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FIELDS OF VALUES AND INCLUSION REGIONS FOR MATRIX PENCILS

MICHIEL E. HOCHSTENBACH∗

Abstract. We are interested in (approximate) eigenvalue inclusion regions for matrix pencils (A,B), in
particular of large dimension, based on certain fields of values. We show how the usual field of values may be
efficiently approximated for large Hermitian positive definite B, but also point out limitations of this set. We
introduce four field of values based inclusion regions, which may effectively be approximated, also for large
pencils. Furthermore, we show that these four sets are special members of two families of inclusion regions, of
which we study several properties. Connections with the usual harmonic Rayleigh–Ritz method and a new variant
are shown, and we propose an automated algorithm which gives an approximated inclusion region. The results
are illustrated by several numerical examples.

Key words. Inclusion region, exclusion region, matrix pencil, numerical range, field of values, generalized
eigenvalue problem, large sparse matrix, harmonic Rayleigh–Ritz, harmonic Ritz values, Krylov space.

AMS subject classifications. 65F15, 65F50, 65F30, 65F35, 47A12.

This paper is dedicated with pleasure to Prof. Varga.

1. Introduction. For n×nmatricesA andB, consider the generalized eigenvalue prob-
lem

Ax = λBx. (1.1)

We are interested in practical (approximate) spectral inclusion regions for (1.1), in particular
for large pencils, based on certain fields of values. The field of values of an n × n real or
complex matrix A,

W (A) = {x∗Ax : ‖x‖ = 1} ,

where ‖ · ‖ denotes the two-norm, has been extensively studied; see, for instance, [2].
The field of values (or numerical range) of a matrix pencil (A,B) was defined as

W (A,B) = {λ ∈ C : x∗(A− λB)x = 0, x ∈ Cn, ‖x‖ = 1}, (1.2)

and examined in [4, 7]; see also [5].
If B is singular, then the pencil (A,B) may have an infinite eigenvalue. However, by

definition the set (1.2) does not contain the point at infinity. As a consequence, from this
definition, W (A,B) is not necessarily a spectral inclusion region. Therefore, we will work
with a slightly modified definition, and add the point at infinity to W (A,B) if B is singular.
A homogeneous expression equivalent to this is the set

W (A,B) =
{
α

β
: x∗(βA− αB)x = 0, ‖x‖ = 1, (α, β) 6= (0, 0)

}
. (1.3)

We can also use yet another equivalent definition: if A and B have a common nullspace, then
W (A,B) = C ∪ {∞}; otherwise

W (A,B) =
{
x∗Ax

x∗Bx
: x 6= 0

}
, (1.4)

∗Version May 24, 2010. Department of Mathematics and Computer Science, Eindhoven University of Tech-
nology, PO Box 513, 5600 MB, The Netherlands. http://www.win.tue.nl/∼hochsten/.
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2 HOCHSTENBACH

where 1/0 is understood as the point at infinity. Note that it is equivalent to range over all
nonzero vectors x instead of all vectors of unit norm in all definitions.

If B is Hermitian positive definite (HPD), it can be decomposed as B = LL∗ (for in-
stance, the matrix square root or the Cholesky factorization), and we have (cf. [7])

W (A,B) =
{
x∗Ax

x∗Bx
: x 6= 0

}
=
{
y∗L−1AL−∗y

y∗y
: y 6= 0

}
= W (L−1AL−∗).

One of the properties of W (A,B) is that it is unbounded if (and only if) 0 ∈ W (B) [4].
Since our interest is in spectral inclusion regions for the pencil (A,B), this is clearly an
unattractive feature: if B is nonsingular but 0 ∈W (B), then the spectrum is bounded, but the
inclusion region W (A,B) is unbounded, and therefore not very informative. This motivates
us to examine other field of values types of inclusion regions.

The rest of the paper has been organized as follows. In Section 2, we introduce four
inclusion regions of field of values type for matrix pencils. Section 3 studies the question
how to efficiently approximate W (A,B) for HPD B, for matrices of both small and large
dimension. Section 4 examines how to obtain eigenvalue inclusion regions based on fields of
values for non HPD B; we will exploit the sets introduced in Section 2. Section 5 extends
these four special inclusion regions to two different families of inclusion regions. By varying
a parameter (the target), we can generate infinitely many inclusion regions. We will study
several theoretical properties of the sets, as well as their practical computation.

Section 6 points out connections of these families with the usual harmonic Rayleigh–Ritz
method for the generalized eigenvalue problem, and a new variant of this approach (the left-
harmonic Rayleigh–Ritz method). Sections 7 gives an automated algorithm and an additional
numerical experiment. We end with some conclusions in Section 8.

