations remaining in the load-displacement response of bi-linear enriched
systems. However, the proposed methodology is well-suited to be extended to other
enrichments as well, allowing for more complex separation profiles within a single
cohesive zone element. The limit case of the proposed enrichment scheme with a
tri-linear interpolation for an infinitely stiff interface corresponds to a strong discon-
tinuity.
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2.7 Appendix A: Determination of the tangential stiff-
ness matrix

The tangential stiffness matrix of the cohesive zone element used in the non-linear
solution procedure contains the derivatives of the internal forces with respect to the
element degrees of freedom:

Kcz =





Kuu,cz Kuh,cz K
˜ uz,cz

Khu,cz Khh,cz K
˜
hz,cz

Kzu,cz Kzh,cz Kzz,cz



 , (2.34a)

where:

Kuu,cz =
∂f

˜ i,cz
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The following derivatives in the above formulation can be obtained as:

∂tn
∂δn

=







kp if δn 6 δn,c
kn if δn,c < δn 6 δn,f
0 if δn > δn,f

, (2.35a)
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∂a2
∂2φ

∂a2

]

h
˜
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Assuming a linear elastic material, the constitutive relation of the bulk material
(Equation (2.24)) in the case of plane strain conditions can be stated as follows:

σ
˜
(r) = H ǫ

˜
(r) , (2.36)

where H is the material moduli matrix. In general, the constitutive relation for the
bulk material can be non-linear and the above assumptions are made for the sake of
simplicity. The tangential stiffness matrix of the bulk element contains the deriva-
tives of the internal forces with respect to the element degrees of freedom:

Kbulk =
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In the above formulation:
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CHAPTER THREE

A mixed-mode self-adaptive cohesive
zone model 1

Abstract

Oscillations observed in the load-displacement response of brittle interfaces modeled
by cohesive zone elements in a quasi-static finite element framework are artifacts of
the discretization. The typical limit points in this oscillatory path can be traced by ap-
plication of path-following techniques, or avoided altogether by adequately refining
the mesh until the standard iterative Newton-Raphson method becomes applicable.
Both strategies however lead to an unacceptably high computational cost and a low
efficiency, justifying the development of a process driven hierarchical extension of
the discretization used in the process zone of a cohesive crack. A self-adaptive en-
richment scheme within individual cohesive zone elements driven by the physics
governing the problem, is an efficient solution that does not require further mesh
refinements. A two-dimensional mixed-mode example in a general framework with
an irreversible cohesive zone law shows that an enriched formulation restores the
smoothness of the solution in structures that are discretized in a relatively coarse
manner.

1Reproduced from: M. Samimi, J.A.W. van Dommelen, and M.G.D Geers. A self-adaptive finite
element approach for simulation of mixed-mode delamination using cohesive zone models. Engng.
Fract. Mech. Accepted.
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3.1 Introduction

Accumulation of damage at interfaces in laminated structures results in the forma-
tion and growth of interlaminar cracks through a non-linear and irreversible process
which is known as delamination and constitutes one of the most common failure
modes in such structures. Interfacial stresses orthogonal or parallel to laminae cause
delamination in mode I (normal opening) or modes II (sliding) and III (tearing), re-
spectively. Continuum models with strong discontinuities seem to yield the best
description for deformation of a structure undergoing this failure mechanism.

Linear elastic fracture mechanics (LEFM)-based techniques have often been adopted
for the modeling of discrete crack propagation problems when the size of the failure
process zone is small compared to structural dimensions which is the case in large
structures or brittle interfaces [11, 56, 61, 101, 105, 114]. In this class of methods, the
mesh has to be sufficiently fine near the crack tip to capture the stress singularity
in that region [47, 132]. Using the partition of unity property of finite elements [8],
the extended finite element method (X-FEM) has been introduced to eliminate the
need for a mesh refinement by enriching the elements adjacent to the crack with a
discontinuous function or near-tip asymptotic functions [13,84]. The concept has also
been extended to cohesive crack propagation analyses [83,100]. However, additional
criteria are still required for crack initiation and propagation [3, 140].

Eliminating the stress singularity at the crack tip, cohesive zone models (CZMs) were
introduced by Barenblatt [10] for perfectly brittle materials and by Dugdale [40] for a
perfectly plastic material. These models were extensively used after being applied in
a finite element framework to predict crack initiation and growth [58]. Later, an in-
terfacial potential was defined to apply the methodology to interface problems [85].
Thereafter, these models have been improved and used in a wide variety of applica-
tions [6,20,25,73,91,113,125,130,133,135,139] while their different numerical aspects
have also been investigated [4, 24, 36, 42, 113].

Simulation of interfacial delamination in a finite element framework is carried out
by placing interface (decohesion) elements along interfaces between laminae where
the interfacial damage in the structure is reflected. The damage free continuum can
then be described with an arbitrary material law. Being characterized by a traction-
separation law (TSL) which describes the variation of traction with respect to separa-
tion along the cohesive zone, interface models have the appealing feature of combin-
ing stress-based and fracture mechanics-based approaches to predict delamination
onset and propagation [30].

Using CZMs for the modeling of delamination in brittle interfaces in a quasi-static
finite element framework suffers from an intrinsic discretization sensitivity. A large
number of interface elements are needed for the discretization of the process zone, i.e.
the region entering the softening regime [55, 122]. Without this very fine discretiza-
tion, sudden release of energy in large CZ elements results in a sequence of snap-
through or snap-back points to appear in the global load-displacement response of
the system [22]). Further mesh refinement may still be necessary to ensure a stable
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crack growth in case of physically stable crack growth problems [44].

Application of the standard iterative Newton-Raphson method under load or dis-
placement control fails to converge in the case of snap-through or snap-back. Path-
following techniques have been proposed to follow the discretization-induced os-
cillations, requiring expensive computations accompanying the small increments
needed to trace this non-physical path [4, 27, 34, 45, 46, 53, 57, 102, 110]. Since these
oscillations are artifacts of the discretization, a persistent mesh refinement finally
results in a smooth path which can be solved by the standard Newton-Raphson
scheme [82]. However, for realistic interface parameters with a small process zone
size, the element size has to be extremely small, which results in unacceptably high
computational costs. In some cases, a coarse mesh is used by artificially reducing the
interface strength without changing the fracture toughness [124], which can under-
estimate the loading capacity of the structure [16].

The efficiency and robustness of brittle CZMs can be significantly increased by re-
ducing the oscillations observed in the global load-displacement behavior without
further mesh refinement. In line with this purpose, a local enrichment of the el-
ements in the vicinity of the softening process zone with hierarchical polynomial
shape functions has been proposed in [28]. The partition of unity property of finite
element interpolation functions has been employed to enrich the basis functions of
CZ and bulk elements with the analytical solutions of a beam bending problem [52].

Recently, the authors proposed an approach to enrich the separation approximation
in the process zone of a cohesive crack by an adaptive hierarchical extension [109].
The linear separation approximation throughout the CZ element was enriched with
a bi-linear function, where the enrichment peak position and the magnitude of the
enrichment were regarded as additional degrees of freedom. The effect of the en-
richment on the global load-displacement response of a simple mode I delamination
problem discretized by a relatively coarse mesh was found to be a reduction of the
discretization-induced oscillations. However, the adaptivity of the enrichment peak
was not optimal; moreover, defining the enrichment peak position in terms of an
auxiliary parameter lowered the convergence rate due to introduction of an extra
nonlinearity.

In this chapter, the formulation of the process driven enrichment scheme proposed
in [109] is extended to account for mixed-mode delamination while taking the irre-
versibility of the delamination process into account. The formulation of enriched CZ
elements and their adjacent bulk elements – that are also enriched for continuity of
the displacement field – are derived in a full two-dimensional finite element frame-
work. All numerical aspects of the enrichment are discussed first on the basis of a
simple mode I delamination problem which results in a considerable improvement
of the enrichment adaptivity. Benefiting from the new developments, the enrichment
function acts in a self-adaptive manner within the interface; that is, its peak position
is controlled by the moving process zone. To achieve the latter, the penalty formula-
tion used in [109] has been modified to improve the adaptivity of the enrichment in
the elements within the process zone. This ensures a maximum benefit to be gained
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from the enrichment adaptivity regarding the elimination of discretization-induced
oscillations. An additional penalty condition near the boundaries of enriched CZ
elements is introduced to keep the bi-linear enrichment function confined within el-
ement boundaries. This eliminates the need for a transformation to an auxiliary pa-
rameter as done in [109] and prevents convergence problems due to the non-linearity
added to the system. The new set of developments significantly improves the effi-
ciency and robustness of an enriched CZM while allowing it to be used in general
applications. The advantage of the self-adaptive enrichment is illustrated through
a full two-dimensional peel-off example using a mixed-mode irreversible bi-linear
traction-separation law.

3.2 Interface model

The most important parameters of an interface constitutive law are the area under
the traction-separation curve (known as the fracture toughness) and the maximum
strength. However, different shapes have been adopted to describe the variation
of traction with respect to separation (or TSL) for which an overview can be found
in [24, 127]. In this work, a bi-linear TSL is used.

At an interfacial point between two materials in a two-dimensional continuum, sep-
aration and traction vectors are defined as δ and t, respectively:

δ = δn n+ δs s , (3.1a)

t = tn n+ ts s , (3.1b)

where the direction perpendicular to the interface is denoted by the unit normal vec-
tor n and the vectorial components in that direction are indicated by the subscript
n. The vectorial components in the tangential or shear direction, denoted by the unit
vector s, are indicated by the subscript s.

In most two-dimensional engineering applications, fracture energy is dissipated in
both normal opening (mode I) and sliding (mode II) during a mixed-mode delami-
nation process. The formulation of a mixed-mode cohesive law can be simplified by
introducing an effective separation, λ, as [91, 130]:

λ =

√

〈δn〉
2 + β2 δ2s , (3.2)

where the weights of tangential and normal opening displacements are determined
by the parameter β = ts0/tn0 in which ts0 and tn0 denote maximum shear and normal
tractions, respectively. Equation (3.2) implies that the interpenetration of laminae
does not contribute to the effective separation due to the McCauley brackets, 〈δn〉 =
(δn + |δn|)/2. The interface traction-separation law is derived in a damage mechanics
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framework as:

t = k0 (1− d) λ , (3.3)

where t is the effective traction and k0 is the slope of the hardening part of the t − λ
curve as can be seen in Figure 3.1(a). The irreversibility of the interface constitutive
model is taken into account by means of the damage parameter, d, for which the
evolution law is formulated as [3]:

d =















0 if λmax < λ0
λf

λf − λ0

λmax − λ0
λmax

if λ0 6 λmax 6 λf

1 if λmax > λf .

(3.4)

As can be seen in Figure 3.1(a), the effective traction t increases with increasing effec-
tive separation λwith an undamaged slope of k0 until it reaches the interface strength
t0 at a characteristic separation λ0. More separation results in a decrease of the inter-
face stiffness which is controlled by the monotonic increase of the damage parameter
from 0 for the undamaged case to 1 for the fully damaged case at the failure sepa-
ration of λf as depicted in Figure 3.1(b). The history parameter λmax is set to be the
maximum effective separation that has been attained so far.

The expressions for the normal traction, tn, and the shear traction, ts, are written as
follows:

tn = k0 (1− d) 〈δn〉 − k0〈−δn〉 , (3.5a)

ts = k0 (1− d) β2 δs, (3.5b)

where a linear elastic response with the initial stiffnesss is considered in the normal
compression regime. The corresponding effective traction is then given by:

t =
√

t2n + β−2 t2s . (3.6)

The fracture toughness (also called the critical energy release rate, Gc) is frequently
used as a material parameter in a CZM. It equals the area under the effective traction-
separation curve. This area denotes the total energy dissipated at the end of the
damage process due to delamination and is here given by:

Gc =

∫ λf

0

tdλ =
1

2
t0 λf , (3.7)

and is independent of mode mixity.



36 3 A MIXED-MODE SELF-ADAPTIVE COHESIVE ZONE MODEL

(a) Irreversible bi-linear traction-
separation law.
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(b) Damage evolution law.

Figure 3.1: Interface constitutive model.

3.3 Cohesive zone enrichment

As delamination grows in brittle interfaces discretized with a coarse mesh, a charac-
teristic non-smooth behavior is observed in the global load-displacement response of
the system. To remedy this problem, the finite element formulation of the interface is
enriched. The finite element formulation of the neighboring bulk is also enriched to
ensure compatibility of the displacement field in the process zone of a cohesive crack
which propagates in mixed-mode loading conditions.

3.3.1 Interface elements

Linear 4-node CZ elements as depicted in Figure 3.2(a), are used to discretize the in-
terface between bulk elements. Assuming a geometrically linear framework, a local
reference system, {n, s}, is defined with the shear or tangential direction, s, oriented
along the element from the left to the right edge, and the normal direction n perpen-
dicular to the shear direction. In the undeformed state, the effective separation λ is
zero throughout the CZ element; therefore, the element is a line in its initial config-
uration (line AB in Figure 3.2). The constitutive behavior of the interface has been
defined in Section 3.2.

The separation within an enriched CZ element as depicted in Figure 3.2(b), is ap-
proximated by linear interpolation functions at the left and right corner nodes of the
CZ element, NL and NR respectively, and a piecewise linear function φ (see Figure
3.3):

NL = 1− ξ , (3.8a)

NR = ξ , (3.8b)

φ =
1

a
ξ −

1

a (1− a)
〈ξ − a〉 . (3.8c)
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(a) Conventional. (b) Enriched.

Figure 3.2: A CZ element in an undeformed and deformed state under mixed-mode
delamination (line AB shows the undeformed state of the element).

The dimensionless position of the enrichment peak inside the CZ element is denoted
by a which is an additional degree of freedom. The above interpolation functions for
a CZ element with an initial length of l0 are expressed in non-dimensional coordinate
ξ ∈ [0, 1] as:

ξ =
s

l0
with s ∈ [0, l0] , (3.9)

Figure 3.3: Finite element interpolation functions for the 4-node enriched CZ element.

Considering the set of interpolation functions shown in Figure 3.3, the displacements
at the top and bottom edges of the enriched CZ element, u

˜ t
= [ut,n ut,s]

T and u
˜ b

=
[ub,n ub,s]

T are approximated by:

u
˜
t = NL u

˜
4 +NR u

˜
3 + φ h

˜
t , (3.10a)

u
˜
b = NL u

˜
1 +NR u

˜
2 + φ h

˜
b , (3.10b)

respectively, where h
˜ t

and h
˜ b

contain the extra unknown enrichment scaling factors in
the normal and shear direction for the top and bottom edges of the interface element,
respectively. The field variable of interest is the separation throughout the enriched
interface element:

δ
˜
= u

˜ t
− u

˜ b
= Bu,cz u

˜ e
+Bh,cz h

˜
, (3.11)

for which further details are given in Section 3.7.

The tangential stiffness matrix for the enriched CZ element is derived based on the
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virtual work principle which reads:

∫

Γ

dδ
˜
T t

˜
dΓ =

∫

Γb

du
˜
T
b t̄˜b

dΓb +

∫

Γt

du
˜
T
t t̄˜t

dΓt , (3.12)

where Γ denotes the internal CZ domain and du
˜ b

and du
˜ t

represent the displacement
perturbations at the external bottom and top edges, Γb and Γt, respectively. t̄

˜
b and

t̄
˜t

represent the external tractions at the bottom and top edges of the CZ element,
respectively. The separation perturbation dδ

˜
is derived as follows:

dδ
˜
=

∂δ
˜

∂u
˜ e

du
˜ e

+
∂δ

˜
∂h

˜

dh
˜
+
∂δ

˜
∂φ

∂φ

∂a
da = Bu,cz du

˜ e
+Bh,cz dh

˜
+B

˜ a,cz da , (3.13)

where:

B
˜ a,cz(ξ, a, h˜

) =
∂δ

˜
∂φ

∂φ

∂a
=
∂Bh,cz

∂φ

∂φ

∂a
h
˜
. (3.14)

Combining Equations (3.12) and (3.13) results in the following equilibrium equation:

du
˜
T
e f

˜ i,cz
+ dh

˜
T g

˜ i,cz
+ da bi,cz = du

˜
T
e f

˜ e,cz
+ dh

˜
T g

˜e,cz
+ da be,cz . (3.15)

In the above expression, f
˜ i,cz

, g
˜ i,cz

, and bi,cz collect the internal forces adjoint to nodal

displacements u
˜ e

, enrichment scaling factors h
˜
, and the enrichment peak position a,

respectively. External forces are collected in f
˜ e,cz

, g
˜e,cz

, and be,cz. The internal forces

are defined as:

f
˜ i,cz

=

∫

Γ

BT
u,cz t

˜
dΓ, (3.16a)

g
˜ i,cz

=

∫

Γ

BT
h,cz t

˜
dΓ, (3.16b)

bi,cz =

∫

Γ

B
˜
T
a,cz t˜

dΓ. (3.16c)

The derivation of the tangential stiffness matrix is given in Section 3.8. The adap-
tivity of the enrichment peak position requires special attention for the integration
procedure. Integration of the element can be done by either using fixed integration
points (in which case a sufficiently high number is needed) or by a lower number
of adaptive integration points. In order to calculate the stiffness matrix and internal
force components, a Gaussian integration scheme using fixed integration points is
adopted which is more efficient for the storage of history parameters in the case of
an enriched CZ element. A relatively large number of integration points (i.e. 10)
are used because of the highly non-linear nature of the traction-separation law com-
bined with the enriched kinematics. The numerical integration of CZ elements on
the basis of a Gaussian integration scheme may result in spurious oscillations of the
traction field. A low order Newton-Cotes integration scheme gives the smoothest
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results when high traction gradients exist throughout the interface element [113].
However, a Newton-Cotes integration scheme yields no improvement with respect
to the element performance when a high order integration, which is necessary here,
is applied [113]. Moreover, the oscillations observed in the global structural load-
displacement response are discretization-induced ones which are not affected by the
integration scheme. Therefore, a convenient choice of using the same integration
scheme (Gaussian) is made for both enriched interface and bulk elements (see Sec-
tion 3.3.2 for the latter). Since the CZ element is formulated in element coordinates
{n, s}, a coordinate transformation is carried out to convert all vectorial field vari-
ables to a global coordinate system {x,y}.

