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Solution of indefinite linear systems using an LQ
decomposition for the linear constraints

Wil H.A. Schilders

Abstract

In this paper, indefinite linear systems with linear constraints are considered.
We present a special decomposition that makes use of the LQ decomposition,
and retains the constraints in the factors. The resulting decomposition is of
a structure similar to that obtained using the Bunch-Kaufman-Parlett al-
gorithm. The decomposition can be used in a direct solution algorithm for
indefinite systems, but it can also be used to construct effective precondi-
tioners. Combinations of the latter with conjugate gradient type methods
have been demonstrated to be very useful.

Key words: indefinite system, linear constraint, LQ decomposition,
Bunch-Kaufman-Parlett, conjugate gradients, incomplete preconditioning

1. Introduction

In 1977, the seminal paper by Meijerink and Van der Vorst [20] on using
incomplete factorisations to construct preconditioners drastically changed
the view on the use of iterative solution methods for linear systems. Since
then, many preconditioning techniques based upon this concept have been
published, and shown to be extremely effective for solving challenging and
large industrial problems.

In the original Meijerink-Van der Vorst paper, the preconditioner is based
upon an incomplete Cholesky decomposition. In later publications, and for
special situations, the use of an incomplete Crout decomposition was advo-
cated, and in [13] it was shown that this can be used to obtain even more
efficient methods.

For indefinite symmetric linear systems, the straightforward use of incom-
plete Cholesky or incomplete Crout decompositions may lead to problems
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with zero pivots caused by the fact that eigenvalues are located on both ends
of the real axis. However, if the indefinite systems are of a special form, a
technique has been developed that overcomes this problem. This technique is
now known as the Schilders factorization [1, 7, 8, 19], and it has been used ex-
tensively for constructing different families of preconditioners for constraint
linear systems [8].

The method itself was already developed in 1999, but the ideas behind it
have never been published. These ideas are based upon using explicitly the
structure of the linear systems, in particular the fact that there are different
types of unknowns. This turns out to be the basics of the method, and paves
the way for the development of new classes of decomposition techniques.
Interesting is the fact that the original idea stems from the use of these
decompositions in the area of electronic circuit simulation. The ideas are not
restricted to this class of problems, but much more widely applicable as will
be shown in this paper.

In order to set the scene, we first give a brief overview of solution meth-
ods for indefinite systems in Section 2. Then, in Section 3 the main idea
that has led to the Schilders factorisation is explained in detail. This is the
most important section of the paper, and the basis for further development
of methods. In Section 4 the idea is put into a more abstract mathematical
context, so that it becomes apparent that LQ factorisations can be used to
achieve the same results. Finally, Section 5 discusses the use of the decom-
position for preconditioning purposes.

2. A brief account of solution methods for indefinite systems

Consider linear systems of the form(
A B
BT 0

)(
x
y

)
=

(
b
c

)
, (1)

where the n× n matrix A is symmetric and positive definite, and the n×m
matrix B is of full rank. Throughout this paper, we shall assume that m ≤ n.
Note that, since B is of full rank, the coefficient matrix in (1), which we shall
denote by A, is a nonsingular matrix. It should be noted that in several
papers the notation is somewhat different from ours, in the sense that the
role of B and BT is interchanged.

Systems of the form (1) occur frequently in applications, and also when
using specific numerical methods. To show this, we first give a number of
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Figure 1: Resistor network

examples.

Example 1.1
Consider the use of the mixed finite element method for the discretisation of
the problem

∇ · (a∇u) = f,

with suitable boundary conditions, and a = a(x, y) ≥ α > 0. The problem
is reformulated as a system of first-order equations,

a−1σ −∇u = 0,

−∇ · σ = −f.

Since the divergence and gradient operators are adjoints, the discreti-
sation of this first-order system naturally leads to a system of the form (1).
The resulting discrete problem is a "saddle point problem", and was analysed
thoroughly in [2]. More information about mixed finite element methods, and
the well known family of Raviart-Thomas mixed finite element spaces, can
be found in [3, 22].

Example 1.2
Indefinite systems also occur quite naturally in the analysis of electronic cir-
cuits. Consider the network of resistors displayed in Figure 1. The voltage
unknowns are associated with the nodes, whereas the currents are associ-
ated with the branches between nodes. The set of equations describing the
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behaviour of this circuit is obtained by combining the so-called branch equa-
tions with the Kirchhoff laws for currents and voltages. Branch equations
relate the voltage differences between nodes with the corresponding branch
current. For example, a branch containing a resistor with value R will lead
to a branch equation of the form

Vi − Vj −RIij = 0.

