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TAIL DEPENDENCE IN INDEPENDENCE

GERRIT DRAISMA� HOLGER DREES� ANA FERREIRA� AND LAURENS DE HAAN

Abstract� We propose a new estimator of the parameter �� introduced by Ledford
and Tawn ������� governing dependence in bivariate distributions with asymptotically
independent componentwise maxima� We prove asymptotic normality of this estimator
and two other estimators proposed in the quoted paper� For the latter we develop a
weighted approximation result for a two	dimensional rank	process� We compare the
estimators and a related test for asymptotic independence in a simulation study� Also
we show consistency of the resulting estimator for failure probabilities in this set	up�
Our estimator for � is inspired by the work of Peng ������� Our less strict second order
conditions are satis
ed by the normal distribution�

�� Introduction

Suppose a region is protected by a river dam against �ooding� The water level is
regularly observed at two stations� yielding a sample �Xi� Yi�� � � i � n� If there is
no other protection within the region� the whole area will be �ooded if the water level
exceeds the height of the dam at one of both points� Hence the probability of a �ooding
at a particular date is of the form

PrfXi � u or Yi � vg������

We assume that �if necessary� after a suitable declustering� the vectors �Xi� Yi� are
independent and identically distributed with distribution function F � say� If the heights u
and v of the dam are large� then multivariate extreme value theory provides a framework
which allows a systematic estimation of the probability ������ For this� assume that there
exist normalizing constants an� cn � � and bn� dn � R such that

lim
n��

F n�anx � bn� cny � dn� 	 lim
n��

Pr
nWn

i��Xi � bn
an

� x�

Wn
i�� Yi � dn

cn
� y

o
	 G�x� y�

���
�

for all but denumerable many vectors �x� y�� Here
Wn

i��Xi denotes the maximum of n
consecutive water levels at the �rst station and G is a distribution function with non�
degenerate marginals 
cf� Resnick� ����� Chapter ��� Taking logarithms� one concludes
from ���
� that

lim
n��

nPr
nX � bn

an
� x or

Y � dn
cn

� y
o
	 � logG�x� y������

for a random vector �X� Y � with distribution function F �
For the sake of simplicity� in this introduction we concentrate on the case when both

marginals are uniformly distributed� this can be achieved by transforming the random

Date� May ��� �

��
�
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variables X and Y with their pertaining marginal distribution functions Fi �cf� �������
Then ����� simpli�es to

lim
n��

nPrf��X � x�n or �� Y � y�ng 	 � logG��x��y�������

and� in fact� even

lim
s��

s�� Prf��X � sx or �� Y � syg 	 � logG��x��y������

with s running through the reals� Dividing the analogous equation where s is replaced
with st by ������ one sees that

Prf��X � tx or �� Y � tyg � tPrf��X � x or �� Y � yg�����

for small x and y� i�e�� the function t �� Prf��X � tx or ��Y � tyg is regularly varying
at � with index ��
Recall that we want to estimate the probability ����� with u and v so close to � that no or

only very few observations lie in the failure region f�r� s� � 
�� ��� j ��r � ��u or ��s �
�� vg� Now choose a su�ciently small t such that the set

f�r� s� � 
�� ��� j �� r � ��� u��t or �� s � ��� v��tg�����

does contain a considerable number of observations and hence the probability that �X� Y �
lies in ����� can be estimated using the empirical distribution� Then we can use �����
with x 	 �� � u��t and y 	 �� � v��t to estimate the probability ����� we are actually
interested in�
However� in many situations one may also be interested in the probability that both

thresholds are exceeded� i�e�� PrfX � u and Y � vg� This probability is of interest� e�g��
if the levels of two di�erent air pollutants� the losses su�ered in two di�erent investments
or di�erent variables relevant for the probability of a �ooding �cf� Section �� are observed�
Convergence ����� implies

lim
n��

nPr
nX � bn

an
� x and

Y � dn
cn

� y
o
	 � logG�x� y� � logG��x� � logG��y��

�����

since the marginal distributions converge to the marginals G� and G� of the limit dis�
tribution� Note that if the marginals of the limit distributions are independent� that is�
G�x� y� 	 G��x�G��y�� the limit in ����� is identically zero� In that case we say that the
maxima of the Xi and those of the Yi are asymptotically independent� This is a rather
common situation� for instance� it holds for nondegenerate bivariate normal distributions�
Unfortunately� in this case the reasoning used above to derive estimators for the proba�

bility ����� does not lead to anything one can employ for the estimation of the probability
of a joint exceedance� since the analog to ����� does not hold�
In order to overcome this problem� Ledford and Tawn 
����� ����� ����� 
see also Coles

et al�� ����� introduced a quite general submodel� where the tail dependence is charac�
terized by a coe�cient � � ��� ��� More precisely� in the setting with uniform marginals�
they assumed that the function t �� Prf��X � t and �� Y � tg is regularly varying at
� with index ���� Then � 	 � in case of asymptotic dependence� whereas � � � implies
asymptotic independence� When � is less than �� the value of � determines the amount of
dependence in asymptotic independence �see �
��� below and the comments thereafter��
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Thus the submodel can also be used to device a test for asymptotic independence in the
basic relation ���
��
Moreover Ledford and Tawn proposed an estimator for �� Peng 
����� presented a

theoretical background for their model and proposed a non�parametric estimator for ��
Peng proved asymptotic normality of his estimator under second order conditions� The
present paper contains the following contributions�

�� Peng�s conditions are generalized so that� e�g�� the normal distribution is included�

� Asymptotic normality of two modi�ed versions of estimators introduced by Ledford
and Tawn is shown under second order conditions �section 
��

�� A new estimator is introduced and its asymptotic normality is derived �section 
��
�� A procedure is set up to estimate the probability of a failure set that works under
asymptotic dependence as well as under asymptotic independence� The estimator is
proved to be consistent in our model �section ���

�� A simulation study compares the behavior of the estimators and their use in testing
for asymptotic independence� Also the behavior of the estimator for failure proba�
bilities is studied in a simple situation �section ���

In Section � we examine the dependence between still water level� wave heights and wave
periods at a particular point of the Dutch coastal protection� Sections � and � contain
the proofs of the results of section 
 and section � respectively� An appendix provides
some helpful analytical results�


� Estimating asymptotic dependence or independence

Let �X� Y � be a random vector whose distribution function F has continuous marginal
distribution functions F� and F�� Our basic assumption is that

lim
t��

�Prf�� F��X� � tx and �� F��Y � � tyg
q�t�

� c�x� y�
��

q��t� 	� c��x� y��
���

exists� for x� y � � �but x� y � ��� with q positive� q� � � as t� � and c� non�constant
and not a multiple of c� Moreover we assume that the convergence is uniform on

f�x� y� � 
����� j x� � y� 	 �g�
It follows that the function q is regularly varying at zero of order ���� � � ��� ��� q� is
also regularly varying at zero� but with order � � �� Without loss of generality we may
take c��� �� 	 �� and we may assume that q�t� 	 Prf�� F��X� � t and � � F��Y � � tg
�see Appendix A�� We also assume that l �	 limt�� q�t��t� t� � exists� Since F��X� and
F��Y � are uniformly distributed� obviously lim sup q�t��t � �� and l 	 � when � � �� Our
assumptions imply that �
��� holds locally uniformly on ������ �see Appendix A�� The
bivariate normal distribution satis�es these conditions� see the example at the end of this
section�
The function c is homogeneous of order ���� i�e�� c�tx� ty� 	 t���c�x� y�� The measure 	

de�ned by 	�
�� x�	 
�� y�� 	 c�x� y� inherits this homogeneity�

	�tA� 	 t���	�A��
�
�

for t � � and all bounded Borel sets A 
 
������
The parameter � is Ledford�s and Tawn�s coe�cient of asymptotic dependence� cf� Led�

ford and Tawn 
����� ������ Now l � � implies asymptotic dependence� and l 	 � implies
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asymptotic independence� Hence � � � implies asymptotic independence� Condition �
���
is somewhat similar to condition �
��� in Ledford and Tawn 
������
Now we turn to estimators for �� given an i�i�d� sample f�X�� Y��� �X�� Y��� � � � �Xn� Yn�g�

We start with an informal introduction to the estimators of Ledford and Tawn 
������
They proposed �rst to standardize the marginals to the unit Fr�echet distribution� using
either the empirical marginal distributions �that is� using the ranks of the components�
or extreme value estimators for the marginal tails� and then to estimate � as the shape
parameter of the minimum of the components� e�g� by the maximum likelihood estima�
tor or the Hill estimator� However� since these estimators have larger bias for Fr�echet
distributions than for Pareto distributions� we prefer to standardize to the unit Pareto
distribution using the ranks of the components�
For this consider the random vector

T �	
�

�� F��X�
� �

�� F��Y �

which is in the domain of attraction of the extreme value distribution with parameter
���� Since the marginal d�f��s Fi are unknown� we replace them with their empirical
counterparts� This leads to �with a small modi�cation to prevent division by ���

T
�n�
i �	

n� �

n� �� RX
i

� n� �

n� �� RY
i

� i 	 �� � � � � n�

with RX
i denoting the rank of Xi among �X�� X�� � � � � Xn� and R

Y
i that of Yi� Now � can

be estimated by the maximum likelihood estimator in a generalized Pareto model� based

on the largest m 	 m�n� order statistics of the T
�n�
i � This estimator will be denoted by