3.3.2 Bulk elements

The two-dimensional bulk medium is discretized by geometrically linear 4-node
quadrilateral elements as shown in Figure 3.4(a). For the bulk elements connected
to CZ elements, field variables are described in a local coordinate system with basis
{n, s} which is aligned with the CZ element coordinates (see Figure 3.4).

(a) Conventional. (b) Enriched.

Figure 3.4: A 2-D bulk element in an undeformed and deformed state.

The bulk elements adjacent to the enriched CZ elements are enriched as depicted
in Figure 3.4(b) to ensure the continuity of the displacement field in the crack front
region. The displacement field of the enriched elements is enhanced by a weighted
piecewise linear enrichment function, ψ:

u
˜
= N u

˜ e
+ ψ h

˜
, (3.17)

with

ψ = (1− η)φ . (3.18)

All interpolation functions including standard element shape functions N(ξ, η) and
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the bi-linear enrichment function φ(a, ξ) are expressed in terms of the isoparametric
coordinates ξ, η ∈ [0, 1], with ξ along the direction of the interface element connected
to the bulk element in its initial configuration. Before the global assembly of the sys-
tem, a coordinate transformation is carried out to convert all vectorial field variables
to a global coordinate system {x,y}.

The strain field in the bulk material is then given by:

ǫ
˜
= Bu,bulk u

˜
e +Bh,bulk h

˜
, (3.19)

for which further details are given in Section 3.7.

The constitutive behavior of the bulk material in a small strain/displacement frame-
work is defined as:

σ
˜
= G(ǫ

˜
) . (3.20)

Ignoring body forces acting on the medium, the virtual work principle is written as:

∫

Ω

dǫ
˜
T σ

˜
dΩ =

∫

Γ

du
˜
T t̄

˜
dΓ, (3.21)

where dǫ
˜

represents a small strain perturbation. Γ and Ω represent the circumferen-
tial boundary and the domain of the bulk element, respectively. The external forces
are denoted by t̄

˜
. The strain perturbation can then be expressed as:

dǫ
˜
=

∂ǫ
˜

∂u
˜ e

du
˜ e

+
∂ǫ

˜
∂h

˜

dh
˜
+
∂ǫ

˜
∂ψ

∂ψ

∂a
da = Bu,bulk du

˜ e
+Bh,bulk dh

˜
+B

˜ a,bulk da , (3.22)

where:

B
˜
a,bulk(ξ, η, a, h

˜
) =

∂Bh,bulk

∂a
h
˜
. (3.23)

Combining Equations (3.21) and (3.22) results in the following equilibrium equation:

du
˜
T
e f

˜ i,bulk
+ dh

˜
T g

˜ i,bulk
+ da bi,bulk = du

˜
T
e f

˜ e,bulk
+ dh

˜
T g

˜e,bulk
+ da be,bulk , (3.24)

In the above expression, f
˜ i,bulk

, g
˜ i,bulk

, and bi,bulk collect the internal forces adjoint to

the nodal displacements u
˜ e

, enrichment scaling factors h
˜
, and the enrichment peak

position a, respectively. External forces are collected by f
˜ e,bulk

, g
˜e,bulk

, and be,bulk. The

internal forces are defined as:

f
˜ i,bulk

=

∫

Ω

BT
u,bulk σ

˜
dΩ , (3.25a)

g
˜ i,bulk

=

∫

Ω

BT
h,bulk σ˜

dΩ , (3.25b)
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bi,bulk =

∫

Ω

B
˜
T
a,bulk σ˜

dΩ . (3.25c)

The derivation of the tangential stiffness matrix is given in Section 3.8. In order to
calculate the stiffness matrix and internal force components, a Gauss numerical inte-
gration scheme is adopted. Since there is no history parameter in linear elastic bulk
elements to keep track of, it is not required to use a high number of fixed integration
points in an enriched element. Instead, the integration is carried out in both parts
of the element separated by the enrichment peak with as few integration points as
required (i.e. 2× 2 integration points in each part) [109].

3.4 Numerical aspects of the enrichment

A simplified peel-off test, for which an analytical solution exists [109], is revisited
to illustrate important numerical aspects of the enrichment which leads to a deeper
insight in its efficiency. The adaptivity of the proposed enrichment and the penalty
formulation used to ensure a unique solution are discussed in detail.

A linear elastic bulk material is pulled from a rigid substrate as shown in Figure 3.5.
A bi-linear TSL as introduced in Section 3.2 and characterized by Gc = 0.25N/mm,
t0 = 100MPa, λ0 = 1.0µm, and without shear tractions (β = 0) is used in the in-
terface. The bulk material is characterized by a stiffness of Cnn = 45GPa in normal
direction and zero stiffness for the other components of the elasticity matrix; there-
fore, all displacements and/or separations occur in the normal direction. A normal
displacement is incrementally prescribed, distributed linearly along the upper edge
of the bulk layer where the final prescribed displacement of the left and right top
edge of the bulk layer are given by un,L = 12µm and un,R = 4µm, respectively.

Figure 3.5: Simplified mode I delamination problem; geometry and boundary condi-
tions.

The traction-separation law considered here is assumed to be reversible so that the
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total work done in the interface before complete failure remains recoverable. There-
fore, a total potential energy concept applies to this simplified example which facili-
tates a comprehensive study of the variation of the total potential with respect to the
enrichment peak position. However, the arguments based on the reversible law do
apply when unloading does not occur within the process zone even if the assumed
constitutive law is irreversible. For this reason, the principles that are derived in this
section apply to the general numerical example of the next section and to other cases
when unloading does not occur anywhere within the process zone without affecting
the validity of the analysis.

In line with this purpose and in contrast to [109], only one enriched or one non-
enriched bulk/CZ element is used to discretize the domain. Although the enrich-
ment peak position and scaling factors are driven by the deformation process, i.e.
their values are determined during an incremental/iterative approach, the behavior
of the system is first analyzed for a suitably high and well-spaced number of enrich-
ment peak positions to investigate the variation of the total potential, Π, with respect
to the new degree of freedom where the upper edge linear displacement is prescribed
incrementally (un,L ∈ [0 , 12µm]). In this variational context, the solution minimizes
the total potential of the system, which here consists of the strain energy stored in the
bulk layer and the internal work done in the interface. Figure 3.6 shows the optimum
enrichment peak position a, throughout the delamination process obtained by direct
minimization of the total potential.

Figure 3.6: Optimum position of the enrichment peak throughout the deformation
process (symbols ♦ indicate the positions for which the total potential
variations, opening profile, and traction profile are shown in Figure 3.7).

Different separation regimes are identified, during which delamination progresses
through the interface (see Figure 3.6). Initially, the whole interface remains intact
(λ < λc), which results in a linear separation and traction profile along the entire in-
terface and no variation of the total potential with respect to the enrichment peak po-
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sition (see Figure 3.7(a)). Later, in regime II, the interface starts to soften from the left
edge while the right part is still intact. For the bi-linear separation profile depicted
in Figure 3.7(b), the total potential is minimized when the enrichment peak position
is at the kink point in the analytical separation profile. The analytical traction pro-
file along the interface is captured exactly with the bi-linear enrichment, whereas the
non-enriched solution is not a good approximation. The analytical solution for fur-
ther delamination growth (regime III) shows a tri-linear separation profile in which
the left kink separates the completely failed part (zero cohesive traction) from the
softening part and the right kink separates the softening part from the intact part of
the interface. In this regime, it is obvious that the analytical profile cannot be cap-
tured exactly with a bi-linear enrichment. As can be seen in Figures 3.7(c) and 3.7(d),
the total potential (as a function of the enrichment peak position) in this separation
regime is non-convex, with two local minima. The minimum related to the right kink
point is moving toward the right edge, whereas the second minimum (related to the
left kink point) enters from the left edge. Even though still more efficient than the
non-enriched solution, the enriched solution now only approximates the tri-linear
analytical traction profile. For the last delamination stage (IV) before complete inter-
face failure, the analytical solution shows again a bi-linear separation profile, where
the right part of the interface is still softening (see Figure 3.7(e)). The total potential
(expressed with respect to the enrichment peak position) has again one minimum
that coincides with the analytical separation profile kink point. The analytical trac-
tion profile along the interface is again captured exactly with the bi-linear numerical
solution, while the non-enriched solution falls short.

Some important numerical aspects of the implementation of the enrichment, espe-
cially related to the case where both or none of the TSL characteristic kink points are
present in a single CZ element or a transition between different separation regimes
occurs, are to be discussed. Special attention is also paid to keeping the enrichment
peak position inside the element boundaries.

In case of a linear separation profile in the analytical solution (Figure 3.7(a)), no op-
timal enrichment peak position exists (regime I in Figure 3.6), i.e. the enrichment is
not needed. In such a case, parameter a does not have any real meaning and a sin-
gular matrix is obtained in practice. In order to ensure a unique solution in this case,
a penalty term, P1, based on the enrichment peak position, a, is added to the total
potential (see Figure 3.8) defined as:

P1 = c1 (a− ā)2 , (3.26)

where c1 is a sufficiently small penalty factor that does not significantly influence
the solution if the enrichment is active in the CZ element. The value of ā is incre-
mentally adapted in order to keep the influence of the penalty small throughout the
deformation process:

ān = a
(c)
n−1 , (3.27)
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(a) un,L = 2µm (regime I).

(b) un,L = 4µm (regime II).

(c) un,L = 6.7µm (regime III).

(d) un,L = 7.1µm (regime III).

(e) un,L = 10.5µm (regime IV).

Figure 3.7: Total potential expressed with respect to the enrichment peak position
(left), opening profile in the analytical and the numerical solution (mid-
dle), and traction profile in the analytical and the numerical solutions
(right) in different stages of delamination growth.
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where a
(c)
n−1 is the last converged value for the enrichment peak position within an

incremental procedure. In addition, the initial estimate for an in a Newton-Raphson
solution procedure for increment n is set equal to ān. The initial position of ā is
chosen close to the left or right edge of the enriched interface element depending on
from which side delamination enters the element. Note that it is not always known
a priori but can usually be obtained from the opening profile in the early stages of
loading. To increase the efficiency, an adaptive enrichment strategy is used where
only elements near the process zone are enriched (see [109]).

A tri-linear separation profile within a single interface element can not be captured
with the bi-linear profile of the numerical approximation. Consequently, as can be
seen in Figures 3.7(c) and 3.7(d), the potential of the system with respect to the en-
richment peak position is non-convex, with two local minima. In order to capture
the second kink point entering the element, ā and the initial estimate for a are dis-
cretely shifted to the vicinity of the other edge (ā = 0.1) when the first enrichment
peak position is approaching the right edge of the interface element. Increasing the
penalty coefficient and fixing ā to an arbitrary position, i.e. in the middle of the ele-
ment, is another possible solution for the case where both characteristic kink points
of the TSL are contained within a single interface element. The proposed solution
on the basis of Equation (3.26), takes benefit of the local convergence radius of the
Newton-Raphson method and the local convex character of each minimum in Π.

The enrichment function becomes singular when the enrichment peak approaches
the interface element boundaries (a = 0 or a = 1). In [109], a transformation to
an auxiliary parameter z as the degree of freedom (instead of the enrichment peak
position a) has been proposed to handle this problem. In doing so, a was defined
as an arctan function of the auxiliary parameter, which automatically enforces the
constraint a ∈ (0, 1). However, in that approach, the non-linear dependence of the
actual solution on the auxiliary degree of freedom varies considerably throughout
the domain, which slows down the convergence rate. Application of the auxiliary
parameter limits the enrichment adaptivity to the vicinity of the center of the element
where its relation with the enrichment peak position is almost linear. To remedy this,
another penalty P2 is used, which becomes large near the boundaries of enriched CZ
elements, as shown in Figure 3.8, ensuring that the peak of the bi-linear enrichment
function stays within the element boundaries:

P2 =

{

c2 (a− āL)
2 for a 6 āL

c2 (a− āR)
2 for a > āR ,

(3.28)

where āL and āR are fixed positions close to the left and right edges of the enriched
interface element, i.e. āL = 0.1 and āR = 0.9, respectively, and c2 is a sufficiently
large penalty factor to keep the enrichment peak position away from the element
boundaries. In fact, there is no need to let the enrichment peak position approach
the element boundaries because the effect of the enrichment becomes negligible then
and nodal interpolations suffice for the numerical approximation. In addition to this
penalty, for values of the degree of freedom a outside of the domain [āL, āR], the
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effective enrichment peak position used in Equation (3.8c) is kept at the edge of this
domain so that the total potential of the system depends only on the penalty terms
P1 and P2. The resulting total potential of the system is then defined by:

Π̄ = Π + P1 + P2 . (3.29)

Figure 3.8: Schematic representation of the penalty terms applied to the degree of
freedom a.

The numerical procedure outlined in this section enables a full adaptivity of the pro-
posed enrichment in the regimes where the enrichment is meaningful (see the nu-
merical solution in Figure 3.7), whereas it stabilizes the solution in other regimes.

In order to enhance the efficiency of the proposed enrichment, an adaptive enrich-
ment strategy can be employed to enrich only the elements located in the process
zone. At the end of each increment, the effective separation throughout CZ elements
is monitored and a suitable choice is made on the elements to be enriched. The strat-
egy is fully described in [109] for the normal opening only.

3.5 Mixed-mode application

In order to evaluate the performance of the improved enriched CZM in a mixed-
mode delamination problem, a full 2-D peel-off test under plane strain conditions is
considered. In this example, a linear elastic bulk strip with length L, height H , and
width W is pulled from a rigid substrate, see Figure 3.9(a). In the interface between
the strip and the substrate, an initial crack with length Lc is inserted. A normal
displacement up to u = 3mm is prescribed at the pre-cracked end of the strip.

The bulk layer is discretized by a regular mesh of 4 × 10 elements along the cracked
length and a finer regular mesh of 4 × 50 elements along the rest of the strip. The
interface is initially discretized by 50 CZ elements characterized by the bi-linear TSL
introduced in Section 3.2. Also more refined interface discretizations are used. The
4-node linear elements suffer from an intrinsic inefficiency in describing the bending
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(a) Geometry, boundary conditions, discretization; 50 CZ elements
along the interface.

(b) Discretization; 100 CZ elements along the interface.

(c) Discretization; 200 CZ elements along the interface.

Figure 3.9: Mixed-mode delamination problem; geometry, boundary conditions, and
mesh refinement schemes.

behavior. However, the main focus here is on the discretization at the level of the
interface and examining the performance of the proposed enrichment. In order to
eliminate the effect of the bending approximation in the comparison of interface dis-
cretizations, only the bulk element layer adjacent to the interface is refined by factors
of 2 and 4 (see Figures 3.9(b) and 3.9(c), respectively).

Bulk material data and CZM parameters are given in Table 3.1. The small character-
istic separation, λ0, relative to the structural dimensions implies a relatively brittle
interface. For these bulk material properties and CZM parameters, the mesh with
50 interface elements is relatively coarse and therefore the global load-displacement
response of the system shows severe oscillations when conventional CZ elements
are used, as can be seen in Figure 3.10. In the figure, each oscillation represents the
failure of one CZ element.

Since a standard displacement-controlled procedure with an iterative Newton-
Raphson solution method fails to converge in the case of snap-backs, a path-
following technique has to be adopted. In the case of delamination analysis in brittle
interfaces, the problem is governed by a strong deformation localization for which
local arc-length control methods are well suited. Here, a weighted sub-plane control
(see [45, 46]) on the rate of opening in the interface with the cylindrical arc-length
method, as introduced in [27], is used to follow the oscillatory path.
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Table 3.1: Bulk material data and CZM parameters.

Young’s modulus, E (GPa) 100
Poisson’s ratio, ν 0.3
Fracture toughness, Gc (N/mm) 0.25
Interface strength, t0 (MPa) 20
Characteristic separation, λ0 (mm) 0.005
Maximum traction ratio, β 1.0

Table 3.2 shows that a large number of increments/iterations are needed to track the
non-physical oscillations resulting from a coarse discretization of the brittle interface.
Also, the robustness of conventional CZMs is limited. Consequently, achieving con-
vergence can not be guaranteed in the case of very sharp snap-backs even at the cost
of extremely small increment steps.

Conventional CZM; 100 CZ elements

Conventional CZM: 200 CZ elements

Enriched CZM; 50 CZ elements

Conventional CZM; 50 CZ elements
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Figure 3.10: Force-displacement responses of the mixed-mode peel-off problem.

As can be seen in Figure 3.10, using more CZ elements smoothens the global re-
sponse of the unenriched model. However, as can be seen in Table 3.2, a standard
Newton-Raphson method still fails to converge at u = 1.72mm in the case of two
times refinement and application of the path-following approach becomes necessary
for a full simulation. A more refined mesh using 200 CZ elements at the interface
smoothens the global response so that a standard Newton-Raphson method can be
used for the simulation of the mixed-mode delamination problem at the cost of a
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noticeable increase in the number of degrees of freedom (see Table 3.2).

Table 3.2: Numerical performance of different algorithms.

CZ model Number of
CZ

elements

Total
number of
increments

Total
number of
iterations

nDOF umax

(mm)

Conventional 50 ‡ 3740 7705 712 3.00
100 ‡ 1425 3059 1062 3.00
100 † (119) § (476) § 1062 1.72
200 † 203 758 1768 3.00

Enriched 50 † 153 610 757 3.00
† Solved by the standard Newton-Raphson method.
‡ Solved by a local arc-length control method.
§ The final displacement was not reached since the simulation failed prematurely.

Application of the proposed enrichment together with the improvements, especially
on the penalty formulation, smoothens the path to a level that can be followed by
a standard Newton-Raphson method, even for the most coarse mesh, which signifi-
cantly increases the efficiency of the CZM. As can be seen in Figure 3.10, some minor
oscillations are left in the enriched coarse mesh while the maximum number of de-
grees of freedom encountered to complete the maximum prescribed displacement is
only slightly higher than that of a non-enriched coarse mesh solved by a local path-
following technique.

Since a lack of adaptivity implies a local refinement by a factor of only two, a major
increase in the enrichment adaptivity due to the current developments constitutes a
substantial improvement with respect to the first model published in [109]. In fact,
the enriched model behaves in a more smooth and efficient manner compared to
refinement remedies while preserving the lowest computational effort by eliminat-
ing the need for expensive mesh refinements, and allowing for a standard solution
method.