The set of all branch equations can, therefore, be written in the form

AI + BV = 0.

Kirchhoff’s current law (KCL) states that, at each node in the network, the
sum of all currents should be zero. Graph theoretical considerations lead to
the conclusion that this can be formulated as

BT I = 0,

thus demonstrating that the set of equations is of the form (1). This also
holds for more general circuits, consisting of resistors, capacitors, inductors
and nonlinear devices such as transistors and diodes [16].

Indefinite systems have attracted many researchers, and various approaches
have been suggested to solve them. There are also some standard techniques.
A straightforward method for solving the indefinite problem in (1) is direct
elimination of the unknowns x:

x = A−1b− A−1By.

Substituting this in the second set of equations, leads to

BT A−1By = c−BT A−1b.

This approach is known as the range space method or the Schur comple-
ment method. At first glance it may look unattractive since, for sparse A,
the matrix A−1 is full and hence the coefficient matrix BT A−1B is also a
full matrix. However, in the special case of the Stokes problem, B and BT

are discrete versions of the gradient and divergence operator, whereas A is a
discrete Laplace operator. Hence it is to be expected that A, in some sense,
resembles the product of B and BT , so that we may hope that the matrix
BT A−1B is close to the identity, again, in some sense. This heuristic argu-
ment can be made more precise, and it can be shown that iterative methods
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indeed perform well in this case. However, for more general problems the
method often fails to provide a solution efficiently.

The counterpart of the range space method described is the null space
method. Here the variables y are eliminated from the system, and this is
done as follows. Assume that a basis for the null space of BT is formed by
the columns of the matrix Z, so that BT Z = 0. Then we can write

x = Bŷ + Zz,

where ŷ is a special solution satisfying BT Bŷ = c, and z is as yet unknown.
Substituting the expression for x in the first set of equations, we obtain

AZz + By = b− ABŷ.

Multiplying this by ZT and using the fact that ZT B = 0, we find

ZT AZz = ZT b− ZT ABŷ.

The coefficient matrix looks much more attractive than the one obtained in
the range space method, provided A is a sparse matrix. However, in order not
to perturb the sparsity too much, one will have to take care that the matrix
Z is also rather sparse. This means that a sparse basis for the null space has
to be used. For certain problems, this is indeed possible. In electronic circuit
simulation, and in electromagnetics, the elements of the null space have a
physical meaning and are the closed (current) loops which can be found from
the topology (of the network, or the mesh). The dependence on the topology
means that the basis has to be constructed only once. In [29] this technique,
which makes use of an old algorithm published by Alex Orden, is described
in more detail.

In some cases, it is possible to avoid the indefiniteness of the system en-
tirely, by modifying the numerical method. In [14] it was suggested to intro-
duce Lagrange multipliers on the edges of elements, and to impose continuity
via these new unknowns. This means that the space of basis functions for
the fluxes is enlarged, allowing fluxes to be discontinuous in principle. The
enlarged system of equations is now of the form Â B̂ C

B̂T 0 0
CT 0 0

 x̂
ŷ
λ

 = rhs,
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where Â and B̂ are (local) block diagonal matrices (note this is again an in-
definite system). The latter property implies that the unknowns x̂ and ŷ can
locally be eliminated (in fact a rather simple application of the range space
method) and expressed in terms of the Lagrange multipliers. Hence a system
for λ is obtained. The resulting coefficient matrix is larger than the original
matrix, but is usually rather sparse. The approach can be quite effective for
practical problems. In [4, 21], the use of this method is demonstrated for
semiconductor device simulation, and it is shown that the physical meaning
of the Lagrange multipliers is similar to that of the unknowns x.

The foregoing discussion clearly demonstrates that there are various ways
of solving indefinite systems, but it is also clear that the treatment is far from
uniform. Of course, many attempts have been undertaken to present a more
unified treatment. The paper by Rusten and Winther [23] is one of the
first to present an in-depth analysis of saddle point problems. Since then,
many research papers have appeared, and we refer the reader to the thorough
review paper by Benzi, Golub and Liesen [1] to obtain an excellent overview
of the developments.

An entirely new concept for solving indefinite systems was presented at
the 1999 conference on preconditioning techniques in Minneapolis. Wathen
[30] presented the idea to keep the constraints in the preconditioning matrix,
whereas in [24] a similar result was obtained in an entirely different way. In a
sense, the approach is comparable to the ideas underlying the modified ICCG
method: retain properties of the original system in the preconditioning ma-
trix. Although there is no rigorous mathematical proof, this general concept
often proves itself to be very useful. It restrict solutions of the numerical
problem to a subspace that already contains characteristics of the original
problem. Especially in the case of saddle point problems originating from
optimization, it is important to satisfy the constraints. Also in model order
reduction, a relatively new field in numerical mathematics, the advantage of
retaining structural properties is recognized, cf. the chapters by Freund, and
by Bai et al. in [26].

