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Abstract

We present a sequential software release procedure that certifies with some confidence level
that the next error is not occurring within a certain time interval. Our procedure is defined
in such a way that the release time is optimal for single stages and the global risk can be
controlled. We assume that the failure detection process can be modeled as a General Order
Statistics model where its unknown parameters are studied from a Bayesian point of view.
We show how to implement our procedure and study its performance via simulation.

Keywords: software reliability, software release, software testing, Bayesian statistics, stop-
ping time, sequential testing.

1 Introduction

Statistical procedures to support software release decisions are usually based on a loss function
that in general considers the trade-off between the cost of extra testing and the cost of undetected
errors. Most of the decision policies found in the literature are based on the optimization of such
loss function (cf. Singpurwalla and Wilson (1999), Pham (2006)). Generally, two main decision
policies are considered: policies based on observed errors (see e.g. Dalal and Mallows (1988),
Morali and Soyer (2003), Özekici and Catkan (1993), Özekici and Soyer (2001), van Dorp et al.
(1997)) and policies based on time (see e.g. McDaid and Wilson (2001), Singpurwalla (1991),
Singpurwalla and Wilson (1994)). The first approach decides to stop or to continue testing after
each error observation while the second one stops always after testing for some time period that
is optimal for a certain criterion (no matter how many errors have been observed during such
period). Unlike in the previous approaches, we do not base our decisions on a loss function but
on a certification criterion. An early approach to certification procedures can be found in Currit
et al. (1986). In that paper release decisions are based on the mean time to next failure. However,
this approach fails to study certain software reliability growth models for which the mean time to
failure is always infinite (see e.g. Goel-Okumoto model presented in Goel and Okumoto (1978)).
We aim for a procedure that overcomes this restriction.

In this paper, we present a sequential software release procedure that certifies with some
confidence level that the next error is not occurring within a certain time interval. Our procedure
is developed assuming that the failure detection process can be modeled as a black box software
reliability growth model (discrete or continuous), in particular we have chosen for this paper the
Jelinski-Moranda model (cf. Jelinski and Moranda (1972)) and a discrete version of it. The
decision of stopping or continuing testing is based on the error free period since the last error
observation. Such time periods depend on the test history and, by choosing them properly, we
can certify that the software is released in an optimal (local) time and the global risk taken in
the procedure ( defined as the probability of stopping testing too early) can be controlled. Our
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procedure can be seen as a special case of sequential testing one-stage look ahead policy (see e.g.
Singpurwalla and Wilson (1999)) where at each stage of testing we update our statistics with the
information obtained from the test history and we decide whether to stop or to continue testing.
The main difference with other one-stage policies is that we allow the software to be tested for
the time period that is optimal for our certification criterion before stopping, which occurs only in
case that no errors are found during such period. Otherwise, we continue testing, repeating this
procedure in a dynamic fashion. This approach is similar to the one presented in Di Bucchianico
et al. (2008) although their certification criterion (the software is error free) is different from ours.
Our problem is studied from a Bayesian point of view but, unlike in Achcar and Brassolatti (1999),
we do not focus on a full Bayesian analysis of the parameters of the model. Finally, we show how
to implement our procedure and study its performance via simulation.

The rest of the paper is organized as follows. In Section 2 we establish our time model
framework and present our release procedure. We implement and study the performance of our
procedure for the Jelinski-Moranda model in Section 3. In Section 4 we discuss the results pre-
sented in this paper and future work. Finally, in Section 5 we show the proofs of some technical
results presented in our paper.

2 Model and Release Procedure

2.1 Statistical Model

We assume that the failure detection process of a software system can be modeled as a General
Order Statistics model. It is assumed that the times between failures can be defined as the
differences between two consecutive order statistics. If we denote by N the (unknown) initial
number of errors in the system, then the failure times T1, . . . , TN are independent and identically
distributed random variables. If we consider that the errors occur in certain order, then the ith

order statistic, T(i), defined as

min {T1, . . . , TN} = T(1) ≤ T(2) ≤ . . . ≤ T(i) ≤ . . . ≤ T(N) = max {T1, . . . , TN}

defines precisely the ith error discovery. Since in our framework failure times are always cumulative
and ordered we avoid the notation T(i) and we simply use Ti to denote the corresponding failure
time. Therefore, we consider a software system where n ≤ N errors have been observed at times
T1 < T2 < . . . < Tn and define the time between failures as Xi = Ti − Ti−1, for all i = 1, . . . , n,
with T0 = 0.

When we consider the underlying distribution of the failure times to be the exponential, the
corresponding model is known as the Jelinski-Moranda model or the exponential order statistics
model (cf. Jelinski and Moranda (1972)). If φ > 0 denotes the parameter of the exponential
distribution, then the Jelinski-Moranda model can be characterized by

fXi(x) = φ(N − i+ 1)e−φ(N−i+1)x , (1)

where fXi denotes the density function of the random variable Xi. Moreover, the times between
failures Xi are independent, for all i = 1, . . . , n. Discrete software reliability growth models have
not received as much attention as continuous-time models, being Fries and Sen (1996), Okamura
et al. (2004), Yamada et al. (1986) some of the exceptions. A natural discrete version of the
Jelinski-Moranda model appears when one considers geometric order statistics. In this case, if
p > 0 denotes the parameter of the geometric distribution, then we can characterized this discrete
model by

qXi(x) = p(N − i+ 1)(1− p)(N−i+1)x−1 , (2)

where qXi denotes the probability mass function of the random variable Xi. In our case, we are
not interested in a procedure based on the number of (remaining) errors in the software but we
rather concentrate on the survival probability of the system. For that reason, we can interpret the
parameter N as an upper bound for the total number of errors (for example, we could consider
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the number of statements in a program as an upper bound for N). Therefore, we can think of N
as if it were known.