���� Alternatively the Hill estimator can be used�

��� �	
�

m

mX
i��

log
T
�n�
n�n�i��

T �n�
n�n�m

�

Note that one important advantage of the maximum likelihood estimator over the Hill
estimator in the classical i�i�d� setting� namely its location invariance� is not relevant here�
there is no shift after standardizing the marginals to unit Pareto �see Lemma ����� Since
��� has smaller variance� one might expect ��� to outperform ��� �however� see Section ���
Next we introduce Peng�s estimator and our new proposal� Equation �
��� implies for

k�n� � and s � �

Prf�� F��X� � s k�n and �� F��Y � � s k�ng
Prf�� F��X� � k�n and �� F��Y � � k�ng 	 s����� � o�����
���

locally uniformly� Denote by Xn�i and Yn�i the ith order statistics of the Xj and Yj�
j 	 �� � � � � n� respectively� To estimate � from the sample we may replace in �
��� Pr�
�� F� and �� F� by their empirical counterparts� Write

Sn�j� k� �	
nX
i��

�fXi � Xn�n�j and Yi � Yn�n�kg��
���

Note that Sn�j� k� � n Prf�� F��X� � j�n and �� F��Y � � k�ng�
Using s 	 
 in �
��� leads to Peng�s estimator 
Peng� ������

��� 	 log 
� log
�Sn�
k� 
k�

Sn�k� k�

�
�
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We propose the following estimator� based on integrating �
��� with respect to s from
� to ��

��	 �	

Pk
j�� Sn�j� j�

kSn�k� k��
Pk

j�� Sn�j� j�
�
���

with Sn as in equation �
����
Note that ��� and ��� are based on the empirical quantile function� and ��� and ��	 on the

empirical distribution function�
We �rst have to prove the consistency of the new estimator�

Theorem ��� �Consistency�� Suppose for x� y � �

lim
t��

Prf�� F��X� � tx and �� F��Y � � tyg
q�t�

	 c�x� y��
���

where q and c are positive functions� Let k 	 k�n�� r�n� �	 n q�k�n� � � �this implies
k��� and k�n� � for n��� Then

��	 � �

in probability� with � the reciprocal of the index of regular variation of q at ��

Remark� Note �
��� is not needed here� Moreover ��� and ��� are consistent too if m 	
br�n�c�
The next Theorem states the asymptotic normality of all estimators considered�

Theorem ��� �Asymptotic normality�� Assume �
���� Additionally assume that c has
�rst order partial derivatives cx 	

�
�x
c�x� y� and cy 	

�
�y
c�x� y�� Suppose k 	 k�n��

r�n� 	 n q�k�n� � � �this implies k � ��� k�n � ��
p
r�n�q��k�n� � � as n � ��

and m 	 m�n� 	 br�n�c�
Under these conditions

p
r�n�

�
��i � �

�
are asymptotically normal with mean � and

variance 
�i � i 	 �� 
� �� �� The variances are


�� 	 �� � ������ l���� 
lcx��� ��cy��� ����
���


�� 	 ����� l���� 
lcx��� ��cy��� ����
���


�� 	 �	 �log 
��� ��� 
�����
h�


��� �l���� 
lcx��� ��cy��� ����
���

� lc��� 
�cx��� ����� lcy��� ��� � lc�
� ��cy��� ����� lcx��� ���
i


�	 	
�� � �����


� � �

h
��� �l���� 
lcx��� ��cy��� ����
����

� �lcx��� ����� lcy��� ���

Z �

�

c�u� ��du

� �lcy��� ����� lcx��� ���

Z �

�

c��� u�du
i
�

Remark� The assertion for ��� is a generalization of Peng�s� since our conditions are weaker�
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Remark� Note that instead of �
��� the weaker condition limt�� Prf� � F��X� � tx and
�� F��Y � � tyg�q�t�� c�x� y� 	 O�q��t�� is su�cient for Theorem 
�
� However� under
�
��� similar results can be easily deduced if the intermediate sequence k is such thatp
r�n�q��k�n� � c � �� In that case� usually a non�negligible bias occurs if c � � �and

the present results correspond to the simpler case c 	 ���

Theorem 
�
 may be stated without the unknown sequence r�n� entering explicitly the
formulation� as in the following Corollary�

Corollary ���� Assume the conditions of Theorem ���� For i 	 �� �p
Sn�k� k����i � ��

has the limiting distribution of Theorem ���� with Sn�j� k� as in equation �
����

Remark� When using ��� or ���� the choice of the number m 	 br�n�c of largest order
statistics from T

�n�
n�i is up to the statistician� so there is no need to estimate r�n��

Corollary 
��� together with consistent estimators for the unknown quantities in the
asymptotic variances in Theorem 
�
� can be used to construct a con�dence interval for
� or to test the hypothesis � 	 �� The following Theorem provides these estimators�

Theorem ���� �i� De�ne

�cx��� �� �	 k��	
Sn�bk�� � k���	�c� k�� Sn�k� k�

Sn�k� k�
�

�cy��� �� �	 k��	
Sn�k� bk�� � k���	�c�� Sn�k� k�

Sn�k� k�
�

�d� �	

Pk
j�� Sn�j� k�

k Sn�k� k�
� �d� �	

Pk
j�� Sn�k� j�

k Sn�k� k�
�

�l �	
Sn�k� k�

k

with Sn�i� j� as in equation �
���� If the conditions of Theorem ��� hold then

�l
p�� l�

If� in addition� � � ��
 then

�cx��� ��
p��cx��� ��� �cy��� ��

p��cy��� ���

�d�
p��
Z �

�

c�u� ��du� �d�
p��
Z �

�

c��� u�du�

Moreover� let

�
�� �	 �� � ���
���� �l���� 
�l�cx��� ���cy��� ���

and de�ne �
�i � i 	 
� �� �� likewise by ���	�
������ with �� l� cx��� ��� cy��� ���
R �

�
c�u� �� du

and
R �

�
c��� u� du replaced by their respective estimator� Then �
�i � i 	 �� � � � � �� are

consistent estimators of 
�i for all � � ��� ���
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�ii� The analogous assertion to �i� holds for the estimators

�l �	
m

n
T
�n�
n�n�m

�cx��� �� �	
�k
�	

n

�
T �n��k�����
n�m � T �n�

n�m

�
with m �	 m�n� �	 br�n�c� �k �	 m��l� and T

�n�u�
n�i � i 	 �� � � � � n� the order statistics of

T
�n�u�
i �	 min

� n � �

n� �� RX
i

�� � u��
n � �

n � ��RY
i

�
� i 	 �� � � � � n�

and �cy��� �� de�ned analogously to �cx��� ���

Remark� Note that �cy��� �� may also be estimated as ���� � �cx��� ��� provided � � ��
�
Example 
��� The bivariate normal distribution with mean �� variance � and correlation
coe�cient � �� f����g� satis�es �
��� with

� 	 �� � ���
� c�x� y� 	 �xy���������

q�t� 	 k����t
��������� log t���������

�
�� k����

log�� log t�

 log t

�
�

c��x� y� 	 �k����� k	�x� y� ��� q��t� 	
�


 log t
�

where

k���� 	
��� ������

��� ���
������������� k���� 	

�

� � �
�

k���� 	
� log���� � 


� � �
� �� � ���
� ��

�� �
�

k	�x� y� �� 	 log x � log y

�
��� ���logx � log y� � ��logx��log y�� � ��log x�� � �log y��� �


��� ���
�

This can be checked using the tail expansion of the bivariate normal distribution by
Ruben 
����� as given in 
Ledford and Tawn� ������ combined with a su�ciently precise
expansion of the function f � the inverse function of ���� � �� where � is the standard
univariate normal distribution function�

f ��t� 	 
 log t� log�log t�� log���� � log�log t�

 log t

�
log����� 


 log t

�
�




	
log�log t�


 log t


�

� o

	� log�log t�

 log t

��

� as t���

�� Estimation of failure probabilities

Throughout this section we assume that the marginal distribution functions Fi of F are
continuous and belong to the domain of attraction of a univariate extreme value distribu�
tion� Moreover� condition �
��� and further conditions ensuring �� � � 	 OP ��r�n��

�����
shall hold �cf� Section 
��
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Recall from ����� that� if we want to estimate the probability of an extreme set of the
form fX � x or Y � yg and we assume that F belongs to the domain of attraction of a
bivariate extreme value distribution� then we can use the approximate equality

����� Prf�� F��X� � �� F��x� or �� F��Y � � �� F��y�g
� tPrf�� F��X� � ��� F��x���t or �� F��Y � � ��� F��y���tg

since for small t the right hand side can be estimated using the empirical distribution
function 
de Haan and Sinha� ������ However� if the marginals are asymptotically in�
dependent and the failure set is e�g� of the form fX � x and Y � yg then a di�erent
approximate equality holds under condition �
��� or �
����

���
� Prf�� F��X� � �� F��x� and �� F��Y � � �� F��y�g
� t��� Prf�� F��X� � ��� F��x���t and �� F��Y � � ��� F��y���tg�

We develop an estimation procedure which works in this situation�
More generally� we aim at the estimation of the failure probability pn 	 Prf�X� Y � �

Cng for failure regions Cn 
 
xn���	 
yn��� for some xn� yn � R such that

�x� y� � Cn 	
 
x���	 
y��� 
 Cn������

The latter property means that if an observation �x� y� causes a failure �e�g�� a �ooding
of a dike� then an event with both components larger will do so� too� Asymptotically we
let both xn and yn converge to the right endpoint of the pertaining marginal distribution
to ensure that pn � �� i�e�� that indeed we are estimating the probability of an extremal
event�
The basic idea is to use a generalized version of the scaling property ���
� to in�ate the

transformed failure set ��� F�� �� F���Cn� �	 f��� F��x�� �� F��y�� j �x� y� � Cng such
that it contains su�ciently many observations and hence the empirical probability gives
an accurate estimate� Since the marginal distribution functions Fi are unknown� their
tails are estimated by suitable generalized Pareto distributions�
To work out this program� �rst recall from univariate extreme value theory that there

exist normalizing constants ai�n�k� � � and bi�n�k� � R such that the following general�
ized Pareto approximation is valid�

�� Fi�x� � k

n

�
� � 
i

x� bi�n�k�

ai�n�k�

�����i
	�

k

n
��� Fai�bi��i�x��� i 	 �� 
�

for x close to the right endpoint F��
i ���� Here ai and bi are abbreviations for ai�n�k� and

bi�n�k�� respectively� and �� � 
x����� is de�ned as � if 
 � � and x � ���
� and it
is de�ned as � if 
 � � and x � ���
� Dekkers et al� 
����� proposed and analyzed the
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following estimators of the parameters ai� bi and 
i� De�ne

Mr�X� �	
�

k

k��X
j��

�logXn�n�j � logXn�n�k�
r� r 	 �� 
�

�
� �	 M��X� � �� �



	
�� �M��X��

�

M��X�


��
�

�b�

�n
k

�
�	 Xn�n�k�

�a�

�n
k

�
�	

Xn�n�k

p
�M��X�� �M��X�p

��� ��
�� ������ �
�� ����� 
�
�� ��
with �
�� �	 �
� � ��

for �
�� �a� and �b� replace X by Y in the previous formulae� The estimator �
i for the
extreme value index 
i is often called moment estimator�
Using these de�nitions� n

k
��� Fi�x�� may be estimated by

�� F�ai��bi���i
�x� 	

�
� � �
i

x� �bi�n�k�
�ai�n�k�

������i
�

Write � � F �x� y� as a short form for �� � F��x�� � � F��y��� and likewise � � Fa�b�� 	
��� Fa��b����� �� Fa��b����� and �� F

�a��b��� 	 ��� F�a���b�����
� �� F�a���b�����

� are functions from

R
� to 
������ Then the transformed failure set n

k
��� F �Cn�� can be approximated by

Dn �	 �� Fa�b���Cn�

which in turn is estimated by

�Dn �	 �� F
�a��b����Cn��

Now we may argue heuristically as follows� using a generalization of the scaling property
���
� to in�ate the transformed failure set by the factor ��cn for some cn � � chosen in
a suitable way by the statistician�

pn 	 Prf�� F �X� Y � � �� F �Cn�g
� Pr

nn
k

�
�� F �X� Y �

� � Dn

o
� c���n Pr

nn
k

�
�� F �X� Y �

� � Dn

cn

o
�����

� c����n Prf�X� Y � � BgjB 	 F
��

�a��b���

�
�� �Dn

cn

�
� c����n

�

n

nX
i��

�
n
�Xi� Yi� � F��

�a��b���

�
��

�Dn

cn

�o
�����

	� �pn�����

where �� denotes one of the estimators examined in Section 
�
In the sequel we state the exact conditions under that we will prove consistency of the

estimator �pn� that is� �pn�pn � � in probability as n � �� In order not to overload
the paper� we will not determine the nondegenerate limit distribution of the standardized
estimation error� However� employing the ideas of de Haan and Sinha 
������ one may
establish asymptotic normality of �pn under more complex conditions�
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To study the asymptotic behavior of �pn� we have to impose a regularity condition on
the sequence of failure sets Cn� or rather on the transformed sets Dn� Note that Dn shall
shrink towards the origin because we are interested in extremal events� We assume that�
after a suitable standardization� Dn converges in the following sense�

�D� There exist a sequence dn � � and a measurable bounded set A 
 
����� with
	�A� � � such that for all � � � one has for su�ciently large n

A�� 
 Dn

dn

 A���

Here A�� �	 fx � 
����� j infy�A kx�yk � �g and A�� �	 
�����n��
�����nA����
denote the outer and inner ��neighborhood of A with respect to the maximum norm
kx� yk 	 jx� � y�j � jx� � y�j� and 	 is the measure corresponding to the function
c �cf� Section 
��

Note that dn and A are not determined by this condition as the former may be multiplied
by a �xed factor and the latter divided by the same number� Moreover� even for given dn
the set A is determined only up to its boundary�
Condition ����� on Cn implies

�x� y� � Dn 	
 
�� x�	 
�� y� 
 Dn������

Example� ForCn 	 
xn���	
yn��� we haveDn 	 
�� ��Fa��b�����xn��	
�� ��Fa� �b�����yn���
Hence �D� is satis�ed with dn 	 � � Fa��b�����xn� if �� � Fa��b�����yn����� � Fa��b�����xn��
converges in ������
This example demonstrates that essentially �D� means that the convergence of the failure
set in the x� and the y�direction is balanced�
Next we need a certain rate of convergence for the marginal estimators to ensure that

the transformation of the failure set does not introduce too big an error� For that purpose
recall that

Ri�t� x� �	 t
�
�� Fi�ai�t�x � bi�t��

�� �� � 
ix�
����i � �� i 	 �� 
�

locally uniformly for x � ����� as t��� since Fi belongs to the domain of attraction of
an extreme value distribution� Here we impose the following slightly stricter condition�

Rx��x��t� �	 max
i����

sup
xi	x	�����i���

���Ri�t� x��� � 
ix�
���i

��� � ������

for some ����
i � �� � xi � ����
i � ��� i 	 �� 
� Observe that then ����� even holds for
all such xi� For example� if Fi satis�es the second order condition

Ri�t� x�

Ai�t�
�  �x�

for some �i�varying function Ai with �i � � �i 	 �� 
�� then ����� holds true with
Rx��x��t� 	 O�A��t� � A��t��� In addition� we require that not too many order statis�
tics are used for estimation of the marginal parameters�

k���Rx�x

�n
k

�
	 O��������
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for some x � �� Then it follows that the estimators �ai� �bi and �
i are
p
k�consistent in the

following sense� ����ai
ai
� �

��� � ����bi � bi
ai

��� � j�
i � 
ij 	 OP �k
������ i 	 �� 
������


cf� Dekkers et al�� ����� de Haan and Resnick� ������
We will see that using the estimated parameters instead of the unknown true ones for

the transformation of the failure sets does not cause problems provided

w������dn� 	 o�k���� with w��x� �	 �x�
Z �

x

u���� log u du�������

Check that

w��x� �

�
�

�
� �

�
log x � 
 � �

�log x��

�
� 
 	 �

x�

��
� 
 � ��

as x � �� Though� at �rst glance� ������ seems rather strict a condition if one of the
extreme value indices is negative� it is indeed a natural one� for without it the di�erence
between the transformed set Dn and its estimate �Dn would be at least of the same order
in probability as the typical elements of Dn� namely at least of the order dn� which of
course would render impossible any further statistical inference on the failure probability�
In addition� the scaling factor cn chosen by the statistician when applying the estimator

�pn must be related to the actual scaling factor dn as follows�

dn 	 O�cn�� w�����

� cn
dn

�
	 o�k���� and

� cn
dn

����
	 o

�
�r�n�����

�
�����
�

In particular� ����
� is satis�ed if cn and dn are of the same order� Below the choice of cn
is discussed more thoroughly�
Recall from Section 
 that the scaling property ���
� is a consequence of approximation

�
��� and the homogeneity of the measure 	� In order to justify ����� in the motivation
for �pn given above� we need the following modi�cation of �
���� which is suitable for more
general sets than just upper quadrants�

sup
B� �Bn

����Prf�� F �X� Y � � �� F �B�g
q�k�n�	

�
n
k
��� F �B��

� � �
���� � � as n��������

where

Bn �	
n
F
��

�a��b���

�
�� �� F

�a��b����Cn�

cn

� ��� ���a
a
� ��� � ���b� b

a

�� � k�� � �k � �n
o

for some �n � � such that k����n ��� and
!Bn �	 Bn �

n
Cn�

�
B�Bm�m�n

B
o
�

It will turn out �see ������ that for su�ciently large n the denominator in ������ is strictly
positive�
Notice that the convergence of the absolute value in ������ for sets of the type � �

F �B� 	 
�� xk�n�	 
�� yk�n� is equivalent to convergence �
��� with t 	 k�n�
Finally� to make approximation ����� rigorous� we need a kind of uniform law of large

numbers� This is provided by the theory of Vapnik�Cervonenkis �VC� classes of sets as



�� DRAISMA� DREES� FERREIRA� AND DE HAAN

outlined� e�g�� in the monograph by Pollard 
����� Section II���� For this we require

B 	
�
n�IN

Bn is a VC class�������

Theorem ���� Suppose the conditions �D�� ����� �or ������� ������ ����� and ������

������ are satis�ed� If ���� 	 OP ��r�n��

������ log cn 	 o��r�n������� and k�n��n is almost
decreasing� which means supm�n k�m��m 	 O�k�n��n�� then

�pn
pn

� � in probability�

Remark� �i� In the most important case that npn is bounded� the conditions �������
������ can be jointly satis�ed only if 
� � 
� � ���
�

�ii� The sequence k�n��n is almost decreasing� e�g�� if k�n� is regularly varying with
exponent less than � or� more general� has an upper Matuszewska index � � � 
see
Bingham et al�� ����� Theorem 
�
�
��

The scaling factor ��cn by which the transformed failure set is in�ated determines
the number of large observations taken into account for the empirical probability ������
More precisely� according to ����� in the proof of Lemma ���� this number is of the order
r�n��dn�cn�

���� Hence if dn and cn are of the same order then one uses essentially the same
number Sn�k� k� of observations as for the estimation of �� which seems quite natural�
In practice� of course� dn is not known� However� conversely one may choose cn such

that about Sn�k� k� observations lie in the in�ated set �Dn�cn� To be more concrete� let

cn��� �	 sup
n
c � �

��� nX
i��

�
�
�Xi� Yi� � F��

�a��b���

�
��

�Dn

c

�� � �Sn�k� k�
o

������

for some � � �� Following the lines of the proof of Theorem ���� one may show that
cn��� and dn are of the same order in probability� and that the resulting estimator �pn is
consistent for pn� Alternatively� one may employ a heuristic approach which is common
in univariate extreme value statistics� one plots �pn as a function of cn and choose a value
cn where this graph seems su�ciently stable�
Finally� it is worth mentioning that it is not necessary to use the same number k in

the estimation of the marginal parameters and in the de�nition of ��� and ��	� In fact� one
may prove an analog to Theorem ��� in more general settings� provided it is guaranteed
that the estimation error introduced when standardizing the marginals is asymptotically
negligible� that is� one has ������� ������ and ����
� for some k which may di�er from the
one used in the de�nition of the estimator for �� Likewise one may use other estimators
for the marginal parameters� like e�g� the maximum likelihood estimator examined by
Smith 
������ provided these estimators converge with the same rate�

�� Simulations

���� Methods� The estimators were tested on � di�erent distribution functions�

�� the bivariate Cauchy distribution �� 	 ���

� the bivariate extreme value distribution �BEV� with a logistic dependence function�
with � 	 ���� �� 	 �� 
Ledford and Tawn� ����� ������

�� the bivariate normal distribution with � 	 ��� �� 	 ���� and
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�� the Morgenstern distribution with � 	 ���� �� 	 ���� 
Ledford and Tawn� �����
������

From each distribution we generated 
�� samples of size ����� A sample of each the
distributions is shown in �gure �� Dependence in these distributions ranges from clear
asymptotic dependence ��� through weak asymptotic dependence �
� and non�asymptotic
dependence ��� to clear asymptotic independence ����
The ML�estimator ��� was estimated by the gauss maxlik procedure 
Schoenberg� ������
For each estimator two estimates for the root variance are reported�

�
�i� the root variance for the general case� calculated asm
�����
i� i 	 �� 
� resp� Sn�k� k�

����

�
i� i 	 �� � �cf� Theorems 
�
 and 
���� and
�
�d� the root variance for the case of asymptotic dependence� calculated similarly� with

� 	 ��

For comparison the observed empirical standard deviation was calculated from the 
��
simulated � estimates�
Correspondingly� one�sided �" tests for dependence were carried out in two ways� As�

ymptotic dependence is not rejected when

����� �����
�i�� � ���� or alternatively ����� �����
�d�� � ����
where � represents the standard normal df�
Furthermore� we studied the �nite sample behavior of the proposed estimators of a

failure probability� For this� failure sets of the type 
a���� were considered� where a
was chosen such that the failure probability equals pn 	 ����n�

�� 	 ���
 for the sample
size n 	 ����� We used ��	 as the estimator for the parameter of tail dependence and
considered three di�erent estimators of pn�

�p�� 	 �pn as de�ned in ������

�p� 	 c������n �pn� and

�p 	

�
�p� if � 	 � is not rejected�

�p�� if � 	 � is rejected�

�����

Here cn 	 cn��� is de�ned by ������ and the test for � 	 � is based on the variance
estimate �
�d�� Note that �p� is a natural analog to �p�� if it is known in advance that � 	 ��
In particular� in that case it is a consistent estimator of pn�
For the normal distribution this resulted in many zero estimates� as this e�ect was

caused by the poor estimates of the marginal parameters� we also considered a distribution
with the marginals transformed to standard exponential�

��
� Estimating � and testing for asymptotic dependence� The results are pre�
sented in �gures 
 and � and in tables � and 
�
To make the performance of the di�erent estimators for � comparable� m and k were

chosen in a range where the overall performance of the estimator under consideration is
best� This led to a smaller m for the Hill than for the maximum likelihood estimator�
because of the larger bias of former� Recall that Peng�s estimator is constructed from
Sn�k� k� and Sn�
k� 
k�� while ��	 is based on Sn�j� j� only up to j 	 k� For that reason
we chose k for ��	 double as large as for ����
The general picture is that ���� ��� and ��	 show a bias �negative for the Cauchy� BEV

and normal distributions� that increases with m or k� The ML estimator ��� shows no
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clear trend� but it is biased for two of the distributions� though considerably less than the
other estimators� Note that although � � �� the estimates ��i may be larger than ��
A comparison of the observed standard deviation with the appropriate estimates �ta�

bles ��
� �
�d� for the Cauchy and BEV distributions� �
�i� for Normal and Morgenstern�
shows the estimates to be reasonable to good� Note that the standard deviation of ��� and
��� on one hand and of ��� and ��	 on the other hand are not fully comparable as m and k
have a di�erent meaning�
Some observations�

� Peng�s estimator and ours are not stable at small k leading to missing values for
either �� or �
 or both�

� The tests for asymptotic dependence tend to accept dependence for small kor m and
to reject dependence for larger values� This e�ect is due to the increasing bias of
the estimators for �� which is not taken into account by the tests� Consequently� the
e�ect is weakest for the test based on ����

� Hill�s estimator has the smallest observed and estimated variances�
� Our estimator has a somewhat smaller observed variance than Peng�s� but both
have relatively large variance estimates for small k� Overall the ML estimator has a
variance comparable to ours but for small k resp� m it is clearly smaller�

To conclude� the outcome of all tests for asymptotic dependence depend on k� the
sample fraction used� The test based on the ML estimator ��� has the great advantage
to be less dependent on k� but it is biased to rejecting dependence� Finally� due to the
smaller variance of the Hill estimator the corresponding test detects even small deviations
from the hypothesis� but on the other hand� due to its considerable bias� for the Cauchy
and BEV distribution the hypothesis is much more often wrongly rejected than one would
expect from the nominal level of the test� This disappointing behavior indicates that the
approximation of the distribution of Hill estimator by a centered normal distribution is
rather inaccurate for moderate sample sizes�
All estimators and tests would bene�t from a guideline for choosing k�

���� Failure probabilities� Table � summarizes the main results for the failure prob�
ability estimators� The empirical distribution of the estimators for three values of k is
shown in �gure ��
For the Cauchy distribution we have asymptotic dependence� so �p� is appropriate�

Figure � shows that it is biased for small k� probably related with the negative bias of the

 estimates of the marginal distributions� As expected �p�� has larger variance� its smaller
bias for small k is sort of a surprise�
For the normal distribution the main problem is estimating the marginals� The 
� and


� estimates are negative� This implies upper bounds for the marginals and in quite a
number of cases the failure area lies outside one or both of the bounds leading to a zero
estimated failure probability�
In samples with the marginals transformed to exponential the estimator behaves much

better� The marginals are estimated more accurately now with �
i � �� Still when both
�
i estimates are negative a number of zero estimates result� The estimator �p� assuming
asymptotic dependence over�estimates the probability� while �p� under�estimates it�
The Morgenstern distribution has asymptotically independent marginals� The �p�� es�

timate is nearly unbiased for k 	 ��� ��� whereas the �p� estimate is strongly biased�
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Estimating the marginals does not cause problems here as the Morgenstern distribution
has extreme value �Fr�echet� marginals�

�� An application� dependence of sea state parameters

In the course of the Neptune project� �nanced by the European Union �grant MAS
�
CT�������� the joint distribution of sea state variables was studied and its consequences
for the seawall at Petten� The data set� supplied by the Dutch National Institute for Ma�
rine and Coastal management� consists of date� time and sea characteristics recorded from
���� till ����� at three�hourly intervals at the Eierland station� 
� kilometers o� the Dutch
coast� After a declustering routine a set of independent observations of waveheight Hm��
wave�periode Tpb and still water level SWL was constructed and analysed� de Haan and
de Ronde 
����� concluded that the variables were asymptotically dependent� and esti�
mated the failure probability of the Pettemer zeewering assuming asymptotic dependence
between the variables� Figure � shows the joint distribution of pairs of these variables
and illustrates the estimation of asymptotic dependence� For none of the pairs asymptotic
dependence can be rejected although for quite a number of values of k the variances can
not be calculated�

�� Proofs for section �

The �rst results in this section closely follow Peng 
������ We �rst state slightly
rephrased versions of his Lemmas 
�� and 
�
 concerning empirical probability measures�
De�ne uniformly distributed random variables Ui �	 � � F��Xi�� Vi �	 � � F��Yi� and
denote the order statistics by Un�i and Vn�i� with the convention Un�� 	 Vn�� 	 ��
We will use the following notation�

S��x� y� �	
nX
i��

�fUi � x and Vi � yg�

P��x� y� �	PrfU� � x and V� � yg�

S��x� y� �	
nX
i��

�fUi � x or Vi � yg�

P��x� y� �	PrfU� � x or V� � yg�

�����

Note that S��x� y� 	 S��x� ���S���� y��S��x� y�� P��x� y� 	 x�y�P��x� y�� and Sn�j� k�
�equation �
���� equals S��Un�j� Vn�k� a�s�

Lemma ���� Assume �
���� Let r�n� 	 n q�k�n� � � �which implies k � �� and
k�n� �� Then we have

p
r�n�

�S�� knx� kny�
r�n�

� P��
k
n
x� k

n
y�

q�k�n�

� D��W��x� y��

Here� and below�
D�� is convergence in D�
������ and W��x� y� is a Gaussian process with

mean zero and covariance structure

E fW��x�� y��W��x�� y��g 	 c�x� � x�� y� � y���

Proof� See 
Peng� ����� Huang� ���
� and 
Einmahl� ����� Theorem �����
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Corollary ���� Assume �
���� If additionally the sequence k�n� is such that r�n� 	

n q�k�n���� k�n� � and
p
r�n� q��k�n�� � then

p
r�n�

�S�� knx� kny�
r�n�

� c�x� y�
�

D��W��x� y��

Proof� The extra condition on the sequence k�n� ensures that

p
r�n�

�P��
k
n
x� k

n
y�

q�k�n�
� c�x� y�

�
� �

uniformly on 
�� A�� for any A � ��

Lemma ���� Assume �
���� Let k �� and k�n� �� Then we have

p
k
�S�� knx� kny�

k
� n

k
P��

k

n
x�
k

n
y�
�

D��W��x� y��

Here W��x� y� is a Gaussian process with mean zero and covariance structure

E fW��x�� y��W��x�� y��g 	 x� � x� � y� � y� � lc�x�� y��� lc�x�� y�� � lc�x� � x�� y� � y��

Proof� See 
Peng� ����� proof of Lemma 
�
� and 
Einmahl� ����� Theorem �����

Corollary ���� Assume �
���� Let k �� and k�n� �� Then
p
k
�n
k
Un�bkxc � x

�
D�� �W��x� ��

p
k
�n
k
Vn�bkyc � y

�
D�� �W���� y��

Proof� We will prove the �rst equation� Lemma ��
 implies

p
k
��
k

nX
i��

�fUi � k

n
xg � x

�
D�� W��x� ���

Note that the generalized inverse of x �� ��k
Pn

i�� �fUi � k�nxg equals x �� �n�k�Un�bkxc�
applying Vervaat�s Lemma 
Vervaat� ���
� gives the result of the Corollary�

Corollary ���� Assume the conditions of Theorem ���� Thenp
r�n�

�S��Un�bkxc� Vn�bkyc�

r�n�
� c�x� y�

�
D��W �x� y��

W �x� y� is a Gaussian process with mean zero and covariance structure depending on l�
in case l 	 �

W �x� y� 	W��x� y��

in case l � �

W �x� y� 	
�p
l
�W��x� �� �W���� y��W��x� y��

�
p
lcx�x� y�W��x� ���

p
lcy�x� y�W���� y��

where the term in the �rst line of the right hand side has the same distribution as
W��x� y��
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Proof� For l 	 � the result follows from Corollaries ��
 and ���� we have r�n� 	 o�k� andp
r�n�

�n
k
Un�bkxc � x

�
p���p

r�n�
�n
k
Vn�bkyc � y

�
p����

Otherwise� r�n��k� l with l � �� Write

S��Un�bkxc� Vn�bkyc� 	 bkxc � bkyc � S��Un�bkxc� Vn�bkyc�
P��Un�bkxc� Vn�bkyc� 	 Un�bkxc � Vn�bkyc � P��Un�bkxc� Vn�bkyc�

and the result follows from Lemma ��
 and Corollary ��
 �see Peng 
�������

Corollary ���� Assume the conditions of Theorem ���� Thenp
r�n�

�S��Un�bkxc� Vn�bkxc�

S��Un�k� Vn�k�
� x���

� d��W �x� x�� x���W ��� �� 	� V �x��

Here
d�� is convergence in D
�� ��� The process V �x� in this equation is Gaussian with

mean zero and covariance depending on � and l�
For l 	 �

E fV �x�V �y�g 	 �x � y���� � �xy�����
For l � �

E fV �x�V �y�g 	��� 
lcx��� ��cy��� ����x � y � �� � l�xy�

� lcx��� ����� lcy��� ���
�
yc�x� �� � xc�y� ��� c�x � y� x � y�

�
� lcy��� ����� lcx��� ���

�
yc��� x� � xc��� y�� c�x � y� x � y�

�
�

Proof� From Corollary ��� we have

S��Un�bkxc� Vn�bkxc�

S��Un�k� Vn�k�
	
c�x� x� � r�n������W �x� x� � op����

c��� �� � r�n������W ��� �� � op����

	
c�x� x�

c��� ��

h
� � r�n�����

�W �x� x�
c�x� x�

� W ��� ��

c��� ��

�
� r�n�����

� op���
c�x� x�

� op���

c��� ��

�i
	x��� � r�n�����

W �x� x�� x���W ��� ��

c��� ��
� op�r�n�

������

For the proof of the covariance formula in case of l � �� note that then cx��� ���cy��� �� 	
��

Remark� For l 	 � the process fV �x��g is just a Brownian bridge�
Proof of Theorem ���� From Corollary ��� we have

lim
n��

S��
k
n
x� k

n
y�

r�n�
	 c�x� y�

uniformly on say � � x� y � 
� Since
n

k
Un�bkxc � x and

n

k
Vn�bkyc � y
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uniformly on � � x� y � 
 by Corollary ��
�

lim
n��

S��Un�bkxc� Vn�bkyc�

r�n�
	 c�x� y�

uniformly� Hence Sn�k� k��r�n� 	 S��Un�k� Vn�k��r�n�� c��� �� and

�
k

Pk
j�� Sn�j� j�

r�n�
	

R �

�
S��Un�bkxc� Vn�bkxc�dx

r�n�
�
Z �

�

c�x� x�dx 	
�

� � ���
�

Proof of Theorem ��� �normality of ��	�� By convergence in D
�� �� �Corollary ����p
r�n�

� Z �

�

S��Un�bkxc� Vn�bkxc�

S��Un�k� Vn�k�
dx�

Z �

�

x���dx
�

d��
Z �

�

V �x�dx

or equivalently

p
r�n�

�
��k

kX
j��

�S��Un�j� Vn�j�

S��Un�k� Vn�k�

�� �

� � ���

�
d��
Z �

�

V �x�dx����
�

The distribution of
R
V �x�dx is normal with

E

�Z �

�

V �x�dx

�
	

Z �

�

E fV �x�g dx 	 �

and variance

E

�Z �

�

V �x�dx

Z �

�

V �y�dy

�
	 


Z �

�

Z y

�

E fV �x�V �y�g dxdy�

Using Corollary ���� this variance equals




Z �

�

Z y

�

x������ y����dxdy

	
���

�
 � �������� � ���
� for l 	 ��

or

�

�
lcx��� ��

�
�� lcy��� ��

�Z �

�

c�u� ��du

�
�

�
lcy��� ��

�
�� lcx��� ��

� Z �

�

c��� u�du

�
�



l�cx��� ��cy��� ��� �

�
lcx��� ��� �

�
lcy��� �� �

�

�


�
�

�

l�cx��� ��

� � cy��� ��
��� for l � ��

Finally

��	 � � 	 �� � ���
� �

� � ����	
� �

� � ���

�
�� � o�����

This proves Theorem 
�
 for ��	�
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Proof of Corollary ��� �for ��	�� By Corollary ��� we have

r�n���S��Un�k� Vn�k�
p����

So Sn�k� k� 	 S��Un�k� Vn�k� a�s� is a consistent estimator of r�n� in the Theorem� This
proves Corollary 
���

Remark� It is worth mentioning that the asymptotic normality of ��� can be derived from
Corollary ��� in a similar way�

Now we turn to the Ledford and Tawn � type estimators ��� and ����
Let mn 	 br�n�c and denote by Qn the tail empirical quantile function pertaining to

T
�n�
i � � � i � n� i�e�

Qn�t� �	 T
�n�
n�n�bmntc

� � � t � n�mn�

The following lemma is central to the proof of the asymptotic normality of estimators for

� based on largest order statistics of T
�n�
i �

Lemma ���� Under the conditions of Theorem ��� there exist suitable versions of Qn� a
suitable process !W equal in distribution to a standard Brownian motion if l 	 � and to
x ��W �x� x� if l � � such that for all t�� � � �

sup
�	t	t�

t������

���m���

n

�k
n
Qn�t�� t��

�
� �t������ !W �t�

��� 	 oP ����

Proof� First check that
nX
i��

�fT �n�
i � xg 	

nX
i��

�fRX
i � �n� ����� ��x� and RY

i � �n� ����� ��x�g

	
nX
i��

�fUi � Un�d�n����xe and Vi � Vn�d�n����xeg a�s�

with the convention Un�n�� 	 Vn�n�� 	 �� Hence

!Fn�x� �	
�

n

nX
i��

�f k
n��

T
�n�
i � xg 	 �

n
S�

�
Un�dk�xe�� Vn�dk�xe �

�
where f�x�� denotes the left�hand limit of f at x� From Corollary ��� one readily obtains
that

m���
n

� !Fn�x�

q�k�n�
� x����

�
�	x	�

��
�
W ���x� ��x�

�
�	x	�

	
 m���
n

� !Fn�x
���

q�k�n�
� x

�
�	x	�

��
�
W �x�� x��

�
�	x	�

	� !W

	
 m���
n

��
!F��
n �q�k�n�t�

�����
� t
�
�	t	�

�� � !W
weakly in D������ where in the last step Vervaat�s lemma has been used� For this� note
that !W has a�s� continuous sample paths� because by the de�nition of W it is a Brownian
motion for l 	 � and it can be represented as a sum of Brownian motions if l � ��
Consequently for suitable versions�

!F��
n �q�k�n�t�

�����
	 t�m����

n
!W �t� � o�m����

n �
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a�s� uniformly on compact intervals bounded away from �� The ��method yields

F��
n �q�k�n�t� 	 t��

�
� �m����

n �t�� !W �t� � o�m����
n �

�
uniformly in the same sense� Check that F��

n �q�k�n�t� 	 k��n � ��Qn�r�n�t�mn� 	
k�nQn�t� � O���mn� uniformly and sup�	t	� t