The approach presented by Wathen was detailed further in [17]. In that
paper the preconditioning matrices for the system (1) are of the form

G =

(
G B
BT 0

)
. (2)

From the analysis in [17] it follows that it may be very beneficial to retain the
constraints and to use these special preconditioning matrices: the eigenvalue
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distribution is improved as far as their impact on the convergence of iterative
solution techniques is concerned. In fact, the preconditioned system has at
least 2m eigenvalues equal to 1.

Similar results were obtained in [25], where an incomplete decomposition
was used as the basis for a preconditioned iterative method. Here, it was
also found that there are at least 2m eigenvalues equal to 1. In addition,
it was proved that the eigenvalues of the preconditioned system are all real
and positive (this is also proved in [17], under the condition that ZT AZ and
ZT GZ are positive definite). The preconditioning matrix is also of the form
(2), but the advantage of this preconditioning technique is that a decompo-
sition of the matrix G is available. Clearly, this is important in view of the
efficiency of the iterative method. In fact, it is possible to reformulate the
method in such a way that a full decomposition of the matrix A is obtained,
which can then be used to directly solve the indefinite linear systems rather
than iteratively. This is one of the main results of this paper, and will be
discussed in Section 4. In order to better understand the reasons for this
decomposition, we will summarize and motivate the incomplete decomposi-
tions of [25] in Section 3. In Section 5, we discuss the use of the incomplete
decompositions as a basis for preconditioned iterative solution methods.

3. Incomplete preconditioning using 1 × 1 and 2 × 2 blocks

The idea for the decomposition technique originates from problems in the
electronics industry. In the area of electronic circuit simulation, huge sys-
tems of equations must be solved. If resistors, capacitors and inductors are
used, these systems are linear, but when diodes and transistors are part of
the circuit, the systems become extremely nonlinear. Newton-type methods,
often in combination with continuation methods, are used to solve the non-
linear problems, whence large linear systems are at the core of most circuit
simulation software. A detailed discussion of electronic circuit simulation
and mathematical techniques associated with it can be found in [16].

Important for the context of the present paper is that the systems in-
volved are of the form (1). Virtually all known circuit simulation packages
(both in-house codes likes Pstar and Titan, and commercially available codes
like Spectre and Spice) use direct solvers for such systems. The proprietary
solver Pstar of NXP Semiconductors uses a hierarchical set-up and solution
procedure, due to the natural hierarchy of electronic circuits that are often
made up of standard building blocks.

7



We are interested in using iterative procedures for the solution of these
linear systems originating from electronic circuit simulation. As these sys-
tems naturally contain two different types of unknowns, the idea came up to
use both 1×1 and 2×2 pivots, and first use a special re-ordering scheme based
upon these pivots before performing an incomplete decomposition. The idea
turned out to be effective, and also generalizable to other systems containing
different types of variables. Also, it turned out that the method can be cast
into a much more general form, without having to explicitly mention the
1× 1 and 2× 2 pivots. However, before presenting this more general class of
methods, we present in this section the orginal idea based upon a coupling
of the current and voltage unknowns, as we feel that this may inspire simi-
lar ideas for other types of multi-variable problems. Furthermore, it reveals
clearly why the approach is effective.

Thus, in this section, we restrict ourselves to a special class of matrices
B, namely those having the following properties:

Bi.j ∈ {−1, 0, 1} ∀1≤i≤n,1≤j≤m.

We also assume that each row of B contains at most two non zero elements,
which are of opposite sign:

m∑
i=1

|Bi,j| ≤ 2,

−1 ≤
m∑

i=1

Bi,j ≤ 1.

As before, we assume that rank(B) = m. Matrices of this type are related to
the so-called incidence matrices whose entries are 0 or 1. In fact, the matrices
we are considering are differences of two incidence matrices.

Now let P : {1, ..., n} → {1, ..., n} be a permutation with the property
that

BP (i),i 6= 0,

and
BP (i),j = 0 for j > i . (3)

In fact, B is permuted to lower trapezoidal form, meaning that the top m×m
part is lower triangular. Such a permutation P does not necessarily exist for
all matrices considered in this paper. However, it is easy to show that for
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matrices B of the above form there exist a row permutation P and a column
permutation S such the permuted B is lower trapezoidal. Here we will assume
that S(i) = i, but the generalization to S(i) 6= i is straightforward.

