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trade-off between efficiency and reliability. We analyze a stylized model of a manufacturing system 
with a single exponential server and two queues in series: an admission queue and a work-in-progress 
(WIP) queue. The admission queue represents the pool of unreleased orders that is virtually present in 
the state variables of the planning model. Periodically, jobs from the admission queue are released to 
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when setting the parameters of the model. In this paper we study the relation
between workload constraints that reflect the finite capacity of the manufac-
turing system, and the use of planned lead times. It is a common practice in
rolling schedule based production planning to limit the periodic output to the
average production rate. If lead times are not modeled explicitly, this also im-
plies a restricition on the periodic releases to the average production rate. We
demonstrate that this common practice results in inefficient use of the produc-
tion capacity and show that the use of planned lead times leads to a better
trade-off between efficiency and reliability. We analyze a stylized model of a
manufacturing system with a single exponential server and two queues in series:
an admission queue and a work-in-progress (WIP) queue. The admission queue
represents the pool of unreleased orders that is virtually present in the state
variables of the planning model. Periodically, jobs from the admission queue
are released to the WIP queue such that the number of jobs in WIP and in
service does not exceed the workload constraint. We present a simple formula
for the maximum utilization rate of such a system, characterize the stationary
queue-length distribution by its generating function, and give the distribution
of the sojourn time of a job. We use the results to compare various settings of
the workload constraint and the planned lead time.

Keywords: Queueing, Production Planning, Rolling Schedules, Math
Programming

∗Corresponding author
Email addresses: m.m.jansen@tue.nl (M.M. Jansen), a.g.d.kok@tue.nl (A.G. de Kok),

i.j.b.f.adan@tue.nl (I.J.B.F. Adan)

Preprint submitted to Elsevier July 21, 2010

Text Only Including Abstract/Text + Figs + Tables
Click here to view linked References

http://ees.elsevier.com/ejor/viewRCResults.aspx?pdf=1&docID=14441&rev=0&fileID=120393&msid={61958823-604E-4F0B-9DAC-386BE111FB90}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1. Introduction

With the emergence of Advanced Planning Systems [10], Mathematical Pro-
gramming (MP) models for production planning [8, 12, 15, 17–19] are becoming
more commonplace in supporting firm’s decision making processes. Contrary
to the Manufacturing Resources Planning (MRP-II) concept [22], these models
deal with goods flow coordination and resource allocation in an integrated fash-
ion. Periodic production quantities are constrained by some capacity parameter
specifying the maximum possible throughput in a period. The maximum pe-
riodic throughput is treated as a deterministic variable in these MP models.
Although it is recognized by most authors that in reality there is uncertainty
in the maximum throughput, it is suggested that this should be dealt with by
installing safety stock or safety time. Suggestions on how to set the capacity
parameter in practice are generally absent. It seems to be an obvious choice to
set this parameter equal to the average production rate. In this paper we show
that this approach may seriously reduce the efficiency of resource utilization.

In practice, production planning is carried out in a rolling schedule based
fashion. A plan is developed for multiple periods into the future but only the
decisions for the first period are implemented. One period later, the planning
model is updated with actual forecast and state information and a new plan
is created. For most MP models that are proposed in the literature, these
decisions are the production quantities. In other literature [5, 16] the order
release decision is decoupled from the production quantities through the use of
an explicitly defined planned lead time that is expressed as an integer number
of planning periods. Rather than restricting production quantities to the period
capacity, in models with explicit planned lead times the workload is constrained
to the cumulative capacity in the planned lead time. Note that production
planning models without explicit planned lead times are special cases with a
planned lead time of a single period. It is argued in [13, 14] that optimal
planned lead times may be larger than a single period. We shall provide another
argument for the use of explicit planned lead times that are possibly larger than
a single period.

The planned lead time is essential for the coordination of goods flows in a
supply chain network. If the planned lead time is to be reliable, limitation of
the workload in the manufacturing system is inevitable. A workload constraint
in the production planning model leads to smoothing of the schedule of order
releases. The effect of production smoothing is build-ahead inventory (see sec-
tion 15.5 of [6]). Hence, there is a trade off between restricting the workload
to ensure a reliable planned lead time and relaxing the workload constraint to
reduce the build-ahead inventory.

In this paper we study the effect of the workload constraint and the planned
lead time parameters on the efficiency of the resource utilization. We study
this effect in a stylized model of the manufacturing system. The manufacturing
system consists of a facility in which at most N jobs are allowed (the workload
constraint). In front of the facility is a queue that contains those jobs that
cannot be admitted to the facility due to the workload constraint. This admis-

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

sion queue represents the build-ahead inventory. New requirements in a period
are represented by arrivals of jobs to the admission queue. We consider two
measures of efficiency. The first measure is the maximum utilization level under
which the system remains stable. The second measure is the expected length
of the admission queue. Reliability of the planned lead time is expressed as the
probability that the sojourn time of a job in the facility exceeds the planned
lead time.