Next we present our certification procedure for General Order Statistics models and study it
with more detail for the two models described before.

2.2 Software Release Procedure

Our goal is to certify with high confidence that the next software error is not occurring within a
certain time interval, say ∆ > 0. Suppose that at certain stage of testing we have discovered and
repaired n ≥ 0 software errors. Thus, if X(n) denotes the random vector (X1, . . . , Xn) and x(n)

denotes its realization, then the conditional reliability function for the next stage is defined by

Rn+1(y, x(n)) = Pφ
[
Xn+1 ≥ y | X(n) = x(n)

]
, (3)

for all y > 0. Since n errors were found, we define the one step risk taken at stage n+ 1 as follows

Sn+1(y, x(n)) = Pφ
[
Xn+1 ≥ y + ∆ | Xn+1 ≥ y,X(n) = x(n)

]
. (4)

Note that the one step risk is just the probability of surviving ∆ given that the system has already
survived some time y > 0 after n ≥ 0 error discoveries. If we fix a reliability level 1− δ for some
δ > 0, then our release procedure consists on finding the error free period after the nth error
detection, denoted by bn+1 (which depends on the test history x(n)), such that the one step risk
at stage n + 1 is greater than or equal to 1 − δ. Besides the existence of bn+1, we will prove in
Section 2.3.1 that it is a local optimal release time for our procedure. Thus, our release procedure
can be seen as a special case of sequential testing one-stage look ahead policy (see e.g. Singpurwalla
and Wilson (1999)) where after each error detection we update our statistics with the information
obtained from the past and then, after observing the system for an optimal error free period, we
decide to stop testing. Based on the monotonicity (with respect to y) of the one step risk function,
we will show that the procedure should stop at the exact time where the reliability level 1− δ is
reached. Moreover, the global risk taken in the procedure can also be controlled. If b(n) denotes
the random vector (b1, . . . , bn) and ∆ is given, we can define the global risk as

Gn(b(n)) = Pφ

⋃
n≥1

(Xn ≤ bn + ∆, X1 ≤ b1, . . . , Xn−1 ≤ bn−1, Xn ≥ bn)

 . (5)

Note that (5) defines the probability of stopping testing too early since we want to survive at least
bn + ∆ for all n ≥ 1. In the next theorem we show that if the one step risk is bounded, then we
can keep the global risk also under control. The proof can be found in Section 5.

Theorem 2.1 (Global risk bound). Suppose that Sn(bn, x(n−1)) ≥ 1 − δ for some δ > 0. Then
Gn(b(n)) ≤ δ, for all n ≥ 1.

In our procedure, the decision of releasing the software is based on the error free period since the
last error observation. The following result concerns with the computation of such (conditional)
survival probabilities.

Lemma 2.2 (One step risk). Let X1, . . . , Xn+1 be continuous random variables whose distributions
depends on the non-negative random parameter Φ. Suppose that the joint densities fXn+1,X1,...,Xn

and fXn+1,X1,...,Xn,Φ exist. If Xn+1 is conditionally independent of X1, . . . , Xn given Φ, then

Rn+1(y, x(n)) =
∫ ∞

0

Rn+1(y, φ) fΦ(φ | X(n) = x(n)) dφ

and

Sn+1(y, x(n)) =

∫ ∞
0

Rn+1(y + ∆, φ) fΦ(φ | X(n) = x(n)) dφ∫ ∞
0

Rn+1(y, φ) fΦ(φ | X(n) = x(n)) dφ

3



for all y > 0, where Rn+1(y, φ) = P [Xn+1 ≥ y | Φ = φ] and fΦ(φ | X(n) = x(n)) is the posterior
density function of Φ.

We can find a proof of this lemma in Section 5. Note that conditional independency is required.
For its definition and some characterizations we refer to Lauritzen (1996).

Next we study the one step risk function for the Jelinski-Moranda and the geometric order
statistics models.

2.3 One Step Risk

2.3.1 Jelinski-Moranda Model

Suppose that the failure detection process of a software system can be described by the Jelinski-
Moranda model where N represents an upper bound for the total number of errors in the system.
Then, for Φ = φ, the density function of the times between failures is given by (1). We assume
that Φ has a prior gamma distribution with parameters k > 0 and w > 0 while N is supposed
to be known and fixed. We have chosen this prior since it is a conjugate prior for exponential
likelihoods. Therefore, the posterior distribution of Φ is also gamma with parameters n + k > 0
and

(
1
w +

∑n
i=1(N − i+ 1)xi

)−1 (see e.g. Lee (1989)). In this case, the one step risk as given in
Lemma 2.2 has the following closed-form (cf. Singpurwalla (1991))

Sn+1(y, x(n)) =
( ∑n

i=1(N − i+ 1)xi + 1
w + (N − n) y∑n

i=1(N − i+ 1)xi + 1
w + (N − n)(y + ∆)

)n+k

. (6)

The next lemma shows two important monotonicity properties of the one step risk. For its proof
we refer to Section 5.