Next we define the permutation matrix Q by

Q =
(
eP (1), en+1, ..., eP (m), en+m, eP (m+1), ..., eP (n)

)
,

where ei ∈ Rn+m is the i-th unit vector. After permutation of rows and
columns, we obtain the matrix

Ã = QTAQ,

Note that the vector of unknowns changes from (x1, ..., xn, y1, ..., yn)T to
(xP (1), y1, ..., xP (m), ym, xP (m+1), ..., xP (n))

T .
In order to find a suitable preconditioning technique for the original indef-

inite system, we first transform it and propose an incomplete decomposition
for the system with coefficient matrix Ã. After having found this decompo-
sition, the preconditioning matrix is transformed back. The preconditioning
matrix M̃ for the transformed system is cast into the form

M̃ ≡ (L̃ + D̃)D̃−1(L̃ + D̃)T ,

where

L̃ =



0 · · · 0 0 · · · 0

L̃2,1
. . . ...

...
...

... . . . 0 0 · · · 0

L̃m+1,1 · · · L̃m+1,m 0 · · · 0
...

...
... . . . ...

L̃n,1 · · · L̃n,m · · · L̃n,n−1 0


,

where L̃i,j is a 2 × 2 block for 1 ≤ j < i ≤ m, a 1 × 1 block whenever
m ≤ j < i ≤ n, and a 1 × 2 block in all other cases. We shall use the
notation

L̃ = ”lower”(Ã).
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Also,

D̃ =



D̃1

. . .
D̃m

d̃m+1

. . .
d̃n


.

When 1 ≤ j <≤ m, we find that

L̃i,j =

(
AP (i),P (j) BP (i),j

BT
i,P (j) 0

)
.

The matrices D̃1, ..., D̃m and the scalars d̃m+1, ..., d̃n are required to be such
that

”diag”
(
(L̃ + D̃)D̃−1(L̃ + D̃)T

)
= ”diag”(Ã), (4)

where the operation ”diag” is defined as follows:

”diag”(Ã) ≡



Ã1,1 Ã1,2

Ã2,1 Ã2,2

. . .
Ã2m−1,2m−1 Ã2m−1,2m

Ã2m,2m−1 Ã2m,2m

Ã2m+1.2m+1

. . .
Ãn,n


.

The scalars d̃m+1, ..., d̃n do not necessarily exist for all symmetric positive
definite (spd) A and general B, because the recurrence may break down at
a zero pivot:

d̃m+1 = AP (m+1),P (m+1),

d̃i = AP (i),P (i) −
i−1∑
j=1

(AP (j),P (j))
2

d̃j

, m + 2 ≤ i ≤ n.
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This is similar to the standard ILU(0) preconditioner that is guaranteed to
exist for M -matrices, but not for general spd matrices.

The diagonal 2× 2 blocks D̃i for 1 ≤ i ≤ m turn out not to be singular,
and can even be proved to have a very special structure, as is shown in the
following lemma.

Lemma 3.1. There exist d̃1, ..., d̃m such that, for 1 ≤ i ≤ m,

D̃i =

(
d̃i BP (i),i

BT
i,P (i) 0

)
.

Proof:
The proof proceeds by induction. It is easily verified that

D̃1 =

(
AP (1),P (1) BP (1),1

BT
1,P (1) 0

)
,

so that d̃1 = AP (1),P (1). Now assume that D̃1, ..., D̃i−1 are of the desired form
(where 2 ≤ i ≤ m). Then D̃i is determined by the equation(

AP (i),P (i) BP (i),i

BT
i,P (i) 0

)
= D̃i +

i−1∑
j=1

L̃i,jD̃
−1
j L̃T

i,j.

By the induction hypothesis and the fact that B2
P (j),j = 1 for all 1 ≤ j ≤ m,

we find that

D̃−1
j =

(
0 BP (j),j

BT
j,P (j) −d̃j

)
.

Hence,

L̃i,jD̃
−1
j L̃T

i,j =

(
2AP (i),P (j)BP (j),jBP (i),j − d̃jB

2
P (i),j BP (i),jBP (j),jBP (j),i

BP (i),jBP (j),jBP (j),i 0

)
.

Due to (3) we have that BP (j),i = 0, and we conclude that

L̃i,jD̃
−1
j L̃T

i,j =

(
2AP (i),P (j)BP (j),jBP (i),j − d̃jB

2
P (i),j 0

0 0

)
.

So,

D̃i =

(
d̃i BP (i),i

BT
i,P (i) 0

)
,
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with

d̃i = AP (i),P (i) +
i−1∑
j=1

B2
P (i),j d̃j − 2AP (i),P (j)BP (j),jBP (i),j.