3.6 Discussion and conclusion

Cohesive zone models are commonly used to simulate initiation and propagation
of delamination, whereby enough cohesive zone (CZ) elements should be used in
the process zone to ensure a correct description of the opening profile which re-
sults in a more stable solution. Hence, a fine mesh is necessary for brittle interfaces,
where the process zone size is small compared to other structural dimensions. A fine
mesh typically increases the computational cost whereas a coarse discretization re-
sults in snap-backs in the global load-displacement response of the system (leading
to instabilities with a standard iterative Newton-Raphson method). The oscillations
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can be followed by using path-following techniques with a high computational cost
to trace all non-physical oscillations. Elimination or reduction of these oscillations
in the global load-displacement response, with a solution that preserves a coarse
discretization scheme, obviously enhances the efficiency and robustness of cohesive
zone models.

In this chapter, an adaptive hierarchical extension is used to enrich the separation
approximation in the process zone of an interface undergoing a mixed-mode delam-
ination. The interface constitutive law is formulated within a damage mechanics
framework which takes the irreversibility of the delamination process into account.
The elaborated bi-linear traction-separation law accounts for tractions in both normal
and shear directions. A bi-linear function with a mobile enrichment peak is used to
enhance the linear separation approximation within a CZ element. The adaptivity of
the peak of the enrichment function within individual CZ elements locally improves
the discretization according to the physics governing the problem.

The formulation of enriched CZ and bulk elements is derived in a full two-
dimensional finite element framework. While being simple to implement, linear
4-node bulk elements do not show a high performance in delamination problems
which involve bending. In such cases, kinematically enhanced or higher order ele-
ments are more accurate; however, these elements are not used in this work to avoid
extra complications and to keep the focus on the role of the enrichment in yielding
a more accurate separation approximation in the process zone of a cohesive crack
while the proposed enrichment or higher order enrichments of this type can be ap-
plied to higher order elements as well which can be useful in a certain class of prob-
lems.

Important numerical aspects of the enrichment are discussed on the basis of a sim-
plified mode I delamination problem. The adaptivity of the enrichment and its re-
lation with the total potential of the system have been investigated which results
in a considerable improvement of the enrichment adaptivity and leads to a further
minimization of the discretization-induced oscillations. A new penalty formulation
is used to ensure a unique solution and to keep the enrichment within the element
boundaries. The latter eliminates the need for a transformation to an auxiliary pa-
rameter as done in [109] and improves the stability of the methodology by prevent-
ing extra convergence problems due to the non-linearity that was being added to
the non-linear system. It is also shown that a tri-linear separation profile obtained
from the analytical solution is not captured exactly and that multiple minima occur
in the non-convex total potential of the system. However, a procedure is proposed to
handle the non-convex nature and tracing of the minima.

The mode-mixity is taken into account in a peel-off example which is solved in a full
two-dimensional finite element framework. It is shown that the proposed enrich-
ment in combination with a coarse mesh significantly enhances the efficiency of the
cohesive zone model by smoothening the global load-displacement response of the
system while it can be used in general two-dimensional applications. In fact, applica-
tion of the elaborated enrichment eliminates the need for a further mesh refinement
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while keeping the standard Newton-Raphson approach applicable in the case of a
relatively coarse mesh which saves considerable computational costs. Extension of
the proposed enrichment scheme to delamination in a three-dimensional finite el-
ement framework is conceptually possible but not straightforward. It involves the
adaptivity of a crack front as a line in a planar interface. This subject is addressed in
the following chapter.
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3.7 Appendix A: Element formulation

In this appendix, the formulation of Section 3.3 is given in more detail.

3.7.1 Cohesive zone elements

Equation (3.11) for the separation along an interface element can be written as:

δ
˜
=

[

δn
δs

]

= Bu,cz u
˜ e

+Bh,cz h
˜
, (3.30)

with

Bu,cz(ξ) =

[

−NL 0 −NR 0 NR 0 NL 0
0 −NL 0 −NR 0 NR 0 NL

]

, (3.31a)

u
˜ e

=
[

u1,n u1,s u2,n u2,s u3,n u3,s u4,n u4,s
]T

, (3.31b)

Bh,cz(ξ, a) = φ

[

−1 0 1 0
0 −1 0 1

]

, (3.31c)

h
˜
=
[

hb,n hb,s ht,n ht,s
]T

. (3.31d)

3.7.2 Bulk elements

Considering Equations (3.17) and (3.19) for the displacement field and strain in the
bulk element, the following can be written:

N =

[

N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]

, (3.32a)

u
˜ e

=
[

u1,n u1,s u2,n u2,s u3,n u3,s u4,n u4,s
]T
, (3.32b)

h
˜
=
[

hn hs
]T
, (3.32c)

Bu,bulk(ξ, η) =















∂

∂n
0

0
∂

∂s
∂

∂s

∂

∂n















N , (3.32d)
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Bh,bulk(ξ, η, a) =















∂ψ

∂n
0

0
∂ψ

∂s
∂ψ

∂s

∂ψ

∂n















. (3.32e)

The interpolation and enrichment functions are defined by using isoparametric co-
ordinates ξ, η ∈ [0, 1], with ξ along the direction of the interface:

N1 = (1− ξ) (1− η) , (3.33a)

N2 = ξ (1− η) , (3.33b)

N3 = ξ η , (3.33c)

N4 = (1− ξ) η , (3.33d)

ψ = (1− η)φ . (3.33e)

It should be noted that these interpolation functions deviate from a standard isopara-
metric formulation.

3.8 Appendix B: Tangential stiffness matrix

3.8.1 Cohesive zone elements

The tangential stiffness matrix of the CZ element used in the non-linear solution
procedure contains the derivatives of the internal forces with respect to the element
degrees of freedom:

Kcz =





Kuu,cz Kuh,cz K
˜ ua,cz

Khu,cz Khh,cz K
˜ ha,cz

Kau,cz Kah,cz Kaa,cz



 , (3.34a)

where:

Kuu,cz =
∂f

˜
i,cz

∂u
˜

=

∫

Γ

∂

∂u
˜

(

BT
u,cz t˜

)

dΓ =

∫

Γ

BT
u,cz

∂t
˜

∂u
˜

dΓ

=

∫

Γ

BT
u,czHcz Bu,cz dΓ,

(3.34b)

Khu,cz =
∂g

˜ i,cz
∂u

˜

=

∫

Γ

∂

∂u
˜

(

BT
h,cz t

˜

)

dΓ =

∫

Γ

BT
h,cz

∂t
˜

∂u
˜

dΓ

=

∫

Γ

BT
h,czHcz Bu,cz dΓ,

(3.34c)
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Kuh,cz = KT
hu,cz , (3.34d)

Kau,cz =
∂bi,cz
∂u

˜

=

∫

Γ

∂

∂u
˜

(

B
˜
T
a,cz t˜

)

dΓ =

∫

Γ

B
˜
T
a,cz

∂t
˜

∂u
˜

dΓ

=

∫

Γ

B
˜
T
a,czHcz Bu,cz dΓ,

(3.34e)

K
˜ ua,cz = KT

au,cz , (3.34f)

Khh,cz =
∂g

˜ i,cz
∂h

˜

=

∫

Γ

∂

∂h
˜

(

BT
h,cz t

˜

)

dΓ =

∫

Γ

BT
h,cz

∂t
˜

∂h
˜

dΓ

=

∫

Γ

BT
h,czHcz Bh,cz dΓ,

(3.34g)

Kah,cz =
∂bi,cz
∂h

˜

=

∫

Γ

∂

∂h
˜

(

B
˜
T
a,cz t˜

)

dΓ =

∫

Γ

(

B
˜
T
a,cz

∂t
˜

∂h
˜

+ t
˜
T
∂B

˜ a,cz

∂h
˜

)

dΓ

=

∫

Γ

(

B
˜
T
a,czHcz Bh,cz + t

˜
T
∂Bh,cz

∂a

)

dΓ,

(3.34h)

K
˜ ha,cz = KT

ah,cz , (3.34i)

Kaa,cz =
∂bi,cz
∂a

=

∫

Γ

∂

∂a

(

B
˜
T
a,cz t˜

)

dΓ =

∫

Γ

(

B
˜
T
a,cz

∂t
˜

∂a
+ t

˜
T
∂B

˜ a,cz

∂a

)

dΓ

=

∫

Γ

(

B
˜
T
a,czHcz B

˜ a,cz + t
˜
T
∂B

˜ a,cz

∂a

)

dΓ.

(3.34j)

The following derivatives were used in the above formulation:

B
˜ a,cz =

∂φ

∂a

[

−1 0 1 0
0 −1 0 1

]

h
˜
, (3.35a)

∂Bh,cz

∂a
=
∂φ

∂a

[

−1 0 1 0
0 −1 0 1

]

, (3.35b)

∂B
˜ a,cz

∂a
=
∂2φ

∂a2

[

−1 0 1 0
0 −1 0 1

]

h
˜
. (3.35c)

The CZ stiffness matrix, Hcz, is derived as follows:

Hcz =
∂t

˜
∂δ

˜

+
∂t

˜
∂d

∂d

∂λ

∂λ

∂δ
˜

, (3.36)

where

∂t
˜
∂δ

˜

=







∂tn
∂δn

∂tn
∂δs

∂ts
∂δn

∂ts
∂δs






= k0

[

1− dH(δn) 0
0 (1− d) β2

]

, (3.37a)
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∂t
˜

∂d
= −k0

[

〈δn〉
β2 δs

]

, (3.37b)

∂d

∂λ
=















0 if λmax < λ0

F
1

λ2max

λf λ0
λf − λ0

if λ0 6 λmax 6 λf

0 if λmax > λf ,

(3.37c)

∂λ

∂δ
˜

=
1

λ

[

〈δn〉 β2 δs
]

. (3.37d)

In the above formulation, H is the Heaviside function. The load function is denoted
by F which equals 1 in loading and 0 otherwise. The rest of the parameters have
been addressed in Section 3.2.

3.8.2 Bulk elements

In general, there is no restriction on the constitutive behavior of the bulk material,
but here for the sake of simplicity, a linear elastic material is assumed for which the
constitutive relation (Equation (3.20)) can be stated as follows:

σ
˜
= Hbulk ǫ

˜
, (3.38)

where Hbulk is the material elasticity matrix in the case of plane strain conditions:

Hbulk =
E

(1 + ν)(1− 2 ν)





1− ν ν 0
ν 1− ν 0
0 0 (1− 2 ν)/2



 . (3.39)

with E the Young’s modulus and ν the Poisson’s ratio.

The tangential stiffness matrix of the bulk element contains the derivatives of the
internal forces with respect to the element degrees of freedom:

Kbulk =





Kuu,bulk Kuh,bulk K
˜ ua,bulk

Khu,bulk Khh,bulk K
˜ ha,bulk

Kau,bulk Kah,bulk Kaa,bulk



 , (3.40a)

where:

Kuu,bulk =
∂f

˜ i,bulk
∂u

˜

=

∫

Ω

BT
u,bulkHbulk Bu,bulk dΩ , (3.40b)

Kuh,bulk =
∂f

˜ i,bulk
∂h

˜

=

∫

Ω

BT
u,bulkHbulk Bh,bulk dΩ , (3.40c)

Khu,bulk = KT
uh,bulk , (3.40d)
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K
˜ ua,bulk =

∂f
˜ i,bulk
∂a

=

∫

Ω

BT
u,bulkHbulk B

˜ a,bulk dΩ , (3.40e)

Kau,bulk = K
˜
T
ua,bulk , (3.40f)

Khh,bulk =
∂g

˜
i,bulk

∂h
˜

=

∫

Ω

BT
h,bulkHbulk Bh,bulk dΩ , (3.40g)

K
˜ ha,bulk =

∂g
˜ i,bulk
∂a

=

∫

Ω

(

∂BT
h,bulk

∂a
σ
˜
+BT

h,bulkHbulk B
˜ a,bulk

)

dΩ , (3.40h)

Kah,bulk = K
˜
T
ha,bulk , (3.40i)

Kaa,bulk =
∂bi,bulk
∂a

=

∫

Ω

∂B
˜
T
a,bulk

∂a
σ
˜

dΩ+

∫

Ω

B
˜
T
a,bulkHbulk B

˜
a,bulk dΩ . (3.40j)

In the above formulation:

B
˜ a,bulk =

















∂2ψ

∂n ∂a
0

0
∂2ψ

∂s ∂a
∂2ψ

∂s ∂a

∂2ψ

∂n ∂a

















h
˜
, (3.41a)

∂BT
h,bulk

∂a
=









∂2ψ

∂n ∂a
0

∂2ψ

∂s ∂a

0
∂2ψ

∂s ∂a

∂2ψ

∂n ∂a









, (3.41b)

∂B
˜
T
a,bulk

∂a
= h

˜
T









∂3ψ

∂n ∂a2
0

∂3ψ

∂s ∂a2

0
∂3ψ

∂s ∂a2
∂3ψ

∂n ∂a2









. (3.41c)



CHAPTER FOUR

A three-dimensional self-adaptive
cohesive zone model 1

Abstract

Discrete crack models with cohesive binding forces in the fracture process zone have
been widely used to address failure in quasi-brittle materials and interfaces. How-
ever, the numerical concerns and limitations stemming from the application of inter-
face cohesive zone models in a quasi-static finite element framework considerably
increase as the relative size of the process zone decreases. An excessively fine mesh
is required in the process zone to accurately resolve the distribution of tractions in a
relatively small moving zone. With a moderate mesh size, inefficient path-following
techniques have to be employed to trace the local discretization-induced snap-backs.
In order to increase the applicability of cohesive zone models by reducing their nu-
merical deficiencies, a self-adaptive finite element framework is proposed, based on
a hierarchical enrichment of the standard elements. With this approach, the planar
mixed-mode crack growth in a general three-dimensional continuum, discretized by
a coarse mesh, can be modeled while the set of equations of the non-linear system is
solved by a standard Newton-Raphson iterative procedure. This hierarchical scheme
was found to be most effective in reducing the oscillatory behavior of the global re-
sponse.

1Reproduced from: M. Samimi, J.A.W. van Dommelen, and M.G.D Geers. A three-dimensional self-
adaptive cohesive zone model for interfacial delamination. To be submitted.
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4.1 Introduction

Integration of dissimilar materials in structural components has gained consider-
able attraction in the last several decades, giving unique mechanical properties in
different engineering applications. However, the presence of different interfaces in
laminated structures triggers interfacial failure, mainly in the form of delamination,
which results in malfunction or failure at the global level. Therefore, efficient and
robust numerical models, supported by dedicated experiments to characterize the
interface properties, are required for a prior assessment of the system reliability and
performance.

Based on the early work of Griffith and Irwin on perfectly brittle materials [51, 61],
linear elastic fracture mechanics (LEFM) based models have been developed for the
numerical simulation of crack propagation [23, 72, 93, 101]. This class of methods
has been extensively used in different applications from piezoelectric materials [92]
to functionally graded coatings [9]. While different criteria such as the maximum
circumferential stress, maximum strain energy release rate, and the minimum strain
energy density [19,31], have been proposed and successfully applied to approximate
crack propagation, LEFM approaches typically suffer from the lack of a criterion to
predict crack initiation [140]. Moreover, capturing the propagation of multiple cracks
is not straightforward in this framework [103].

Avoiding a persistent mesh refinement at the tip of a propagating crack is crucial for
the practical applicability of any numerical methodology tackling this phenomenon.
Therefore, motivated by the exploitation of the partition of unity concept [38, 39, 77],
extended finite elements (X-FEM) have been developed [13]. The analytical solution
for the singular field in an elastic solid has been used in the interpolation of finite
elements around the crack tip, while a Heaviside function is used to account for the
strong discontinuity inside the cracked elements [84]. An enhanced deformation ap-
proximation at the crack faces and the crack tip allows to use a relatively coarse dis-
cretization. The formulation was later extended to three-dimensional crack growth
and multiple branched cracks [32,117]. X-FEM has also been used for the simulation
of cohesive crack growth [26, 76, 83, 134, 136].

In another attempt to reduce the mesh size sensitivity in analyzing localization in
strain softening materials, and inspired by earlier work on embedded weak disconti-
nuities [14, 90], the embedded localization line concept has been developed where a
discontinuity line characterized by a traction-displacement law is introduced inside
the element [41]. The concept of elements with embedded discontinuities was further
extended and generalized to different types of finite elements to form another class
of discrete crack approaches [68,75,87,88]. Embedded discontinuity approaches have
been classified within a unified framework [64,66], and their variational formulation
as well as numerical implementation aspects have been compared to X-FEM [65,89].
In contrast with X-FEM, the additional degrees of freedom in an element with an
embedded discontinuity are condensed at the element level.

Another approach has been proposed where phantom elements/nodes are super-
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posed on the existing mesh, allowing the discontinuity to grow at arbitrary locations
inside the elements [54]. Using standard finite element basis functions for both ex-
isting and phantom nodes, the methodology has been applied for the simulation of
cohesive cracks in two and three-dimensional continua [78, 79]. While being equiva-
lent to X-FEM in the sense that additional degrees of freedom are introduced at the
enriched nodes, this approach is simpler to implement in commercial finite element
codes and more practical to use in explicit dynamic analyses [115]. As an improve-
ment to the original approach, where a discontinuity crosses the entire element, a
new crack tip element formulation allows the crack tip to be placed inside the ele-
ment [96].

For most of the aforementioned methodologies, the fracture process zone size has
to be negligibly small compared to any structural dimension which is apparently
not valid for many quasi-brittle materials [37, 137]. In such cases, the fracture pro-
cess zone and the embedded cohesive tractions have to be modeled explicitly. Co-
hesive zone models have been developed over the past decades to address this is-
sue [10, 40, 58, 85]. Using cohesive zone models, the non-physical singular stress
field at the crack tip is eliminated by introducing a cohesive zone in the process
zone. The decohesion mechanism is characterized by a phenomenological traction-
separation law reflecting the average micromechanical behavior in the degradation
process [24, 35]. Cohesive zone models adequately predict the initiation of a crack
and its subsequent growth [30], while they can also be used for multiple interacting
crack problems [100].