Lemma 2.3. The one step risk Sn+1(y, x(n)) given in (6) is monotone increasing with respect to
y and monotone decreasing with respect to N .

We have defined our procedure in such a way that it stops as soon as Sn+1(y, x(n)) ≥ 1− δ. Since
Sn+1(y, x(n)) is monotone increasing with respect to y, then there exists a unique bn+1 > 0 (which
depends on x(n)) such that Sn+1(bn+1, x

(n)) = 1− δ. Thus, bn+1 is an optimal one step stopping
time. Although the existence of bn+1 is proved, it may occur that to wait for it would not be
feasible in practice. For example, we may fix a value of ∆ big enough to make bn+1 unrealistically
large to wait for it. This phenomenon will be explained in Section 3. On the other hand, the one
step risk is monotone decreasing with respect to N . This confirms what one may expect: a system
with more errors is less reliable. In this case, to consider a worst case scenario (lowest one step
risk) would mean to take N =∞. However, for such case our model is not defined. This supports
our assumption of considering N fixed as an upper bound for the initial number of errors.

2.3.2 Geometric Order Statistics Model

Suppose now that a software system is subjected to series of test runs until an error is found.
Then, for Φ = p fixed, the probability mass function of the times between failures is given by (2).
We assume that Φ has a prior beta distribution with parameters γ > 0 and λ > 0. We have chosen
the beta distribution as prior because it is a conjugate prior. Moreover, the posterior distribution
of Φ is a beta distribution with parameters n + γ > 0 and λ +

∑n
i=1((N − i + 1)xi − 1) > 0 (cf.

Lee (1989)). In this case, the one step risk has no simple closed-form like in the Jelinski-Moranda
model. First note that

Rn+1(y, p) = P [Xn+1 ≥ y | Φ = p] = (N − n) p
(1− p)(N−n)y−1

1− (1− p)N−n
. (7)

Then, by Lemma 2.2

Rn+1(y, x(n)) = c

∫ 1

0

pn+γ (1− p)(N−n)y−2+λ+
∑n
i=1((N−i+1)xi−1)

1− (1− p)N−n
dp , (8)
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where c = (N−n)

B(n+γ,λ+
∑n
i−1((N−i+1)xi−1)) does not depend on p. Thus, the one step risk in Lemma 2.2

is given by

Sn+1(y, x(n)) =

∫ 1

0

pn+γ (1− p)(N−n)(y+∆)−2+λ+
∑n
i=1((N−i+1)xi−1)

1− (1− p)N−n
dp∫ 1

0

pn+γ (1− p)(N−n)y−2+λ+
∑n
i=1((N−i+1)xi−1)

1− (1− p)N−n
dp

. (9)

We have already discussed in the continuous case the importance of the monotonicity of the one
step risk in order to compute an optimal one step stopping time. The next lemma shows that the
one step risk is also an increasing function of y in this case. For its proof we refer to Section 5.

Lemma 2.4. The one step risk Sn+1(y, x(n)) given in (9) is monotone increasing with respect to
y.

Note that we have not included a similar result about monotonicity with respect to N . Although
one may expect the same behaviour as in the continuous case, the analytical proof does not seem to
be as straightforward as before. Since we do not consider this an important issue for the purposes
of this paper, we have decided to skip it.

3 Simulation

In this section we study the performance of our procedure for the Jelinski-Moranda model. The
distribution of the times between failures is determined by the parameters φ and N introduced in
(1). Moreover, we have to take into account two more parameters, namely the time period ∆ to be
certified as error free (see the one step risk definition in (4)) and the reliability level 1− δ we wish
to reach in our procedure. Finally, we also consider the parameter ntests defining the number
of tests to be performed. Although we are interested in a Bayesian approach to our problem, we
first study the case where φ is suppose to be known since some interested conclusions can also be
extracted from there.

3.1 Known parameter φ

Suppose that φ is known and fixed. This is not completely unrealistic since we may have some
previous information based on similar systems behaviour observed before. In this case, and due
to the memoryless property of the exponential distribution, the one step risk after n < N error
detections is given by

Dn+1(φ) = e−φ(N−n)∆ . (10)

Note that the one step risk does not depend on y (there is no bn+1 to be computed) and the only
aspect of the test history taken into account is the number of errors discovered so far (but not
when).

We first study which values of ∆ are reasonable choices for our problem. The one step risk is
increasing as soon as the number of remaining errors in the system decreases. Therefore, except
for the case where the system is error free, the situation with the highest reliability corresponds to
only one error left. Thus, the maximum value of ∆ to reach certain reliability level can easily be
computed from (10) when n = N − 1. Some of these ∆ values are shown in Table 1 for different
values of φ when the reliability level 1−δ = 0.90. It is straightforward to deduce from Table 1 that

φ = 0.00025 φ = 0.0005 φ = 0.001 φ = 0.002 φ = 0.004
max ∆ 421.44 210.72 105.36 52.68 26.34

Table 1: Maximum feasible ∆ when the reliability level is 0.90 for different values of φ.
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the election of ∆ must be done carefully since there exist many values of ∆ for which certification
is impossible.