Hence, the lemma is proved.

Note that there is at most one j ∈ {1, ..., n}, j 6= i, such that BP (i),j 6= 0.
Denote this number by j(i). Then we have j(i) ≤ i− 1 and

d̃i = AP (i),P (i) + d̃j(i) − 2AP (i),P (j(i))BP (j(i)),j(i)BP (i),j(i).

Lemma 1 tells us that the blocks in D̃ are of the same structure as the 2× 2
blocks in the upper left part of M̃ . Hence, the following corollary is not
surprising.

Corollary 3.2. Let L̃ and D̃ be determined as described in the foregoing and
suppose that the scalars d̃m+1, ..., d̃n defined by (4) exist. Then

Q(L̃ + D̃)D̃−1(L̃ + D̃)T QT =

(
G B
BT 0

)
.

for some matrix G.

Proof:
Define l(C) as the strictly lower triangular part of a matrix C, and P (i) = i
for all i. Then we obtain

L = QL̃QT =

 l(A22) 0 l(B1)
A21 l(A22) B2

0 0 0

 ,

D = QD̃QT =

 D1 0 diag(B1)
0 D2 0

diag(B1) 0 0

 ,

where
D1 = diag(d̃1, ..., d̃m),

D2 = diag(d̃m+1, ..., d̃n).
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Multiplying out (L + D)D−1(L + D)T then gives the result.

The corollary demonstrates that the preconditioning matrix is in exactly the
same form as suggested by Keller et al [17], i.e. it is a so-called constrained
preconditioner. Even more importantly, the corollary shows that this pre-
conditioner is obtained in factorized form. Thus, we have found a way to
construct constraint preconditioners that are easily inverted. This observa-
tion has sparked much research into constraint preconditioners for saddle
point problems.

It should also be noted that in [18] experiments with similar use of 1 × 1
and 2 × 2 pivots have been carried out for indefinite systems. In the
aforementioned paper, an ILU decomposition for indefinite systems, based
on a Crout decomposition, is employed. The paper contains many interesting
numerical results.

4. A general decomposition for indefinite matrices

The technique described in the previous section is based on properties of
the matrix B. In fact, it was assumed that B is an incidence matrix with
only few non-zero entries. Such matrices can be put into lower trapezoidal
form, meaning that the top m×m part is lower triangular. For more general
B, a similar treatment is possible by making use of LQ decompositions. To
this end, we write

ΠB = B̂Q,

where Π is an n× n permutation matrx, Q is an m×m orthogonal matrix,
and B̂ is of lower trapezoidal form. Furthermore we require that the top
m × m part of B̂ is nonsingular. Such decompositions are always possible,
and many software routines are available. Actually, the matrix Q can be
obtained as the product of a permutation matrix and a number of matrices
describing Givens rotations.

Now define
Q =

(
Π 0
0 Q

)
,

and let
Â = ΠAΠT .

Then

QAQT =

(
Â B̂

B̂T 0

)
.
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The matrix B̂ is now of a form similar to that in Section 3, and the following
holds (see also Theorem 4.2 in [11]):

Lemma 4.1. Let Â and B̂ be as in the foregoing, and write B̂T = (B̂1, B̂2)
T

where B̂1 is the m ×m top part of B̂. Then there exist an m ×m diagonal
matrix D1, an (n − m) × (n − m) diagonal matrix D2, an m × m strictly
lower triangular matrix L1, an (n − m) × (n − m) strictly lower triangular
matrix L2, and an (n−m)×m matrix M , such that(

Â B̂

B̂T 0

)
=

 B̂1 0 L1

B̂2 In−m + L2 M
0 0 Im

 D1 0 Im

0 D2 0
Im 0 0

 B̂T
1 B̂T

2 0
0 In−m + LT

2 0
LT

1 MT Im


(5)

Proof:
Working out the expression in the right hand side, and writing

Â =

(
Â11 Â12

Â21 Â22

)
,

we find that the following relations must be satisfied:

B̂1D1B̂
T
1 + B̂1L

T
1 + L1B̂

T
1 = Â11, (6)

B̂1D1B̂
T
2 + B̂1M

T + L1B̂
T
2 = Â12, (7)

B̂2D1B̂
T
1 + B̂2L

T
1 + MB̂T

1 = Â21, (8)

(In−m + L2)D2(In−m + L2)
T + B̂2D1B̂

T
2 + B̂2M

T + MB̂T
2 = Â22. (9)

Multiplying equation (6) from the left by B̂−1
1 and from the right by B̂−T

1

yields
D1 + LT

1 B̂−T
1 + B̂−1

1 L1 = B̂−1
1 A11B̂

−T
1 .

