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BCS-BEC Crossover in the Strongly Correlated Regime of ultra-cold Fermi gases
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We study BCS-BEC crossover in the strongly correlated regime of two component rotating Fermi
gases. We predict that the strong correlations induced by rotation will have the effect of modifying
the crossover region relative to the non-rotating situation. We show via the two particle correlation
function that the crossover smoothly connects the s-wave paired fermionic fractional quantum Hall

state to the bosonic Laughlin state.

PACS numbers: 03.75.-b,73.43.-f,71.27.4a,71.10.Ca

In recent years techniques based on Feshbach scat-
tering resonances ﬂ, E] in ultra-cold atomic gases have
allowed the study of condensation in a Fermi system
B, E, E] For condensation to occur, one can distin-
guish two distinct physical mechanisms: (1) formation
of bound pairs of fermionic atoms (molecules) which
are composite bosons and hence undergo Bose-Einstein
condensation (BEC), and (2) condensation of Bardeen-
Cooper-Schrieffer (BCS) pairs in analogy with low tem-
perature superconductivity. In separate publications
E, H] both Eagles and Leggett argued that these sce-
narios were limiting cases of a more general theory, the
so-called BCS-BEC crossover. It was only recently that
this crossover phenomenon was observed in rotating trap
experiments via the use of a Feshbach scattering reso-
nance. A vortex lattice generated in the molecular BEC
phase was observed to persist into the BCS paired phase
as the interaction is adiabatically tuned from repulsive
to attractive across the Feshbach resonance E]

While developments such as above have allowed us to
enhance our understanding of numerous many body ef-
fects, applications of trapped atomic systems to study
strong correlation effects such as those responsible for
the fractional quantum Hall (FQH) effect are limited.
However, there have been theoretical proposals to con-
figure the ultra-cold atomic system in the FQH regime
ﬁ E] These proposals are based on rotating the trap
at frequencies close to the trapping frequency, w. This al-
lows us to draw a phase diagram of experimental param-
eters (rotational frequency € and the Feshbach tuning
parameter) and identify separate regions corresponding
BEC, BCS and FQH as shown in Fig. [l The region
below the dot-dashed line can be quite successfully de-
scribed at the mean field level and hence we will refer to
it as the mean field regime. The vertical shaded area in
the mean field regime represents the BCS-BEC crossover
where |kpa| > 1 (kg is the Fermi wave vector and a
is the two body scattering length). While the crossover
has been experimentally explored only in the mean field
regime, on general grounds one would expect it to ex-

ist even in the strongly correlated regime. However, in
this regime the correlations will induce modifications to
the mean field crossover physics discussed above. This
is in part due to the global vortex lattice structure im-
printed on the system due to rotations, which gives rise
to an emergent length scale corresponding to the vortex
radius. While this effect may not be significant in the
mean-field-vortex-lattice (hashed) region of the phase di-
agram, at high rotations, where the number of particles
is comparable to the number of vortices, implications to
the crossover physics may be drastic. At the same time,
very recently FQH states have attracted special atten-
tion due to their possible use in topological schemes of
quantum computation. While manipulating interaction
has remained a major difficulty, possibility of crossover
in the FQH regime of atomic ensembles may turn out to
be of significant importance in such schemes.

Therefore, the goal of this letter is to investigate the
implications of strong correlations due to rotations on the
BCS-BEC crossover. We also argue that the crossover
is expected to be smooth for s-wave interactions. We
will verify this by considering a specific Cooper paired
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Figure 1: Schematic of the zero temperature phase diagram
of the two component Fermi gas with Feshbach tuning param-
eter 1/kra along the horizontal axis and rotational frequency
Q (in units of trapping frequency w) along the vertical axis.
a represents the s-wave scattering length.
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FQH state on the BCS side. Finally we establish the
nature of the strongly correlated state on the BEC side
of the crossover by a numerical study of the two-particle
correlation functions.

We consider a two component Fermi system consisting
of a 50%-50% mixture of fermionic atoms in different
hyperfine states represented by | T) and | |) confined by
a 2D rotating harmonic trap. The Hamiltonian for this
system in the FQH regime (2 —w — 07) in the absence
of interactions is given by

H = Z/gﬁ

with m the mass and A = mwyX — mwzxy is analo-
gous to the vector potential associated with the mag-
netic field in the electronic FQH effect, and ¢, is the
annihilation operator representing fermionic atoms with
spin 0. Now in order to simplify the above Hamilto-
nian we choose to work in a frame where the vector
potential A is gauged out. This is done by performing
the Chern-Simons transformation [11] by attaching gauge
field aq(r) = —vhY._ [ d*r’eappos(r)(r—1')g/|r —1'|* to
each bare particle resulting in