2. Four inclusion regions of field of values type for matrix pencils. If B is nonsingu-
lar, then the spectrum of B−1A coincides with that of the pencil (A,B). As a consequence,

W (B−1A) (2.1)

is a spectral inclusion region for (1.1). Similarly,

W (AB−1) (2.2)

is also an inclusion region for (1.1); note that both sets are generally not equal to W (A,B).
Next, we consider two different inclusion regions, which, to our best knowledge, have

not been previously considered. We interchange the roles of A and B, and consider the
generalized eigenvalue problem Bx = λ−1Ax. For nonsingular A, the sets

1
W (A−1B)

(2.3)

and

1
W (BA−1)

(2.4)

are also eigenvalue inclusion regions for (1.1). Hereby division, and addition which is used
later in the paper, are interpreted elementwise: for a set S and a number γ we define

1
S

+ γ =
{

1
z

+ γ : z ∈ S
}
.
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Note that the sets (1.2), (2.1), and (2.2) all reduce to the usual field of values W (A) for the
pencil (A, I), where I denotes the identity matrix. The following simple example indicates
the potential advantage of the sets (2.1) and (2.2) as inclusion regions, over the set (1.2).

EXAMPLE 2.1. Let A = diag(1, 2) and B = diag(1,−1). Note that 0 ∈ W (B). Then
the eigenvalues are −2 and 1, and one may verify that the sets (2.1) and (2.2) are equal to the
interval [−2, 1], which is the smallest convex spectral inclusion region possible. In contrast
to this, the sets (2.3), (2.4), and W (A,B) are all equal to (−∞,−2] ∪ [1,∞) ∪ {∞}.
For W (A,B) this can be seen from the implication: if λ ∈ W (A,B) then it must hold that
|x1|2 + 2 |x2|2 − λ(|x1|2 − |x2|2) = 0 together with the constraint |x1|2 + |x2|2 = 1.

Here clearly, as inclusion regions, W (B−1A) and W (AB−1) are superior to the other
three sets. �

However, the converse can also hold. In the next example we show a typical case where
W (A,B) is a tighter inclusion region than (2.1), (2.2), (2.3), and (2.4): if A is Hermitian, and
B is HPD.

EXAMPLE 2.2. We take the matrices A = bcsstk06 and B = bcsstm06 of di-
mension n = 420 from the Matrix Market [6]; this problem arises in structural engineer-
ing. A is Hermitian, B is diagonal with positive elements. Since L−1AL−∗ is Hermitian,
W (A,B) = W (L−1AL−∗) is the ideal convex inclusion region [λmin, λmax]; no convex
inclusion region can be smaller. The matrices B−1A and AB−1 are non-Hermitian, and their
field of values is much larger. �

As already illustrated by Example 2.1, the sets (2.1), (2.2) on the one hand, and (2.3), (2.4)
on the other, differ in nature. W (B−1A) and W (AB−1) are closed, bounded, and convex
spectral inclusion sets. The set 1/W (A−1B) is generally non-convex, and may or may not be
unbounded, depending on whether or not 0 ∈ W (A−1B). To be precise, exactly one of the
three following cases holds:

• If a neighborhood of the origin is contained in W (A−1B), then (2.3) is unbounded,
with bounded complement. This bounded complement may also be considered a
spectral exclusion region.
• If a neighborhood of the origin is not in W (A−1B), then (2.3) is a bounded inclusion

region.
• In the special case that the origin lies on the boundary of W (A−1B), then (2.3) is an

unbounded inclusion region with unbounded complement.
Similar remarks hold for the set 1/W (BA−1). We will study related properties of more
general sets in Section 5 (see Proposition 5.4). We provide a further small illustrative example.

EXAMPLE 2.3. LetA andB be 10×10 matrices whose elements are generated randomly
with respect to the uniform distribution on (−1

2 ,
1
2). In Figure 2.1, we plot the spectrum (dots),

together with the sets W (B−1A) (solid), W (AB−1) (dash), 1/W (A−1B) (dotted line), and
1/W (BA−1) (dash-dot). The inclusion region W (AB−1) is tighter than W (B−1A); the
norms ‖AB−1‖ ≈ 7.9 and ‖B−1A‖ ≈ 10.9 may already serve as indicators of this fact
(recall that W (A) is contained in the disk with radius ‖A‖).

Since a neighborhood of the origin is contained in both W (A−1B) and W (BA−1), the
sets (2.3) and (2.4) are unbounded inclusion regions, or can also be seen as bounded exclu-
sion regions. Note that a neighborhood of the origin is excluded; we will come back to this
phenomenon in Section 5. �
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FIG. 2.1. (a) Eigenvalues (dots), W (B−1A) (solid), W (AB−1) (dash), 1/W (A−1B) (dot), and
1/W (BA−1) (dash-dot), for two 10× 10 random matrices. The last two sets are better visible in (b), a zoom-in
of (a).

We will study generalizations of the sets (2.1), (2.2), (2.3), and (2.4) in Section 5, and show
that they are special cases of two more general families of inclusion regions.