Thus, the matrices D1, L1 can be found from the expressions:

D1 = diag(B̂−1
1 Â11B̂

−T
1 ),

L1 = B̂1lower(B̂−1
1 Â11B̂

−T
1 ).

Note that we have explicitly used the fact that B̂1 is lower triangular here!
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Having found D1 and L1, the matrix M is simply obtained from either
(7) or (8), to give

M = (Â21 − B̂2L
T
1 )B̂−T

1 − B̂2D1.

It remains to show that matrices L2 and D2 exist such that (9) is satisfied.
To this end, we first observe that

B̂2M
T = B̂2B̂

−1
1 (Â12 − L1B̂

T
2 )− B̂2D1B̂

T
2 ,

MB̂T
2 = (Â21 − B̂2L

T
1 )B̂−1

1 BT
2 − B̂2D1B̂

T
2 ,

by virtue of (7) and (8). Substituting this in (9), and making use of the
expressions for D1 and L1, we find that the following must hold:

(In−m+L2)D2(In−m+L2)
T = Â22+B̂2B̂

−1
1 Â11B̂

−T
1 B̂T

2 −B̂2B̂
−1
1 Â12−Â21B̂

−T
1 B̂T

2 .

In other words. D2 and L2 are to be found from the expression

(In−m+L2)D2(In−m+L2)
T =

(
−B̂2B̂

−1
1 In−m

)( Â11 Â12

Â21 Â22

)(
−B̂−T

1 B̂T
2

In−m

)
,

(10)
which is possible because Â is a positive definite, symmetric matrix. This
completes the proof.

A straightforward consequence of this lemma is the following decomposi-
tion theorem for indefinite matrices:

Theorem 4.2. Let A be an n×n symmetric, positive definite matrix, B an
n×m matrix of full rank, m ≤ n, and set

A =

(
A B
BT 0

)
.

Then there exist an n×n permutation matrix Π, an m×m orthogonal matrix
Q, an m×m diagonal matrix D1, an (n−m)× (n−m) diagonal matrix D2,
an m×m strictly lower triangular matrix L1, an (n−m)× (n−m) strictly
lower triangular matrix L2, and an (n−m)×m matrix M , such that ΠBQT

is lower trapezoidal and
A = QLDLTQT , (11)
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where
Q =

(
0 ΠT

QT 0

)
,

L =

 Im 0 0

L1 B̂1 0

M B̂2 In−m + L2

 ,

D =

 0 Im 0
Im D1 0
0 0 D2

 ,

where B̂1 is the top m×m part of ΠBQT , and B̂2 is the lower (n−m)×m
part of the same matrix.

Proof:
Using Lemma 1, a decomposition of the form (5) is found. With a simple
permutation of rows and columns, we find 0 0 Im

Im 0 0
0 In−m 0

 B̂1 0 L1

B̂2 In−m + L2 M
0 0 Im

 0 Im 0
0 0 In−m

Im 0 0

 =

 Îm 0 0

L1 B̂1 0

M B̂2 In−m + L2

 .

The proof now follows from the observation that 0 0 Im

Im 0 0
0 In−m 0

 D1 0 Im

0 D2 0
Im 0 0

 0 Im 0
0 0 In−m

Im 0 0

 =

 0 Im 0
Im D1 0
0 0 D2

 ,

and (take care of the dimensions of Q)(
ΠT 0
0 QT

) 0 Im 0
0 0 In−m

Im 0 0

 =

(
0 ΠT

QT 0

)
.

Remark 2.1 Note the resemblance of the decomposition in (11) with the
Bunch-Kaufman-Parlett decomposition described in [5, 6, 15] 1. The struc-
ture of the decomposition is similar, the difference being that the permutation

1Historical note: by pure coincidence, the famous paper by Bunch and Kaufman [6]
follows immediately, in the same volume of Mathematics of Computation, the equally
famous paper by Meijerink and Van der Vorst [20].

16



matrix in the BKP method is now a more general orthogonal matrix. Note
also that the matrix L is a lower triangular matrix.

The decomposition presented in Theorem 1 can be used for the direct so-
lution of indefinite systems of the form (1). Roughly speaking, the algorithm
entails the following steps:

1. determine orthogonal matrices Π, Q which transform B into the lower
trapezoidal matrix B̂

2. transform the matrix A by forming ΠAΠT

3. determine the matrices D1, L1, and M
4. perform a Cholesky decomposition of the matrix(

−B̂2B̂
−1
1 In−m

)
ΠAΠT

(
−B̂−T

1 B̂T
2

In−m

)
,

leading to the matrices D2 and L2.