Consistent with the modeling of strong discontinuities [86], cohesive cracks can be
simply modeled within a continuum finite element framework by adding extra de-
grees of freedom along the discontinuity via interface elements [60, 104]. For an ex-
isting interface, cohesive zone elements are typically inserted between continuum
elements. Since the potential crack paths should be identified a priori, this approach
is well suited for the simulation of interfacial delamination in layered structures with
known interfaces [5, 6, 21, 111, 131].

The fracture process zone has to be resolved sufficiently accurately to ensure a
smooth redistribution of energy in the bulk when softening occurs in the inter-
face [3,16,22,44,55,82,119,122,124]. Spurious oscillations occur for coarse discretiza-
tions if the interfacial behavior is rather brittle and the process zone is quite small
compared to the structural dimensions. To track these oscillations, expensive path-
following techniques are required to enable the Newton-Raphson iterative scheme to
follow discretization-induced snap-backs in the global load-displacement response.

Global path-following techniques have been developed where a constraint equation
is added to the set of linearized equations to control the load step size [27, 98, 102].
Improved cylindrical arc-length control methods can overcome the non-smoothness
even in the case of relatively sharp snap-backs [57]. However, global approaches
where all degrees of freedom contribute equally to the constraint equation, are not
efficient when deformation is highly localized, i.e. in the process zone of a cohesive
crack in a quasi-brittle body. Revising the constraint equation involving only degrees
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of freedom related to the localized zone significantly enhances the performance of
these methods [34, 45, 46, 110]. Due to its monotonically increasing nature, the crack
length has often been used as the control parameter to detect snap-backs [17]. The
combination of local path following techniques and line searches can be used at the
cost of expensive computations [4]. An efficient path-following constraint based on
the energy dissipated in the failure process has been recently presented [53].

The applicability of quasi-brittle cohesive zone models is compromised by the exten-
sive computations required to guarantee a stable numerical solution. To address this
problem, there have been some proposals to increase the robustness of these models
via a local enrichment of the elements within or in the vicinity of the process zone by
higher order interpolation functions [28, 52]. However, the fixed functions used do
not adequately address the adaptivity of the process zone within the interface. Re-
cently, a variational X-FEM formulation has been proposed in a two-dimensional do-
main so that the crack propagation direction and the length of the discontinuity seg-
ment created in each step of an incremental procedure were regarded as additional
degrees of freedom for which their values could be determined by minimization of
the total energy of the global system [80, 81]. However, extension of the proposed
strategy to three-dimensional cases would be quite cumbersome, at least from an im-
plementation point of view. Moreover, in the case of known interfaces, an X-FEM
based approach is not required.

Cohesive zone models were formulated within a self-adaptive finite element frame-
work where the interface and bulk elements in the fracture process zone have been
enriched to give a better approximation of the local delamination process [109]. Ap-
plication of an adaptive hierarchical extension of the conventional finite element in-
terpolation functions refines the discretization where the physics of the underlying
problem needs it. The enrichment degrees of freedom were calculated by solving the
global system of equations. The formulation has been extended to simulate mixed-
mode delamination [106]. Application of the elaborated enrichment eliminates the
need for a further mesh refinement while keeping the standard Newton-Raphson
approach applicable in the case of a relatively coarse mesh which saves considerable
computational costs.

In this chapter, the self-adaptive finite element formulation presented in [106, 109] is
extended to cover delamination problems in a three-dimensional context. Extending
2D concepts to 3D, a practical and efficient enrichment strategy in planar interfaces
is proposed, where all edges of an interface element are enriched by adding adaptive
nodes. The uniqueness of the solution is guaranteed by adding appropriate penal-
ties to the system [106]. The displacement fields in all bulk elements neighboring en-
riched interface elements are also enhanced. Straight delamination in a peel-off test
with a crack front parallel to element boundaries is addressed first and successfully
modeled within this framework. The performance of the developed methodology
is assessed qualitatively by showing the global load-displacement responses of the
structure undergoing a delamination process. The fluctuations have been scrutinized
by identifying their main oscillatory components and their associated amplitudes.



4.2 SELF-ADAPTIVE 3D FINITE ELEMENTS 61

In general, the hierarchical formulation allows for a general application of the
methodology to three-dimensional crack growth problems. In the case of delami-
nation with an oblique front (not aligned with element edges), adding hierarchical
extensions to conventional finite element interpolation functions does not preserve
a constant crack front with a sharp kink in the separation profile of a cohesive crack
when propagating through the element. In order to analyze this property, an alterna-
tive basis of finite element interpolation functions is used as well and made depen-
dent on the position of the adaptive nodes. The performance of this non-hierarchical
scheme is evaluated and compared to the hierarchical framework. A drawback of
this non-hierarchical strategy is the replacement of the conventional shape functions
and the increase of the number of global degrees of freedom. Analyzing both op-
tions, the hierarchical enrichment is found to be most efficient in reducing oscilla-
tions in the global force-displacement response, with an acceptable accuracy at the
crack front.

The application of self-adaptive finite elements enhances the robustness and effi-
ciency of the cohesive zone modeling by alleviating the need for a fine discretiza-
tion in the case of brittle interfaces. This chapter makes the methodology applicable
to three-dimensional interfacial delamination problems with arbitrary crack growth
patterns. In general, the behavior of an enriched model, either brittle or ductile,
is significantly more smooth compared to its non-enriched counterpart. Therefore,
standard Newton-Raphson iterative schemes remain applicable when the exact solu-
tion of the problem does not contain limit points, including a considerable reduction
in computational effort. The chapter finishes with a general conclusion and perspec-
tive on the proposed 3D methodology.

4.2 Self-adaptive 3D finite elements

Using interface cohesive zone models within a finite element framework, the domain
is commonly discretized by bulk and interface elements. While an arbitrary stress-
strain (σ-ǫ) relationship is employed to describe the bulk behavior, the decohesion
process is typically characterized by a traction-separation (t-δ) law within interface
elements [142].

Ignoring body forces acting on the domain Ω, the virtual work principle leads to the
global equilibrium equation:

∫

Ω

dǫ
˜
T σ

˜
dΩ +

∫

Γc

dδ
˜
T t

˜
dΓc =

∫

Γt

du
˜
T t̄

˜
dΓt , (4.1)

where dǫ
˜

and dδ
˜

represent small strain and small separation perturbations in the
bulk and cohesive zone, respectively. The cohesive zone or the internal boundary on
which the cohesive forces t

˜
are applied is represented by Γc. Dirichlet and Neumann
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boundary conditions are defined as follows:

u
˜
= ū

˜
on Γu , (4.2a)

σT n
˜
t = t̄

˜
on Γt . (4.2b)

where the external boundary on which the external tractions t̄
˜

are applied is denoted
by Γt for which the components of the outward normal vector are stored in the col-
umn n

˜
t. Displacements ū

˜
are prescribed on the external boundary Γu. The whole

external boundary is Γ = Γt

⋃

Γu. The stress components are collected in the column
σ
˜

in Equation (4.1) and in the symmetric matrix σ in Equation (4.2b).

A self-adaptive interfacial discretization scheme has been developed in 2D to deal
with delamination in brittle interfaces, using a relatively coarse mesh [106]. The de-
veloped methodology enriches the discretized domain by enhancing the description
of the separation within the cohesive zone as well as the displacement field in the
adjacent bulk element in a 3D setting, allowing for a more accurate approximation of
deformation in the fracture process zone due to the enrichment adaptivity.

4.2.1 Interface element kinematics

Planar cohesive zone elements with an initially zero thickness and an enriched de-
scription of the 3D kinematics are formulated. As shown in Figure 4.1, eight-node
interface elements, which are compatible with eight-node continuum brick elements,
are utilized here [50]. The upper surface Γ+ and the bottom surface Γ− are coinciding
in the initial configuration. The element has 2×4 nodes with a fixed position, denoted

by n
+/−
i , i = 1, . . . , 4, which results in a total number of 24 standard displacement

degrees of freedom for the entire element.

Figure 4.1: An eight-node self-adaptive interface element in isoparametric coordi-
nates (hierarchical enrichment).

In a conventional finite element framework, the displacement of the element surfaces
is determined through the standard interpolation functions Ni(ξ, η) , i = 1, . . . , 4 ,
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with (ξ, η) ∈ [−1, 1] the isoparametric coordinates. Planar interface elements are en-
riched along all edges by bi-linear functions with mobile peak positions. In Figure

4.1, adaptive nodes are denoted by m
+/−
j , j = 1, . . . , 4 and their respective positions

are given by the degrees of freedom aj ∈ [−1, 1] , j = 1, . . . , 4. The piece-wise pla-
nar enrichment functions, φj(ξ, η, ak|k = 1, . . . , 4) , j = 1, . . . , 4 are shown in Figure

4.2, with a maximum value of 1 at their associated adaptive nodes m+/−
j . Note that

each enrichment function depends on the enrichment position at each of the element
edges. The interfacial separation is then determined as follows:

u
˜
+ =

4
∑

i=1

Ni u
˜
+
i +

4
∑

j=1

φj(ak|k = 1, . . . , 4) h
˜
+
j , (4.3a)

u
˜
− =

4
∑

i=1

Ni u
˜
−

i +

4
∑

j=1

φj(ak|k = 1, . . . , 4) h
˜
−

j , (4.3b)

δ
˜
= u

˜
+ − u

˜
− = Bu u

˜ e
+

4
∑

j=1

Bhj
(ak) h

˜ j
, (4.3c)

where h
˜
+
j , h

˜
−

j denote columns of enrichment amplitudes at the jth mobile enrichment
peak point at the upper and bottom element surfaces, respectively. The columns u

˜ eand h
˜ j

collect all nodal displacements and the enrichment amplitude degrees of free-

dom at the jth edge, respectively. As can be seen in Equations (4.3), the enrichment
peak positions, as well as the enrichment amplitudes at all four edges of the interface
element, are introduced as additional degrees of freedom.

Figure 4.2: Hierarchical interpolation functions used to extend standard finite ele-
ment interpolation functions.

The internal work done in an enriched interface element on the internal boundary
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Γce ∈ Γc reads:

∫

Γce

dδ
˜
T t

˜
dΓce =

∫

Γce

(

∂δ
˜

∂u
˜ e

du
˜ e

+

4
∑

j=1

∂δ
˜

∂h
˜ j

dh
˜ j

+

4
∑

k=1

∂δ
˜

∂ak
dak

)T

t
˜

dΓce

=

∫

Γce

(

Bu du
˜ e

+
4
∑

j=1

Bhj
dh

˜ j
+

4
∑

k=1

B
˜ ak

dak

)T

t
˜

dΓce ,

(4.4)

with

B
˜ ak

=

4
∑

j=1

∂Bhj

∂ak
h
˜ j
. (4.5)

The internal forces associated with the displacement degrees of freedom f
˜ int

, the

amplitudes at the jth edge g
˜

(j)
int

, and the enrichment peak position at the kth edge b
(k)
int

are derived using Equation (4.4):

f
˜ int

=

∫

Γce

BT
u t

˜
dΓce , (4.6a)

g
˜

(j)

int
=

∫

Γce

BT
hj
t
˜

dΓce , j = 1, . . . , 4 , (4.6b)

b
(k)
int =

∫

Γce

B
˜
T
ak
t
˜

dΓce , k = 1, . . . , 4 . (4.6c)

In order to establish the set of non-linear equations for the unknowns associated with
an enriched interface element, the tangential stiffness matrix can be determined in a
straightforward manner analogous to the 2D case [106]. The kinematics of the cohe-
sive zone element are formulated within local coordinates {n, s1, s2} which requires
a transformation of vectorial fields to global coordinates {x,y, z} before a global sys-
tem assembly in a finite element framework.

4.2.2 Bulk element kinematics

Eight-node brick elements are used to discretize the three-dimensional continuum.
Each node has three displacement degrees of freedom. In a conventional finite el-
ement framework, the displacement field is interpolated through standard shape
functions Ni(ξ, η, ζ) , i = 1, . . . , 8 , with (ξ, η, ζ) ∈ [−1, 1] the corresponding isopara-
metric coordinates. The kinematic description of the bulk element surface which is
connected to a surface of an enriched interface element is enriched as well to ensure
continuity of the displacement field at the internal cohesive boundary (see Figure
4.3). The effect of the enrichment vanishes linearly with coordinate ζ through the
thickness of the enriched bulk element from the enriched surface to the non-enriched



4.2 SELF-ADAPTIVE 3D FINITE ELEMENTS 65

surface:

u
˜
=

8
∑

i=1

Ni u
˜ i
+

4
∑

j=1

ψj(ak|k = 1, . . . , 4) h
˜ j
, (4.7)

with

ψj =
1

2
(1− ζ)φj(ak) , j = 1, . . . , 4 . (4.8)

The strain field in the bulk material is then given by:

ǫ
˜
= Bu u

˜ e
+

4
∑

j=1

Bhj
(ak) h

˜ j
, (4.9)

where the column ǫ
˜

collects the strain components and the columns u
˜ e

and h
˜ j

collect

all nodal displacements and the enrichment amplitude degrees of freedom at the jth

enriched edge, respectively.

Figure 4.3: An eight-node self-adaptive bulk element in isoparametric coordinates
(hierarchical enrichment).

The virtual work done in an enriched bulk element with sub-domain Ωe ∈ Ω reads:

∫

Ωe

dǫ
˜
T σ

˜
dΩe =

∫

Ωe

(

∂ǫ
˜

∂u
˜ e

du
˜ e

+

4
∑

j=1

∂ǫ
˜

∂h
˜ j

dh
˜ j

+

4
∑

k=1

∂ǫ
˜

∂ak
dak

)T

σ
˜

dΩe

=

∫

Ωe

(

Bu du
˜
e +

4
∑

j=1

Bhj
dh

˜
j +

4
∑

k=1

B
˜
ak

dak

)T

σ
˜

dΩe ,

(4.10)
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with

B
˜ ak

=

4
∑

j=1

∂Bhj

∂ak
h
˜ j
. (4.11)

The internal forces associated with the displacement degrees of freedom f
˜ int

, enrich-

ment amplitudes at the jth edge g
˜

(j)
int

, and the enrichment peak position at the kth edge

b
(k)
int are then given by:

f
˜ int

=

∫

Ωe

BT
u σ

˜
dΩe , (4.12a)

g
˜

(j)

int
=

∫

Ωe

BT
hj
σ
˜

dΩe , j = 1, . . . , 4 , (4.12b)

b
(k)
int =

∫

Ωe

B
˜
T
ak
σ
˜

dΩe , k = 1, . . . , 4 . (4.12c)

Analogous to the 2D case for the enriched bulk element [106], the tangential stiff-
ness matrix can be determined to establish the set of non-linear equations. When the
bulk element kinematics are formulated within local coordinates {n, s1, s2}, a trans-
formation of vectorial fields to global coordinates {x,y, z} is required before a global
system assembly.

4.2.3 Numerical implementation

The main purpose of the proposed self-adaptive cohesive zone elements is to pro-
vide a more accurate approximation of deformation in the delaminating process zone
while maintaining a coarse mesh. This is achieved by enriching the standard FE in-
terpolation with a hierarchical extension that traces the moving crack tip along the
element edge. The adaptivity of the enriched edges (sweeped by the delamination
front) ensures an accurate numerical approximation of the physical crack propaga-
tion (see Figure 4.4 for different crack growth patterns).

Identification of the location of the fracture process zone and thereby enriching only
elements near the process zone increases the efficiency and accuracy of the method-
ology. Likewise, special care needs to be given to the accurate integration of the
enriched elements. Moreover, ensuring uniqueness and convergence of the solution
of the resulting non-linear system is crucial for the robustness of the self-adaptive
algorithm.

Enrichment strategy

An adaptive enrichment strategy for normal separation modes has been applied
to cohesive zone interface elements located in the fracture process zone in two-
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(a) Crack front aligned with ele-
ment edges.

(b) Oblique crack front.

Figure 4.4: Delamination growth patterns with a planar interface (Black and grey
filled dots denote interface nodes and enrichment peak positions, respec-
tively. Hollow dots denote repositioned enrichment peak positions to ac-
commodate the moving crack front. The approximated delamination front
is shown by the thick grey line).

dimensional problems [109]. This procedure, extended to an effective separation,
is next used to enrich a three-dimensional cohesive zone framework.

Numerical integration

The self-adaptive cohesive zone elements enhance the discretization through hier-
archical extensions. To obtain a sufficiently accurate integration scheme (i.e. for an
adaptive piece-wise planar opening profile), either a high number of fixed integra-
tion points can be used or each linear subregion can be integrated separately with
a lower order Gaussian integration scheme. Compared to a higher number of fixed
integration points, triangularization of the interface element and integrating each
part separately reduces the number of integration points, still keeping a sufficiently
high accuracy. This procedure is less efficient when history parameters, such as ac-
cumulated plastic strain or damage, have to be stored in integration points. The re-
quired adaptivity would then necessitate a transport step of the history data at each
incremental step. To prevent this, the tangential stiffness and internal forces associ-
ated with the enriched element degrees of freedom are calculated using a high-order
Gaussian integration scheme. In the current study, 10 × 10 integration points with
fixed positions have been used in the ξ-η plane of the enriched interface plane and its
adjacent bulk element, while only 2 layers of integration points are needed to resolve
the enriched linear elastic bulk element in the ζ direction.
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Solution convergence and uniqueness

The additional degrees of freedom introduced in the self-adaptive cohesive zone el-
ements (i.e. enrichment peak positions and amplitudes), are calculated by means of
a potential minimization of the assembled system. Minimizing the potential with
respect to the enrichment peak position, a procedure was proposed by the authors in
a previous chapter to trace its incremental value in a two-dimensional setting [106].
Depending on the separation profile at each edge of a self-adaptive interface element,
an initial estimate for its associated enrichment peak position is made close to the cor-
ner where delamination enters. The peak position is then incrementally adapted as
delamination grows. More details on incremental adaptation of the enrichment peak
position within an edge of a planar interface element based on the effective separa-
tions at both ends of that edge (which is treated similar to a linear interface element
in a 2D setting), can be found in [106].