�����
j !W �t�j 	 oP ��� as � � � by the law
of the iterated logarithm and the aforementioned representation of !W � Thus it remains
to prove that for all � � �

lim
���
lim sup
n��

Pr
n
sup
�	t	�

m���
n t������


��� k

n� �
Qn�t�� t��

��� � �
o
	 �������

For this� we restrict ourselves to considering

Pr
n
sup
�	t	�

m���
n t������


� k

n� �
Qn�t�� t��

�
� �

o

� Pr
n
� � � i � mn� � � �

k

n� �
T
�n�
n�n�i�� � xi�n

o
	 Pr

n
� � � i � mn� � � �

k

n� �
T
�n�
n�n�i�� � xi�n and xi�n � k

o
�����

with

xi�n �	
� i

mn

���
� �m����

n

� i

mn

���������
�
�

�The other inequality can be treated in a similar way��
Let Ai �	 ��Ui� Bi �	 ��Vi and

�S��x� y� �	
nX
i��

�
fAi�x and Bi�yg

	 S����x�� ��y���

Then the right�hand side of ����� equals

Pr
n
� � � i � mn� � � � �S��An�n�dk�xi�ne��� Bn�n�dk�xi�ne��� � i and xi�n � k

o
�

Now we distinguish two di�erent ranges of i�values�

Case �	 i �	 in �	 b��m

n�L�

�������
�c� xi�n � k

According to Shorack and Wellner 
����� Theorem �������� for all !� � � there exists !� � �
such that

lim sup
n��

Pr
�� 
 � j � mn � � �

j � �
n

An�n�j�� � !�
� � !��

and likewise for Bn�n�i��� Thus

Pr
n
� � � i � in � �S��An�n�dk�xi�ne��� Bn�n�dk�xi�ne��� � i and xi�n � k

o
� Pr

n
� � � i � in � �S��xi�n!�n�k� xi�n!�n�k� � i

o
� 
!��

Check that
n

k
xi�n!� � �

n

k
m����

n

� i

mn

���������
�
!� � !�Lk��m�

nn
����n�i��������

Denote by FT the d�f� of Ti �	 min�Ai� Bi�� i�e� �� FT �x� 	 P����x� ��x�� so that F
��
T is

�����varying at ��
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In case of � � �� we have k 	 o�m��

n � and F��

T ��� t� 	 o�t����
�� as t � � for all � � ��
so that the right�hand side of ����� is of larger order than F��

T �� � 
i��!�Ln��� provided
� � ��� ���
�
If � 	 �� then one can show that� in analogy to Lemma 
�� of Drees 
����b��

sup
x	�

x
��
���P��tx� tx�

P��t� t�
� x

��� 	 o�q��t���

Apply this bound with t 	 k�n and x 	 i��!�Lmn� to obtain ��FT �xi�n!�n�k� � 
i��!�Ln��
since P��k�n� k�n� � q�k�n� � mn�n and �i�mn�

��
q��k�n� 	 o�m
���
n q��k�n�i�mn� 	

o�i�mn� uniformly for � � i � in�
Hence it follows that

lim sup
n��

Pr
n
� � � i � in � �S��xi�n!�n�k� xi�n!�n�k� � i

o
� lim sup

n��
Pr
n
� � � i � in � Tn�n�i�� �

n

k
xi�n!�

o
� lim sup

n��
Pr
n

max
�	i	mn��

Tn�n�i��

F��
T ��� 
i��!�Ln�� � �g

� !�

for su�ciently large L� where for the last step again Theorem ������ of Shorack and
Wellner 
����� has been used�

Case �	 in � i � mn�� �

In this case we use the convergence

lim
���
lim sup
n��

Pr
n
sup
�	t	�

k���t����

��k
n
An�n�dkte�� � t��

�� � ��o 	 �
for all ��� � � �� which is immediate from Theorem 
�� of Drees 
����b�� By arguments simi�
lar to the ones given above� it su�ces to consider Prf� in � i � mn��� � �S��yi�n� yi�n� � ig
with

yi�n �	
n

k
xi�n � ��nk����x����
i�n

	
n

k

� i

mn

����
� � �m����

n

� i

mn

�������
�
� ��k����

� i

mn

��������
�
	

	
�
� � �m����

n

� i

mn

�������
������
�

� n

k

� i

mn

����
� �

�



m����

n

� i

mn

�������
��

for � � � and �� � ��� � L�������
��
� since k � mn and � � �� Therefore
lim
���
lim sup
n��

Prf� in � i � mn� � � � �S��yi�n� yi�n� � ig

� lim
���
lim sup
n��

Pr
n
� in � i � mn� � � �

m���
n

� i

mn

�������
�k
n
Tn�n�i�� �

� i

mn

����
� ��


o
	 ��
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again by Theorem 
�� of Drees 
����b�� where �
��� implies Condition � of that paper and

m
���
n q��k�n�� � ensures that the bias is asymptotically negligible�
Combining both cases one arrives at ������

Theorem ���� �asymptotic normality of ��� and ����� Note that this approxima�
tion is analogous to the approximation of the tail empirical quantile function established
in Drees 
����b� in the classical situation of i�i�d� random variables� Hence the asymptotic
normality of ��� and ��� follows from Lemma ��� exactly as in 
Drees� ����b� Example ����
and 
Drees� ����a� Example ���� using the ��method� The asymptotic variance is given
by Z �

�

Z �

�

Cov� !W �s�� !W �t���st������� 	��ds� 	��dt�

with 	��dt� �	 �� � ��
��t� � �
� � ��t����� dt� �� � �����dt� for the maximum likelihood

estimator ��� and 	��dt� �	 ��t�dt � ���dt�� in case of the Hill estimator� �Here �� de�
notes the Dirac measure at ��� Now using the homogeneity of order � of the covariance

function which implies
R t

�
Cov� !W �s�� !W �t���st��� ds 	

R �

�
Cov� !W �u�� !W ����u�� du� one

obtains �� � ���Var� !W ���� and ��Var� !W ����� respectively� as asymptotic variance and
thus the assertion� using cx��� �� � cy��� �� 	 ����

Proof of Theorem ���� Note that according to Corollary ���

Sn�i� j�

r�n�
	 c

� i
k
�
j

k

�
�OP

�
�r�n������

�

uniformly for � � i� j � 
k� Hence �l � l in probability by the de�nition of r�n�� Moreover�

�cx��� �� 	 k��	
c�bk�� � k���	�c�k� ��� c��� �� �OP ��r�n�

������

� �OP ��r�n�������

	 cx��� �� �OP

�
k��	�r�n������

�
P� cx��� ��

if � � ��
� The consistency of �cy��� ��� �d� and �d� can be proved in a similar way� so that
the consistency of �
�i follows readily in that case�
In case of � � ��
� we have

�l����cx��� �� 	 OP

�
�r�n��k������ � k��	�r�n�������

�
	 oP ���

and likewise �l�����cy��� �� � �d� � �d�� � � in probability� Thus the consistency of �
i is
obvious because of l 	 ��
Assertion �ii� follows similarly from

k

n
T
�n�u�
n�n�bmntc

	

	
t

c�� � u� ��


��

�OP �m
����
n �

which in turn can be veri�ed using the same arguments as in the proof of Lemma ����
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�� Proof of Theorem ���

The proof of Theorem ��� will be established in several steps� The following sequence
of equalities and asymptotic in probability equivalences provides an overview over the
reasoning�

pn 	 Prf�� F �X� Y � � �� F �Cn�g
��
���� q

�k
n

�
	
�n
k
��� F �Cn��

�
Lemma���� q

�k
n

�
	�Dn�

��
��
	 c���n q

�k
n

�
	
�Dn

cn

�
Cor� ���� c���n q

�k
n

�
	
�
�� Fa�b��

�
F
��

�a��b���

�
��

�Dn

cn

���
Lemma���� c���n q

�k
n

�
	
�n
k

�
�� F

�
F
��

�a��b���

�
��

�Dn

cn

���
��
���� c���n Prf�� F �X� Y � � �� F �B�gjB 	 F��

�a��b���

�
�� �Dn

cn

�
Lemma��	� c���n

�

n

nX
i��

�
n
�Xi� Yi� � F��

�a��b���

�
��

�Dn

cn

�o
� �pn������

Lemma 
��� Let a 	 a�n�� �a � �� b��b� 
� �
 � R denote sequences such that

���a
a
� ��� � ���b� b

a

�� � j�
 � 
j 	 O��n�

for some �n � �� Suppose that the sequence �n � � is bounded and satis�es �n log�n � �
and �nw���n�� � with w� de�ned in ������� Then

�� F�a��b����F
��
a�b����� x�� 	 x � o��n����
�

uniformly for � � x � �n�

Proof� First check that

T �x� �	 �� F�a��b����F
��
a�b����� x�� 	

h
� � �


a

�a

�x�� � �



�
b� �b
a

�i�����
�

where� as usual� �x�� � ���
 �	 � log x if 
 	 �� Now we distinguish three cases�
� � � 	 Then

T �x� 	
�
� � �� �O��n���x

�� � � �O��n��
�����O��n����

	
�
x���� �O��n�� �O��n�

�����O��n����

	 x exp�O��n� logx��� � o�����

For �n�n � x � �n
j logxj�n �

�j log�nj� j log �nj��n � ��

so that T �x� 	 x�� � o���� 	 x� o��n� uniformly�
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Otherwise� i�e� for � � x � �n�n�

T �x� � T ��n�n� 	 �n�n�� � o���� 	 o��n� 	 x � o��n�

by the monotonicity of T �
� � � 	 Choose �n � � such that �n��n�n�

� � � and hence also �n log �n � � �e�g�
�n 	 ��n�

�
n�
��������� Then uniformly for �n�n � x � �n

T �x� 	 x��O��n�
�
� �O��n� �O��n��n�n�

��
�����O��n���� 	 x�� � o����

and again ���
� follows from the monotonicity of T �
� � � 	 Note that �
j logxj � � uniformly for �n�n � x � �n� Hence a Taylor expansion

of log yields

T �x� 	 exp
�
� �

�

log

�
� � �
�� �O��n���� logx �O��n��

��
	 exp

�
� �

�


�
�
�� �O��n��� logx �O��n�� �O��
��logx �O��n��

��
��

	 x exp
�
O��n� logx�O��n� �O��n log

� x�
�

	 x�� � o����

and thus the assertion by the aforementioned arguments�

Remark ���� For �xed sequences a� b and 
� assertion ���
� even holds true uniformly for