H= /%

where ¢, is the annihilation operator and p, is the
density of composite fermions of spin ¢ and 1/v is
the fraction of the FQH effect.  The transforma-
tion is such that the average gauge field a [12] can-
cels the external field, thus A(r) + a(r) = A(r) +
a(r) + da(r) = da(r). We can now write the in-
teraction part of the above Hamiltonian as Hj, =
(1/2m) Y, [ d’rel(r) [2pda(r) + da(r)?] v, (r) = Hi +
H,, where
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and p,(r) = @l (r)es(r) and dpy(r) = po(r) — p, with
p the average density. Thus we see that even in the
absence of interactions between the bare particles, the
Chern-Simons transformation gives rise to a two-body
(contained in Hy and Hs) and three-body contribution
(only contained in Hj). However, H; represents a cou-
pling of the density to the current j, (r) = ! (r)pa s (r)
which is beleived to be important only near the boundary
of the sample. It can be shown that the two-body part

of Hy is logarithmic and has been attributed to have im-
portant consequences for the formation of pairing in the
electronic FQH effect [12]. The three-body part will be
neglected in the following, while the two-body part can
be taken as an additional contribution to the two-particle
atomic interaction.

Let us now assume that there is a Feshbach resonance
in the s-wave interaction between atoms in the up and
down states. We argue in this letter that this can gen-
erate a crossover in the FQH regime between two differ-
ent types of strongly correlated many-body states. The
resonant interaction persists even in the gauge trans-
formed composite particle picture [13]. However,the ad-
ditional two-body contributions from Eq. @), which have
the character of a repulsive logarithmic potential, can
strongly modify the resonance properties. In a single-
channel picture of the Feshbach mechanism, which is ac-
curate for broad resonances, the additional potential will
shift the bound states in the potential to higher energies,
and therefore also shift the crossover region as shown in
Fig.[M In a two-channel picture of the Feshbach mecha-
nism (see Fig. B), valid for narrow resonances, the same
shift of the molecular levels in the so-called closed chan-
nels will take place. However, the scattering as a whole
could be more involved as the scattering properties of
the open channel can be affected as well. Thus the strong
correlations induce modifications to the crossover physics
and can be treated systematically within a Chern-Simons
composite particle picture once the details of the two-
body inter atomic potential are known.

We will now consider a specific FQH state to investi-
gate the nature of the crossover. If we are on the weakly
attractive side, then in the FQH regime the situation is
analogous to the one described by the Haldane-Rezayi
(HR) paired wavefunction [14]

=& )? H(zz -
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Uyp = det(E) [[(zi — 2)* [[(&
=D L= lelP /4| (5)
k k

i<j i<j
where z and ¢ are scaled in units of harmonic oscillator
length [y and represent the complex coordinate of the
spin up and spin down components respectively, and =
represents pairing between the up and down particles.
Apart from the pairing part, the above wavefunction
for our atomic system is completely justified due to the
short range repulsive piece of the interatomic interaction.
The anti-symmetrization under exchange of identical spin
components is taken care of by the determinant of =.
The form of = will turn out to be important in under-
standing the nature of the crossover. For this purpose
we again work in the Chern-Simons gauge transformed
picture with v = 2 for the HR state of Eq. (). By virtue
of this transformation the fermionic atoms are trans-
formed to free interacting composite particles (bound
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Figure 2: Schematic showing the modification of the inter-
atomic potential by an additional logarithmic contribution
coming from the global vortex structure. Figure is not drawn
to scale.

state composed of a fermion and 2-vortices) possessing
Fermi statistics. We can therefore write the Hamiltonian
for the composite fermion (CF) system in the standard
BCS form

Hep = Z(Gk - ,U)alkaa,k"'
o,k

T T
Z Ua ek @1q/241 | q/2-1clla/2-k A1a/2tk - (6)
qkk’

Here a,x and al)k are annihilation and creation opera-
tors for composite fermions with momentum k and spin
o respectively, p is the chemical potential and U rep-
resents the effective attractive inter composite particle
interaction. We diagonalize the above Hamiltonian via
Bogoliubov transformations yxt = uxaxr — vkaT_k ! and

’yikl = ukatkl + Vkakt, HCF = Zk,a’ Ek’YlUVka with

Bie = /lac— 07 ¥ A, u = (1/2)(1+ (e~ )/ Bx), and
v = (1/2)(1—(ex—p)/ Ex). If we now define gx = vy /ux,
then the configuration space first quantized wavefunction
for 2N = N; 4+ N| composite fermions can be written
as \I/CF(Xl,Xz,..XzN) = <0|’L/)(X2N)1/)(X2)UJ(X1)|G> =
o (Pp11/Paar...ONN+), where |G) is the variational second
quantized BCS wavefunction, primed and unprimed in-
dexes correspond to different spin components and ¢;;; =
Sk gke™ ®i %) " and the anti-symmetrization is sepa-
rately performed over up and down spins [[15]. Thus one
can identify = in Eq. (@) with the product of ¢’s over
different pairs, and the anti-symmetrization operator o7
with the determinant.

