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Problem 74-20*, Gravitational Attraction, by H. R. AGGARWAL (NASA, Ames
Research Center).

Determine explicitly the mutual force of gravitational attraction between two
congruent spherical segments forming a "dumb-bell" shaped body whose central
cross section is given by the figure.

Solution by C. J. BOUWKAMP, Technological University, Eindhoven, the
Netherlands.

Let units be so chosen that the force between two unit point masses with
interdistance r equals 1/r2, and assume that the body has unit mass density.
Further, set p air and let F be the mutual force of gravitational attraction
between the two spherical segments. Then

(1) F/(42R4) G(p) (f(t, p))2t- dt,

in which

(2) f(t, p) ff + p

e-t"Jl(t(1 (u p)2)x/2)(1 (u p)2)x/2 du,

where J1 denotes the Bessel function of order one.
To prove this, I first determine the mutual potential energy V dzl dz2 between

two thin coaxial disks. The first disk lies in the left segment, between z and

z + dz, with distance z to the midplane of the body; the second disk lies in
the right segment, between z2 and z2 + dz2, with distance z2 to the same plane.
Their axial interdistance is z z + Z2, while their radii are R (R2 (Z a)2) /2,

1, 2. In each disk, polar coordinates are introduced; one of the two angular
integrations can be carried out because of rotational symmetry, and we are left
with

(3) V 2re r dr r2 dr2 dO(z2 + rZ, + r 2rxr2 COS 0) -1/2.

This integral is easy to transform by means of Bessel-function techniques. With

(Z2 _1_ r2) 1/2 f0 e-=’Jo(rt) dr,
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the addition theorem of Bessel functions, and

fO tJo(t) dt xJ (x),

it is found that

(4) V 4n2RxR2 e-Ztjx(Rlt)Jl(R2t)t-2 dt.

The force between the two disks is -(8V/3z)dzl dz2, in which the dependency of
Ri on zi is irrelevant. Since this force is in the axial direction, all foi’ces can be
added in scalar fashion. Thus

(5) F 4n2 RJ(Rt)e -tz’ dz R2J(R2t)e-t dz2

Upon substituting z Ru, the two inner integrals are seen to be identical and
equal to RZf(Rt, p), wherefis defined in (2). The substitution Rt finally gives (1).

Let me first remark that for the "dumb-bell" shaped body the parameter p
lies in the closed interval 0

_
p _< 1, the endpoints corresponding to the cases of

two touching half-spheres and two touching full spheres, respectively.
For two spheres in contact the force of attraction is known by elementary

methods. This comes down to G(1)= . I do not know whether the other
limiting case was ever treated before, but I am able to prove that G(0)- 1/2.
Secondly, (1) and (2) are meaningful for -1 =< p < 0, and then they describe the
force between two segments each smaller than a half-sphere. If G(p) denotes the
force between the two spherical segments of the figure, then G(-p) is precisely
the force between their complements, the two "flat" segments that form the cut
of the two full spheres. Of course, G(-1) 0.

To further discuss (2), substitute u p + cos 0, so that

f(t, p) e -’t e -tos Jx(t sin 0) sin2 0 dO,

(6)
0 cos-X(--p) rc cos-(p),

where the principal value of the cos-1 function is implied. One has 0, r/2,
rt as p 1, 0, 1, in that order. It is not too difficult to show that

(7) e- co0 J(t sin 0) sin- 0 dO t,

but this is left to the reader. Thus f(t, 1) t exp (-t), and then G(1) follows
from (1).

The case p 0 is not as nice, since

/2

f(t, 0) e- os0 J(t sin 0) sin 0 dO
,0

(8) - x-2Jz(x)dx x-2Jz(x) dx,
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which may be left unproved here. By using the last expression of (8) and manipu-
lating with integrals in (1), obtain G(0) as announced.

The two special cases above are included in the general equation

(9) f(t, p) e -pt + -p -p (1 ]92) ePXJ2(xv/1 p2)x 2 dx

first proved by my coworker D. L. A. Tjaden of the Philips Research Laboratories.
If p is nonpositive, an alternative equation is

(10) f(t, p) e-P’(1 p2) epXJ2(xx//1 p2)x-2 dx.

Several trials to use (9) or (10) in (1) have only led to unwieldy expressions,
integrals of elliptic integrals, as might have been expected from (4), which is known
to be expressible in terms of elliptic integrals. It does not seem possible to express
F in terms of complete elliptic integrals, as I originally hoped in view of various
similar problems encountered before.

A last resort to an "explicit" solution is numerical integration. With the
excepti.on of p 1, the integral (1) is badly convergent; the integrand is oscillating
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