A stabilization procedure has to be implemented to restore uniqueness if no enrich-
ment is needed, allowing to determine the positions of the enrichment peaks at all
conditions. Therefore, a small (negligible with respect to the physical solution) adap-
tive penalty is imposed on the enrichment peak positions to ensure a unique solution
when the potential variation with respect to these degrees of freedom is negligible.
Another penalty is applied close to element corners at all enriched edges to constrain
the enrichment peak positions inside the element [106]. Note that when the enrich-
ment peak position within an arbitrary edge is close to a corner, the effect of the
enrichment along that edge is negligible and the standard nodal interpolations suf-
fice for the numerical approximation. Since the penalizations in 3D are conceptually
not different from those in 2D, the details are not presented here but can be found
in [106].

4.3 Numerical examples

The enriched self-adaptive 3D cohesive zone elements are here demonstrated on a
crack growth problem with planar interfaces in a three-dimensional continuum.

4.3.1 Problem statement

A propagating delamination crack is modeled in a pre-cracked interface between a
plate glued to a rigid substrate. The specimen is pulled at its free end as shown
in Figure 4.5. Based on the displacement profile prescribed at the free end of the
plate, a moving crack front is obtained that is either aligned or oblique with respect
to element edges. The specimen bulk is linear elastic, characterized by its Young’s
modulus, E = 100 (GPa), and Poisson’s ratio, ν = 0.3. The sample is discretized
by (10 + 40) × 6 × 4 brick elements. The kinematics of enriched bulk and interface
elements are elaborated in Section 4.2. The interface is discretized with a coarse mesh
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of 40×6 two-dimensional interface elements in the x-y plane. A mixed-mode bi-linear
traction-separation law is considered to characterize the interfacial behavior (see the
next subsection).

Figure 4.5: Three-dimensional peel-off problem; geometry, boundary conditions, and
bulk refinement (double and quadruple bulk refinement is carried out in
both x and y directions only in the bulk element layer adjacent to the in-
terface and the rest of the bulk elements are unaltered; the grey nodes are
tied).

4.3.2 Constitutive model for mixed-mode delamination

Within a 3D interface cohesive zone model, the degradation of the adhesive bonds
relate to normal (mode I) and planar (modes II and III) opening, which triggers a
mixed-mode failure of an interfacial point. A bi-linear traction-separation law is
adopted here [141, 142]. The interface constitutive law is defined with respect to an
effective scalar separation and an effective scalar traction [63,91]. Delamination initi-
ates when the effective traction reaches the interface strength at an interfacial point,
whereas its growth is controlled by the energy required to create the fracture sur-
faces. The latter, which is the area under the traction-separation curve, is the critical
energy release rate and can be experimentally determined [70, 71].

A local or element coordinate system {n, s1, s2} is used [12, 21]. Using this three-
dimensional coordinate system, interfacial separation and traction vectors are de-
fined as δ and t, respectively:

δ = δn n+ δs1 s1 + δs2 s2 , (4.13a)

t = tn n+ ts1 s1 + ts2 s2 , (4.13b)

where unit vectors s1 and s2 denote the two in-plane directions which are mutually
perpendicular while n is the unit vector normal to the interface mid-plane. The ef-
fective separation is defined as:

λ =

√

〈δn〉
2 + β2 (δs1

2 + δs2
2) . (4.14)

Here, it is assumed that the delamination behavior in mode II and III is identical,
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i.e. the interfacial strength is identical in all in-plane directions. Parameter β de-
notes the ratio between planar and normal strengths. As implied by the application
of Macaulay brackets in Equation (4.14), the compressive interpenetration of the in-
terface surfaces is not taken into account for the calculation of the effective separa-
tion [106].

A bi-linear traction-separation law relates the scalar effective separation to a scalar
effective traction, t, under mixed-mode loading conditions (see Figure 4.6):

t =















k0 λ if λ 6 λ0

t0 (
λf − λ

λf − λ0
) if λ0 < λ 6 λf

0 if λ > λf .

(4.15)

The effective traction t increases linearly with a stiffness k0 as the effective separation
increases until it reaches a maximum t0 = k0 λ0 at the characteristic separation λ0.
Further separation results in a linear decrease of the traction until the failure sepa-
ration λf is reached. The fracture toughness Gc or the energy required to produce
traction-free surfaces equals the area under the traction-separation curve:

Gc =

∫ λf

0

tdλ =
1

2
t0 λf . (4.16)

Figure 4.6: Bi-linear traction-separation law.

A cohesive potential energy functional, as considered e.g. in [91], is assumed here:

φc(λ) =















1
2
k0 λ

2 if λ 6 λ0

1
2
k0 λ0

[

λ0 + (λ− λ0)

(

1 +
λf − λ

λf − λ0

)]

if λ0 < λ 6 λf

1
2
k0 λ0 λf if λ > λf ,

(4.17)

so that the expressions for traction components in normal and planar directions can
be derived as follows:

tn =
∂φc

∂δn
=
∂φc

∂λ

∂λ

∂δn
= t

〈δn〉

λ
− k0〈−δn〉 , (4.18a)
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ts1 =
∂φc

∂δs1
=
∂φc

∂λ

∂λ

∂δs1
= β2 t

δs1
λ
, (4.18b)

ts2 =
∂φc

∂δs2
=
∂φc

∂λ

∂λ

∂δs2
= β2 t

δs2
λ
, (4.18c)

where the interfacial behavior in compression is assumed to be linear elastic with
stiffness k0 in Equation (4.18a). The corresponding effective traction, which was in-
troduced in Equation (4.15), is then given by:

t =
√

t2n + β−2 (ts1
2 + ts2

2) . (4.19)

For the numerical examples considered here, a monotonically increasing loading is
applied. Therefore, the unloading behavior is not formulated here. However, the
self-adaptive cohesive zone model can be applied within a general damage mechan-
ics framework to account for the irreversibility of the interfacial failure [106].

The variation of the traction components (t
˜
= [tn ts1 ts2]

T ) with respect to the separa-
tion components (δ

˜
= [δn δs1 δs2]

T ) within the interface is written as follows:

dt
˜
= Hcz dδ

˜
, (4.20)

and the cohesive zone tangent matrix, Hcz, is derived as follows:

Hcz =
∂t

˜
∂δ

˜

∣

∣

∣

∣

λ

+
∂t

˜
∂λ

∣

∣

∣

∣

δ
˜

∂λ

∂δ
˜

, (4.21a)
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∂λ
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∣

∣

∣

δ
˜
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∂t
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t

λ
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〈δn〉
β2 δs1
β2 δs2



 , (4.21c)

∂λ

∂δ
˜

=
1

λ

[

〈δn〉 β2 δs1 β2 δs2
]

. (4.21d)

For a given fracture toughness, the interfacial behavior becomes more brittle if the
interface strength is higher. In these cases, a coarse mesh ceases to be applicable and
a refined discretization or an enriched model is needed. The peel-off test is analyzed
for an interface strength ranging from 20 (MPa) to 100 (MPa) and a fixed fracture
toughness of 0.25 (N/mm). The brittleness thereby varies and allows to investigate
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the effectiveness of a discretization refinement versus an enrichment. The same in-
terfacial strength is assumed for normal and tangential modes (β = 1).

4.3.3 Cracks aligned with element edges

A delaminating crack aligned with element edges can be obtained if the plate is
pulled uniformly at its free end (u1 = u2), as shown in Figure 4.5. Note that a small
curvature can exist in the proximity of the lateral edges due to 3D stress effects. Both
conventional and enriched cohesive zone models are used for the numerical simula-
tion. To assess the role of mesh refinement (without enrichment), both the interface
elements and their adjacent bulk elements are refined two and four times in both
x and y directions with conventional cohesive zone elements. The rest of the bulk
elements remain unchanged so that the secondary effect of mesh refinement on the
plate bending behavior is minimized.

For an interface strength of 50 (MPa), and a coarse mesh of conventional elements,
the global force-displacement diagram shows a monotonic increase in the applied
load until a maximum is reached, see Figure 4.7. Right after this limit point, the
first interface elements at the left start to soften and the resulting total reaction force
starts to drop. For the considered coarse discretization, the force-displacement dia-
gram shows an oscillatory behavior which results in a premature termination of the
numerical routine. Further mesh refinement reduces the amplitude of the oscillations
until a regular Newton-Raphson iterative scheme becomes applicable. However, the
number of degrees of freedom increases as the mesh is refined. Figure 4.7 shows that
the self-adaptive cohesive zone model applied to the most coarse mesh results in a
global response which is even more smooth compared to the conventional approach
with a 4 × 4-times refined mesh. A standard Newton-Raphson approach is trivially
applicable to trace the path in this case.

Conventional mesh refinement or using the hierarchical enrichment in the self-
adaptive cohesive zone are both effective in reducing the oscillations in the global
response. The effectiveness of both approaches is next assessed by quantifying
the oscillating response using a Fourier analysis. A displacement-controlled load-
ing is adopted, for which the oscillatory response is analyzed in the range of u1 ∈
[1.0, 1.8]mm. The spectrum of the oscillatory signal is retrieved using a conventional
fast Fourier transform (fft) algorithm. The lowest frequencies (smaller than the main
oscillation frequency), which represent the physical global response curvature are
discarded. A range of [5, 100]mm−1 is considered for the frequency of the oscilla-
tions.

The computational cost scales with the number of degrees of freedom used to dis-
cretize the problem. On the other hand, tracing an oscillatory path requires consid-
erably more iterations and smaller increments which increases the CPU time even if
no snap-back occurs (see Figure 4.8(a)). Even though a finer mesh results in a more
smooth response, the response remains oscillatory, albeit with a smaller amplitude.
In fact, high frequency oscillations with low amplitudes are created due to a refine-
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Figure 4.7: Force-displacement diagram of the three-dimensional peel-off problem
with a delamination front aligned with element edges (t0 = 50MPa).

ment at the interface level, which are superimposed on lower frequency oscillations
with higher amplitudes (see the multiple peaks in the spectrum of Figure 4.8(b)). As a
result, smaller increments are required to trace high frequency oscillations. The self-
adaptive cohesive zone model considerably smoothens the response while avoiding
extra high frequency oscillations in the system, see Figure 4.8(d). The latter results in
lower amplitude oscillations when compared to the 4× 4-times refined model using
the conventional framework (see Figure 4.8(c)).

The global response of the peel-off test is next analyzed for different levels of in-
terface brittleness, using both conventional (coarse and refined) and enriched co-
hesive zones. The area under the single-sided spectrum corresponds to a global
measure of discretization-induced oscillations and can be used as an error indica-
tor (see Figure 4.9(a)). The high-amplitude frequencies represent the main oscillation
frequency and the corresponding amplitude denotes the main deviation from the
physical smooth solution (see Figure 4.9(b)). The mesh-induced oscillations become
more severe and the standard Newton-Raphson iterative scheme is not capable of
tracing the oscillatory path anymore if the system becomes too brittle. For the most
brittle cases (t0 > 70MPa), even the most refined mesh is not fine enough to avoid
a discretization-induced numerical instability and the computations fail to converge
at an early stage. Further analysis is only possible if path-following techniques are
used in the conventional model. The self-adaptive finite element framework remains
applicable until the target applied displacement of u1 = 2 (mm) is reached, without
a need for tracing the solution path with arc-length techniques for high brittleness
levels.
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(a) Conventional cohesive zone
model; coarse mesh.
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(b) Conventional cohesive zone
model; 2× 2 refined mesh.
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(c) Conventional cohesive zone
model; 4× 4 refined mesh.
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(d) Self-adaptive cohesive zone
model; coarse mesh.

Figure 4.8: Delamination growth aligned with element edges; force-displacement di-
agrams and single-sided spectrums (t0 = 30MPa).

4.3.4 Cracks oblique with respect to element edges

An oblique delamination crack is obtained in the interface shown in Figure 4.5 when
the plate is pulled non-uniformly at its free end. Here, a displacement along the z-
axis is incrementally prescribed, distributed linearly along the free end of the plate
so that u1 = 4u2. Similar to Section 4.3.3, both enriched and conventional (coarse and
refined) cohesive zone models are used for the simulation of the problem.

The global force-displacement response of the structure is shown in Figure 4.10. The
effect of the hierarchical self-adaptive enrichment on the global response of the most
coarse mesh is comparable to a 4 × 4-times refinement applied within the conven-
tional cohesive zone model (see Figure 4.10), for which a standard Newton-Raphson
iterative scheme is easily applicable.
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(a) Area under the single-sided spec-
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Figure 4.9: Error based on a discrete Fourier transform of the oscillatory response for
a crack front aligned with element edges (the data point shown by the
asterisk ∗ in each curve represents the most brittle level that can be solved
with a standard Newton-Raphson scheme).
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Figure 4.10: Force-displacement diagram of the three-dimensional peel-off problem
with oblique delamination growth (t0 = 80MPa).

4.4 An alternative enrichment strategy

A robust self-adaptive finite element discretization should allow for an accurate ap-
proximation of a delamination front that is oblique with respect to the element edges.
In other words, the same sharp kink in the separation profile of an oblique crack
should be possible at any position in the element. Although the three-dimensional
hierarchical self-adaptive finite element framework presented so far works reason-
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ably well, it does not have this capability. Figure 4.11 clearly shows that a constant
sharp crack front which is oblique with respect to the element edges cannot be ob-
tained.

Figure 4.11: An oblique crack growth at different positions in a hierarchical enriched
interface element (indicated by the dashed line).

An alternative, non-hierarchical, enrichment strategy which does not suffer from the
limitations of the hierarchical framework, is presented. The non-hierarchical self-
adaptive finite element framework is examined to evaluate its performance.

4.4.1 Non-hierarchical self-adaptive finite elements

In the non-hierarchical enrichment strategy, an additional adaptive node is added
inside the enriched interface element (node m5 in Figure 4.12). The position of this
node is not an additional degree of freedom but is obtained from the intersection of
lines m1-m3 and m2-m4. The interfacial opening components at this node on the top
and bottom surfaces of the interface element constitute extra degrees of freedom.

Figure 4.12: An eight-node self-adaptive interface element in isoparametric coordi-
nates (non-hierarchical enrichment).

To address the expected geometry of the crack front inside an element, a new set of
interpolation functions is defined as shown in Figure 4.13 for the adaptive nodes.
To ensure that the partition of unity property of shape functions within an enriched
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interface element is satisfied, the standard finite element interpolation functions as-
sociated with nodes n1, . . . , n4 are redefined so that their values depend on the posi-
tion of the adaptive nodes (see Figure 4.14) as well. The interfacial separation is then
recovered as follows:

u
˜
+ =

4
∑

i=1

Ni u
˜
+
i +

5
∑

j=1

φj(ak|k = 1, . . . , 4) v
˜
+
j , (4.22a)

u
˜
− =

4
∑

i=1

Ni u
˜
−

i +
5
∑

j=1

φj(ak|k = 1, . . . , 4) v
˜
−

j , (4.22b)

δ
˜
= u

˜
+ − u

˜
− = Bu u

˜ e
, (4.22c)

where u
˜

+/−
i and v

˜

+/−
j denote displacement components at the top and bottom sur-

faces of the ith fixed node and the jth adaptive node, respectively. The column u
˜ ecollects all nodal displacement degrees of freedom of the enriched interface element.

Displacement components at the adaptive nodes on the top and bottom surfaces of
the interface element as well as the enrichment peak positions constitute additional
degrees of freedom. Obviously, the bulk elements adjacent to the enriched interface
elements have to be enriched accordingly.

Figure 4.13: Finite element interpolation functions associated to the adaptive nodes
in the non-hierarchical enrichment scheme.

Using the set of adaptive interpolation functions depicted in Figures 4.13 and 4.14,
an oblique crack growth as schematically shown in Figure 4.15 can be modeled ex-
actly. Moreover, Figure 4.15 shows that two sharp kink points can exist in a single
interface element. A crack front aligned with element edges can also be captured by
the alternative non-hierarchical enrichment scheme.



78 4 A THREE-DIMENSIONAL SELF-ADAPTIVE COHESIVE ZONE MODEL

Figure 4.14: Finite element interpolation functions associated to the fixed nodes in the
non-hierarchical enrichment scheme.

Figure 4.15: An oblique crack growth in a non-hierarchical enriched interface ele-
ment; the sharp kinks growing from one upper corner of the enriched
element are shown in the opening profiles by thick black dashed lines.

4.4.2 Simulation of a propagating oblique crack

The problem of Section 4.3.4 is revisited to evaluate the performance of the non-
hierarchical enrichment strategy in the numerical simulation of a propagating de-
lamination with an oblique front. As can be seen in Figure 4.16, both self-adaptive
frameworks smoothen the global response of the most coarse mesh so that a standard
Newton-Raphson iterative scheme becomes applicable.

The effectiveness of different refinement or adaptive strategies is evaluated using a
quantitative measurement of the oscillations, see Section 4.3.3. Figure 4.17(a) con-
firms that increasing the brittleness leads to a more oscillatory response when the
discretization is kept constant. The amplitude of the major oscillations also scale
with brittleness as shown in Figure 4.17(b).

Although the non-hierarchical formulation does not suffer from the limitation re-
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Figure 4.16: Force-displacement diagram for the oblique delamination growth in a
three-dimensional peel-off problem using the coarse discretization (t0 =

80MPa).

ported for the hierarchical formulation, Figure 4.17 shows that it does not lead to a
more smooth response. A more accurate approximation of the separation using con-
ventional shape functions (bi-linear in this case) enriched by hierarchical extensions
can be a reason for the better performance of the hierarchical framework compared
to the non-hierarchical one which requires a modification of the standard finite el-
ement interpolation functions to piecewise planar functions. The approximation of
the bending behavior of the structure is also deteriorated in the non-hierarchical self-
adaptive framework (see load-displacement response in Figure 4.16). The results
for an oblique delamination front show the effectiveness of the original hierarchical
self-adaptive finite elements, surpassing the alternative enrichment or refinement
strategies.

4.5 Conclusion and remarks

In this chapter, the self-adaptive cohesive zone formulation proposed in [106,109] for
2D problems, was extended to three-dimensional delamination problems. In the pro-
posed formulation, the displacement approximation along all four edges of quadri-
lateral interface elements located in the fracture process zone was enriched by adding
bi-linear functions with mobile peaks. The process-driven positions of these peaks
were taken as additional degrees of freedom, for which a solution of the global sys-
tem determines the values in an incremental-iterative routine. The kinematics of the
self-adaptive cohesive zone elements and their adjacent bulk elements were elabo-
rated and numerical and implementation issues were addressed.
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Figure 4.17: Error based on a discrete Fourier transform of the oscillatory response for
a crack front oblique with respect to element edges (the data point shown
by the asterisk ∗ in each curve represents the most brittle level that can
be solved by a standard Newton-Raphson scheme).