3. Approximation of W (A, B) for Hermitian positive definite B. We now consider
the numerical approximation of W (A,B) for HPD B; first for small-sized, and subsequently
for large-sized pencils. For small-size matrices, W (A) can be efficiently performed by the
method proposed by Johnson [3]: determine

1
2 λmax(eiαA+ (eiαA)∗) and 1

2 λmin(eiαA+ (eiαA)∗)

for a modest number of angles α with 0 ≤ α < π. Hereby the equalities

max
z∈W (A)

Re(z) = 1
2 λmax(A+A∗),

min
z∈W (A)

Re(z) = 1
2 λmin(A+A∗)

are used for every α. Since for HPD B with decomposition B = LL∗ we have W (A,B) =
W (L−1AL−∗), we can also use this approach to efficiently approximate W (A,B) for small
and medium sized matrices A and B.

For large sparse HPD matricesB, computing an exact decompositionB = LL∗ will often
be unattractive. Instead, we can attempt to approximate W (A,B) via projection of A and B
onto a low-dimensional subspace V . Let the matrix V have columns that form an orthonormal
basis for V . Then we have{

x∗Ax

x∗Bx
: x 6= 0

}
⊇
{
c∗V ∗AV c

c∗V ∗BV c
: c 6= 0

}
; (3.1)

the expression on the right-hand side may be viewed as the restriction of W (A,B) to the
subspace V . Since the projection V ∗BV is also HPD, we can decompose V ∗BV = MM∗,
and this set is equal to{

d∗M−1V ∗AVM−∗d

d∗d
: d 6= 0

}
= W (M−1V ∗AVM−∗).
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The crucial ingredient is a suitable space V . In view of the transformed eigenvalue problem

L−1AL−∗y = λy, B = LL∗, y = L∗x,

an ideal candidate would be the Krylov space

Kk(L−1AL−∗, v1) := span{v1, L
−1AL−∗v1, . . . , (L−1AL−∗)k−1v1},

for a certain starting vector v1 and a modest dimension k, but this is assumed to be compu-
tationally expensive. Instead, we can approximate the above Krylov space using an inexact
decomposition B ≈ LL∗, for instance an inexact Cholesky factorization. This gives a new
method described in Algorithm 1.

Algorithm 1 A method to approximate W (A,B) for large, HPD B.

Input: A matrix A, a Hermitian positive definite B, starting vector v1, dimension of Krylov
space k, and number of angles m; (inexact) Cholesky factor L of B
Output: An approximation to W (A,B)

1: Generate a basis V for the Krylov space Kk(L−1AL−∗, v1)
2: Decompose V ∗BV = MM∗

3: Approximate W (A,B) by W (M−1V ∗AVM−∗) using m angles

We stress the fact that, whether or not we use the exact Cholesky factor in the generation of
the Krylov space, the resulting “inclusion region” is in fact an approximate inclusion region
due to (3.1). However, although it is therefore not guaranteed that the spectrum is contained in
this approximation, this will often be the case in practice. The following experiment indicates
the potential of Algorithm 1.

EXPERIMENT 3.1. We take the matrices A = mhd1280a and B = mhd1280b from
the Matrix Market [6]; this problem arises in magnetohydrodynamics. B is HPD; its exact
Cholesky factor L has 14400 nonzeros. The inexact Cholesky factor L1 which is generated
by the Matlab command L1 = cholinc(B,1e-1) has only about 24% of the nonzeros of
L. We carry out Algorithm 1 using L, and using L1. In Figure 3.1, the spectrum is indicated
(dots), together with the inclusion region W (M−1V ∗AVM−∗) based on the Krylov space
K10(L−1AL−∗, v1) for the exact Cholesky factor L (solid line) and a random starting vector
v1. The dashed line is an approximate inclusion region, obtained in a similar way; the only
difference is that the inexact factor L1 is used. While both inclusion regions are relatively
coarse, note that the regions derived with the exact and inexact Cholesky factors are almost
indistinguishable. We will return to this example in Section 7.

Note that the use of Algorithm 1 is not limited to the case that B is HPD. If A is HPD, then
we can interchange the roles of A and B in view of

W (A,B) =
1

W (B,A)
;

we can efficiently approximate the set W (B,A) in this case. Note that, considered as an
inclusion region, this set may have drawbacks as mentioned in the previous section: it may be
unbounded and non-convex; however, the set can be efficiently computed.

Moreover, ifA andB are Hermitian but neitherA norB are positive definite, but a certain
linear combination A+ γB is HPD, then we may use the following result.
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FIG. 3.1. The spectrum (dots) and (true and approximate) inclusion regions W (M−1V ∗AVM−∗), where
V is a basis for the Krylov space K10(L

−1AL−∗, v1), and V ∗BV = MM∗. While L is the exact Cholesky
factor for the solid line, it is an inexact Cholesky factor (drop tolerance 0.1) for the dashed line.

LEMMA 3.2. For every γ ∈ C we have

W (A,B) =
1

W (B,A+ γB)
− γ.

Proof. If A and B have a common nullspace, then both sides are equal to C ∪ {∞}.
Otherwise we have

1
W (B,A+ γB)

− γ =
{
x∗(A+ γB)x

x∗Bx
: x 6= 0

}
− γ

=
{
x∗Ax

x∗Bx
: x 6= 0

}
= W (A,B).