Fortunately, the transformation of A performed in step 2. involves a per-
mutation matrix, so that the sparsity of ΠAΠT is the same as for A. If B
is an incidence matrix, then we know that Q is a simple permutation too.
Depending on the specific type of problem, it may be possible to construct
the matrices Π and Q using only topological information, just as in the case
discussed in Section 3. For indefinite systems obtained after discretisation
of partial differential equations, the sparsity of the matrix B depends on the
type of (finite) elements used. If higher order elements are used, there will be
more non-zero elements in B. If the indefinite system describes an optimi-
sation problem, the matrix B will be sparse since constraints usually couple
only a few variables; problems in which all constraints contain all variables
are not to be expected.

It is interesting to have a closer look at the block diagonal matrix D, since
this matrix contains essential information about the eigenvalues.

• the matrix D2 has n−m positive (real) eigenvalues

• the matrix (
0 Im

Im D1

)
has m positive and m negative (real) eigenvalues

Hence, the indefiniteness of the original matrix A is fully reflected in the
matrix D. The lower and upper triangular factors have unit eigenvalues, as
is to be expected.
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5. Preconditioning and iterative solution techniques

Although originally we set out to construct incomplete preconditioners
for the indefinite systems occurring in electronic circuit simulation, the fore-
going sections clearly show that, in fact, we have obtained a very general
way of constructing exact decompositions of saddle point matrices. Hence,
the decomposition in Theorem 4.2 can be used for a direct solution of the
indefinite system (1).

However, the discussion in Sections 3 and 4 also leads to another, ex-
tremely interesting and valuable observation, This essential observation was
made originally by Dollar, Gould and Wathen, and further elaborated in
[8, 9, 10, 11, 12]. They noted that the factorization in Theorem 1 leads to a
constraint preconditioner for all choices of the matrices D1, D2, L1, L2, and
M ! In other words, no matter what these matrices are, the resulting product
QLDLTQT will always be of the form (2).

Using the foregoing observation, it is rather simple to generate a wealth of
constraint preconditioners, and the thesis [8] contains many families of these
so-called implicit preconditioners. This terminology reflects the fact that,
implicitly, always a constrained preconditioner is found, without having to
explicitly calculate the matrices D1, D2, L1, L2, and M . One could make
choices for a number of these matrices, and calculate the remaining matrices
explicitly. Or, alternatively, make specific choices for all of these matrices.
The main question is, of course, how such preconditioners will perform in
practice. Once again, this is nicely summarized in the aforementioned papers.

Hence, it is clear that the decomposition technique discussed in the previ-
ous sections can also be used as the basis for preconditioned iterative solution
methods. Both in Section 4 and in [17] it has been demonstrated that it is
a good idea to use preconditioners which retain the constraints, whence we
restrict ourselves to preconditioning matrices of the form

G =

(
G B
BT 0

)
.

There are several criteria for preconditioners, an important one being that
the matrix used for preconditioning is easily inverted. By virtue of Theorem
1, this is the case for G, since we can write

G = QLGDGLT
GQT ,
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with

LG =

 Îm 0 0

LG,1 B̂1 0

MG B̂2 In−m + LG,2

 ,

D =

 0 Im 0
Im DG,1 0
0 0 DG,2

 .

Clearly, the matrix Q is the same as in the previous section, since it only
depends on the matrix B.

Motivated by the results in Section 4, the use of an incomplete factori-
sation is most appealling. This means that the matrices DG,1, LG,1, MG,
LG,2, and DG,2 should be approximations to the corresponding elements of
the decomposition of A, which we shall denote by DA,1, LA,1, MA, LA,2, and
DA,2, respectively. We observe that the calculation of the first three of these
matrices is rather straightforward. Furthermore, working out the product(
QLGDGLT

GQT
)−1QLADALT

AQT , we find that the product is a full matrix
for which we can not easily find the eigenvalues. For these reasons, we shall
assume the following:

DG,1 = DA,1,

LG,1 = LA,1,

MG = MA.

A straightforward calculation then shows that

QT
(
QLGDGLT

GQT
)−1QLADALT

AQT Q =

 Im 0 X
0 Im Y
0 0 Z

 ,

where X, Y are not further specified, and

Z = (In−m + LG,2)
−T D−1

G,2(In−m + LG,2)
−1(In−m + LA,2)DA,2(In−m + LA,2)

T .

This proves the following lemma.