In the BCS theory Eyx and Ay are found self consis-
tently from the gap and the number equation. Here we
will not do such a calculation, however only focus on
the nature of pairing phases. In the k — 0 limit, the
weak pairing phase corresponds to ex — p < 0 where
|ux] — 0 and |vg| — 1. Thus the leading behavior of
gk goes as 1/ux o« 1/Ag. However in the BCS phase
Ay is significant only in the immediate vicinity of the
Fermi surface, ¢;;, acquires a long range exponential tail.
Thus it is reasonable to assume an exponentially decay-

Figure 3: Figure shows the two particle correlation functions
Gi1(r) and G| (r) for Ny = N, = 100 for n = lp. For large
r/lo, G1(r) = Gy (r) — 0.

j— 2z

ing form ¢;;; = e~1#77%1/7 for the pairing function where
1 = hvy/(wAg) is the BCS coherence length and vy is the
Fermi velocity.

Now as the strength of interaction is increased by tun-
ing towards resonance resulting in stronger pairing, the
gap Ay increases exponentially and one may argue that
the BCS description is no longer valid. However as men-
tioned before we are only concerned about the form of
the pairing wavefunction. Let us therefore consider the
s-wave T matrix instead which in the k¥ — 0 limit is
a smooth function of as, the s-wave scattering length
[16]. We would like to point out here that even though
FQH effect exists in 2D systems, ultra-cold atomic sys-
tems under extreme rotations can be considered to be
quasi-2D. Quasi here means that the confinement in the
third dimension is strong compared to the remaining two.
Therefore the scattering can still be considered to be in
3D justifying the use of the particular 7" matrix above.
Thus we notice that even near the Feshbach resonance,
the functional form of the 7' matrix and hence the gap
Ay will remain unchanged hinting a smooth crossover.
Thus we will parametrize the crossover by the ratio /1.
This is quite different from the case where the pairing
interaction is p-wave where Ay = A(kz + tky). There
even if the functional form of the T" matrix remains un-
changed, the extra phase associated with the Ay can give
a totally different behavior for gy in the strong and weak
pairing limits. As argued by Read and Green, the p-wave
paired FQH state in the strong and weak pairing limits
is separated by a second order phase transition [17].

Having obtained the form of the paired FQH state as
a function of n we can directly calculate the two particle
correlation function G(r1 —r2) = [ .. [ d*r3..d*rn |V R/
for different values of n by using a metropolis Monte-
Carlo algorithm with Ny = N = 100. In Fig. Bl we plot
both Gy1(r) and Gy (r) for n/lp = 1. We see that G (r)
shows a peaked behavior for small r that is absent in
G11(r). At the same time for large r, G11(r)—Gp (r) — 0
implying the existence of a sum rule special to the HR
state valid throughout the region of our current interest.



The crossover behavior is clear from Fig. Hl which
shows that as 7 becomes small compared to Iy, G11(r)
gets modified continuously and tends towards a limiting
form. However the most important point to note is that
the limiting form of G11(r) is exactly that of the G(r) for
the (1/8)-FQH state given by the Laughlin form [18]

Vs = H(Zz —2j)%exp [— Z |Zk|2/2] : (7)
k

i<j

One way to understand this transition is as follows. In
the v = 2 HR state each composite fermion is associated
with two vortices (quanta). Therefore a molecule formed
out of two composite fermions will consist of four quan-
tas. Moreover, since the molecule has twice the mass
the molecular harmonic oscillator length is lo/v/2 and
hence eight quanta are required and therefore the frac-
tion is 1/8 for the bosonic Laughlin state. Even though
our calculations are for the particular HR state, it is jus-
tified to expect that similar behavior will be obtained
for other strongly correlated states that occur at slightly
lower rotational frequencies between the FQH and the
vortex lattice phase.

In conclusion, we have shown that the strong correla-
tions associated with rapid rotations can cause strong
modifications to the crossover, for example shift the
crossover towards the BEC side relative to the non-
rotating case. Using the example of the HR wavefunc-
tion we have shown that the crossover is smooth and the
paired FQH state of fermions smoothly goes over to 1/8
bosonic FQH state of molecules when one goes across the
Feshbach resonance so that n < lo.

A detailed calculation of the crossover physics of this
region will require an elaborate treatment with the effect
of rotations included by an effective potential in addition
to the actual multichannel interatomic potential. Within
such an effective picture Noziéres-Schmitt-Rink calcula-
tions of the crossover region [19] can be carried out. Also
these calculations can be extended to situations with p-
and d- wave pairing schemes in ultra-cold Fermi gases.
These scenarios while having close resemblance with, for
example, the 5/2 FQH effect, will be extremely useful
and will be dealt with in a future publication.

At the same time paired FQH states such as 5/2 are
known to possess exotic non-abelian quasi particles exci-
tation. While the existence of non-abelian statistics is the
basis for topological scheme of implementing quantum
logic in a quantum computer, the 5/2 state is known to
be computationally non-universal. However, there have
been proposals [2(] in which this symptom can be reme-
died by dynamically tuning-in additional non-topological
interactions. Dynamic control while hard in the solid
state configurations of the FQH effect, controlled tran-
sitions between different FQH states like the one dis-
cussed here may be extremely useful for implementing
such topological schemes.

G

Figure 4: Figure shows the comparison between the correla-
tion function Gy1(r) in the strong pairing limit and the G(r)
for the 1/8 FQH wavefunction Eq. ([@).
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