The performance of the proposed 3D self-adaptive finite element framework was first
evaluated in a peel-off test with boundary conditions that imply a crack growth par-
allel to element edges. The interface constitutive behavior was described with a bi-
linear traction-separation law. The results show that the application of this method-
ology not only smoothens the global response considerably but also stabilizes the
Newton-Raphson iterative procedure by reducing the non-physical oscillatory re-
sponse so that a relatively brittle interfacial behavior can be captured.

The hierarchical enrichment was applied to the numerical simulation of propagating
delamination with an oblique front with respect to element edges. Although the re-
sults show a considerable improvement of the global response, a constant crack front
that grows in an oblique manner with respect to the element edges cannot be repro-
duced using a hierarchical enrichment. As an alternative, a non-hierarchical enrich-
ment strategy was considered to enhance the approximation in the fracture process
zone by adding a bubble function to the enriched element interpolation functions.
The non-hierarchical scheme includes bi-linear enrichment of element edges as well.
The necessity for the modification of the standard finite element interpolation func-
tions of the fixed nodes and the introduction of extra degrees of freedom associated
with an adaptive interior node constitute the main drawbacks of the non-hierarchical
enrichment strategy. For the aforementioned reasons and considering the results ob-
tained from both hierarchical and non-hierarchical enrichments in an oblique crack
growth problem, the former seems to be more efficient.

The efficient application of cohesive zone models to engineering delamination prob-
lems is compromised by the very fine discretization required in the fracture process
zone of brittle interfaces. Even though advanced computational strategies have been
developed to tackle limit points such as snap-backs, a lot of computational effort is
wasted on tracing the non-physical part of the solution path. The self-adaptive finite
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elements developed by the authors open a new horizon in using 3D cohesive zone
models in an effective, robust, and accurate manner at a reasonable computational
cost.





CHAPTER FIVE

A large deformation self-adaptive
cohesive zone model 1

Abstract

Cohesive zone models are common tools for the simulation of delamination since
two decades. However, application of these models in a quasi-static finite element
framework requires a sufficiently fine discretization to resolve a quasi-brittle process
zone. As an alternative to mesh refinement, an adaptive approximation of the grow-
ing delamination was obtained in earlier work by enriching the elements in the frac-
ture process zone. Discretization-induced numerical instabilities are thereby avoided
and a standard Newton-Raphson iterative scheme remains applicable. This enriched
2D cohesive zone model is here extended to a large deformation self-adaptive finite
element framework, which makes it suitable for general engineering applications
where geometrical and material non-linearities are expected. Based on recent exper-
imental results from miniaturized mixed-mode bending tests, an irreversible mixed-
mode traction-separation law is considered for the simulation of delamination over
a wide range of mode mixities. The developed model is used for the simulation of
mixed-mode bending tests on bi-material interfaces and the response is compared
to the experimental results. Numerical simulations using coarse discretizations in
a quasi-static finite element framework show the effectiveness of the self-adaptive
cohesive zone model.

1Reproduced from: M. Samimi, M. Kolluri, J.A.W. van Dommelen, and M.G.D Geers. Simulation
of interlaminar damage in mixed-mode bending tests using large deformation self-adaptive cohesive
zones. In preparation.
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5.1 Introduction

Interfacial delamination is a common damage mechanism that may lead to failure
in laminated structures especially when the interfacial strength is relatively low and
a stress concentration occurs at the interface [7, 62]. In an attempt to avoid delam-
ination which compromises the structural integrity, numerical predictive tools are
necessary so that the risk for delamination initiation and growth can be assessed
and the performance of the laminated structure be evaluated. Predictive simulations
are required to avoid different experiments (if not impossible in case of complicated
geometries) and to span all thermo-hygro-mechanical loading conditions that arise
during the life-time of the structure.

Cohesive zone models were proposed based on the assumption that there exists
a small zone around a crack tip where cohesive forces describe the material non-
linearities [10,40,58]. These models have also been used for the simulation of interfa-
cial delamination in laminated structures [21,25,82,112,129]. In an interface cohesive
zone model, the interfacial behavior is characterized by a traction-separation law,
providing a phenomenological description of local degradation processes and soft-
ening occurring at the micro level. The fracture process zone is idealized as a line
(or a plane in three dimensions) with initially a zero thickness [24]. Interface co-
hesive zone models combine stress-based and fracture mechanics-based approaches
to simulate delamination growth as well as its initiation without a need for initial
flaws [30, 62]. In order to account for the irreversibility of the delamination pro-
cess, cohesive zone models have also been formulated in a damage mechanics frame-
work [18, 20, 49, 59, 123].

The effect of mode-mixity on the mechanical response of an interface when sub-
jected to arbitrary boundary conditions can be accounted for by a cohesive zone
model [59, 127]. Identifying realistic values for the fracture toughness and the in-
terfacial strength for the two main modes of opening as well as a suitable assump-
tion for the coupling between normal and shear modes are crucial for the success of
a cohesive zone model in predicting the behavior of a layered structure undergoing
mixed-mode delamination. Experimental investigations on mixed-mode bending se-
tups have shown that the interface fracture toughness varies considerably with the
applied mode angle [70, 71]. Moreover, since the local mode angle is not known a
priori, it is only through dedicated experiments that a prescribed local mode angle
can be enforced by adjustment of the applied boundary conditions.

The widespread application of cohesive zone models is sometimes hindered by the
need for a sufficiently fine discretization in the process zone of cohesive cracks to
capture the steep stress gradient [33, 94]. Otherwise, the global structural response
will be accompanied by a sequence of snap-backs for which a standard Newton-
Raphson iterative scheme fails to converge. Complicated path-following techniques
then have to be used to solve the non-linear system of equations resulting from quasi-
static finite element analyses [4,27,45,110]. Application of higher order interpolation
functions or hierarchical enrichments of cohesive zone elements improve the perfor-
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mance of cohesive zone models by reducing the discretization-induced oscillations
due to a more accurate description of the kinematics in the process zone [28,52,119].

In the self-adaptive finite element framework that was recently proposed by the au-
thors, the elements in the fracture process zone have been enriched to obtain an adap-
tive approximation of the growing delamination [106, 109]. A bi-linear enrichment
function with an adaptive peak has been added to the linear interpolation along the
elements located in the process zone of the interfacial crack. This enrichment natu-
rally smoothens the global response of the structure, whereby the standard Newton-
Raphson approach remains applicable for a coarse discretization. This adaptive
scheme enforces the efficiency and robustness of brittle cohesive zone models to a
great extent.

This paper aims to:

• extend the self-adaptive cohesive zone model to large deformations,

• make the enriched scheme applicable to a wide range of engineering problems
where geometrical and material non-linearities are expected,

• account for the full mode mixity, coupling shear and normal interfacial modes,

• account for irreversibility at the interface,

• apply the enriched cohesive zone scheme to experimentally tested bi-material
interfaces,

• address the parameter identification for the full range of mode mixities.

Comparison of the numerical results with those obtained from mixed-mode bending
tests using a miniaturized setup reveals the suitability of the adopted constitutive
law while showing the effectiveness of the self-adaptive framework in the simulation
of delamination preserving a coarse discretization.

5.2 Interface model

One of the most common traction-separation laws that has been used for various
applications in the last two decades, is the Xu-Needleman exponential law [138]. The
model allows for a fracture toughness that is varying with the mode-mixity. It was
shown by [127] that unrealistic results might be obtained under some circumstances.
An improved model was proposed by modification of the coupling between normal
and shear modes [69, 127]. In this paper, the improved exponential model is used in
a large deformation damage mechanics framework.

The nominal traction components in the shear direction, which is defined along the
interface mid-line denoted by the unit vector s, and in the direction normal to that,
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denoted by the unit vector n, are given by:

ts = k0s δs (1− ds) (1− dcn) , (5.1a)

tn = k0n 〈δn〉 (1− dn) (1− dcs)− k0n〈−δn〉 . (5.1b)

In the above equations, damage variables in shear and normal directions are denoted
by ds and dn, respectively. The coupling damage terms, dcs and dcn, correspond to
damage in normal and shear directions due to the maximum separation attained in
shear and normal directions, δs,max and δn,max, respectively. An unloading in shear or
normal direction follows the secant stiffness to the origin of the traction-separation
diagram in its associated mode (see Figure 5.1). Equation (5.1b) also implies that a
linear elastic response with the virgin stiffness k0n is considered in the normal com-
pression regime due to the Macaulay brackets, 〈δn〉 = (δn + |δn|)/2. The virgin un-
damaged stiffnesses in shear and normal directions are defined as:

k0s = Gcs/δ
2
0s , (5.2a)

k0n = Gcn/δ
2
0n , (5.2b)

with Gcs and Gcn the fracture toughness in shear and normal directions which are
equal to the area under the traction-separation curve in a pure mode II and pure
mode I delamination process, respectively. As shown in the traction-separation
curves of Figure 5.1, the maximum shear traction t0s and the maximum normal trac-
tion t0n are attained at characteristic separations δ0s and δ0n, respectively [69].
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Figure 5.1: Irreversible mixed-mode traction-separation law.

This formulation incorporates the influence of accumulated damage in shear direc-
tion on the traction-separation behavior in the normal direction and vice versa due to
the coupling damage variables (see Figure 5.1 for the reduction in interface strength
in mode I or II due to the non-zero separation history value in the other delamina-
tion mode). The evolution of the damage variables introduced in Equation (5.1) is
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governed by the following equations:

ds = dcs = 1− exp

(

−
δ2s,max

2δ20s

)

, (5.3a)

dn = 1− exp

(

−
δn,max

δ0n

)

, (5.3b)

dcn = 1− exp

(

−
δn,max

δ0n

)(

1 +
δn,max

δ0n

)

. (5.3c)

As implied by Equations (5.3), damage variables increase monotonically from 0 in
the undamaged case but can never reach the value 1 which corresponds to the fully
damaged case. In practice, this is not realistic. Therefore, it is assumed that the dam-
age variables ds and dcs evolve linearly to 1 when the separation history parameter
δs,max increases from 3δ0s to 4δ0s. A similar strategy is applied to the evolution of dn
and dcn when the separation history parameter δn,max increases from 6δ0n to 7δ0n. The
derivation of the interface tangent matrix is given in Section 5.6.

The interface model employed here consists of four independent parameters (Gcs,
δ0s, Gcn, δ0n). The model parameters can be identified for different interfaces through
experiments performed in a wide range of mode mixities [69]. The self-adaptive
cohesive zone model is expected to be capable of predicting the resulting mixed-
mode interfacial behavior by taking the identified model parameters in shear and
normal modes into account.

5.3 Large deformation self-adaptive finite elements

Using self-adaptive cohesive zone elements, the linear separation approximation
through the interface elements located in the fracture process zone is enriched with
a bi-linear function with a mobile peak, with the peak position and the enrichment
amplitudes as additional global degrees of freedom [106, 109]. The self-adaptive co-
hesive zone model is a robust and effective tool for the simulation of delamination
initiation and growth, especially when the interfacial behavior is rather brittle [109].
In order to apply it successfully to a wide range of engineering applications, the for-
mulation is next extended to a framework suitable for large deformations.

In this study, four-node linear interface elements with zero initial thickness have been
used as depicted in Figure 5.2. The geometrical non-linearity is taken into account
by casting the self-adaptive interface element into a two-dimensional corotational
framework [95].

In the undeformed state, a local coordinate system with the orthonormal basis s0-n0

is defined as shown in Figure 5.2(a). As deformation occurs, the local coordinate
system with the orthonormal basis s-n is established such that the shear direction
denoted by the unit vector s is oriented along the element mid-line (lineAB in Figure
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5.2(b)) at an angle θ with the x-axis in the global Cartesian coordinate system x-y:

s
˜
= [cos θ sin θ]T . (5.4a)

n
˜
= [− sin θ cos θ]T . (5.4b)

Choosing the element mid-line (or mid-plane in a 3D configuration) as a basis for the
orientation of the cohesive zone element is suitable for a large deformation frame-
work as far as interface elements do not undergo a severe distortion accompanied by
a very large rotation and translation of element faces with respect to each other [128].
The rotation matrix R relating local and global coordinate systems is:

RT =

[

s
˜
T

n
˜
T

]

, (5.5)

such that

p̂
˜
= RT p

˜
. (5.6)

where the columns p̂
˜

and p
˜

collect the components of a vectorial field variable in local
and global coordinate systems, respectively.

(a) Undeformed (initial configura-
tion)

(b) Deformed (current configuration)

Figure 5.2: A four-node self-adaptive interface element in a two-dimensional geomet-
rically non-linear setting.

A bi-linear function with an adaptive peak position a, defined in element isopara-
metric coordinates, is added to the standard linear interpolation functions. A self-
adaptive interface element with a piece-wise linear separation approximation and
an adaptive kink is retrieved (see Figure 5.2(b)). Using Equation (5.6), the values
of nodal displacements and enrichment degrees of freedom are calculated in local



5.3 LARGE DEFORMATION SELF-ADAPTIVE FINITE ELEMENTS 89

coordinates:

û
˜ i

= RT u
˜ i
, (5.7a)

ĥ
˜ t/b

= RT h
˜ t/b

, (5.7b)

â = a , (5.7c)

with ĥ
˜ t/b

the enrichment magnitudes at the top or bottom edges of the interface ele-
ment. The separation in the current configuration can then be written in local coor-
dinates as:

δ̂
˜
= Bu û

˜
+Bh(â) ĥ

˜
, (5.8)

with

û
˜
=
[

u1,s u1,n u2,s u2,n u3,s u3,n u4,s u4,n
]T

, (5.9a)

ĥ
˜
=
[

hb,s hb,n ht,s ht,n
]T

, (5.9b)

where the details of B-matrices and interpolation functions are given in [106].

The principle of virtual work is used to derive the equilibrium equations. It states
that within a quasi-static framework, the internal virtual work δWint done in an in-
terface element with a domain Γ equals the external virtual work δWext applied to it
(i.e. by neighboring elements):

δWint =

∫

Γ0

δδ̂
˜

T
t̂
˜

dΓ0 = δWext . (5.10)

Using Equation (5.8), the left side of Equation 5.10 is written as:

δWint = δû
˜
T

∫

Γ0

BT
u t̂

˜
dΓ0 + δĥ

˜

T
∫

Γ0

BT
h t̂

˜
dΓ0 + δâ

∫

Γ0

B
˜
T
a t̂˜

dΓ0

= δû
˜
T f̂

˜ int
+ δĥ

˜

T
ĝ
˜ int

+ δâ b̂int .

(5.11)

Using Equation (5.7), the variation of vectorial fields in local and global coordinates
are related through transformation matrices:

δû
˜
= T uu δu

˜
, (5.12a)

δĥ
˜
= T hu δu

˜
+ T hh δh

˜
, (5.12b)

δâ = δa . (5.12c)

The procedure to calculate the transformation matrices is detailed in Section 5.7. By
substituting the variations of displacement and enrichment degrees of freedom from
Equation (5.12) into Equation (5.11), the corresponding internal forces are expressed
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in global coordinates:

f
˜ int

= T T
uu f̂

˜ int
+ T T

hu ĝ
˜ int

, (5.13a)

g
˜ int

= T T
hh ĝ

˜ int
, (5.13b)

bint = b̂int . (5.13c)

Differentiating Equation (5.13) results in:

δf
˜ int

= T T
uu δf̂

˜ int
+ T T

hu δĝ
˜ int

+ δT T
uu f̂

˜ int
+ δT T

hu ĝ
˜ int

, (5.14a)

δg
˜ int

= T T
hh δĝ

˜ int
+ δT T

hh ĝ
˜ int

, (5.14b)

δbint = δb̂int . (5.14c)

The tangential stiffness matrix of the interface element required for the global non-
linear solution procedure is then derived as follows:

K =





Kuu Kuh K
˜ ua

KT
uh Khh K

˜ ha

K
˜
T
ua K

˜
T
ha Kaa



 , (5.15a)

where:

Kuu =
∂f

˜ int
∂u

˜
= T T

uu

(

K̂uu T uu + K̂uh T hu

)

+ T T
hu

(

K̂hu T uu + K̂hh T hu

)

+Kσ
uu +Kσ

hu ,

(5.15b)

Kuh =
∂f

˜ int
∂h

˜

=
(

T T
uu K̂uh + T T

hu K̂hh

)

T hh +Kσ
hh , (5.15c)

K
˜ ua =

∂f
˜ int
∂a

= T T
uu K̂

˜ ua + T T
hu K̂

˜ ha , (5.15d)

Khh =
∂g

˜ int
∂h

˜

= T T
hh K̂hh T hh , (5.15e)

K
˜
ha =

∂g
˜
int

∂a
= T T

hh K̂
˜
ha , (5.15f)

Kaa =
∂bint
∂a

= K̂ha , (5.15g)

with Kσ
uu, Kσ

hu, and Kσ
hh as the stress stiffness matrices derived from the variation of

the transformation matrices, see Section 5.8 for more details [29, 95]. The interface
tangential stiffness matrix is symmetric and the derivatives in local coordinates have
been elaborated in [106]. A numerical integration scheme is used for calculation of
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the stiffness matrix and internal force components with a relatively large number
of fixed Gaussian integration points to capture the non-linear nature of the traction-
separation law combined with the enriched kinematics [106].

The bulk is discretized using 4-node linear quadrilateral elements. A total Lagrange
procedure is adopted to account for geometrical non-linearities. In the current model,
an elastic constitutive equation is used that relates the second Piola-Kirchhoff stress
to the Green-Lagrange strain measure. However, the developed framework allows
for other constitutive models (e.g. elasto-plastic). The bulk elements neighboring
an enriched cohesive zone element are enriched as well in a manner as explained
in [106].

5.4 Miniaturized mixed-mode bending test

Combining a double cantilever beam concept for mode I loading and an end-notch
flexure concept for mode II loading, a mixed-mode bending test has been developed
where changing the load position on a loading lever determines the ratio of mode I
to mode II loading at the delamination front [99]. The fracture toughness can then
be measured for a wide range of mode mixities using identical test specimens and
procedures. The mixed-mode bending concept has been widely used after being
standardized [1].