Lemma 5.1. Assume that DG,1 = DA,1, LG,1 = LA,1, and MG = MA. Then
the matrix G−1A has 2m eigenvalues 1, and the remaining n−m eigenvalues
are equal to the eigenvalues of the generalized eigenvalue problem

(In−m+LA,2)DA,2(In−m+LA,2)
T x = λ(In−m+LG,2)DG,2(In−m+LG,2)

T (12)
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We conclude that the problem of finding a suitable preconditioner for the
indefinite problem is equivalent to finding a suitable preconditioner for linear
systems involving the positive definite coefficient matrix(

−B̂2B̂
−1
1 In−m

)( Â11 Â12

Â21 Â22

)(
−B̂−T

1 B̂T
2

In−m

)
. (13)

This is not surprising, as we can see from the following reasoning. Making
use of the orthogonal transformation matrix Q in the LQ decomposition of
B, we can write the system (1) as(

Â B̂

B̂T 0

)(
x̂
ŷ

)
=

(
b̂
ĉ

)
,

with x̂ = Πx, b̂ = Πb, ŷ = Qy, and ĉ = Qc. Following the notation of
Section 3, this is equivalent to the system Â11 Â12 B̂1

Â21 Â22 B̂2

B̂T
1 B̂T

2 0


 x̂1

x̂2

ŷ

 =

 b̂1

b̂2

ĉ

 .

Since B1 is nonsingular, both x̂1 and ŷ can be eliminated, so that a reduced
system is obtained in terms of the unknown x̂2:

(Â22−Â21B̂
−T
1 B̂T

2 −B̂2B̂
−1
1 Â12+B̂2B̂

−1
1 Â11B̂

−T
1 B̂T

2 )x̂2 = b̂2+(B̂2B̂
−1
1 Â11−Â21)B̂

−T
1 ĉ−B̂2B̂

−1
1 b̂1,

(14)
where the coefficient matrix is the same as that in (13). This completes the
argument.

Because of the foregoing observation, the iterative solution of systems of
the form (1) may be performed in the following form:

1. determine a permutation matrix Π and an orthogonal matrix Q which
transform B into the lower trapezoidal matrix B̂

2. transform the matrix A by forming ΠAΠT

3. determine the matrices D1, L1, and M

4. perform an incomplete decomposition of the matrix(
−B̂2B̂

−1
1 In−m

)
ΠAΠT

(
−B̂−T

1 B̂T
2

In−m

)
,

leading to the matrices DG,2 and LG,2
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5. iteratively solve the system (14) using the incomplete preconditioning
matrix obtained in the previous step

6. calculate the remaining components x̂1 and ŷ of the solution vector
7. transform the solution vector back to the original variables using the

orthogonal matrix Q and the permutation matrix Π

Clearly, the simplest possible preconditioning is obtained when assuming
that LG,2 ≡ 0. In that case, we require

DG,2 = diag
(
−B̂2B̂

−1
1 In−m

)( Â11 Â12

Â21 Â22

)(
−B̂−T

1 B̂T
2

In−m

)
.

Dollar [8] has performed extensive research on suitable choices for these
implicit factorization preconditioners, and a wealth of numerical results is
available, also in [9, 10, 11, 12]. The results clearly demonstrate the potential
of constrained preconditioning.

It should be noted that, despite the fact that the preconditioned system is
non-symmetric in general, it is possible to use the conjugate gradient method
for their solution. This is possible if we assume that an ’inner product’

[x, y] ≡ xTGy

is used that is based upon the preconditioning matrix G. Such point of view
for preconditioned CG is clearly explained in [28]. Of course, if we choose
the wrong starting vector for the CG process, we may immediately end up
with a failing CG process. However, in practical cases, it has turned out
to be a very useful and certainly feasible method. This is mainly due to
the fact that the preconditioned system has eigenvalues that are all located
in the right half plane. This is not surprising if we look at the form of
the preconditioner, which is very similar to that of the original matrix. In
fact, the preconditioner has been constructed in such a way that negative
eigenvalues of the original matrix are ’compensated’ by negative eigenvalues
of the preconditioning matrix, in such a way that the product matrix has
eigenvalues with positive real parts. This observation clearly demonstrates
that structure preservation is essential.

6. Conclusion

In this paper, we have elaborated the ideas underlying the Schilders’
factorization. It has been demonstrated that a Bunch-Kaufman-Parlett like
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strategy can be employed with an a priori known structure of the pivots.
The concept has been generalized, and has led to a decomposition method
for symmetric indefinite matrices of a special form. The method can readily
be extended to the non-symmetric case (this has been done in [7, 19]), and
also for non-zero lower right hand blocks the ideas can be used to obtain
factorizations. In addition to the exact decompositions, the method has also
been used to generate implicit factorization preconditioners, and these have
been shown to be very effective. For numerical results, the reader is referred
to [8, 9, 10, 11, 12].
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