Given a feasible ∆ we are interested in computing the mean number of errors as a fraction
of N to be observed before we stop testing. We calculate this for different values of ∆ and N
when φ = 0.0005, 1 − δ = 0.90 and ntests = 1000. The results are shown in Table 2. The

∆ = 10 ∆ = 25 ∆ = 50 ∆ = 100 ∆ = 150
N = 10 0.00 0.20 0.60 0.80 0.90
N = 25 0.16 0.68 0.84 0.92 0.96
N = 50 0.58 0.84 0.92 0.96 0.98
N = 100 0.79 0.92 0.96 0.98 0.99

Table 2: Mean number of errors as a fraction of N to be observed to reach reliability 0.90 for
different values of N and ∆ when φ = 0.0005 and ntests = 1000.

main conclusion we can extract is that for a fixed ∆, the system containing more errors requires
more effort (a bigger amount of errors has to be repaired) to certify ∆ as error free period, or
equivalently the more errors a system contains the smaller the ∆ admitted. In the next section
we study the case where φ is a random variable and compare the results we obtain with the ones
obtained here.

3.2 Random Parameter φ

We now study our problem from a Bayesian point of view assuming that φ is a random variable
following a gamma prior distribution. In this case, the one step risk after n error detections is
given by (6). Unlike in the deterministic case, the one step risk depends not only on the number
of discovered errors but also on the observation times themselves.

We saw in the deterministic case that, for φ and δ fixed , there exists a maximum value of ∆
such that if we ask for a ∆ larger than this maximum, then certification is impossible. This is not
the case now since in theory any value of ∆ is feasible. However, we will show later in this section
what the cost of choosing a high ∆ is. In addition to the mean number of errors as a fraction of
N to be observed before we stop testing, denoted by s, there are some more interesting metrics
that we compute. We denote by bs the mean last error free period before we stop testing, b̄ is the
mean error free period after error detection, δ̂ is the observed reliability and finally ttt denotes
the mean total time of test. These metrics have to be computed for some values of N and ∆.
Table 3 shows the results when φ has been sampled from a gamma distribution with mean 0.0005,
N = 50, 1− δ = 0.90 and ntests = 1000.

s bs/∆ δ̂ b̄ ttt
∆ = 10 0.34 4.51 0.95 22.79 825.66
∆ = 25 0.68 2.81 0.92 1481.72 2953.44
∆ = 50 0.83 1.43 0.89 5585.98 4984.53
∆ = 100 0.90 0.68 0.87 16385.90 7338.40
∆ = 150 0.93 0.26 0.85 28058.15 8290.67
∆ = 200 0.92 0.18 0.86 39382.70 9039.62
∆ = 250 0.87 0.20 0.77 49591.35 9246.99

Table 3: Mean number of errors as a fraction of N to be observed before we stop testing (s),
mean last error free period as a fraction of ∆ before we stop testing (bs/∆), observed reliability
(δ̂), mean error free period after error detection (b̄ ) and mean total time of test (ttt) for different
values of ∆ when the reliability level is fixed to 0.90 and N = 50.
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We have chosen such a prior distribution in order to compare the results obtained in this section
with those obtained in Table 2 (in the deterministic case we chose φ = 0.0005). In particular,
we have taken k = 2 and w = 0.00025. Note that the choice of the prior distribution determines
the scale of the data in the problem (small values of φ produce large times between failures).
However, the posterior distribution has no great effect since it does not deviate much from the
prior. This can be seen in Figure 1. On its left-hand side we observe how the posterior mean
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0.0006

posterior mean

b

0.0000 0.0005 0.0010 0.0015 0.0020
0

500

1000

1500

2000

2500

posterior distribution

φ

Figure 1: Posterior mean (left) and posterior distribution (right) when φ follows a prior (dashed)
distribution with parameters k = 2, w = 0.00025 and N = 50.

remains close to the prior mean (0.0005) for all n. On the right-hand side we show the prior
distribution (dashed) and the evolution of the posterior distribution after a few updates. Note
how the posterior distribution becomes sharper near 0.0005 as long as new data is observed and
a new posterior distribution is calculated.

We can conclude from Table 3 that choosing a large ∆ is expensive. Increasing ∆ produces an
increase of the total time of test (ttt) and a decrease of reliability (δ̂). Thus, we would have to
test longer to get a less reliable result. This behaviour is not surprising given the results obtained
in the deterministic case. The increase of the value of b̄ with ∆ has an important interpretation.
Although it is possible to provide a theoretical solution for our problem (there always exists a
value of bi for which (6) is greater than or equal to 1 − δ, for all i = 1, . . . , N), this is useless in
practice since the values of bi are extremely large with respect to the scale of the data. This can
be observed in Figure 2 where we have plotted the mean error free period after error detection
and the mean times between failures for N = 50 and ∆ = 25. Note that even for this reasonably

0 10 20 30 40 50
n0

1000

2000

3000

4000

5000

Figure 2: Mean error free period after error detection (dashed) and mean times between failures
(solid), when N = 50, ∆ = 25 and φ follows a prior distribution with parameters k = 2 and
w = 0.00025.