Inspired by the need to characterize the interfacial behavior of multi-layer structures
present in microsystems, a miniaturized mixed-mode bending (MMMB) apparatus
(see Figure 5.3(a)) which can fit in a scanning electron microscope chamber for in-situ
delamination testing, has been designed in [70,71]. The setup allows for a pure mode
II loading while a compressive mode I component is avoided at the delamination
front. This feature increases the accuracy of the fracture toughness measurements
when a considerable amount of mode II loading is present at the growing crack tip.

A displacement uMMMB in the y-direction is prescribed to the beam MN at a distance
H = ςγ from point N. The dimensionless parameter ς determines the mode angle at
the delamination front. While ς = 0 resembles a double cantilever beam test (pure
mode I delamination), increasing the parameter ς results in a larger mode II compo-
nent so that a pure mode II delamination can eventually be realized. For samples
with unequal layers, the relation between the relative loading position and the mode
angle can be found in [70]).

For the simulation of delamination in [71], the whole setup and the sample have
been discretized with finite elements and the corresponding boundary conditions
have been applied on the whole geometry; see Figure 5.4.

To avoid modeling the entire setup, a constraint equation will be used instead here.
For this purpose, some verified assumptions can be made; first, the rotation of the
links in the setup is small and second, the deformations in the segments BF, EF, EM,
AN, and MN are negligible. Both the aforementioned assumptions are realistic [71].
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(a) The setup design after [70].
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Figure 5.3: Miniaturized mixed-mode bending test.

(a) Before loading. (b) Mixed-mode loading.

Figure 5.4: Schematic representation of delamination experiments by the miniatur-
ized mixed-mode bending apparatus.

Moreover, the rotational stiffness of the elastic hinges at points E, F, M, and N is
ignored due to the negligible contribution of the energy stored in the elastic hinges.
Based on these assumptions, the following holds:

uA,y = uN,y , (5.16a)

uB,y = uF,y , (5.16b)

uE,y = uM,y = −
α

β
uF,y , (5.16c)
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The constraint equation can then be written as:

uA,y =
1

1− ς
uMMMB,y +

ς

1− ς

α

β
uB,y , (5.17)

where uMMMB is the displacement prescribed on the setup (see Figure 5.3). As a
result of the constraint equation, the forces applied to the sample can be written as:

PA = PMMMB (1− ς) , (5.18a)

PB = −PMMMB
α

β
ς . (5.18b)

The boundary conditions are applied to the sample as shown in Figure 5.3(b), to-
gether with the constraint Equation (5.17). The delamination simulation is carried
out on bi-material specimens consisting of copper lead frame (CuLF) and molding
compound epoxy (MCE). The layers of the bi-material samples were 30mm long and
5mm wide with a thickness of 0.2mm for the CuLF layer and 0.5mm for the MCE
layer [70].

The constitutive law of MCE is linear elastic while CuLF is an elasto-plastic mate-
rial. However, the experimental results did not reveal a plastic deformation either in
the bulk or at the interface for samples of this thickness [70]. Therefore, the behav-
ior of the CuLF layer is also assumed to be linear elastic. The elastic bulk material
properties are shown in Table 5.1.

Table 5.1: Bulk material properties.

Young’s modulus Poisson’s ratio
E (GPa) ν

CuLF 120 0.33
MCE 30 0.25

Delamination experiments were performed on pre-cracked samples (see Figure
5.3(b)) over a wide range of mode mixities characterized by different values of ς [70].
In order to attain a sharp steady state microscopic crack tip, a loading-unloading cy-
cle in pure mode I was applied to the bi-material sample in experiments performed
under different loading conditions (ς = 0.0, 0.4, 0.67, 0.8) and the crack tip position
was measured at the onset of the first unloading [70]. To avoid the influence of the
pre-crack, the experimental results shown in Figure 5.6 do not include the initial
loading-unloading cycle. The measured crack length is then used as the pre-crack
(Lc) for the simulation of delamination in bi-material samples. The fracture tough-
ness in shear and normal directions are directly calculated from the whole set of
experimental results in different mode ratios by determining the energy required to
create cracks in mode I, and mixed-mode loading conditions [70]. Other required
model parameters are chosen such that the second experimental loading-unloading
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loop in mode I (see Figure 5.5(a)) and mode II dominant (see Figure 5.5(d)) loading
conditions are reproduced with a reasonable accuracy. The resulting cohesive zone
model parameters used in the simulations are shown in Table 5.2.

Table 5.2: Cohesive zone model parameters.

Gc (N/m) δ0 (µm) t0 (MPa)
mode I 5.0 0.2 9.2
mode II 32.0 5.0 3.9

The bi-material sample layers are discretized by four-node quadrilateral plane strain
elements. Each layer is discretized by 240 × 4 elements in the x-y plane. This level
of refinement gives a sufficiently accurate approximation of the bending behavior of
the bi-layer sample during delamination experiments. A pre-crack of length Lc is
assumed at the right side of the sample between the layers as shown in Figure 5.3(b).
Linear interface elements are placed between CuLF and MCE layers where they are
bonded. Initially, all elements are non-enriched and enrichment is adaptively acti-
vated in elements within the fracture process zone throughout the deformation [109].
Numerical simulations are performed for four different values of ς indicating condi-
tions of mode I (ς = 0.00) and mixed-mode loading (ς = 0.40, 0.67, 0.80). The results
are shown in Figure 5.6 along with experimentally obtained results. Oscillations can
be seen in the global load-displacement response of the structures simulated within
the conventional cohesive zone modeling framework for all loading conditions. In
contrary to the self-adaptive cohesive zone model, the conventional model fails to
converge prematurely in some cases due to the occurrence of snap-backs that cannot
be traced with the standard Newton-Raphson iterative procedure employed here
(see Figures 5.5(c) and 5.5(d)). Application of the self-adaptive cohesive zone model
results in smooth global responses for all mode mixities.

In general, there is a reasonable agreement between experimental and numerical
results, especially in predicting the prescribed displacement at which an interfa-
cial crack starts to grow upon reloading (ignoring the first experimental loading-
unloading cycle aimed only at creation of a sharp crack tip). It shows the capabil-
ity of the cohesive zone model used here in estimating the load bearing capacity
of the structure. However, more deviations can be observed for larger delamina-
tion lengths. The wavy pattern of the experimental load-displacement responses
after the initiation of delamination for the mode II dominant experiments can be at-
tributed to friction in the small cracked zone behind the process zone (the rough
bi-material crack surfaces were shown in SEM micrographs in [70]). Various aspects
of both experiments and simulations should be investigated to address the source of
the observed difference between experimental results and simulations. For example,
non-linearity of the setup and friction at the fixtures of the setup affect the experi-
mental results. On the other hand, considering complex failure mechanisms within
the interface of an MCE-CuLF assembly of which the effects have to be lumped in
a cohesive zone, the considered traction-separation law may be inadequate to de-
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Figure 5.5: Force-displacement diagrams of the delaminating bi-material sample for
a wide range of mode mixities; experimental and numerical results are
obtained from the miniaturized mixed-mode bending tests and the self-
adaptive and conventional cohesive zone models, respectively.

scribe the delamination failure due to its fixed shape. A more thorough analysis of
delamination growth is next performed.

In the experimental approach, the crack tip is monitored at two different loading lev-
els; for example at u1 and u2 in Figures 5.5(a) to 5.5(d). In any global loading condi-
tion denoted by ς , the energy dissipated through the delamination process is used to
calculate the energy release rate corresponding to that loading condition. The same
strategy is followed in the simulations where the crack growth is measured within a
loading-unloading cycle bounded by u1 and u2. The numerical crack tip is defined
as the traction-free point just behind the cohesive zone. Figures 5.6(a) to 5.6(d) show
the crack length during delamination growth under various loading conditions using
the self-adaptive cohesive zone model. Experimental and numerical crack tip posi-
tions, aexp and anum, are pinpointed in Figures 5.6(a) to 5.6(d). The definition of the
crack tip position in the experiments differs from the numerical definition. Moreover,
there is always an uncertainty associated with identification of the crack tip position
in experiments [71]. As a result, the experimental and numerical crack tip position
at u1 and u2 loading levels do not coincide. However, the numerical approximation
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for the crack segment created in the considered loading range, i.e. the increase in
crack length between u1 and u2, matches reasonably well with the experimental ob-
servations. The energy dissipated within the delamination process between u1 and
u2 and the corresponding increase in crack length are used to calculate the fracture
toughness for both experiments and simulations.

0 100 200 300 400 500 600
4

6

8

9

11

5

7

10

12

Simulation

Experiment

(a) ς = 0.00

0 100 200 300 400 500 600

6

8

9

11

5

7

10

12

13

14

15

Simulation

Experiment

(b) ς = 0.40

0 100 200 300 400 500 600
8

9

11

10

12

13

14

15

16

17

18

Simulation

Experiment

(c) ς = 0.67

0 100 200 300 400 500 600
8

9

11

10

12

13

14

15

16

Simulation

Experiment

(d) ς = 0.80

Figure 5.6: Comparison of delamination growth predicted using the self-adaptive co-
hesive zone model with experiments (symbols • and ♦ represent experi-
mental and numerical points for the specified prescribed displacements,
respectively).

The variation of the mode angle at the crack tip upon delamination growth is shown
in Figure 5.7 where the following equation is used to calculate the mode angle at the
crack tip:

Ψ = arctan

(

δs
δn

)

, (5.19)

where δs and δn denote the shear and normal separation components at the numerical
crack tip, respectively. Analyses of the mode angle at the crack tip in all numerical
simulations show that loading at a fixed value of ς does not result in a delamination
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growth under a constant mode angle. Although the variation of mode angle at the
crack tip is limited (from a minimum of 0.2◦ for ς = 0.0 to a maximum of 6.0◦ for
ς = 0.67), the mode angle does not remain constant upon crack propagation in an
MMMB delamination experiment, especially in mixed-mode loading conditions.
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Figure 5.7: Variation of the mode angle at the crack tip obtained from self-adaptive
cohesive zone model simulations. The markers • indicate the moments of
unloading u1 and u2.

For all loading conditions shown in Figure 5.6, the fracture toughness is calculated
based on the numerical simulations and the results are compared with experimen-
tal data reported in [70] (see Figure 5.8). For the numerical approach, the fracture
toughness is calculated within the interval of [u1, u2] as indicated in Figures 5.6(a) to
5.6(d).

In general, numerical and experimental results follow a similar trend in Figure 5.8
which shows that the numerical model is capable of predicting the variation of frac-
ture toughness with respect to various mode mixities implied by the global loading
position ς . The experimental data of Figure 5.8 shows a high sensitivity of the frac-
ture toughness to the loading position in mode II dominant conditions for which only
three sets of experiments have been performed (see [70] for more details). It is not
sufficient especially since strong variations occur in this range. More experimental
data for mode II dominant conditions will provide a more accurate description of the
variation of fracture toughness with respect to mode mixity. This variation is a con-
sequence of different mechanisms resisting delamination growth at the micro-scale
within the process zone.
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Figure 5.8: Critical energy release rate (fracture toughness) as a function of mode mix-
ity.

5.5 Discussion and conclusion

In this paper, the two-dimensional self-adaptive cohesive zone model developed
in [106,109] was extended to a large deformation framework. Based on experimental
observations, a mixed-mode irreversible constitutive law was used for the cohesive
zone model. The model accounts for the full mode mixity and a coupling between
delamination modes. The numerical model developed here can be used for a wide
range of engineering applications where material and geometrical non-linearities are
expected to occur in delamination problems. Although the current bulk material
model is linear elastic, the developed large deformation framework allows for using
non-linear material models as well. The cohesive zone model parameters were iden-
tified based on the experimental results on mixed-mode delamination in bi-material
specimens.

Mixed-mode delamination in bi-material samples (copper lead frame and molding
compound epoxy) was simulated using the developed methodology. In order to ob-
tain a fair comparison between numerical and experimental results, a sufficiently fine
discretization was applied to capture the bending behavior of the specimens with an
adequate accuracy. However, the global response of the structure was found to be os-
cillatory using the conventional cohesive zone model. A standard Newton-Raphson
iterative scheme failed to converge in some cases, especially in mode II dominant
simulations, where the conventional cohesive zone model had been applied. The
effectiveness of the self-adaptive finite element strategy on smoothening the global
response of the system under different loading conditions was demonstrated. A stan-
dard Newton-Raphson iterative scheme was used without a need for path-following
techniques or further mesh refinements.

The numerical results were compared to experimental results obtained from delam-
ination tests for different loading conditions ranging from mode I to mode II domi-
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nant cases using a miniaturized mixed-mode bending setup. The numerical model
could predict the trend of the structural response with a reasonable accuracy; how-
ever, a deviation was observed in the prediction of delamination growth. In this
regime, the non-linearity of the setup as well as the friction at the setup fixtures and
their effect on the experimental load-displacement response in various mode mixi-
ties need to be investigated. On the numerical side, the traction-separation law used
here has a fixed shape which may induce some limitations for simulating complex
failure mechanisms happening at the interface between metal (CuLF) and a polymer
(MCE). An investigation of mixed-mode simulations was carried out which revealed
the capability of the model in approximating the energy dissipation throughout de-
lamination for different mode mixities. A variation of the mode angle at the crack
tip was observed for a fixed global loading position. The latter has to be taken into
account in characterization of the interface based on mixed-mode experiments.

The current experimental data on delamination of CuLF-MCE specimens in mode II
dominant conditions using the miniaturized mixed-mode bending apparatus is not
sufficient for a full coverage of the interfacial behavior with respect to mode mixity.
More mixed-mode experiments with sharp crack tips introduced along the interface
are required, especially for high mode angles. Moreover, a better understanding of
the dissipation mechanisms at the micro-scale within the cohesive zone is required.
It can be investigated through in-situ experiments to characterize the interface while
from a numerical perspective, a multi-scale approach would be important to obtain
a better understanding of interfacial delamination and the origin of interfacial prop-
erties.
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5.6 Appendix A: Interface tangent matrix

The interface tangent matrix shows the variation of traction (t
˜
= [ts tn]

T ) with respect
to separation (δ

˜
= [δs δn]

T ) within the interface:

dt
˜
= Hcz dδ

˜
. (5.20)

The damage variables introduced in Equation (5.3) are collected in:

D
˜
=
[

ds dcs dn dcn
]T

. (5.21)

The cohesive zone tangent matrix, Hcz, is then derived as follows:

Hcz =
∂t

˜
∂δ

˜

∣

∣

∣

∣

D
˜

+
∂t

˜
∂D

˜

∣

∣

∣

∣

δ
˜

∂D
˜
∂δ

˜

, (5.22a)

with

∂t
˜
∂δ

˜

∣

∣

∣

∣

D
˜

=

[

∂ts/∂δs ∂ts/∂δn
∂tn/∂δs ∂tn/∂δn

]

=

[

k0s(1− ds)(1− dcn) 0
0 k0n(1− dn)(1− dcs)H(δn) + k0nH(−δn)

]

,

(5.22b)

∂t
˜

∂D
˜

∣

∣

∣

∣

δ
˜

=

[

∂ts/∂ds ∂ts/∂dcs ∂ts/∂dn ∂ts/∂dcn
∂tn/∂ds ∂tn/∂dcs ∂tn/∂dn ∂tn/∂dcn

]

=

[

−k0sδs(1− dcn) 0 0 −k0sδs(1− ds)
0 −k0n〈δn〉(1− dn) −k0n〈δn〉(1− dcs) 0

]

,

(5.22c)
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, (5.22d)

where H is the Heaviside function. The Equation (5.22d) shows the variation of the
damage parameters with respect to separation components in the exponential dam-
age evolution regime indicated by Equations (5.3a) to (5.3c). The linear tail of the
damage evolution law is treated accordingly (see Section 5.2 for the explanation on
damage evolution). The load function Fs gets a value of 1 upon loading in the shear
direction and 0 otherwise. The load function Fn equals 1 upon loading in normal
direction and 0 otherwise. The loading in shear and normal directions occurs if the
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following conditions are met:

d|δs|

dτ
> 0 and |δs| = δs,max ⇒ Fs = 1 , (5.23a)

dδn
dτ

> 0 and δn = δn,max ⇒ Fn = 1 . (5.23b)

5.7 Appendix B: Transformation matrices

The transformation matrices, T uu, T hu, and T hh, are derived using a procedure simi-
lar to the one used in [95]. However, the local orthonormal basis s-n is defined with
respect to the interface element mid-line in the current study and is more suitable for
a large deformation formulation [128], whereas the formulation elaborated in [95] is
based on the interface bottom-edge as the reference.

Differentiating Equation (5.7a) results in:

δû
˜ i

= RT δu
˜ i
+ δRT u

˜ i
, (5.24)

in which the variation of the rotation matrix - defined in Equation (5.5) - reads:

δR =

[

− sin θ − cos θ
cos θ − sin θ

]

δθ . (5.25)

To determine δθ, the displacement of point B with respect to point A in local coordi-
nates is written as (see Figure 5.2):

û
˜BA = û

˜B
− û

˜A
= x̂

˜B
− x̂

˜ 0B
− (x̂

˜A
− x̂

˜ 0A
)

= RT (x
˜B

− x
˜A

)− (x̂
˜ 0B

− x̂
˜ 0A

) = RTx
˜BA − x̂

˜ 0BA ,
(5.26)

where x̂
˜ 0i

and x̂
˜ i

collect initial and current local coordinates of point i, respectively
and x

˜ i
collects the current global coordinates of point i. Since line AB is the ele-

ment mid-line and this is taken as a basis for the local coordinate system, the normal
component of û

˜BA is zero:

ûBA,n = n
˜
Tx

˜BA − x̂0BA,n = 0 , (5.27)

Differentiating Equation (5.27) results in:

δûBA,n = −s
˜
Tx

˜BAδθ + n
˜
Tδx

˜BA = 0 . (5.28)

Since δx
˜BA is zero, δθ is then calculated:

δθ = (n
˜
Tδu

˜BA)/l , (5.29)
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where l denotes the current length of the interface element and δu
˜BA is elaborated as

follows:

δu
˜BA = δu

˜B
− δu

˜A
=

1

2
(−δu

˜ 1
+ δu

˜ 2
+ δu

˜ 3
− δu

˜ 4
) , (5.30)

Substitution of Equation (5.30) into Equation (5.29) leads to:

δθ = v
˜
Tδu

˜
, (5.31a)

where

v
˜
=

1

2l

[

sin θ − cos θ − sin θ cos θ − sin θ cos θ sin θ − cos θ
]T

, (5.31b)

δu
˜
=
[

δu1,x δu1,y δu2,x δu2,y δu3,x δu3,y δu4,x δu4,y
]T

, (5.31c)

Substitution of Equation (5.31a) into Equation (5.25) results in calculation of δR
which can be used in Equation (5.24) to give the variation of displacements of node i
in local coordinates with respect to global coordinates as:

δûi
˜
= RT δu

˜ i
+ ˆ̄u

˜ i
v
˜
T δu

˜
, (5.32)

where ˆ̄u
˜ i

= [ui,n −ui,s]
T . Taking all nodal displacements into account, the transfor-

mation matrix T uu used in Equation (5.12a), is given by:

T uu =









RT 0 0 0
0 RT 0 0
0 0 RT 0
0 0 0 RT









+ ˆ̄u
˜
v
˜
T , (5.33a)

with

ˆ̄u
˜
=
[

u1,n −u1,s u2,n −u2,s u3,n −u3,s u4,n −u4,s
]T

, (5.33b)

The next step is to determine the transformation matrices T hu and T hh. Similar to the
approach that was used for the derivation of T uu, a differentiation of Equation (5.7b)
is carried out:

δĥ
˜
t/b = RT δh

˜
t/b + δRT h

˜
t/b . (5.34)

Using Equations (5.31a) and (5.25), the above relation can be written as:

δĥ
˜ t/b

= RT δh
˜ t/b

+ ˆ̄h
˜ t/b

v
˜
T δu

˜
, (5.35)

where ˆ̄h
˜ t/b

= [ĥt/b,n −ĥt/b,s]
T . The transformation matrices T hu and T hh used in Equa-
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tion (5.12b), are then given by:

T hu = ˆ̄h
˜
v
˜
T , (5.36a)

T hh =

[

RT 0
0 RT

]

, (5.36b)

with

ˆ̄h
˜
=
[

hb,n −hb,s ht,n −ht,s
]T

. (5.36c)

5.8 Appendix C: Stress stiffness matrices

Considering Equations (5.14a) and (5.15b), the stress stiffness matrix Kσ
uu is defined

so that:

δT T
uu f̂

˜ int
=

8
∑

i=1

(

δT (i)
uu

)T

f̂
(i)
int =

8
∑

i=1

f̂
(i)
intG

(i)
uu δu˜

= Kσ
uu δu˜

, (5.37)

where δT (i)
uu denotes the ith row of δT uu and f̂

(i)
int denotes the ith component of f̂

˜ int
.

The matrix G(i)
uu should be derived for each displacement degree of freedom sepa-

rately. As an example, it is derived for i = 1 by first calculating T
˜
T (1)

uu from Equation
(5.33):

(

T (1)
uu

)T

= [s
˜
T 0

˜
T 0

˜
T 0

˜
T ]T + u1,n v

˜
. (5.38)

Differentiating Equation (5.38) reads:

(

δT (1)
uu

)T

= [n
˜
T 0

˜
T 0

˜
T 0

˜
T ]T v

˜
T δu

˜
+ δu1,n v

˜
+ u1,n δv

˜
= G(1)

uu δu
˜
. (5.39)

Ignoring the variation of the column v
˜

because of its negligible effect (see [29, 95])
and calculating δu1,n from Equation (5.32), the matrix G(1)

uu is derived as:

G(1)
uu = [n

˜
T 0

˜
T 0

˜
T 0

˜
T ]T v

˜
T + v

˜
[n
˜
T 0

˜
T 0

˜
T 0

˜
T ]− u1,s v

˜
v
˜
T . (5.40)

Repeating this for the matrices G(i)
uu for i = 1, . . . , 8, the stress stiffness matrix Kσ

uu is
obtained using Equation (5.37).

In order to derive the stress stiffness matrices Kσ
hu and Kσ

hh, the following relation is
defined:

δT T
hu ĝ

˜ int
=

4
∑

i=1

(

δT
(i)
hu

)T

ĝ
(i)
int =

4
∑

i=1

ĝ
(i)
intG

(i)
hu δu˜

+

4
∑

i=1

ĝ
(i)
intG

(i)
hh δh˜

= Kσ
hu δu

˜
+Kσ

hh δh
˜
,

(5.41)
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where δT
(i)
hu denotes the ith row of δT hu and ĝ

(i)
int denotes the ith component of ĝ

˜ int
.

The matrices G
(i)
hu and G

(i)
hh are derived for each enrichment scaling factor degree of

freedom separately. As an example, assuming i = 1, T
˜
T (1)

hu is derived using Equations
(5.35) and (5.36):

(

T
(1)
hu

)T

= hb,n v
˜
. (5.42)

Differentiating Equation (5.42) and and calculating δĥb,n from Equation (5.35) results
in:

(

δT
(1)
hu

)T

= −hb,s v
˜
v
˜
T δu

˜
+ v

˜
[n
˜
T 0

˜
T ] δh

˜
= G

(1)
hu δu˜

+G
(1)
hh δh˜

, (5.43)

where δv
˜

has been ignored (see [29,95]). The above strategy can be used to determine

G
(i)
hu and G

(i)
hh for i = 1, . . . , 4, which, after being substituted in Equation (5.41), gives

the stress stiffness matrices Kσ
hu and Kσ

hh.



CHAPTER SIX

General conclusion and outlook

6.1 Conclusion

Laminated structures are built by integration of dissimilar materials with various
manufacturing technologies in order to obtain a high thermo-electro-mechanical per-
formance at a low weight, size, and cost. However, considering the wide range of
applications of such structures from micro-electronics to aerospace structural com-
ponents, they are prone to complex thermo-hygro-mechanical loading conditions
during their service life which may influence their structural integrity. Complex
intra-laminar as well as inter-laminar damage mechanisms endanger the structural
integrity of such systems which is directly in relation with their reliability and func-
tionality. The presence of high stresses between dissimilar adherent layers in multi-
layered structures causes accumulation of interfacial damage which can eventually
result in interfacial delamination. It is a common failure mode leading to a loss of
structural integrity. Therefore, together with dedicated experiments for interface
characterization, predictive numerical tools are necessary to analyze the reliability
or mechanical response of such structures during their design and optimization pro-
cess to minimize such a catastrophic failure. The research presented in this thesis
focused on the development of a robust and effective numerical framework for the
simulation of interfacial delamination.

Due to the capability of cohesive zone models to predict both delamination initiation
and growth as a result of degradation of adhesion between laminae and the simplic-
ity of their application in a finite element framework, these models are widely used.
However, these models suffer from an intrinsic mesh sensitivity. A sufficiently ac-
curate kinematic description of the process zone of the cohesive crack is required;
otherwise, numerical instabilities in the form of snap-backs occur in the global load-
displacement response of the system. In a rather brittle interface where the size of
the process zone is much smaller than the structural dimensions, the implications
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are that either a very fine discretization must be used to eliminate the numerical
instabilities or complex path-following techniques should be employed to trace the
non-physical (discretization-induced) oscillatory path in very small increments.

Both aforementioned remedies result in a considerable increase in computational
costs which limits the applicability of cohesive zone models to the simulation of brit-
tle interfacial delamination, especially in a three-dimensional framework where an
adaptive mesh refinement is not straightforward. The goal of this research was to
develop a self-adaptive cohesive zone model to simulate interfacial delamination in
an effective and robust manner by preserving a coarse discretization while avoiding
path-following techniques.

The separation approximation within the interface elements located in the process
zone was enriched by adding a piece-wise linear function with an adaptive peak
position in a two-dimensional setting (or piece-wise planar functions in a three-
dimensional setting) to the conventional interpolation functions. Adaptivity of the
peak of the enrichment functions in individual interface elements mimics the phys-
ical delamination growth problem. The peak positions of the enrichment functions
and the enrichment magnitudes form additional global degrees of freedom for which
the values are determined by solving the global system. The bulk elements neighbor-
ing the enriched cohesive zone elements are enriched in a similar fashion to account
for the continuity of displacements along the faces of the interfacial crack.

While adding only a simple extension to the set of conventional finite element inter-
polation functions in the process zone of the cohesive crack imposes a minor extra
computational effort, the adaptivity of the enrichment makes it an effective substitute
for the mesh refinement strategy where the added nodes are not adaptive. It results
in a considerable reduction of the non-physical oscillations in the global response of
the delaminating structure such that a standard Newton-Raphson iterative scheme
could be applied without a need for complicated path-following techniques. The
self-adaptive finite element framework developed in this thesis offers new possibili-
ties for a general application of cohesive zone models to the simulation of interfacial
delamination in an effective, robust, and accurate manner at a reasonable computa-
tional cost.

The activities and findings associated with the introduction and further extension
and development of the self-adaptive finite elements are summarized as follows:

• The self-adaptive finite element framework was developed and applied to a
simple one-dimensional example for which an analytical solution existed. The
numerical results obtained from the enriched model showed a major improve-
ment compared to the conventional cohesive zone model in terms of reducing
the discretization-induced oscillations in the global response of the structure.
The additional computational cost was minimized by using an adaptive en-
richment strategy where only the elements located in the process zone were
enriched.

• Adaptivity (mobility) of the enrichment function plays a key role in enabling
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the self-adaptive finite elements to accurately capture the kinematics of the
growing interface crack at all instances, which constitutes one of the major
advantages of the proposed methodology. A consistent energy-based self-
adaptive cohesive zone model, where the possible equilibrium states corre-
spond to the local minima of the total potential of the system, was considered.
The variation of the total potential with respect to the enrichment peak position
was investigated and revealed a non-convex potential profile under some cir-
cumstances. The latter needed special treatment to improve the convergence.
This investigation led to the development of a penalty formulation which en-
sures uniqueness of the solution as well as the stability of the solution proce-
dure with a minimum constraint on the enrichment adaptivity.

• Based on the previous findings on numerical aspects of the enrichment, a two-
dimensional mixed-mode self-adaptive cohesive zone model was formulated
within a damage mechanics framework which accounted for the irreversibility
of the delamination process.

• The self-adaptive cohesive zone model was extended to three-dimensional de-
lamination problems by enriching all edges of the planar interface elements
with hierarchical process-driven enrichment functions. The performance of the
hierarchical 3D formulation was evaluated for crack growth problems where
the crack front was parallel to the element edges or oblique with respect to the
edges. Compared to conventional cohesive zone modelling, the self-adaptive
framework had a considerable effect on reducing the oscillations to a level
that the solution could be traced with a standard Newton-Raphson iterative
scheme, even for the most brittle interface behaviour considered. In an attempt
to improve the approximation in the process zone such that a constant crack
front that grows in an oblique manner with respect to the element edges could
be reproduced, a non-hierarchical formulation was proposed. Considering the
requirement for the modification of standard finite element interpolation func-
tions in the alternative approach and comparing its performance with the hier-
archical enrichment, the superiority of the original hierarchical approach was
demonstrated.

• The oscillations observed in the global load-displacement response of delam-
inating structures were quantified through Fourier analyses and the relation-
ship between the amount of oscillations and the brittleness of the system was
demonstrated for a given discretization. The effect of a persistent refinement
on reducing the oscillations was quantified and was compared with different
enrichment strategies.

• Choosing an irreversible mixed-mode traction-separation law which accounts
for a coupling between delamination modes, the self-adaptive cohesive zone
model was formulated within a large deformation framework. This enables the
methodology to be applied to general engineering problems where material or
geometrical non-linearities might occur. The numerical results were compared
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with experimental results obtained from miniaturized mixed-mode bending
tests which showed a satisfactory performance of the enhanced methodology.

6.2 Outlook

A more robust and effective cohesive zone model was obtained by formulating it
within a self-adaptive finite element framework. The process-driven hierarchical en-
richment was found to be a more effective and efficient substitute for a mesh refine-
ment especially when the interface was rather brittle. In light of the research objective
of this thesis and considering the scope and limitations of the proposed methodology,
the following recommendations and suggestions are given for future research:

• In case of a very coarse discretization of the process zone, very high traction
gradients might occur within a single interface element in the fracture process
zone for which a bi-linear enrichment function is inadequate. Convergence
problems arise due to a non-convex potential in such a case. However, the
proposed methodology is well-suited to be extended to other enrichments as
well, allowing for more complex separation profiles within a single cohesive
zone element.

• Studying delamination problems, non-linearities may arise at both the interface
and the bulk material. Higher order adaptive enrichment functions might show
a better performance in such cases. Moreover, the bending behavior of the
bulk material can be captured with a higher accuracy using higher order finite
elements together with hierarchical enrichments.

• The oscillations observed in the global structural load-displacement response
are discretization-induced ones which are not affected by the integration
scheme. However, a numerical integration should capture the highly non-
linear nature of the traction-separation law combined with the enriched kine-
matics with a reasonable accuracy. Integration of the self-adaptive finite ele-
ments can be done by either using fixed integration points (in which case a
sufficiently high number is needed) or by a lower number of adaptive integra-
tion points. The former was chosen in this research for the convenience of the
storage of history parameters in case of the enriched cohesive zone elements.
In general, the bulk material can also be history-dependent which results in a
considerable computational burden. Therefore, a more thorough study of the
integration of self-adaptive finite elements is recommended to further improve
the efficiency of self-adaptive finite elements.

• A penalty formulation was developed to ensure the uniqueness of the solution
while imposing a minimum constraint on the enrichment adaptivity. Since the
penalization affects the mobility of the enrichment peak position, a quantitative
study of the penalty formulation is recommended. The penalty coefficient has
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to be chosen such that it does not make major changes in the total potential of
the system. The strategy to determine the value of the penalty coefficient could
be further investigated.

• The self-adaptive finite elements improve the kinematic description within the
fracture process zone. Application of this framework to modeling arbitrary co-
hesive crack growth in a continuum such as by X-FEM is conceptually possible.
However, implementation aspects and its effectiveness have to be investigated.

• A proper damage evolution law that governs the loss of cohesive strength as a
function of thermo-hygro-mechanical history could be developed by proper ex-
periments in a wide range of mode mixities. Obtaining a realistic cohesive law,
the self-adaptive cohesive zone model can then be used to evaluate the relia-
bility of complex multi-layered structures for which the conventional cohesive
zone models are not efficient.
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Samenvatting

Falen van interfaces in de vorm van delaminatie resulteert vaak in het slecht func-
tioneren of bezwijken van gelamineerde structuren. Verschillende numerieke tech-
nieken zijn voorgesteld voor het simuleren van dit proces. Vanwege de mogelijkheid
om zowel de initiatie als groei van delaminatie te voorspellen worden vaak cohesive
zone modellen gebruikt om delaminatie te simuleren waarbij de adhesie tussen twee
materialen geleidelijk degradeert wanneer de interface ertussen geopend wordt.

Toepassing van cohesive zone modellen voor het modelleren van delaminatie in
brosse interfaces in een quasistatische eindige elementen formulering is onderhe-
vig aan een intrinsieke gevoeligheid voor de discretisatie. Een groot aantal interface
elementen is nodig voor de discretisatie van de proces zone van een scheur. Wanneer
dit niet het geval is, zal het plotseling vrijkomen van energie in grote cohesive zone
elementen resulteren in een serie van snap-through en snap-back punten in de glob-
ale kracht–verplaatsing respons van het systeem, waardoor de numerieke efficiëntie
nadelig beı̈nvloed wordt.

Hoewel rekentechnisch dure technieken gebruikt kunnen worden om het os-
cillerende belastingspad te volgen, kan de efficiëntie en robuustheid van brosse co-
hesive zone modellen aanzienlijk verbeterd worden door het reduceren van de os-
cillaties in de kracht–verplaatsing response zonder een verdere mesh verfijning. Met
dit doel voor ogen wordt de benadering van de scheuropening in de proces zone
verrijkt met een adaptieve hiërarchische uitbreiding. De lineaire benadering van de
opening van het cohesive zone element is verrijkt met een bi-lineaire functie, waarbij
de positie van de piek van de verrijking en de grootte van de verrijking beschouwd
worden als extra vrijheidsgraden die bepaald worden door het minimaliseren van
de totale potentiaal van het globale systeem. Door de mobiliteit van de piek van de
verrijkingsfunctie binnen het cohesive zone element wordt de discretisatie aangepast
aan de fysica van het probleem.

Belangrijke numerieke aspecten van de voorgestelde verrijkingsstrategie, zoals de
mobiliteit and uniekheid van de oplossing zijn uitgebreid onderzocht. De efficiëntie
en robuustheid van de verrijking zijn getoond aan de hand van numerieke voor-
beelden die de algemene toepasbaarheid van de methode laten zien. Door toepassing
van de verrijking hoeft de mesh niet verder verfijnd te worden terwijl de standaard
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Newton–Raphson methode toepasbaar blijft in het geval van een relatief grove mesh,
waardoor grote rekenkosten bespaard blijven. Het voorgestelde verrijkingsschema
is uitgebreid naar delaminatie in een driedimensionale eindige elementen formuler-
ing. Vlakke interface elementen zijn langs alle zijden verrijkt met bi-lineaire functies
met mobiele pieken. Het effect van de voorgestelde methode op de reductie van os-
cillaties gerelateerd aan de discretisatie is kwantitatief geëvalueerd. Voor situaties
van scheurgroei waarbij het front van de scheur niet uitgelijnd is met de randen van
het element is een niet-hiërarchische verrijkingsstrategie ontwikkeld en de prestaties
ervan zijn vergeleken met de hiërarchische methode.

De zelfadaptieve eindige elementen formulering is uitgebreid naar een formuler-
ing die geschikt is voor grote deformaties en is toegepast op interfaces in micro-
elektronica onder realistische mixed-mode belastingcondities. In het bijzonder zijn
materiaal/interface systemen gemodelleerd in geminiaturiseerde mixed-mode buig-
experimenten, waarbij de mode hoek varieert over een groot bereik en de resultaten
zijn vergeleken met experimentele resultaten. In de constitutieve relatie die gebruikt
is voor de interface is de scheurtaaiheid afhankelijk van de mode hoek. Hiermee kan
het verrijkte cohesive zone model gebruikt worden voor de nauwkeurige, effectieve
en efficiënte simulatie van het gedrag van brosse interfaces.
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