��a��b� �
� �M��n� �	
n
�!a�!b� !
� � �����	 R

�
��� ��!a
a
� ��� � ��!b� b

a

�� � j!
 � 
j � �n

o
������

Corollary 
��� If condition �D�� ����� and ������
������ are satis�ed then� for all � � ��

Pr
�
A�� 


�Dn

dn

 A��

� � ��

Proof� Since the set A is bounded� there exists L � � such that Dn 
 
�� dnL�
� for

all su�ciently large n� Because of ������� one can �nd a sequence �n � � such that

k���� 	 o��n� and the conditions of Lemma ��� hold for �n 	 dnL� Then Prf�
a� 
b� 
�� �
�M��n��

�g � � with M��n� de�ned in ����� and Lemma ��� yields

sup
�x�y��Dn

k�� F
�a��b����F

��

a�b����� �x� y���� �x� y�k �
�



dn�����

with probability tending to �� Thus� in view of �Dn 	 � � F
�a��b����F

��

a�b���� � Dn�� and
condition �D��

Pr
� �Dn

dn

 �Dn

dn

�
����


 A��

�� ��

On the other hand� by the de�nition of the inner neighborhood of a set� �x� y� � �Dn�dn�����
implies �x� ��
� y � ��
� � Dn�dn� Since� in view of ������

dn�x� y� � �� F
�a��b���

�
F��a�b��

�
�� dn

�
x�

�



� y �

�




���
componentwise� ����� shows that indeed dn�x� y� � �Dn� Hence� again by condition �D��

Pr
�
A�� 


�Dn

dn

�
����



�Dn

dn

�� ��
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Corollary 
��� If the conditions of Corollary 
�� hold and� in addition� ����
� then� for
all � � ��

Pr
n
A�� 
 cn

dn

�
�� Fa�b��

�
F
��

�a��b���

�
��

�Dn

cn

��� 
 A��

o
� ��

Proof� According to Corollary ���� there exists L � � such that Prf �Dn�cn 
 
�� �n��g � �
for �n �	 Ldn�cn� It follows from ������ and ����
� that ���in 	 ��in �� � oP ����� i 	 �� 
�

Hence one may apply Lemma ��� with �a� b� 
� 	 ��ai��bi� �
i� and ��a��b� �
� 	 �ai� bi� 
i� to
obtain

sup
�x�y�� �Dn�cn

���� Fa�b���F
��

�a��b���
��� �x� y���� �x� y��� � �




dn
cn

with probability tending to � for all � � �� Now one may conclude the proof following
the lines of the preceding proof�

Corollary 
��� Under the conditions of Corollary 
��

	
�
�� Fa�b��

�
F
��

�a��b���

�
��

�Dn

cn

���
	 	

�Dn

cn

�
�� � oP �����

Proof� Denote the boundary of the set A by �A� Condition ����� implies a slightly weaker
version for A� namely �x� y� � A 
 
�� x� 	 
�� y� 
 A� Hence � � �A 
 �A for all
� � ��� �� and these sets are pairwise disjoint� Since 	 is homogeneous in the sense of
�
�
� and 	�A� � � by the boundedness of A� it follows that 	��A� 	 �� Moreover�
A�� nA�� � �A as � � �� so that 	�A�� nA���� �� Thus Corollary ��
 and condition �D�
yield

	
� cn
dn

�
�� Fa�b��

�
F
��

�a��b���

�
��

�Dn

cn

���� � 	�A�

and 	�Dn�dn�� 	�A�� Now the assertion is an obvious consequence of the homogeneity
�
�
��

Lemma 
��� If condition �D�� ����� and ����� hold� then

	�Dn� 	 	
�n
k
��� F �Cn��

�
�� � o�����

Proof� There exists L � � such that Dn 
 
�� dnL�
� for all su�ciently large n� Choose

arbitrary ����
i � �� � xi � ����
i � ��� i 	 �� 
� Then� by ������ for all �x� y� � Dn

n

k
��� F �F��a�b����� �x� y���� 	 �x�� � �x�� y�� � �y�������

with j�xj � j�yj � Rx��x��n�k� for su�ciently large n� According to ������ the left�hand
side of ����� is an element of Dn�� �Rx��x��n�k��� Thus� by the de�nition of Dn�

n

k
��� F �Cn�� 
 Dn

�
� �Rx��x�

�n
k

��
�

Likewise� ����� together with ����� implies

Dn

�
�� Rx��x�

�n
k

�� 
 n

k
��� F �Cn��

eventually� Now the assertion is obvious from the homogeneity property �
�
��
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Lemma 
��� Under the conditions �D�� ������ ����� and ������
����
� one has

	
��
�� Fa�b��

�
F
��

�a��b���

�
��

�Dn

cn

����
	 	

�n
k

�
�� F

�
F
��

�a��b���

�
��

�Dn

cn

����
�� � oP �����

Proof� The proof is very much the same as that for Lemma ��
 with Dn replaced by
� � Fa�b���F

��

�a��b���
�� � �Dn�cn��� For this note that� by the boundedness of dn�cn and the

assertion of Corollary ��
� this set is eventually bounded� Hence ����� is applicable for
su�ciently small x� and x��

Lemma 
��� If the conditions of Theorem ��� are satis�ed� then

sup
B�Bn

��� �n
Pn

i�� �f�� F �Xi� Yi� � �� F �B�g
Prf�� F �X� Y � � �� F �B�g � �

��� � � in probability�

Proof� We will apply Theorem ��� of 
Alexander� ������ To check the conditions of this
uniform law of large numbers� �rst note that every set B � Bn can be represented as

B 	 F
��

�a��b���

�
�� �� F

�a��b����Cn�

cn

�
�����

with ��a��b� ��� � �M��n��� �cf� ������� Therefore the arguments of the proofs for Lemma
��� and Corollary ��� show that

	
�n
k
��� F �B��

�
	 	

�
�� Fa�b���B���� � o���� 	 	

�Dn

cn

�
�� � o���� 	

�dn
cn

����
	�A��� � o����

�����

uniformly for B � Bn �cf� Remark ����� Now ������ leads to

Prf�� F �X� Y � � �� F �B�g 	 q
�k
n

��dn
cn

����
	�A��� � o���������

uniformly� In particular� there exists n� such that Prf� � F �X� Y � � � � F �B�g � ��

for all n � n� and all B � Bn�
Next note that

!Bt �	
�

B�Bn�n�n��Prf��F �X�Y ����F �B�g���Prf��F �X�Y ����F �B�g�	t

B



�

B�Bn�n�n��Prf��F �X�Y ����F �B�g	�t

B������

In view of ������ one may prove as in Corollary ��
 that� for all � � �� eventually � �
Fa�b���B� 
 A��dn�cn for all B � Bn� Hence it follows as in the proof of Lemma ��
 that

n

k
��� F �B�� 
 dn

cn
A���� � o����������

uniformly for B � Bn�
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Let n�t� �	 min
�
n � n� j q�k�n��dn�cn����	�A� � �t

�
� which tends to � as t tends to

�� Combining ������������� we arrive at

�� F � !Bt� 

�

n�n�t�

k�n�dn
ncn

A���� � o����


 
 sup
n�n�t�

k�n�dn
ncn

A��

for su�ciently small t� By ������� the regularity condition on k�n� and the de�nition of
n�t� it follows that

Prf�� F �X� Y � � �� F � !Bt�g 	 O
�
q
�k�n�t��

n�t�

�� n�t�

k�n�t��
sup
n�n�t�

k�n�dn
ncn

�����

	 O
�
q
�k�n�t��

n�t�

��dn
cn

�����
	 O�t��

Since Bn is a VC class� Theorem ��� of Alexander 
����� yields

sup
n��� �n

Pn
i�� �f�� F �Xi� Yi� � �� F �B�g
Prf�� F �X� Y � � �� F �B�g � �

��� ��
B � Bn�Prf�� F �X� Y � � �� F �B�g � �n

o
� ��

provided n�n � �� Because of ����� and the last assumption of ����
�� the choice
�n 	 q�k�n��dn�cn�

���	�A��
 leads to the assertion�

Proof of Theorem ���� Now the consistency of �pn can be proven as shown in ������

For this note that� because of ������� F��
�a��b���

�� � �Dn�cn� belongs to Bn with probability

tending to � and that log cn 	 o��r�n������ implies c
����
n 	 c

���
n �� � oP ���� since �� was

assumed
p
r�n��consistent for ��

Appendix A� Some analytical results

Write Q�x� y� 	 Prf�� F��X� � x and �� F��Y � � yg� As in �
��� suppose

lim
t��

Q�tx�ty�
q�t�

� c�x� y�

q��t�
	� �c��x� y��A���

exists for x� y � � �but x� y � �� with q positive� q��t�� �� �t � ��� �c� non constant and
not a multiple of c and w�l�o�g� c��� �� 	 �� Moreover assume that �A��� holds uniformly
on

f�x� y� j x� � y� 	 �� x � �� y � �g�
It is easy to see that this implies the same for the limit relation

lim
t��

Q�tx�ty�
Q�t�t�

� c�x� y�

q��t�
	 �c��x� y�� �c���� ��c�x� y� 	� c��x� y��A�
�

with c��x� y� �� �� Clearly q� is a regularly varying function with non�negative index�
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Proposition A��� Under the stated conditions� relations �A��� and �A�
� hold locally
uniformly on ������� If the index of the regularly varying function q� is strictly positive�
the relation holds locally uniformly on 
������
Proof� Relation �A�
� implies that the function Q�x� x� is regularly varying of second
order �cf� de Haan and Stadtm#uller 
������� hence we can assume that c�x� x� 	 x��� and
c��x� x� 	 x��� x