small value of ∆ the difference of magnitude between the error free period after error detection
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and the times between failures is extremely large in early stages of testing (making thus any value
of bi unfeasible for such stages). Only when at the end of testing bi approaches the times between
failures, we can use the computed value of bi in practice and at the time where the curves intersect
we stop testing. Figure 2 also shows the typical behaviour of the error free periods after error
detection. In early stages of testing, where only a few errors have been discovered and repaired,
these are increasing and after a certain period they start to decrease to eventually become 0. This
behaviour is not completely intuitive since one may expect that as long as the system is repaired
the time you have to wait to release it becomes smaller. This can be explained as follows. We
proved in Section 2.3.1 that the one step risk is monotone increasing with respect to y. We now
study its behaviour with respect to the number of discovered errors n. After reparation of one
error, the next one step risk function improves, i.e., Sn+1(0, x(n)) ≥ Sn(0, x(n−1)), for all n ≥ 1 (see
Section 5 for a proof). However, this monotonicity with respect to n is not kept for all y > 0 since
some risks functions grow rapidly than others. This can be observed in Figure 3. On the left-hand

0 1000 2000 3000 4000 5000 6000
0.80

0.85

0.90

0.95

1.00

one step risk

b

n=1

n=5

n=10

n=15

n=20

0 1000 2000 3000 4000 5000 6000
0.80

0.85

0.90

0.95

1.00

one step risk

b

n=30

n=35

n=40

n=45

Figure 3: Left: one step risk functions for n = 1, n = 5, n = 10, n = 15 and n = 20: bn increases
with respect to n. Right: one step risk functions for n = 30, n = 35, n = 40, and n = 45: bn
decreases with respect to n.

side we observe the one step risk function for n = 1, n = 5, n = 10, n = 15 and n = 20. If bn
denotes the values of y for which Sn(y, x(n−1)) = 1−δ, then we see that b1 < b5 < b10 < b15 < b20.
On the right-hand side we observe the one step risk for n = 30, n = 35, n = 40, and n = 45. In
this case, we see that bn decreases for such values of n. If we plot the one step risk functions for
all n = 1, . . . , 50, we would observe precisely the behaviour of bn depicted in Figure 2 (increasing
until n = 21 approximately and then decreasing).

In Table 4 we compare the mean number of errors as a fraction of N to be observed before
we stop testing for both Bayesian and deterministic procedures when the reliability level is fixed
at 0.90. We observe that the values obtained using the Bayesian approach are smaller than those

∆ = 10 ∆ = 25 ∆ = 50 ∆ = 100 ∆ = 150
φ random 0.34 0.68 0.83 0.90 0.93
φ known 0.58 0.84 0.92 0.96 0.98

Table 4: Mean number of errors as a fraction of N to be observed before we stop testing for the
Bayesian (φ random) and the deterministic (φ known) procedures for different values of ∆ when
the reliability level is fixed to 0.90 and N = 50.

obtained in the deterministic case for all ∆. Therefore, we can conclude that in the Bayesian
approach the decision of releasing the software requires less error discoveries than in the deter-
ministic case. In this sense, the software can be released earlier. We prove in Section 5 a general
result showing that the Bayesian approach performs always better than the deterministic one with
respect to this metric.
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As one may expect, an increase of the number of errors N in the system has the same effect
as in the deterministic case, i.e., the system containing more errors requires more effort to certify
∆ as error free period. Moreover, the more errors we have the worse is our system. This will be
reflected in an increase of the total time of test and a decrease of the observed reliability. Thus, we
would have to test longer to get a less reliable result. Table 5 shows the results when φ has been
sampled from a gamma distribution with mean 0.0005, ∆ = 50, 1 − δ = 0.90 and ntests = 1000.
Note that Table 5 behaves in a similar way as Table 3. Thus, the conclusions that can be drawn

s bs/∆ δ̂ b̄ ttt
N = 10 0.35 1.81 0.93 128.52 685.07
N = 25 0.67 2.35 0.91 1633.90 2776.39
N = 50 0.83 1.43 0.89 5585.98 4984.53
N = 100 0.90 0.90 0.89 15481.30 7488.62

Table 5: Mean number of errors as a fraction of N to be observed before we stop testing (s),
mean last error free period as a fraction of ∆ before we stop testing (bs/∆), observed reliability
(δ̂), mean error free period after error detection (b̄ ) and mean total time of test (ttt) for different
values of N when the reliability level is fixed to 0.90 and ∆ = 50.

in this case are like those obtained before. The only difference lies on the column bs/∆. From
Table 3 one may think that as long as ∆ increases the last waiting period bs becomes smaller
with respect to ∆ which is indeed a desirable behaviour. However, this monotonicity does not
completely hold for all values of ∆ (see e.g. ∆ = 250). In Table 5 no real trend can be observed.
Therefore, no conclusion can be drawn from this respect.

Finally, we study the effect of changing the reliability level of our procedure. In Table 6 we show
the mean number of errors as a fraction of N to be observed before we stop testing, the observed
reliability and the mean total time of test for different reliability levels when N = 50, ∆ = 50
and ntests = 1000. We can conclude (as one may expect) that for lower reliability levels release

s δ̂ ttt
1− δ = 0.99 0.97 0.98 11869.90
1− δ = 0.95 0.90 0.93 7185.98
1− δ = 0.90 0.82 0.91 4926.88
1− δ = 0.75 0.57 0.82 2021.48

Table 6: Mean number of errors as a fraction of N to be observed before we stop testing (s),
observed reliability (δ̂) and mean total time of test (ttt) for different reliability levels 1− δ when
N = 50, ∆ = 50 and ntests = 1000.

can be done earlier, i.e., less errors need to be discovered and therefore less testing effort. On the
other hand, when the reliability level is very high (see e.g. 1− δ = 0.99) it seems more difficult to
reach such level in practice and in this particular example it is not reached for ntests = 1000.

4 Conclusion and Future Work

We have presented a sequential software release procedure that certifies with a certain confidence
level that the next software error is not occurring within a certain time interval. The main
difference with current approaches is that we allow testing for a certain time period after the last
error observation and then we release the software but only if we do not find any error in such
period. We have shown that the software is released in an optimal (local) time and that the global
risk taken in the procedure (the probability of stopping testing too early) remains under control.

9



We have studied our problem from a Bayesian point of view assuming that the failure detection
process can be modeled as the Jelinski-Moranda and the geometric order statistics models. Finally,
we have investigated the performance of our procedure via simulation for the Jelinski-Moranda
model.

An additional step that could also be considered would be to investigate a full Bayesian ap-
proach to our problem. Moreover, we would like to extend this work studying the performance of
our procedure for more complicated General Order Statistics models (like for example the Schick-
Wolverton model where the underlying distribution is Weibull) and for some Non Homogeneous
Poisson Process models (the other main family of software reliability growth models) to finally
compare the results obtained in any case.

5 Appendix

• Proof of Theorem 2.1.

Proof. Denote the event {X1 ≤ b1, . . . , Xn−1 ≤ bn−1} by {
∏n−1
i=1 Xi ≤ bi} and write the global

risk as

Gn(b(n)) = Pφ

⋃
n≥1

(
Xn ≤ bn + ∆,

n−1∏
i=1

Xi ≤ bi, Xn ≥ bn

) . (11)

The times between failures are independent so do the events in the right-hand side of (11), therefore

Gn(b(n)) =
∑
n≥1

Pφ

[
Xn ≤ bn + ∆,

n−1∏
i=1

Xi ≤ bi, Xn ≥ bn

]
. (12)

If we define Yn = I{Xn≥bn}, where IA is the indicator function of an event A, then (12) is equivalent
to

Gn(b(n)) =
∑
n≥1

Pφ

[
Xn ≤ bn + ∆,

n−1∏
i=1

Xi ≤ bi, Yn = 1

]
. (13)

Application of the Law of Total Probability to the right-hand side of (13) yields

Gn(b(n)) =
∑
n≥1

E

[
Pφ

[
Xn ≤ bn + ∆,

n−1∏
i=1

Xi ≤ bi, Yn = 1 | X(n−1), Yn

]]
. (14)

Note that (14) is equivalent to

Gn(b(n)) =
∑
n≥1

E
[
E
[
I{Xn≤bn+∆} · I{∏n−1

i=1 Xi≤bi} · I{Yn=1} | X(n−1), Yn

]]
. (15)

Since only I{
∏n−1
i=1 Xi≤bi} and I{Yn=1} belong to the σ−algebra generated by X(n−1), Yn, we may

write (15) as

Gn(b(n)) =
∑
n≥1

E
[
I{
∏n−1
i=1 Xi≤bi} · I{Yn=1} E

[
I{Xn≤bn+∆} | X(n−1), Yn

]]
(16)

or equivalently,

Gn(b(n)) =
∑
n≥1

E
[
I{
∏n−1
i=1 Xi≤bi} · I{Yn=1} Pφ

[
Xn ≤ bn + ∆ | X(n−1), Yn

]]
. (17)

Note that Yn is the indicator function of {Xn ≤ bn} . Hence,

Pφ
[
Xn ≤ bn + ∆ | X(n−1), Yn

]
= Pφ

[
Xn ≤ bn + ∆ | X(n−1), Yn = 1

]
Pφ [Yn = 1]

+ Pφ
[
Xn ≤ bn + ∆ | X(n−1), Yn = 0

]
Pφ [Yn = 0] .

(18)
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Note that {Yn = 0} implies {Xn ≤ bn} and therefore, Pφ
[
Xn ≤ bn + ∆ | X(n−1), Yn = 0

]
= 1.

But this also implies that I{Yn=1} = 0. Thus, in (18) we only count the term for which {Yn = 1}.
Thus, we may write (17) as

Gn(b(n)) =
∑
n≥1

E
[
I{
∏n−1
i=1 Xi≤bi} · Pφ

[
Xn ≤ bn + ∆ | X(n−1), Yn = 1

]
· Pφ [Yn = 1]

]
(19)

Note now that Pφ
[
Xn ≤ bn + ∆ | X(n−1), Yn = 1

]
≤ δ since this probability is the complement

probability of the one step risk at stage n. Hence,

Gn(b(n)) ≤ δ
∑
n≥1

E
[
I{
∏n−1
i=1 Xi≤bi} · Pφ [Yn = 1]

]
. (20)

Note also that ∑
n≥1

E
[
I{
∏n−1
i=1 Xi≤bi} · Pφ [Yn = 1]

]
=
∑
n≥1

Pφ

[
n−1∏
i=1

Xi ≤ bi, Yn = 1

]
(21)

and since the times between failures are independent, we may conclude from (21) that

∑
n≥1

E
[
I{
∏n−1
i=1 Xi≤bi} · Pφ [Yn = 1]

]
= Pφ

⋃
n≥1

(
n−1∏
i=1

Xi ≤ bi, Yn = 1

) ≤ 1 . (22)

Finally, substitution in (20) yields Gn(b(n)) ≤ δ.

• Proof of Lemma 2.2.

Proof. Let fXn+1(x | X(n) = x(n)) denotes the density function of Xn+1 given X(n). Then, we
may write

Rn+1(y, x(n)) = Pφ
[
Xn+1 ≥ y | X(n) = x(n)

]
=
∫ ∞
y

fXn+1(u | X(n) = x(n)) du . (23)

Let fX(n)(x(n)) be the marginal density function of the random vector X(n), then we can define

fXn+1(u | X(n) = x(n)) =
fXn+1,X(n)(u, x(n))

fX(n)(x(n))

and substitute in (23) to get

Rn+1(y, x(n)) =
∫ ∞
y

fXn+1,X(n)(u, x(n))
fX(n)(x(n))

du . (24)

Since the joint density fXn+1,X(n),Φ(u, x(n), φ) exists, we may write the joint density function of
Xn+1 and X(n) as

fXn+1,X(n)(u, x(n)) =
∫ ∞

0

fXn+1,X(n),Φ(u, x(n), φ) dφ . (25)

We can condition on x(n) and φ and substitute in (25). Since Xn+1 is independent of X(n) given
Φ = φ, we get∫ ∞

0

fXn+1,X(n),Φ(u, x(n), φ) dφ =
∫ ∞

0

fXn+1(u | X(n) = x(n),Φ = φ) fX(n),Φ(x(n), φ) dφ

=
∫ ∞

0

fXn+1(u | Φ = φ) fX(n),Φ(x(n), φ) dφ .
(26)
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Note that the last equality in (26) comes from conditional independency. Therefore,

fXn+1,X(n)(u, x(n)) =
∫ ∞

0

fXn+1(u | Φ = φ) fX(n),Φ(x(n), φ) dφ .

Substitution in (24) yields

Rn+1(y, x(n)) =
∫ ∞
x

∫ ∞
0

fXn+1(u | Φ = φ) fX(n),Φ(x(n), φ)
fX(n)(x(n))

dφ du . (27)

We now write
fX(n),Φ(x(n), φ)
fX(n)(x(n))

= fΦ(φ | X(n) = x(n)) .

Substitution in (27) and posterior application of Fubini’s theorem (cf. Pitt (1985)) yields

Rn+1(y, x(n)) =
∫ ∞
y

∫ ∞
0

fXn+1(u | Φ = φ) fΦ(φ | X(n) = x(n)) dφ du

=
∫ ∞

0

∫ ∞
y

fXn+1(u | Φ = φ) du fΦ(φ | X(n) = x(n)) dφ

=
∫ ∞

0

Rn+1(y, φ) fΦ(φ | X(n) = x(n)) dφ .

(28)

Finally, note that

Sn+1(y, x(n)) = Pφ
[
Xn+1 ≥ x+ ∆ | Xn+1 ≥ x,X(n)

]
=

Pφ
[
Xn+1 ≥ x+ ∆ | X(n)

]
Pφ
[
Xn+1 ≥ x | X(n)

] .

Application of (28) yields the desired result.

• Proof of Lemma 2.3.

Proof. First we study the monotonicity of the one step risk with respect to y. Note that

d Sn+1(y, x(n))
d y

=
(n+ k)(N − n)2∆

( ∑n
i=1(N − i+ 1)xi + 1

w + (N − n) y∑n
i=1(N − i+ 1)xi + 1

w + (N − n)(y + ∆)

)n+k

(∑n
i=1(N − i+ 1)xi + 1

w + (N − n)(y + ∆)
)2 . (29)

Since all the factors in the right-hand side of (29) are positive, the one step risk is increasing with
respect to y.

We now study the monotonicity of the one step risk with respect to N . In this case it is
convenient to write

∑n
i=1(N − i+ 1)xi = N

∑n
i=1 xi −

∑n
i=1(i− 1)xi. Substitution in (6) yields

Sn+1(y, x(n)) =
(

N(
∑n
i=1 xi + y)−

∑n
i=1(i− 1)xi + 1

w − n y
N(
∑n
i=1 xi + y + ∆)−

∑n
i=1(i− 1)xi + 1

w − n(y + ∆)

)n+k

. (30)

To simplify our computations, let us define the quantities which do not depend on N in (30)
as follows A =

∑n
i=1 xi + y, B =

∑n
i=1 xi + y + ∆, C = −

∑n
i=1(i − 1)xi + 1

w − ny and D =
−
∑n
i=1(i− 1)xi + 1

w − n(y + ∆). Then it follows that

d Sn+1(y, x(n))
d N

=
(n+ k)(AN+C

BN+D )n+k−1(AD −BC)
(BN +D)2

. (31)

Note that the sign of (31) depends only on the factor AD −BC, since all the remaining ones are
positive. Adequate manipulation of this factor shows that the sign of AD−BC is the same as the
sign of −

∑n
i=1(n− i+ 1)xi − 1

w , thus negative. Hence, the one step risk is a decreasing function
of N .
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• Proof of Lemma 2.4.

Proof. First define 1 − p = ϕ and h(ϕ) = (1−ϕ)n+γ

1−ϕN−n ϕ
λ−2+

∑n
i=1((N−i+1)xi−1). Then, we may write

the one step risk defined in (9) as

Sn+1(y, x(n)) =

∫ 1

0

h(ϕ) ϕ(N−n)∆ ϕ(N−n)y dϕ∫ 1

0

h(ϕ) ϕ(N−n)y dϕ

. (32)

Note that (32) is a quotient and the denominator of a derivative in this case is always positive.
Therefore, we need only to study the sign of the numerator of its derivative with respect to y to
determine its monotonicity. Thus, the condition we need to check is∫ 1

0

h(ϕ) ϕ(N−n)∆ (N − n) log(ϕ) ϕ(N−n)y dϕ

∫ 1

0

h(ϕ) ϕ(N−n)y dϕ

−
∫ 1

0

h(ϕ) (N − n) log(ϕ) ϕ(N−n)y dϕ

∫ 1

0

h(ϕ) ϕ(N−n)∆ ϕ(N−n)y dϕ ≥ 0 .
(33)

First note that (33) is equivalent to∫ 1

0

h(ϕ) ϕ(N−n)∆ (N − n) log(ϕ) ϕ(N−n)y dϕ∫ 1

0

h(ϕ) ϕ(N−n)∆ ϕ(N−n)y dϕ

≥

∫ 1

0

h(ϕ) (N − n) log(ϕ) ϕ(N−n)y dϕ∫ 1

0

h(ϕ) ϕ(N−n)y dϕ

. (34)

The general form of Chebyshev’s inequality (cf. Mitrinović et al. (1993), Chapter 9) shows that
(34) holds and thus Sn+1(y, x(n)) is increasing in y.

• Bayesian procedure vs. deterministic procedure.
We now proof the following claim. If we denote by sb and sd the mean number of errors to be
observed before stopping testing for the Bayesian and deterministic procedure, respectively, then
sb ≤ sd.

Proof. Let us define js = min{i : Si(0, x(i−1)) ≥ 1 − δ}. Note that our Bayesian procedure is
defined in such a way that if it reaches the stage js, then it stops. But we may have stopped
before, therefore sb ≤ js.
We show in Section 2.3.1 that Si(y, x(i−1)) is increasing with respect to y. Therefore, Si(0, x(i−1)) ≤
Si(y, x(i−1)), for all y ≥ 0. Thus, if Si(0, x(i−1)) ≥ 1− δ, then Si(y, x(i−1)) ≥ 1− δ, for all y ≥ 0.
Consider now the Bayesian one step risk at time y = 0. Direct application of Lemma 2.2 yields

Si(0, x(i−1)) =
∫ ∞

0

e−φ(N−i+1)∆ fΦ(φ | X(i−1) = x(i−1)) dφ . (35)

Define the function gi(φ) = e−φ(N−i+1)∆ and write (35) as follows∫ ∞
0

e−φ(N−i+1)∆ fΦ(φ | X(i−1) = x(i−1)) dφ = E[gi(Φ) | X(i−1) = x(i−1)] . (36)

First note that gi(φ) ≤ gi+1(φ), for all i ≥ 1. Then, it follows that

Si(0, x(i−1)) = E[gi(Φ) | X(i−1) = x(i−1)] ≤ E[gi+1(Φ) | X(i) = x(i)] = Si+1(0, x(i)) . (37)

Note also that gi is convex (g′′i (φ) > 0, for all φ > 0). Therefore, we can apply Jensen’s inequality
to (36) and write

E[gi(Φ) | X(i−1) = x(i−1)] ≥ gi
(
E[Φ | X(i−1) = x(i−1)]

)
.
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We also prove in Section 2.3.1 that if we consider Φ to follow a prior gamma distribution, then
the posterior distribution of Φ is also gamma. Therefore, if φ̄ = E[Φ | X(i−1) = x(i−1)], then

gi

(
E[Φ | X(i−1) = x(i−1)]

)
= e−φ̄(N−i+1)∆ , (38)

which is precisely the deterministic one step risk Di(φ̄) defined in (10). Thus,

Si(0, x(i−1)) ≥ Di(φ̄) , (39)

for all i ≥ 1. Combination of (37) and (39) yields

Sjs(0, x
(js−1)) ≥ 1− δ ≥ Sjs−1(0, x(js−2)) ≥ Djs−1(φ̄) .

Therefore, Djs−1(φ̄) ≤ 1− δ, i.e., the deterministic procedure never stops before finding js errors.
In particular, if Djs(φ̄) ≥ 1 − δ, then sd = js and if Djs(φ̄) ≤ 1 − δ, then sd > js. Thus, in
combination with sb ≤ js, we have sb ≤ js ≤ sd.
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