In this case we can also apply Algorithm 1. However, it is not obvious how to compute or
approximate (1.2) if neither A, nor B, nor any linear combination of A and B is HPD. This is
the topic of the next section.

4. Field of values type inclusion regions for non HPD B. Now consider the case in
which neither A, nor B, nor any linear combination of A and B is HPD. Psarrakos [7] pro-
posed a method (via the so-called joint numerical range) suitable for pairs (A,B) of which
at least one matrix is Hermitian (but not necessary positive definite). This method uses a
discretization of the unit sphere S2 ⊂ R3; for every grid point a maximum eigenvalue of a
different associated Hermitian matrix has to be computed. Consequently, this approach does
not seem attractive for large pencils. Unlike for Johnson’s method (see, e.g., [1]), there does
not seem to be a natural approach that generates just one Krylov space for all these eigenvalue
problems, since in each grid point a different linear combination of three Hermitian matrices
is involved. Of course, one could generate a new Krylov space for each individual grid point,
but this drastically increases the amount of work. Moreover, the method in [7] is not suitable
for general non-Hermitian pencils.

Therefore, we will further study the spectral inclusion regions W (B−1A), W (AB−1),
1/W (A−1B), and 1/W (BA−1) as introduced in Section 2. For small matrices, these sets
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may be approximated using Johnson’s method. We will give an illustration of Psarrakos’
approach and some of the mentioned sets in the following simple example, also considered in
[7].

EXAMPLE 4.1. Let A =
[

1 4
0 3

]
and B =

[
1 0
0 0

]
with eigenvalues 1 and∞. Psarrakos’

approach [7] gives an approximation ofW (A,B) by taking well-chosen sample vectors z and
computing the corresponding Rayleigh quotients z∗Az

z∗Bz ; see the dots in Figure 4.1.
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FIG. 4.1. Psarrakos’ approach [7] (dots) and the unbounded inclusion region 1/W (BA−1). The inclusion
region 1/W (A−1B) is the real interval [1,∞) together with the point at infinity.

The set 1/W (BA−1) is an unbounded inclusion region, or may also be seen as bounded
exclusion region, enclosed by the solid line. This exclusion region is nearly, but not com-
pletely, convex. Furthermore, one may verify that 1/W (A−1B) is the real interval [1,∞)
together with the point at infinity. Again, 1/W (A−1B) as inclusion region is superior to
W (A,B). As B is singular, we do not consider (2.1) and (2.2). �

For large sparse matrices, the matrix inverses present in the sets W (B−1A), W (AB−1),
1/W (A−1B), or 1/W (BA−1) seem problematic for practical use. However, we note that

W (B−1A) =
{
x∗B−1Ax

x∗x
: x 6= 0

}
=
{
y∗AB∗y

y∗BB∗y
: y 6= 0

}
= W (AB∗, BB∗),

and

W (AB−1) =
{
x∗AB−1x

x∗x
: x 6= 0

}
=
{
y∗B∗Ay

y∗B∗By
: y 6= 0

}
= W (B∗A,B∗B).

Moreover,

1
W (A−1B)

=
{

x∗x

x∗A−1Bx
: x 6= 0

}
=
{
y∗AA∗y

y∗BA∗y
: y 6= 0

}
= W (AA∗, BA∗) =

1
W (BA∗, AA∗)
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and

1
W (BA−1)

=
{

x∗x

x∗BA−1x
: x 6= 0

}
=
{
y∗A∗Ay

y∗A∗By
: y 6= 0

}
= W (A∗A,A∗B) =

1
W (A∗B,A∗A)

.

The advantage of the various rightmost expressions is that these sets can be dealt with by the
methods of Section 3 sinceAA∗,A∗A,B∗B, andBB∗ are all HPD ifA andB are nonsingular.

For large-sized pencils we can therefore use subspace projection methods based on the
same idea as is behind Algorithm 1; we summarize them in Algorithm 2. For instance, in vari-
ant (a), we approximate W (B−1A) = W (AB∗, B∗B) by W (V ∗AB∗V, V ∗B∗BV ), where
V contains an orthonormal basis for a Krylov space. Instead of the “exact” Krylov space
Kk(B−1A, v1), we can also use an Krylov space generated with an inexact LU-decomposition
of B, that is, use Kk(U−1L−1A, v1), where B ≈ LU .

We remark that in Steps 2 and 3 of Algorithm 2, some additional computational tricks are
used. For instance, for (a), it is not necessary to compute V ∗BB∗V and to subsequently
determine its Cholesky factor. Instead, we can compute the reduced QR-decomposition
B∗V = QR; this implies that V ∗BB∗V = R∗R, so that

W (V ∗AB∗V, V ∗BB∗V ) = W (R−∗V ∗AB∗V R−1) = W (R−∗V ∗AQ).

Similar techniques can be used for (b), (c), and (d): for (b) we have, with BV = QR,

W (V ∗B∗AV, V ∗B∗BV ) = W (R−∗V ∗B∗AV R−1) = W (Q∗AV R−1);

for (c), with A∗V = QR,

1
W (V ∗BA∗V, V ∗AA∗V )

=
1

W (R−∗V ∗BA∗V R−1)
=

1
W (R−∗V ∗BQ)

;

finally, for (d), with AV = QR,

1
W (V ∗A∗BV, V ∗A∗AV )

=
1

W (R−∗V ∗A∗BV R−1)
=

1
W (Q∗BV R−1)

.

Algorithm 2 Methods to approximate (a) W (B−1A), (b) W (AB−1), (c) 1/W (A−1B),
and/or (d) 1/W (BA−1) for large B (intended for non HPD B).

Input: MatricesA,B, starting vector v1, dimension of Krylov space k, and number of angles
m; (inexact) LU -factors for A or B.
Output: An approximation to a spectral inclusion region based on a field of values

1: Approximate the Krylov space
(a) Kk(B−1A, v1) (b) Kk(AB−1, v1) (c) Kk(A−1B, v1) (d) Kk(BA−1, v1)

by a space V , by working with an (inexact) LU-decomposition
2: Compute the reduced QR-decomposition

(a) B∗V = QR (b) BV = QR (c) A∗V = QR (d) AV = QR
3: Approximate the set

(a) W (R−∗V ∗AQ) (b) W (Q∗AV R−1)
(c) 1/W (R−∗V ∗BQ) (d) 1/W (Q∗BV R−1)

using Johnson’s method with m angles
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In the next section, we will study a family inclusion regions of which the sets (2.1), (2.2),
(2.3), and (2.4) are special cases. Finally, we would like to mention that one could also
consider approximate inclusion regions of the form W ((V ∗BV )−1V ∗AV ). However, these
will often not be competitive to the regions generated by Algorithms 1 and 2. If B is HPD,
then a symmetric decomposition of V ∗BV (as in Algorithm 1) will give superior results,
while W ((V ∗BV )−1V ∗AV ) is unbounded if 0 ∈ W (V ∗BV ), which may occur for non-
HPD matrices B.

5. Inclusion regions from shifted pencils. In this section, we extend several results
from [1] to the context of matrix pencils. Let τ 6∈ Λ(A,B) which implies that A − τB is
nonsingular. Because of the shift-and-invert property (cf. (1.1))

(A− τB)−1Bx = (λ− τ)−1x, (5.1)

we have for the spectrum Λ(A,B) of the pencil (A,B) that

Λ(A,B) ⊂ 1
W ((A− τB)−1B)

+ τ.

Similarly, in view of

B(A− τB)−1y = (λ− τ)−1y, (A− τB)x = y,

we have for the spectrum Λ(A,B) of the pencil (A,B) that

Λ(A,B) ⊂ 1
W (B(A− τB)−1)

+ τ.

Therefore,

1
W ((A− τB)−1B)

+ τ and
1

W (B(A− τB)−1)
+ τ, (5.2)

parametrized by τ 6∈ Λ(A,B), are two families of inclusion regions of field of values type.
Furthermore, we note that

1
W (B(A− τB)−1)

+ τ =
{

y∗y

y∗B(A− τB)−1y
: y 6= 0

}
+ τ

=
{
x∗(A− τB)∗(A− τB)x

x∗(A− τB)∗Bx
: x 6= 0

}
+ τ (5.3)

=
{
x∗(A− τB)∗Ax
x∗(A− τB)∗Bx

: x 6= 0
}
,

and

1
W ((A− τB)−1B)

+ τ =
{

y∗y

y∗(A− τB)−1By
: y 6= 0

}
+ τ

=
{
x∗(A− τB)(A− τB)∗x

x∗B(A− τB)∗x
: x 6= 0

}
+ τ (5.4)

=
{
x∗A(A− τB)∗x
x∗B(A− τB)∗x

: x 6= 0
}
.



10 HOCHSTENBACH

Characterizations (5.3) and (5.4) enable effective computational approaches, since

1
W (B(A− τB)−1)

+ τ =
1

W ((A− τB)∗B, (A− τB)∗(A− τB))
+ τ,

1
W ((A− τB)−1B)

+ τ =
1

W (B(A− τB)∗, (A− τB)(A− τB)∗)
+ τ,

where (A− τB)∗(A− τB) and (A− τB)(A− τB)∗ are HPD.

For the first family, we consider the subspace approximation

1
W (V ∗(A− τB)∗BV, V ∗(A− τB)∗(A− τB)V )

+ τ

where the columns of V are an orthonormal basis for the Krylov space

Kk(BU−1L−1, v1), A− τB ≈ LU.

With (A− τB)V = QR, this yields

1
W (R−∗V ∗(A− τB)∗BV R−1)

+ τ =
1

W (Q∗BV R−1)
+ τ.

For the second family, we consider the subspace approximation

1
W (V ∗B(A− τB)∗V, V ∗(A− τB)(A− τB)∗V )

+ τ

where the orthonormal columns of V span the Krylov space Kk(U−1L−1B, v1). Using the
QR-decomposition (A− τB)∗V = QR, we get

1
W (R−∗V ∗B(A− τB)∗V R−1)

+ τ =
1

W (R−∗V ∗BQ)
+ τ.

These subspace based approximations are summarized in Algorithm 3.

Algorithm 3 Methods to approximate 1/W (B(A− τB)−1) + τ or 1/W ((A− τB)−1B) + τ

Input: Matrices A,B, a shift τ , starting vector v1, dimension of Krylov space k,
and number of angles m; (inexact) LU -factors for A− τB.

Output: An approximation to the spectral inclusion regions
(a) 1/W (B(A− τB)−1) + τ or (b) 1/W ((A− τB)−1B) + τ

1: Approximate the Krylov space
(a) Kk(B(A− τB)−1, v1) or (b) Kk((A− τB)−1B, v1)

by a space V , using the (inexact) LU-factors
2: Compute the reduced QR-decomposition

(a) (A− τB)V = QR or (b) (A− τB)∗V = QR
3: Approximate the set

(a) 1/W (Q∗BV R−1) + τ or (b) 1/W (R−∗V ∗BQ) + τ
using Johnson’s method with m angles

We note that a disadvantage of this approach is that in principle we need a different Krylov
subspace for every τ .
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In the remainder of this section we study several properties of the two families (5.2). The next
results can be viewed as extensions of [1, Thm. 5].

LEMMA 5.1.

(a) lim
|τ |→∞

1
W (B(A− τB)−1)

+ τ = W (B∗A,B∗B),

(b) lim
τ→0

1
W (B(A− τB)−1)

+ τ = W (A∗A,A∗B),

(c) lim
|τ |→∞

1
W ((A− τB)−1B)

+ τ = W (AB∗, BB∗),

(d) lim
τ→0

1
W ((A− τB)−1B)

+ τ = W (AA∗, BA∗).

Proof. For τ 6= 0 there holds (cf. also (5.3))

1
W (B(A− τB)−1)

+τ =
{
x∗(A− τB)∗Ax
x∗(A− τB)∗Bx

: x 6= 0
}

=

{
x∗( 1

τA−B)∗Ax
x∗( 1

τA−B)∗Bx
: x 6= 0

}
from which (a) and (b) follow. Parts (c) and (d) are proved similarly.

Some remarks about these results are in order. If A and B are nonsingular, then the sets in
this lemma are W (AB−1), 1/W (BA−1), W (B−1A), and 1/W (A−1B) respectively. From
these properties we see that the sets (2.1), (2.2), (2.3), and (2.4) studied in Section 4 are in fact
special cases of the families (5.2). Moreover, the limit sets in (a) and (c) are the only members
of these two families that are guaranteed to be convex.

Next, we present extensions of [1, Thms. 2 and 4] for matrix pencils.

THEOREM 5.2. Let G be a set-valued function from the set of n × n matrices to subsets
of C, such that for any A the set G(A) is bounded and contains Λ(A). Then

Λ(A,B) =
⋂

τ∈C \Λ(A,B)

1
G((A− τB)−1B)

+ τ,

Λ(A,B) =
⋂

τ∈C \Λ(A,B)

1
G(B(A− τB)−1)

+ τ.

Proof. Since Λ(A,B) ⊂ 1
G((A−τB)−1B)

+ τ for all τ 6∈ Λ(A,B), we have that Λ(A,B)
is also contained in the intersection. To show that equality holds, suppose that z 6∈ Λ(A,B),
then z 6∈ 1

G((A−zB)−1B)
+ z, since G((A− zB)−1B) is a bounded set. The second statement

is proved similarly.

Since the field of values satisfies the requirements of Theorem 5.2, we immediately get the
following result.

COROLLARY 5.3. We have the intersection properties

Λ(A,B) =
⋂

τ∈C \Λ(A,B)

1
W ((A− τB)−1B)

+ τ,
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Λ(A,B) =
⋂

τ∈C \Λ(A,B)

1
W (B(A− τB)−1)

+ τ.

If 0 6∈ W ((A − τB)−1B), then the set 1/W ((A − τB)−1B) + τ is bounded and hence
may be seen as an inclusion region. If 0 ∈ W ((A − τB)−1B), then the set 1/W ((A −
τB)−1B) + τ is unbounded. If its complement is bounded, it may be more convenient to
view this complement as an exclusion region. We call the case in which both the inclusion
region 1/W ((A− τB)−1B) + τ and its complement are unbounded the transition case.

The next proposition, an extension of [1, Thm. 6], implies that the transition case for
1/W ((A − τB)−1B) + τ occurs precisely if τ ∈ ∂W (B−1A) (that is, on the boundary
of W (B−1A)) and, similarly, that the transition case for 1/W (B(A − τB)−1) + τ occurs
precisely if τ ∈ ∂W (AB−1).

PROPOSITION 5.4. Let τ 6∈ Λ(A,B) and B be nonsingular. Then:
(a) 0 ∈W ((A− τB)−1B) if and only if τ ∈W (B−1A).
(b) 0 ∈W (B(A− τB)−1) if and only if τ ∈W (AB−1).
Proof. Since

W ((A− τB)−1B) =
{

x∗B(A− τB)∗x
x∗(A− τB)(A− τB)∗x

: x 6= 0
}
,

0 ∈W ((A− τB)−1B) if and only if there exists a nonzero x such that x∗B(A− τB)∗x = 0
which means that τ ∈ W (AB∗, BB∗), and since B is nonsingular this is equal to the set
W (B−1A). The proof of the second statement is similar.

The following result, an extension of [1, Prop. 3], indicates that by considering (5.2), we can
get inclusion regions excluding (user-chosen) targets τ .

PROPOSITION 5.5.

dist
(
τ,

1
W ((A− τB)−1B)

+ τ

)
≥ ‖(A− τB)−1B‖−1,

dist
(
τ,

1
W (B(A− τB)−1)

+ τ

)
≥ ‖B(A− τB)−1‖−1.

Proof. The first statement follows directly from the facts that the set W ((A − τB)−1B)
is contained in the disk around the origin with radius ‖(A− τB)−1B‖. The second statement
follows from a similar argument.

In fact, we have already seen examples of this in Figures 2.1 and 3.1. We will make fruitful
use of this fact in Section 7.

6. Relation with harmonic Rayleigh–Ritz methods. In this section we will first briefly
review the harmonic Rayleigh–Ritz method for the generalized eigenvalue problem (see also
[8]), and then point out connections with the families of inclusion regions of the previous
section.
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In subspace methods for eigenvalue problems, one attempts to find approximate eigen-
pairs (θ, v) ≈ (λ, x) of which the approximate eigenvector v is sought in a low-dimensional
search space V . The standard Ritz–Galerkin projection

Av − θBv ⊥ V

is frequently employed to find eigenvalues at the exterior of the spectrum, but is often less
successful to approximate interior eigenvalues.

Suppose we are interested in eigenpairs close to a target τ ∈ C\Λ(A,B). Because of
the shift-and-invert property (5.1), interior eigenvalues close to τ are exterior eigenvalues of
(A− τB)−1B. This suggests to impose the Galerkin condition

(A− τB)−1Bv − (θ − τ)−1v ⊥ W

for a certain test spaceW . With the choiceW = (A− τB)∗(A− τB)V we manage to avoid
matrix inverses and get the harmonic Ritz extraction

V ∗(A− τB)∗(A− τB)V c = (θ − τ)V ∗(A− τB)∗BV c,

where v = V c are the harmonic Ritz vectors. The corresponding harmonic Ritz values are
given by

θ =
c∗V ∗(A− τB)∗(A− τB)V c

c∗V ∗(A− τB)∗BV c
+ τ =

c∗V ∗(A− τB)∗AV c
c∗V ∗(A− τB)∗BV c

.

Therefore, we conclude that for fixed τ , (5.3) is exactly the set of all possible harmonic Ritz
values that can be obtained from a one-dimensional subspace V .

To obtain the set (5.4), we now consider the following new left-harmonic Ritz approach.
We start with the shift-and-invert property

(A− τB)−∗B∗y = (λ− τ)−∗y.

(In this case, the y represents a left eigenvector; but since we are interested in the eigenvalues
in this context, this is irrelevant.) This inspires us to extract an approximate eigenpair (θ, v)
by the Galerkin condition

(A− τB)−∗B∗v − (θ − τ)−∗v ⊥ W,

for a certain test space W . With W = (A − τB)(A − τB)∗V we get the harmonic Ritz
extraction

V ∗(A− τB)(A− τB)∗v = (θ − τ)∗V ∗(A− τB)B∗v.

where we call the vectors v = V c the left-harmonic Ritz vectors. The corresponding left-
harmonic Ritz values are given by

θ =
c∗V ∗(A− τB)(A− τB)∗V c

c∗V ∗B(A− τB)∗V c
+ τ =

c∗V ∗A(A− τB)∗V c
c∗V ∗B(A− τB)∗V c

.

Hence, we may conclude that for fixed τ , (5.4) is exactly the set of all possible left-harmonic
Ritz values that can be obtained from a one-dimensional subspace V .
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7. An automated algorithm and a numerical experiment. Algorithm 3 raises the im-
portant question how to choose relevant targets τ . Although the user is free to choose any
τ 6∈ Λ(A,B), it is attractive to develop an algorithm that automatically chooses sensible val-
ues for τ . Recall from Section 5 that for a chosen τ , Algorithm 3 generates an approximate
inclusion region that excludes a neighborhood of this τ .

Algorithm 1 (for HPD B) and Algorithm 2 parts (a) and (b) (for non HPD B) provide
us with bounded convex (approximate) inclusion regions. These regions may be not very
strict; cf. Figures 2.1 and 3.1. If we would like to improve this inclusion region, it seems a
promising idea to take the discretized boundary points of the obtained inclusion region as our
points for τ , as this “cuts away” parts of our initial inclusion region (cf. also [1]). This leads
to an automated “master” Algorithm 4, that calls Algorithms 1, 2, and 3 as appropriate.

Algorithm 4 An automated method to generate an approximate inclusion region

Input: Matrices A,B, starting vector v1, dimension of Krylov space k, drop tolerance δ,
and number of angles m.

Output: An approximated spectral inclusion region, consisting of the intersection of
O(m) inclusion regions

if B is HPD
1: Determine an inexact Cholesky factor of B with drop tolerance δ
2: Carry out Algorithm 1

else
3: Determine inexact LU-factors of B with drop tolerance δ
4: Carry out Algorithm 2, parts (a) and/or (b)

end
for each τj on the discretized boundary found in Step 2 or 4

5: Determine inexact LU-factors of A− τjB with drop tolerance δ
6: Carry out Algorithm 3, parts (a) and/or (b)

end

To test Algorithm 4, we return to the setting of Experiment 3.1. Since B is HPD, Algorithm 4
first calls Algorithm 1, which approximates W (A,B). There are two different approximating
aspects involved: we project W (A,B) onto a 10-dimensional Krylov space (k = 10), and to
generate the Krylov space we use an inexact Cholesky decomposition (δ = 10−5, with random
v1). The resulting approximation is a convex inclusion region. For clarity we discretize this
region using just 8 points (corner points in Figure 7.1(a)).

Apparently, this is a quite coarse inclusion region; to make it tighter we take the 8 corner
points as τ -values. The blue dashed lines indicate approximations to 1/W (B(A−τB)−1)+τ
as described in Algorithm 3(a). These represent finite approximate inclusion regions; note that
these regions are not true inclusion regions in this example. The black dotted lines indicate
approximations to 1/W ((A − τB)−1B) + τ as given in Algorithm 3(b). These 8 sets are
unbounded inclusion regions. We see that the approximate inclusion region consisting of
the intersection of all approximate inclusion regions indeed includes the vast majority of the
eigenvalues. Although it does not include some relative outliers, it gives a very good indication
of the location of the spectrum.

8. Conclusions. Our focus in this paper was on inclusion regions for matrix pencils
based on fields of values. We stress that the computation of inclusion regions may be an effi-
cient technique: since the field of values is often well approximated from a low-dimensional
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FIG. 7.1. (a) Result of running Algorithm 4 on the problem from magnetohydrodynamics for the discretization
of W (A,B) using 8 points. The blue dashed lines represent inclusion regions obtained with Algorithm 3(a), the
black dotted lines those obtained with Algorithm 3(b). Both take for τ the values on the discretized boundary of
the approximation of W (A,B) (the 8 corner points). (b) Zoom-in of (a).

Krylov space, computing a spectral inclusion region may be cheaper than computing even
one single eigenvalue!

Several results in this paper are extensions of results in [1], but for matrix pencils there are
many new aspects as well. First, we have slightly modified the usual definition ofW (A,B) by
adding∞ if B is singular. We have given procedures to numerically approximate W (A,B)
for HPD matrices B (or any combination of A and B), for both matrices of small and large
(see Algorithm 1) dimension.

Psarrakos’ method [7] can be used for pairs of small dimension of which at least one of
the two matrices is Hermitian (and not necessary definite), but seems to be computationally
unattractive for large matrices A and B. Moreover, it is not clear from [7] how to effectively
approximate W (A,B) if both matrices are non-Hermitian. Apart from this, we have seen that
W (A,B) as inclusion region may not reveal much useful information, since it may be very
large or even unbounded.

The sets W (B−1A), W (AB−1), 1/W (B−1A), and 1/W (AB−1) may be more infor-
mative inclusion regions, although the latter two sets may also be unbounded. Of course, the
intersection of these sets is also a bounded inclusion region. In contrast toW (A,B), these sets
can efficiently be approximated if no linear combination of A and B is HPD (Algorithm 2).

We introduced two families of inclusion regions involving shifted and inverted pencils:
1/W (B(A − τB)−1) + τ and 1/W ((A − τB)−1B) + τ , of which the four sets mentioned
above are special cases. We considered several theoretical properties as well as their use in
practical contexts (Algorithm 3). By varying the shift, we may generate as many inclusion
(or exclusion) regions as we desire, depending on the region of the complex plane that is of
interest to us.

We pointed out connections with the usual harmonic Rayleigh–Ritz method, as well as a
new left-harmonic variant. Finally, we proposed a method that automatically selects targets
τ , and gives a bounded approximated inclusion region consisting of the intersection of a user-
chosen number of inclusion regions (Algorithm 4).

Acknowledgments The author thanks the referee for useful and encouraging comments.
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