���
�
with ��� the index of regular variation of q and � � � the index of

regular variation of q��
Let �x�t�� y�t�� converge to �x� y� � ������ as t � �� Write �x�t�� y�t�� 	 a�t��u�t�� v�t��

with u��t� � v��t� 	 �� Then� as t � �� �u�t�� v�t��� �u� v� and a�t�� a � �� say and

Q�tx�t�� ty�t��

Q�t� t�
	

Q�ta�t�u�t�� ta�t�v�t��

Q�ta�t�� ta�t��
� Q�ta�t�� ta�t��

Q�t� t�

	
�
c�u�t�� v�t�� � q��ta�t��

�
c��u�t�� v�t�� � o���

��
�
�
a�t���� � q��t�

�
c��a�t�� a�t�� � o���

��
	 c�u�t�� v�t��a�t����

�
� � q��t�a�t�

� �� � o����
�c��u�t�� v�t��
c�u�t�� v�t��

� o���
��

�
�
� � q��t�a�t�

����
�
c��a�t�� a�t�� � o���

��
	 c�x�t�� y�t��

�
� � q��t�

�
a�t��

c��u�t�� v�t��

c�u�t�� v�t��

� a�t������c��a�t�� a�t�� � o����
��
�

It follows that

lim
t��

Q�tx�t��ty�t��
Q�t�t�

� c�x�t�� y�t��

q��t�
	
�
a�
c��u� v�

c�u� v�
�
c��a� a�

c�a� a�

�
c�x� y��

The proof shows that the following relation holds�

Corollary A��� For a� u� v � �

c��au� av� 	 a����� c��u� v� � a���
a� � �
�

c�u� v��A���

�remember we have chosen q� in such a way that c��a� a� 	 a��� a
���
�

��

Remark� Write

R�s� t� �	
c��e

s� et�

c�es� et�
�

Then for all h� s and t

R�s� h� t� h��R�s� t� 	 R�s� t��eh� � �� �R�h� h��

Hence

R��s� t� 	 lim
h��

R�s� h� t� h�� R�s� t�

h
	 �R�s� t� �R���� �� 	 �R�s� t� � ��

This means that for � 	 ��

R��s� t� 	 � for all s� t
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and � � �

R��s� t� 	 � �R�s� t�

with �R�s� t� �	 R�s� t� � ��� � Hence � and the values of c��c on the unit circle determine
the values of R�s� t� everywhere�
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Tables and Figures

Cauchy BEV

Normal Morgenstern

Figure �� Scatterplot of a sample of size n 	 ���� of each distribution�
The BEV and Morgenstern distributions have Fr�echet marginal distribu�
tions� for easy comparison a marginal transformation to the same distribu�
tion was applied to the Cauchy and normal samples�
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Table �� The ML�estimator� ���� and the Hill estimator� ��� �sample size
n 	 ������ Tabulated are mean and observed standard deviation of the
estimator� and mean of estimates �
�i� and �
�d�� The last column indicates
the proportion of samples in which asymptotic dependence hypothesis is
accepted in size �" tests� based on �
�i� resp� �
�d��

�� Standard deviation � 	 � accepted� test
m avg� observed �
�i� �
�d� with �
�i� with �
�d�

ML� ���

Cauchy �� ���� ����� ����� ����� ���� ���

��� ���� ���
� ����
 ����� ���� ����

�� ���� ����� ����� ����
 ���� ����

BEV �� ���� ����� ����� ����� ���� ����
��� ���� ����
 ����� ����� ���� ���


�� ���� ����� ����� ����� ���� ����

Normal �� ���
 ����� ���
� ����� ���� ����
��� ���� ���
� ����� ����
 ���� ����

�� ���� ����� ����� ����� ���� ����

Morgenstern �� ���� ����� ���
� ����� ���� ����
��� ���� ����� ����� ����� ���� ����

�� ���� ����
 ����� ����� ���� ����

Hill� ���

Cauchy �� ���� ����� ����� ���
� ���� ����
�� ���� ����� ����� ����� ���� ����
�
� ���� ����� ����� ����� ���� ��



BEV �� ���� ����
 ����� ����� ���� ����
�� ���� ����� ����� ����� ��
� ����
�
� ���
 ����� ����� ����� ���� ����

Normal �� ���� ����� ������ ����
 ���
 ����
�� ���� ����� ������ ����� ���� ����
�
� ���� ����
 ������ ����� ���� ����

Morgenstern �� ���� ����
 ������ ���
� ���� ����
�� ���� ����� ������ ����� ���� ����
�
� ���� ����
 ������ ����� ���� ����
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Cauchy distribution

Bivariate extreme value distribution

Normal distribution

Morgenstern distribution

Figure �� The ML�estimator� ���� on the left and the Hill estimator� ����
on the right as a function of m �sample size n 	 ������ The graphs show
the average over 
�� samples �solid line�� Observed standard errors are
indicated by the dashed lines �� ���� st�deviations�� The horizontal lines
indicate � 	 � and the true � for each distribution�
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Table �� Pengs estimator� ���� and our estimator� ��	 �sample size n 	
������ Tabulated are mean and observed standard deviation of the estima�
tor� and mean of estimates �
�i� and �
�d�� the proportion of samples in which
asymptotic dependence hypothesis is accepted in size �" tests� based on
�
�i� resp� �
�d�� the last column gives the number of samples �out of 
��� in
which either �� or �
� could not be calculated�

�� Standard deviation � 	 � accepted
k avg� observed �
�i� �
�d� �
�i� �
�d� Missing

Peng� ���

Cauchy �� ���� ����� ����� ����� ���� ���� �
�� ���� ����� ����
 ���
� ���� ���� �
�
� ���� ���
� ����� ����
 ���
 ���� �

BEV �� ���� ��

� ����� ����� ���� ���� �
�� ���� ���
� ����� ���
� ���
 ���� 

�
� ���� ����� ����� ����� ���� ��
� �

Normal �� ���� ����� ���
� ��
�� ���� ���� 

�� ���� ����� ����
 ����� ���� ���� �
�
� ���� ����
 ����� ����
 ���
 ���� �

Morgenstern �� ���� ��

� ����� ���
� ��
� ���� ��
�� ���� ����� ����� ��
�� ���� ���� �
�
� ���� ����� ����
 ����� ���� ���� �

This paper� ��	

Cauchy �� ���� ��
�� ��
�
 ����� ���� ���� �
��� ���� ����� ����� ����� ���� ���
 �

�� ���� ����� ����� ����� ���� ���
 �

BEV �� ���� ����� ����� ����� ���� ���� 

��� ���� ����� ����� ����� ���� ���� �

�� ���
 ����� ����
 ����� ��
� ���� �

Normal �� ���� ����� ����� ����� ���� ���� �
��� ���� ����� ����� ����� ���
 ��
� �

�� ���� ����� ����� ����� ���� ���� �

Morgenstern �� ���� ����� ����� ����� ��
� ���� �
��� ���� ����� ����� ����
 ���
 ���� �

�� ���� ����� ����� ����� ���� ���� �
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Cauchy distribution

Bivariate extreme value distribution

Normal distribution

Morgenstern distribution

Figure �� Peng�s estimator� ���� as a function of 
k on the left� and our
estimator� ��	� as a function of k on the right �sample size n 	 ������ The
graphs show the average over 
�� samples �solid line�� Observed standard
errors are indicated by the dashed lines �� ���� st�deviations�� The hori�
zontal lines indicate � 	 � and the true � for each distribution�
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Table �� Estimating failure probabilities� The table lists the median val�
ues of the estimates� The probability estimates are the estimate for the
general case ��p���� for the asymptotic dependent case ��p��� and �p 	 �p�� or
	 �p�� depending on whether asymptotic dependence is rejected resp� ac�
cepted�

k 
� 
� � �p�� �p� �p

Cauchy � � � 	���

�� ���� ���� ���� ���
 ���� ����
��� ���
 ���� ���� ���� ���� ����

�� ���� ���� ���� ���
 ���� ����

Normal � � ��� 	���

�� ����� ����� ���� ������� ����
�� �������
��� ���
� ����� ���� ������� ������� �������

�� ����� ���
� ���� ������� ������� �������

Exponential$Normal � � ��� 	���

�� ����� ����� ���� ��
� 
�
 ����
��� ����
 ����� ���� ���� ��� ����

�� ����� ����� ���� ���� ��� ����

Morgenstern � � ��� 	���

�� ���� ���� ���� ��� 
� ����
��� ���� ���� ���� ��� �� ���

�� ���� ���
 ���� 
�� �� 
��
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Cauchy distribution

Normal distribution

Normal distribution� exponential margins

Morgenstern distribution

Figure �� Failure probabilities� The graphs show the empirical distribu�
tions of the estimates for di�erent k� The graphs on the left refer to �p�
�the estimate assuming dependence� and the graphs on the right to �p�� �the
general estimate�� The true value p 	 ���
 is indicated by the vertical line
�n 	 ������
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Figure �� Estimating dependence between waveheight Hm�� wavepe�
riod Tpb and still water level SWL� On the left a scatterplot and on the
right ��	 as a function of k� The solid lines display the estimates for various
k� The horizontal lines indicate the � 	 � level� The area below the dotted
line is the critical area of a one sided� size �" test for asymptotic depen�
dence�


