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ABSTRACT

This work aims at defining an information-theoretic quality assessment technique for cardiovascular X-ray
images, using a full-reference scheme (relying on averaging a sequence to obtain a noiseless reference). With the
growth of advanced signal processing in medical imaging, such an approach will enable objective comparisons
of the quality of processed images. A concept for describing the quality of an image is to express it in terms
of its information capacity. Shannon has derived this capacity for noisy channel coding. However, for X-ray
images, the noise is signal-dependent and non-additive, so that Shannon’s theorem is not directly applicable.
To overcome this complication, we exploit the fact that any invertible mapping on a signal does not change
its information content. We show that it is possible to transform the images in such a way that the Shannon
theorem can be applied. A general method for calculating such a transformation is used, given a known relation
between signal mean and noise standard deviation. After making the noise signal-independent, it is possible to
assess the information content of an image and to calculate an overall quality metric (e.g. information capacity)
which includes the effects of sharpness, contrast and noise. We have applied this method on phantom images
under different acquisition conditions and computed the information capacity for those images. We aim to show
that the results of this assessment are consistent with variations in noise, contrast and sharpness, introduced by
system settings and image processing.

Keywords: Image quality assessment, X-ray imaging, signal-dependent noise, Shannon capacity
SPIE Keyword codes: : DX (digital X-ray), METR (measurement methods), CAR (cardiac imaging), ALG
(algorithms)

1. INTRODUCTION

Medical imaging is a highly task-oriented discipline in which image quality (IQ) is effectively judged by the
amount of diagnostic information conveyed to the physician. It is therefore interesting to view the image as
a carrier of visual information and the imaging system as a communication channel that distorts the message
(the anatomical structure of interest) communicated to the receiver (viewer). Information theory provides a
framework for the description of information transfer in such a system.

The goal of this work is to perform quality assessment of X-ray images using an information-theoretic frame-
work and to develop a Figure of Merit (FOM) for an objective description of image quality. Our analysis follows
a full-reference scheme, in the sense that a noiseless version (reference) of the image to be assessed is assumed to
be available. This FOM can then be used to assess the effect of various system settings on the resulting image
quality, and also to objectively evaluate the performance of the involved image-processing algorithms.

The paper is organized as follows: in Section 2 some previous attempts to use this framework are mentioned.
The proposed method for this assessment is presented in Section 3. Section 4 describes the implementation of
the method and a number of measurements performed in a real X-ray system, the Allura Xper FD20∗. Finally,
the results of the assessment for a number of phantom images are presented in Section 5 and conclusions are
drawn in Section 6.

Send correspondence to Chrysi Papalazarou: c.papalazarou@tue.nl
∗This system is commercially available by Philips Medical Systems.
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2. RELATED WORK

Information theory as an approach in image analysis and processing has been applied in several contexts,
such as noise filtering (see for example Awate and Whitaker1) and image registration (a thorough overview
is given by Pluim et al.2). In the field of quality assessment, there has been significant work in the past
decades to apply Shannon’s theory to two-dimensional signals, and derive expressions for the information capacity
of imaging systems. Huck et al.3 made an extensive analysis of imaging systems as information carriers,
distinguishing between the stages of image gathering, encoding, restoration and display, following the assumption
of independent Gaussian noise. Wagner et al.4 applied Shannon’s noisy channel coding theorem in CT, expressing
the information capacity in terms of the MTF and NPS. Similar work has been done by Fuderer5 for the case
of MR images. Such an information-theoretic fidelity criterion has also been applied by Sheikh et al.6 in the
wavelet domain, on natural images, incorporating a human observer model. In all the aforementioned work, the
noise was assumed signal-independent, in compliance with Shannon’s theorem. The present work aims to extend
this description for signal-dependent noise, as is the case in radiography, and also to examine the effect of image
processing on information content.

3. PROPOSED METHOD OF IQ ASSESSMENT

In the following, first we will give a brief explanation of basic concepts of information theory and demonstrate
how it can be applied to imaging. Second, the complications for this approach introduced by the nature of noise
in radiographic images are explained and a solution is proposed which allows information theoretic IQ assessment
for this type of images.

3.1 Information theory concepts in 2-D

The work of Shannon7 has provided a framework for the assessment of digital communication. The Shannon
entropy, as a description of the amount of uncertainty or surprise contained in a signal, can be expressed in terms
of the underlying distribution p(xi) of the random variable X by:

H(X) = −
n∑

i=1

p(xi) · log(p(xi)), (1)

where n is the number of states that the (discrete) signal can assume. In the context of our full-reference scheme,
an important concept is the Mutual Information (MI) between an input distribution X and an output Y , which
describes the amount of information Y conveys about X:

MI(X; Y ) = H(X) + H(Y )−H(X,Y ) = H(Y )−H(Y |X) =
∑

X,Y

p(x, y) log2

p(x, y)
p(x) · p(y)

. (2)

In terms of imaging, this variable can be regarded as the extent to which a degraded image reflects the
information present in a reference image. Its calculation for a given pair of images requires knowledge of the
underlying distribution of input X and output Y , as well as their joint distribution, which in practice is not
possible as only realizations of the distributions (images) are available. Approximating the distribution through
the image histogram is commonly applied and provides a good solution e.g. when the goal is to maximize MI for
the purpose of registration. However, it leads to a poor approximation of the true value of entropy, since the pixel
values in an image have a strong local dependence and conditioning a pixel to its neighborhood drastically reduces
the entropy. Ideally, one should calculate the conditional entropy of each pixel given an infinite neighborhood,
as shown by Ignatenko et al.8 In practice, a small neighborhood is sufficient for a reasonable approximation, if a
Gaussian model is assumed for the dependence of a pixel on its neighbors. Unfortunately, even approximations
using a small neighborhood lead to problems of very high dimensionality and thus computational cost.

It is possible to bypass this limitation if we consider another aspect of Shannon’s theory. In the context
of coding, MI gives the rate of information transfer through a communication channel. The maximum of this
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rate is equal to the channel capacity, for which Shannon gave an elegant definition. For the case of a one-
dimensional, zero-mean signal of bandwidth B, which is corrupted by independent additive white Gaussian
noise, the maximum information capacity of the channel CShannon can be written in the simple form:

CShannon = max {H(Y )−H(Y |X)} = B · log2

(
1 +

(
S

N

)2
)

, (3)

where
(

S
N

)2
is the signal-to-noise ratio, and the maximum is over all power-constrained input densities. Here

the channel bandwidth is measured in Hz and CShannon is expressed in bits per second (bps).

Shannon’s noisy channel coding theorem can be generalized for two-dimensional signals where both signal
and noise are zero-mean and bandwidth-limited and the noise is additive, Gaussian and possibly colored. In this
case, the information capacity (C0) per unit area can be calculated as:

C0 =
∫ fNx

−fNx

∫ fNy

−fNy

log2

(
1 +

P (fx, fy)
N(fx, fy)

)
dfx dfy, (4)

where P (fx, fy) and N(fx, fy) are the signal and noise power spectra†, respectively, and the integration takes
place up to the Nyquist frequency fN = (fNx, fNy). In this calculation, the zero-frequency components of the
spectra are discarded since the information is contained in the difference between the signal and the background,
corresponding with the zero-mean demand in Equation (3). The unit of the result is bits per pixel (bpp) or bits
per square millimeters (b/mm2), depending on the spatial frequency units. This information capacity expresses
the maximum amount of information per unit area that can be transmitted for a given signal and noise power
and it is upper-bounded by the entropy of the source producing the signal. In this sense, it can be considered
as a measure of the information content of a specific image at a given noise level. The contrast of the image is
reflected in the signal power spectrum, where the signal is defined as a modulation over the background. Loss
of sharpness is also incorporated in the signal power spectrum, since it follows the transfer characteristics of the
imaging system. In this way, sharpness, contrast and noise are all reflected in this expression, which generalizes
our further experiments.

To calculate C0 as defined in Equation (4), it is first necessary to separate noise from signal. In our full-
reference scheme, the signal term is represented by the noiseless reference, which is in practice obtained by
averaging a large sequence of still images in order to decrease the noise to a negligible level. This is different
from assuming a perfect (uncorrupted) image, which is also perfectly sharp. In the case of independent additive
noise, subtracting this reference from the noisy (test) image provides the noise term in the denominator. In
radiography, however, the assumption of independent noise does not hold, as will be elaborated in the next
section.

3.2 Noise in X-ray imaging

The dominating type of noise in X-ray images is photon noise, which follows a Poisson distribution with
standard deviation σ equal to the square root of the number of detected photons, which in turn is equal to the
mean signal value µ, so σ =

√
µ. At the detector plane, the measured signal is proportional to the number

of photons with a factor k. For most acquisition conditions, the large number of photons per pixel causes the
photon noise to approximate a Gaussian distribution with variance proportional to the mean signal. To apply
the Shannon theorem, however, the noise variance must be independent of the average signal.

To achieve signal-independence of the noise, we exploit the property that any invertible deterministic trans-
formation on a signal has no effect on its information content, as expressed by the entropy of the signal9. It can
be derived from the first part of Equation (2) that it also does not affect the value of the information capacity
of a channel. Strictly speaking, this is only true for signals in the analog domain; in the case of X-ray images,
we assume that the quantization is fine enough (10-14 bits per pixel) to approximately meet this demand.

†In this paper, the power spectra are calculated as the squared moduli of the Fourier spectra, as defined in stochastic
signal theory.
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For unprocessed images right after detection, it has been shown by Bartlett10 that taking the square root
as a transforming function results in transformed images with signal-independent noise variance. If σX , σY are
the standard deviations before and after the transformation, respectively, and T (x) is the transforming function
with derivative T ′(x), then using second-order Taylor expansions, we obtain σ2

Y ≈ (T ′(µ))2 · σ2
X , which in the

case of T (x) =
√

x leads to σ2
Y ≈ k/4.

3.2.1 General method for variance stabilization of signal-dependent noise

After image acquisition at the detector, various operations are performed which affect both signal and noise.
Consequently, the type of transformation that must be applied to achieve signal-independence of the noise
depends on the transfer characteristics of the imaging chain up to the measuring point. Because many of the
operations are non-linear and/or content dependent, we would like to calculate the appropriate transforming
function using a “black box” approach, so with no knowledge of the specific transfer characteristics; we only
measure the noise statistics at a given point in the imaging chain.

It has been shown by Arsenault and Denis11 that signal-dependent noise can be transformed into signal-
independent additive noise by means of a point transformation T (x). This function depends on the pixel value
x and is such that the transformed image I ′ = T (I) is obtained by applying T on each pixel. For the case of
a known relation σ(µ) between standard deviation and mean signal, and under the assumption that σ << µ
(which generally holds even for low-dose images), it is shown that this transformation is given by the equation:

T (x) = K ·
∫

1
σ(x)

dx, (5)

and results in σ(µ) ≈ K for all µ. The constant K determines the absolute value of σ, and will be considered
unity in the following, as we are interested in the stabilization of standard deviation and not its absolute value.
By applying this mapping, we will attempt to stabilize the noise standard deviation at any measuring point in
the IP chain, even if the specific transfer functions up to that point are not known.

3.2.2 Noise statistics measurement in X-ray sequences

In order to determine the aforementioned transformation, the noise statistics need to be measured at any
point in the imaging chain. The sample mean and sample variance can be measured in uniform areas of the image,
where fluctuations are only due to noise. For doing this, an appropriate phantom (e.g. a step phantom) must
be used. An example of this is shown in Figure 1(a), which shows an image of a step phantom after detection,
gain control and white compression. In clinical phantoms, measuring the spatial noise statistics is more complex
as it requires a separation between signal and noise variations. The implementation of the algorithms involved,
e.g. as described by Aach et al.12, requires significant manual tuning.

In our assessment scheme it is necessary to obtain a sequence of still images in order to create a noiseless
reference; this implies that the current model does not incorporate object movement or the effect of system lag
in the information content of images, but is rather designed for the quality assessment of still images. Because of
this design constraint, it is also possible to measure noise statistics in the temporal instead of the spatial domain,
which allows the use of general clinical phantoms as well. If the system is ergodic, so if the temporal statistics
are equal to the spatial statistics, we can substitute measuring the statistics in uniform regions with measuring
the statistics of each pixel along the temporal axis.

To examine the ergodicity of the system, we have performed both spatial and temporal statistics measurements
on the step phantom of Figure 1(a). For the spatial statistics, the standard deviation was measured within the
uniform regions of the phantom for each of the frames in the sequence. For Nreg number of regions and Nfr

number of frames, the resulting number of points (mean-standard deviation pairs) is Nreg ·Nfr. The measured
value for standard deviation was then corrected for the slow gradient along the horizontal axis found in X-ray
images due to the heel effect. For the temporal statistics, the standard deviation of each pixel throughout the
sequence was measured, so the number of points is Nx ·Ny, where Nx, Ny are the horizontal and vertical sizes of
the image in pixels. The results of this comparison are shown in Figure 1(b), which shows a very small deviation
(< 1%) between the spatial and temporal statistics measurements. A flow diagram of the steps taken for the
calculation of information capacity is depicted in Figure 2.
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Figure 1. Noise measurements. (a) Image of step phantom with uniform regions indicated by rectangles. (b) Comparison
between standard deviation with respect to mean, measured spatially and temporally for the step phantom of (a) .

4. EXPERIMENTS AND IMPLEMENTATION

4.1 Image acquisition

A number of experiments were performed on the Allura Xper FD20 system to test the proposed method. The
phantoms used were: the TO20 contrast-detail phantom of the University of Leeds13, a standard Funk Type 38
phantom, a number of aluminium step phantoms with thicknesses between 0.5 mm and 12.5 mm (such as the
one in Figure 1(a)) and an RSD RS-330 chest phantom.

In the case of technical (non-clinical) phantoms, the acquired images were corrected for the slow gradient
due to the heel effect, as this is a dominant low-frequency component of the power spectrum while containing
no true signal information. Perceptually, this slow gradient is not interpreted as information14. Although it is
not within the scope of this work to include perceptual issues, we chose to perform this correction in order to
measure the effect of signal variations only. For the chest phantom images, this was not necessary, as the signal
spectrum in these images dominates over the low-frequency contribution of the heel effect.

System settings (tube current, voltage, pulse width) were varied between experiments, depending on the
IQ parameter under consideration. The relation between tube current and noise variance is linear; varying the
current with constant voltage and pulse width allows us to isolate the effect of noise. Sequences of 100 frames
were acquired and temporal averaging of these sequences results in an SNR improvement of a factor of 10, which
yields in a negligible amount of noise in the reference image.

To examine the effect of blurring separately, we chose to vary geometrical blurring by using two different focal
spot sizes. The reason for examining geometrical blurring is because it affects only the sharpness of the resulting
image; postsampling blur, on the other hand, also affects the noise, making comparisons more difficult. In the
Allura Xper FD20, the nominal focal spot sizes are 0.4 mm for the small focus and 0.7 mm for the large focus.
The tolerances for these values are described in IEC standard 6033615, however, the exact focal spot size also
varies with input power and usage time. For these two focal spot sizes, images of a detail phantom were made
with increasing tube current at a fixed tube voltage, using the maximum source-imager distance (SID) of 120
cm and placing the phantom in the iso-center to stress the effect of magnification. The noise level and contrast
for any given pair of images at the same tube current is identical; they differ only in sharpness. Figure 3 shows
two images of a Funk 38 resolution phantom acquired with the two different focal spot sizes.
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Figure 2. Flow diagram of calculation of C0.

(a) (b)

Figure 3. Image of a type 38 Funk phantom. (a) Small focal spot. (b)Large focal spot. The difference in sharpness is
visible in the left part of the image.

4.2 Variance stabilizing transformation

The transformation described in Section 3.2 is applied on a sequence of phantom images. Figure 4 shows the
reference image of a chest phantom and the standard deviation, calculated for each pixel, before and after the
transformation. Prior to the transformation, the difference in noise variance for regions of different average gray
level is apparent (Figure 4(b)). After the transformation, it can be seen that the variance image appears more
uniform, apart from the regions around sharp edges (Figure 4(c)). The instability around the edges is likely
caused by minor registration errors (due to e.g. small vibrations of the table), which lead to fluctuations in the
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measured temporal variance. The stabilization of standard deviation with respect to the mean can be seen in
Figure 5, in which the statistics before and after transformation are shown.

(a) (b) (c)

Figure 4. Result of noise stabilization. (a) Reference image of chest phantom. (b) Standard deviation for each pixel,
measured along the temporal axis, before transformation. (c) Standard deviation after transformation (rescaled and
shown in the same range as (b)).

Figure 5. Scatter plot of standard deviation with respect to the mean for the chest phantom image of Figure 1(a), before
and after transformation. The standard deviation is normalized by its rms value to allow comparison between the different
ranges of the results. A straight line has been plotted through the scatter plots to show the overall flattening of σ with µ.

4.3 Effect of image processing

The next step is to attempt to extend this description throughout the various steps of the imaging chain.

As a first experiment, we study the effect of quantization by decreasing the number of representation levels.
In this case, there are two types of noise degrading the image: quantization and quantum noise. For practical
values of the bit depth (> 4 bpp), the quantization noise is approximately independent of the signal and of the
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photon noise. Below these values, the quantization noise can no longer be considered signal-independent and
tends to mask the photon noise. For the case of at least 5 bpp, the effect of the two noise sources on C0 can be
approximated as:

C0 ≈
∫ fNx

−fNx

∫ fNy

−fNy

log2

(
1 +

P (fx, fy)
Nph(fx, fy) + Nq(fx, fy)

)
dfx dfy,

where Nph and Nq are the power spectra of photon and quantization noise, respectively. In fact, the quantization
noise distribution approximates a uniform, rather than a Gaussian, distribution, and our derivation of C0 follows
the reasoning presented in Huck et al3. To separate the calculation of the noise components, the photon noise
is calculated between the unquantized reference and the unquantized test image, while the quantization error is
obtained by subtracting the quantized reference from its original counterpart, as shown in Figure 6.

Figure 6. Separate calculation of photon noise (above) and quantization noise (below, for quantization at 6 bpp).

Next, we look into an example of a more advanced image-processing module, namely XResTM of the Allura
Xper FD20 system. This is a noise reduction and contrast enhancement module, implemented in a multiresolution
scheme, which operates locally in the image, reducing noise in uniform areas while improving the contrast of
structures16. To evaluate the IQ improvement due to XResTM , all other image-processing operations were
switched off. An example for a part of the chest phantom image of Figure 4(a) is shown in Figure 7‡.

5. RESULTS

In this section we show some results for the information capacity of a number of phantom images.

Figure 8 shows the results for C0 with respect to the tube current for the case of the two different focal spot
sizes. The increase along the horizontal axis is due to reduction of noise with the tube current, while the improved
sharpness of the smaller focal spot is reflected in the difference in measured information capacity between the
two curves.

In Figure 9, the results for a varying number of representation levels is shown for different dose rates. This
result is only reliable for values of a bit depth above 5 bpp, as mentioned in Section 4.3; below this, the masking
effect of the quantization noise on photon noise causes an artificial increase in the value of C0. Above this value,
C0 increases smoothly up to about 11 bpp, beyond which it shows no significant increase.

‡For better viewing of the differences please refer to the electronic version of this paper
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(a) (b)

Figure 7. Part of chest phantom image (a) before and (b) after XResTM .
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Figure 8. Information capacity for funk phantom of Figure 3 with increasing tube current, for small and large focal spot.

Figure 10 shows the improvement achieved with the XResTM module. The increase in C0 mainly reflects the
significant noise reduction; the direction-dependent and multiscale noise filtering avoids the blurring introduced
by global filters. The benefits of local processing of image information are reflected in the results.

6. CONCLUSIONS

In this paper, we have applied Shannon’s noisy channel coding theorem to a quality assessment of X-ray
images. This assessment leads to a FOM which describes the information capacity of an image, assuming a
sequence of still images is available. The image sequence is required to obtain a noiseless reference image by
averaging the individual noisy images. For the derivation of this FOM, a pixel-wise transformation was described
and proven to be successful in making the noise variance signal-independent, in compliance with the demands
of Shannon’s theorem. The method was then applied to phantom images obtained with different acquisition
settings, and at different points within the imaging chain. In these experiments, the proposed information
capacity metric corresponded well to the introduced variations.
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Figure 9. (a) Contrast-detail phantom (b) Information capacity of (a) with respect to the number of quantization levels,
for different tube currents.
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Figure 10. Information capacity of image of Figure 4(a) with and without processing with XResTM with respect to tube
current.

The proposed FOM combines the effect of contrast, sharpness and noise. In this sense, its performance in
describing overall image quality may be compared with that of measures from linear systems theory such as
MTF for sharpness transfer and NPS for noise; such a comparison is within the scope of our future research.
Furthermore, this approach can be applied for the evaluation of both the information transfer in X-ray systems
as a function of dose, as well as the performance of image-processing algorithms. Such a description of image
quality in the information domain may facilitate the study of the relation (and possible trade-offs) between dose
and image processing.
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