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SIMULATION OF MUTUALLY COUPLED OSCILLATORS USING

NONLINEAR PHASE MACROMODELS

DAVIT HARUTYUNYAN, JOOST ROMMES, JAN TER MATEN, AND WIL SCHILDERS

Abstract. Design of integrated RF circuits requires detailed insight in the be-
havior of the used components. Unintended coupling and perturbation effects
need to be accounted for before production, but full simulation of these effects
can be expensive or infeasible. In this paper we present a method to build
nonlinear phase macromodels of voltage controlled oscillators. These models
can be used to accurately predict the behavior of individual and mutually cou-
pled oscillators under perturbation at a lower cost than full circuit simulations.
The approach is illustrated by numerical experiments with realistic designs.

1. Introduction

The design of modern RF (radio frequency) integrated circuits becomes increas-
ingly more complicated due to the fact that more functionality needs to be in-
tegrated on a smaller physical area. In the design process floor planning, i.e.,
determining the locations for the functional blocks, is one of the most challenging
tasks. Modern RF chips for mobile devices, for instance, typically have an FM
radio, Blue- tooth, and GPS on one chip. Each of these functionalities are imple-
mented with Voltage Controlled Oscillators (VCOs), that are designed to oscillate
at certain different frequencies. In the ideal case, the oscillators operate indepen-
dently, i.e., they are not perturbed by each other or any signal other than their
input signal. Practically speaking, however, the oscillators are influenced by un-
intended (parasitic) signals coming from other blocks (such as Power Amplifiers)
or from other oscillators, via for instance (unintended) inductive coupling through
the substrate. A possibly undesired consequence of the perturbation is that the
oscillators lock to a frequency different than designed for, or show pulling, in which
case the oscillators are perturbed from their free running orbit without locking.

Oscillators appear in many physical systems and interaction between oscillators
has been of interest in many applications. Our main motivation comes from the
design of RF systems, where oscillators play an important role [6, 17, 9, 3] in,
for instance, high-frequency phase locked loops (PLLs). Oscillators are also used
in the modeling of circadian rhythm mechanisms, one of the most fundamental
physiological processes [2]. Another application area is the simulation of large-scale
biochemical processes [16].
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Although the use of oscillators is widely spread over several disciplines, their
intrinsic nonlinear behavior is similar, and, moreover, the need for fast and accu-
rate simulation of their dynamics is universal. These dynamics include changes
in the frequency spectrum of the oscillator due to small noise signals (an effect
known as jitter [6]), which may lead to pulling or locking of the oscillator to a dif-
ferent frequency and may cause the oscillator to malfunction. The main difficulty
in simulating these effects is that both phase and amplitude dynamics are strongly
nonlinear and spread over separated time scales [15]. Hence, accurate simulation
requires very small time steps during time integration, resulting in unacceptable
simulation times that block the design flow. Even if computationally feasible, tran-
sient simulation only gives limited understanding of the causes and mechanisms of
the pulling and locking effects.

To some extend one can describe the relation between the locking range of an
oscillator and the amplitude of the injected signal (these terms will be explained
in more detail in Section 2). Adler [1] shows that this relation is linear, but it
is now well known that this is only the case for small injection levels and that
the modeling fails for higher injection levels [14]. Also other linearized modeling
techniques [17] suffer, despite their simplicity, from the fact that they cannot model
nonlinear effects such as injection locking [14, 20].

In this paper we use the nonlinear phase macromodel introduced in [6] and
further developed and analyzed in [14, 15, 20, 8]. Contrary to linear macromodels,
the nonlinear phase macromodel is able to capture nonlinear effects such as injection
locking. Moreover, since the macromodel replaces the original oscillator system
by a single scalar equation, simulation times are decreased while the nonlinear
oscillator effects can still be studied without loss of accuracy. We will show how
such macromodels can also be used to predict the behavior of inductively coupled
oscillators.

Returning to our motivation, during floor planning, it is of crucial importance
that the blocks are located in such away that the effects of any perturbing signals
are minimized. A practical difficulty here is that transient simulation of the full
system is very expensive and usually unfeasible during the early design stages. One
way to get insight in the effects of inductive coupling and injected perturbation
signals is to apply the phase shift analysis [6]. In this paper we will explain how
this technique can be used to estimate the effects for perturbed individual and
coupled oscillators. We will consider perturbations caused by oscillators and by
other components such as balanced/unbalanced transformers (baluns).

The paper is organized as follows. In Section 2 we summarize the phase noise
theory. A practical oscillator model and an example application are described
in Section 3. Inductively coupled oscillators are discussed in detail in Section 4.
In Section 5 we give an overview of existing methods to model injection locking of
individual and resistively/capacitively coupled oscillators. In Section 6 we show how
the phase noise theory can be used to analyze oscillator-balun coupling. Numerical
results are presented in Section 7 and the conclusions are drawn in Section 8.
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2. Phase noise analysis of oscillator

A general free-running oscillator can be expressed as an autonomous system of
differential (algebraic) equations:

dq(x)

dt
+ j(x) = 0,(1a)

x(0) = x(T ),(1b)

where x(t) ∈ R
n are the state variables, T is the period of the free running oscil-

lator, which is in general unknown, and q, j : R
n → R

n are (nonlinear) functions
describing the oscillator’s behavior. The solution of (1) is called periodic steady
state (PSS) and is denoted by xpss. Although finding the PSS solution can be an
challenging task in itself, we will not discuss this in the present paper and refer the
interested reader to, for example, [10, 4, 11, 12, 19, 8].

A general oscillator under perturbation can be expressed as a system of differ-
ential equations

dq(x)

dt
+ j(x) = b(t),(2a)

x(0) = xpss(0),(2b)

where b(t) ∈ R
n are perturbations to the free running oscillator. For small per-

turbations b(t) it can be shown [6] that the solution of (2) can be approximated
by

(3) xp(t) = xpss(t + α(t)),

where α(t) ∈ R is called the phase shift. The phase shift α(t) satisfies the following
scalar nonlinear differential equation:

α̇(t) = V T (t + α(t)) · b(t),(4a)

α(0) = 0,(4b)

with V (t) ∈ R
n being the perturbation projection vector (PPV) [6] of (2) and n

is the system size. The PPV is a periodic function with the same period as the
oscillator and can efficiently be computed directly from the PPS solution, see for
example [5]. Using this simple and numerically cheap method one can do many
kinds of analysis for oscillators, e.g. injection locking, pulling, a priori estimate of
the locking range [6, 14].

3. LC oscillator

For many applications oscillators can be modeled as an LC tank with a nonlinear
resistor as shown in Fig. 1. This circuit is governed by the following differential
equations for the unknowns (v, i):

C
dv(t)

dt
+

v(t)

R
+ i(t) + S tanh(

Gn

S
v(t)) = b(t),(5a)

L
di(t)

dt
− v(t) = 0,(5b)

where C, L and R are the capacitance, inductance and resistance, respectively. The
nodal voltage is denoted by v and the branch current of the inductor is denoted
by i. The voltage controlled nonlinear resistor is defined by S and Gn, where S
determines the oscillation amplitude and Gn is the gain.
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Figure 2. Side band level of the voltage response versus the in-
jected current amplitude for different offset frequencies.

A lot of work [17, 14] has been done for the simulation of this type of oscillators.
Here we will give an example that can be of practical use for designers. During
the design process, early insight in the behavior of system components is of crucial
importance. In particular, for perturbed oscillators it is very convenient to have a
direct relationship between the injection amplitude and the side band level.

For the given RLC circuit with the following parameters L = 930 · 10−12 H,
C = 1.145 · 10−12 F, R = 1000 Ω, S = 1/R, Gn = −1.1/R and injected signal
b(t) = A sin(2πf), we plot the side band level of the voltage response versus the
amplitude A of the injected signal for different offset frequencies, see Fig. 2. We
see, for instance, that the oscillator locks to a perturbation signal with an offset of
10 MHz if the corresponding amplitude is larger than ∼ 10−4 A (when the signal is
locked the sideband level becomes 0 dB). This information is useful when designing
the floor plan of a chip, since it may put additional requirements on the placement
(and shielding) of components that generate, or are sensitive to, perturbing signals.
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4. Mutual inductive coupling

Next we consider the two mutually coupled LC oscillators shown in Fig. 3. The
inductive coupling between these two oscillators can be modeled as

L1
di1(t)

dt
+ M

di2(t)

dt
= v1(t),(6a)

L2
di2(t)

dt
+ M

di1(t)

dt
= v2(t),(6b)

where M = k
√

L1L2 is the mutual inductance and |k| < 1 is the coupling factor.
This makes the matrix

(

L1 M
M L2

)

positive definite, which ensures that the problem is well posed. In this section all
the parameters with a subindex refer to the parameters of the oscillator with the
same subindex. If we combine the mathematical model (5) of each oscillator with
(6), then the two inductively coupled oscillators can be described by the following
differential equations

C1
dv1(t)

dt
+

v1(t)

R1
+ i1(t) + S tanh(

Gn

S
v1(t)) = 0,(7a)

L1
di1(t)

dt
− v1(t) = −M

di2(t)

dt
,(7b)

C2
dv2(t)

dt
+

v2(t)

R2
+ i2(t) + S tanh(

Gn

S
v2(t)) = 0,(7c)

L2
di2(t)

dt
− v2(t) = −M

di1(t)

dt
.(7d)

For small values of the coupling factor k the right-hand side of (7b) and (7d) can
be considered as a small perturbation to the corresponding oscillator and we can
apply the phase shift theory described in Section 2. Then we obtain the following
simple nonlinear equations for the phase shift of each oscillator:

α̇1(t) = V T
1 (t + α1(t)) ·

(

0

−M
di2(t)

dt

)

,(8a)

α̇2(t) = V T
2 (t + α2(t)) ·

(

0

−M
di1(t)

dt

)

,(8b)

where the currents and voltages are evaluated by using (3):

[v1(t), i1(t)]
T = x1

pss(t + α1(t)),(8c)

[v2(t), i2(t)]
T = x2

pss(t + α2(t)).(8d)

4.1. Time discretization. The system (8) is solved by using implicit backward
Euler for the time discretization and the Newton method is applied for the solution
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Figure 3. Two inductively coupled LC oscillators.

of the resulting two dimensional nonlinear equations (9a) and (9b), i.e.

αm+1
1 = αm

1 + τV T
1 (tm+1 + αm+1

1 )·(9a)




0

−M
i2(t

m+1) − i2(t
m)

τ



 ,

αm+1
2 = αm

2 + τV T
2 (tm+1 + αm+1

2 )·(9b)




0

−M
i1(t

m+1) − i1(t
m)

τ



 ,

[v1(t
m+1), i1(t

m+1)]T = x1
pss(t

m+1 + αm+1
1 ),(9c)

[v2(t
m+1), i2(t

m+1)]T = x2
pss(t

m+1 + αm+1
2 ),(9d)

α1
1 = 0, α1

2 = 0, m = 1, . . . ,

where τ = tm+1 − tm denotes the time step. For the Newton iterations in (9a) and
(9b) we take (αm

1 , αm
2 ) as initial guess on the time level (m+1). This provides very

fast convergence (in our applications within around four Newton iterations). See
[4] and references therein for more details on time integration of electric circuits.

5. Resistive and capacitive coupling

For completeness in this section we describe how the phase noise theory applies
to two oscillators coupled by a resistor or a capacitor.

5.1. Resistive coupling. Resistive coupling is modeled by connecting two oscil-
lators by a single resistor, see Fig. 4. The current iR0

flowing through the resistor
R0 satisfies the following relation

(10) iR0
=

v1 − v2

R0
,

where R0 is the coupling resistance. Then the phase macromodel is given by

α̇1(t) = V T
1 (t + α1(t)) ·

(

(v1 − v2)/R0

0

)

,(11a)

α̇2(t) = V T
2 (t + α2(t)) ·

(

−(v1 − v2)/R0

0

)

,(11b)
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Figure 4. Two resistively coupled LC oscillators.
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Figure 5. Two capacitively coupled LC oscillators.

where the voltages are updated by using (3). More details on resistively coupled
oscillators can be found in [15].

5.2. Capacitive coupling. When two oscillators are coupled via a single capacitor
with a capacitance C0 (see Fig. 5), then the current iC0

through the capacitor C0

satisfies

(12) iC0
= C0

d(v1 − v2)

dt
.

In this case the phase macromodel is given by

α̇1(t) = V T
1 (t + α1(t)) ·

(

C0
d(v1 − v2)

dt
0

)

,(13a)

α̇2(t) = V T
2 (t + α2(t)) ·

(

−C0
d(v1 − v2)

dt
0

)

,(13b)

where the voltages are updated by using (3).
Time discretization of (11) and (13) is done according to (9).

6. Oscillator coupling with balun

In this section we analyze inductive coupling effects between an oscillator and a
balun. A balun is an electrical transformer that can transform balanced signals to
unbalanced signals and vice versa, and they are typically used to change impedance
(applications in (RF) radio). The (unintended) coupling between an oscillator and
a balun typically occurs on chips that integrate several oscillators for, for instance,
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FM radio, Bluethooth and GPS, and hence it is important to understand possible
coupling effects during the design. In Figure 6 a schematic view is given of an
oscillator which is coupled with a balun via mutual inductors.

The following mathematical model is used for oscillator and balun coupling (see
Fig. 6):

C1
dv1(t)

dt
+

v1(t)

R1
+ i1(t) + S tanh(

Gn

S
v1(t)) = 0,(14a)

L1
di1(t)

dt
+ M12

di2(t)

dt
+ M13

di3(t)

dt
− v1(t) = 0,(14b)

C2
dv2(t)

dt
+

v2(t)

R2
+ i2(t) + I(t) = 0,(14c)

L2
di2(t)

dt
+ M12

di1(t)

dt
+ M23

di3(t)

dt
− v2(t) = 0,(14d)

C3
dv3(t)

dt
+

v3(t)

R3
+ i3(t) = 0,(14e)

L3
di3(t)

dt
+ M13

di1(t)

dt
+ M23

di2(t)

dt
− v3(t) = 0,(14f)

where Mij = kij

√

LiLj , i, j = 1, 2, 3, i < j is the mutual inductance and kij is
the coupling factor. The parameters of the nonlinear resistor are S = 1/R1 and
Gn = −1.1/R1 and the current injection in the primary balun is denoted by I(t).

For small coupling factors we can consider M12
di2(t)

dt
+ M13

di3(t)
dt

in (14b) as a
small perturbation to the oscillator. Then similar to (8), we can apply the phase
shift macromodel to (14a)–(14b). The reduced model corresponding to (14a)–(14b)
is

dα(t)

dt
= V T (t + α(t)) ·

(

0

−M12
di2(t)

dt
− M13

di3(t)

dt

)

.(15)
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The balun is described by a linear circuit (14c)–(14d) which can be written in a
more compact form:

(16) E
dx(t)

dt
+ Ax(t) + B

di1(t)

dt
+ C = 0,

where

E =









C2 0 0 0
0 L2 0 M23

0 0 C3 0
0 M23 0 L3









,(17a)

A =









1/R2 1 0 0
−1 0 0 0
0 0 1/R30
0 0 −1 0









,(17b)

BT =
(

0 M12 0 M13

)

,(17c)

CT =
(

I(t) 0 0 0
)

,(17d)

xT =
(

v2(t) i2(t) v3(t) i3(t)
)

.(17e)

With these notations (15) and (16) can be written in the following form

dα(t)

dt
= V T (t + α(t)) ·

(

−BT dx(t)

dt

)

,(18)

E
dx(t)

dt
+ Ax(t) + B

di1(t)

dt
+ C = 0,(19)

where i1(t) is computed by using (3). This system can be solved by using a finite
difference method.

7. Numerical experiments

It is known that a perturbed oscillator either locks to the injected signal or is
pulled, in which case side band frequencies all fall on one side of the injected signal,
see, e.g. [14]. It is interesting to note that contrary to the single oscillator case,
where side band frequencies all fall on one side of the injected signal, for (weakly)
coupled oscillators a double-sided spectrum is formed.

In Section 7.1–7.3 we consider two LC oscillators with different kinds of coupling
and injection. The inductance and resistance in both oscillators are L1 = L2 =
0.64 nH and R1 = R2 = 50 Ω, respectively. The first oscillator is designed to
have a free running frequency f1 = 4.8 GHz with capacitance C1 = 1/(4L1π

2f2
1 ).

Then the inductor current in the first oscillator is A1 = 0.0303 A and the capacitor
voltage is V1 = 0.5844 V. In a similar way the second oscillator is designed to have
a free running frequency f2 = 4.6 GHz with the inductor current A2 = 0.0316 A
and the capacitor voltage V2 = 0.5844 V. For both oscillators we choose Si = 1/Ri,
Gn = −1.1/Ri with i = 1, 2.

In Section 7.4 we describe experiments for an oscillator coupled to a balun. In
all the numerical experiments the simulations are run until Tfinal = 6 · 10−7 s with
the fixed time step τ = 10−11. Simulation results with the phase shift macromodel
are compared with simulations of the full circuit using the CHORAL[7, 18] one-step
time integration algorithm, hereafter referred to as full simulation. All experiments
have been carried out in Matlab 7.3. We would like to remark that in all experiments
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Figure 7. Inductive coupling. Comparison of the output spec-
trum obtained by the phase macromodel and by the full simulation
for a different coupling factor k.

simulations with the macromodels were typically ten times faster than the full
circuit simulations.

7.1. Inductively coupled oscillators. Numerical simulation results of two in-
ductively coupled oscillators for different coupling factors k are shown in Fig. 7.
For small values of the coupling factor we observe a very good approximation with
the full simulation results. As the coupling factor grows, small deviations in the
frequency occur, see Fig. 7(d). Because of the mutual pulling effects between the
two oscillators a double sided spectrum is formed around each oscillator carrier
frequency. The additional sidebands are equally spaced by the frequency difference
of the two oscillators.

The phase shift α1(t) of the first oscillator for a certain time interval is given in
Fig. 8. We note that it has a sinusoidal behavior. Recall that for a single oscillator
under perturbation a completely different behavior is observed: in locked condition
the phase shift changes linearly, whereas in the unlocked case the phase shift has a
nonlinear behavior different than a sinusoidal, see for example [13].

7.2. Capacitively coupled oscillators. The coupling capacitance in Fig. 5 is
chosen to be C0 = k · Cmean, where Cmean = (C1 + C2)/2 = 1.794 · 10−12 and
we call k the capacitive coupling factor. In Fig. 9 the numerical results are given
for different capacitive coupling factors k. For larger values of the coupling factor
the phase shift macromodel is not accurate enough and from Fig. 9(d) it is clear
that the side band frequencies obtained by the phase macromodel differ from the
full simulation results around 8 MHz (as expected).

The phase shift α1(t) of the first oscillator and a zoomed section for some interval
is given in Fig. 10. In a long run the phase shift seems to change linearly with the
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Figure 8. Inductive coupling. Phase shift α1(t) of the first oscil-
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slope of a = −0.00052179. The linear change in the phase shift is a clear indication
that the frequency of the first oscillator is changed and is locked to a new frequency,
which is equal to (1+a)f1. The change of the frequency can be explained as follows:
as noted in [16], capacitive coupling may change the free running frequency because
this kind of coupling changes the equivalent tank capacitance. From a mathematical
point of view it can be explained in the following way. For the capacitively coupled
oscillators the governing equations can be written as:

(C1 + C0)
dv1(t)

dt
+

v1(t)

R
(20a)

+ i1(t) + S tanh(
Gn

S
v1(t)) = C0

dv2(t)

dt
,

L1
di1(t)

dt
− v1(t) = 0,(20b)

(C2 + C0)
dv2(t)

dt
+

v2(t)

R
(20c)

+ i2(t) + S tanh(
Gn

S
v2(t)) = C0

dv1(t)

dt
,

L2
di2(t)

dt
− v2(t) = 0.(20d)

It shows that the capacitance in each oscillator is changed by C0 and the new
frequency of each oscillator is

f̃i =
1

2π
√

L1(Ci + C0)
, i = 1, 2.

In the zoomed figure within Fig.10 we note that the phase shift is not exactly linear
but that there are small wiggles. By numerical experiments it can be shown that
these small wiggles are caused by a small sinusoidal contribution to the linear part
of the phase shift. As in case of mutually coupled inductors, the small sinusoidal
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Figure 9. Capacitive coupling. Comparison of the output spec-
trum obtained by the phase macromodel and by the full simulation
for a different coupling factor k.
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Figure 10. Capacitive coupling. Phase shift of the first oscillator
with k=0.001.

contributions are caused by mutual pulling of the oscillators (right-hand side terms
in (20a) and (20c)).

7.3. Inductively coupled oscillators under injection. As a next example, let
us consider two inductively coupled oscillators where in one of the oscillators an
injected current is applied. Let us consider a case when a sinusoidal current of the
form

(21) I(t) = A sin(2π(f1 − foff)t)
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Figure 11. Inductive coupling with injection and k = 0.001. Top:
phase shift. Bottom: comparison of the output spectrum obtained
by the phase macromodel and by the full simulation with a small
current injection.

is injected in the first oscillator. Then (8a) is modified to

α̇1(t) = V T
1 (t + α1(t)) ·

( −I(t)

−M
di2(t)

dt

)

.(22)

For a small current injection with A = 10 µA and an offset frequency foff = 20 MHz
the spectrum of the both oscillators with the coupling factor k = 0.001 is given in
Fig.11. We observe that the phase macromodel is a good approximation of the full
simulation results.

7.4. Oscillator coupled to a balun. Finally, consider an oscillator coupled to a
balun as shown in Fig. 6 with the following parameters values:

Oscillator Primary Balun Secondary Balun
L1 = 0.64 · 10−9 L2 = 1.10 · 10−9 L3 = 3.60 · 10−9

C1 = 1.71 · 10−12 C2 = 4.00 · 10−12 C3 = 1.22 · 10−12

R1 = 50 R2 = 40 R2 = 60

The coefficients of the mutual inductive couplings are

(23) k12 = 10−3, k13 = 5.96 ∗ 10−3, k23 = 9.33 ∗ 10−3.

The injected current in the primary balun is of the form

(24) I(t) = A sin(2π(f0 − foff)t),

where f0 = 4.8 GHz is the oscillator’s free running frequency and foff is the offset
frequency.

Results of numerical experiments done with the phase macromodel and the full
simulations are shown in Fig. 12. We note that for a small current injection both
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Figure 12. Comparison of the output spectrum of the oscillator
coupled to a balun obtained by the phase macromodel and by the
full simulation for an increasing injected current amplitude A and
an offset frequency foff = 20 MHz.
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the oscillator and the balun are pulled by each other. For the injected current with
A = 10−1 both oscillator and balun are locked to the injected signal, see Fig. 12(g)
and Fig. 12(h). Similar results are also obtained for the secondary balun.

8. Conclusion

In this paper we have shown how nonlinear phase macromodels can be used to
accurately predict the behavior of individual or mutually coupled voltage controlled
oscillators under perturbation, and how they can be used during the design process.
Several types of coupling (resistive, capacitive, and inductive) have been described
and for small perturbations, the nonlinear phase macromodels produce results with
accuracy comparable to full circuit simulations, but at much lower computational
costs. Furthermore, we have studied the (unintended) coupling between an oscilla-
tor and a balun, a case which typically arises during design and floor planning of
RF circuits.
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