A graphical representation of the model is shown in Figure 1. The total
number of jobs in the manufacturing system, the number waiting in the admis-
sion queue, and the number residing in the facility are denoted by Ln, Wn, and
Xn respectively. The manufacturing system is observed at the release epochs
that are indexed by n = 1, 2, . . . . The variables Wn and Xn denote the state
just after admissions at epoch n and are related to the total number of jobs in
the manufacturing system in the following way

Xn = min{Ln, N} (1)

Wn =
(

Ln −N
)+

(2)

facility

X ≤ NW

periodic

release

requirements production

admission

queue

μ

Figure 1: Model of the Manufacturing System

We assume that jobs arrive according to a (compound) Poisson process with
mean λ and we denote the number of arrivals in a period that starts with epoch
n by An. Jobs in the facility are processed by a single server with exponential
service times with mean µ−1. Vx,n = min{V∞,n, x} denotes the throughput in
period n conditioned on a workload level x at the start of the period, where
V∞,n is a Poisson random variable with rate µ. In other words, the throughput
in period n is VXn,n. Since Vx,n are i.d.d. random variables, we ommit the
index n whenever this is convenient (similarly for An). The dynamics of the
total number of customers is described by the following Lindley type equation:

Ln+1 = Ln − VXn,n +An, (3)

The remainder of his paper is organized as follows. First we briefly discuss
some of the literature on queueing models that are related to ours. We then
present a stability condition for the system. Next we describe the mathematical
model and give the probability generating function (PGF) for the state distri-
butions at the release epochs. We also derive the CDF of the sojourn time

3
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distribution. Finally we use these results to compare various settings of the
workload constraint and the planned lead time.

Before we continue, we introduce some notation that we use throughout
the paper. Let V = limn→∞ VXn,n, L = limn→∞ Ln, W = limn→∞ Wn, X =
limn→∞ Xn. We use the additional notation ρ := λ/µ, (x)+ = max{0, x},
(x)− = max{0,−x}, and |x| = (x)+ + (x)−.

2. Literature

The queueing model described in this paper is related to two streams of
literature. The first stream is the literature on the bulk service queue. The
analysis of the bulk service queue model is very similar to ours. In the bulk
service queue, jobs enter into service in batches of a maximum size. There
typically is a fixed time to service completion after which all jobs in service
depart together and a new batch can enter service. Our model can be seen to
correspond to a bulk service queue where the service time is equal to a planning
period and the maximum batch size corresponds to the workload constraint.
The main difference in our model is the fact that there may be jobs left in
the facility at the end of the period. A seminal paper in the area of bulk
service queues is Bailey [2]. Other important references include [3, 11]. Van
Leeuwaarden [20] presents an extensive treatment of the discrete bulk service
queue that is described by the Lindley equation X(t+1) = (X(t)−N)++A(t).

The other stream of literature that is related to our model is the literature on
the fixed-cycle traffic light (FCTL) queue. In the FTCL queue, there are cycles
that consist of a red period during which jobs may arrive but are not served and
a green period in which jobs both arrive and are being served. The length of a
cycle and the red and green period is fixed. The similarity of the FTCL queue
with the periodic order release model described in this paper is that capacity is
lost due to the fact that the server may idle even though there are jobs queueing.
Most traffic light queues assume a constant rate of departure and therefore there
is a natural limit on the number of jobs that can be processed in the green period.
Traffic light systems are for example discussed in [4, 9] and more recently in [21].
The key step in each of these papers is the characterization of the number of jobs
at the end of a cycle. To this purpose, a probability generating function (PGF)
is formulated that include N unknowns where N is the maximum number of jobs
that can pass in a green period. Solving for these unknowns involves complex
root-finding for the denominator of the PGF.

A paper that requires separate mentioning is that of Wang [23]. Wang
analyzes a queue where jobs can enter service only at fixed time intervals. There
are c identical exponential servers and jobs arrive according to a Poisson process.
Using techniques similar to [2], Wang characterizes the steady state queue-length
distribution by a PGF. Wang obtains closed-form expressions for the cases c = 1
and c = ∞.

4
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3. A Stability Condition

The manufacturing system in Figure 1 is stable if the number of jobs in the
admission queue does not grow to infinity in the long run. In most queueing
models, the stability condition simply is the requirement that the long run
number of arrivals does not exceed the long run service rate. This condition
does not depend on the control policy for the queue. Stability is achieved by
the fact that the server is working continuously if there are many jobs in the
queue. In the system of our study this is not the case. Due to the periodicity
of order releases and the workload constraint, the server may idle even though
there are many jobs in the admission queue. This phenomenon reduces the
effective capacity of the system and therefore the stability condition changes.
The stability condition of our system is given in the following proposition.

Proposition 1. A necessary and sufficient condition for stability of the system
is ρ < ρmax, where

ρmax = 1−
µ−N + E[|V∞ −N |]

2µ
≤ 1 (4)

where the latter inequality is strict if N < µ.

Proof. It is clear to see that the stability condition for the system is E [A] <
E [VN ] or

ρ <
E [VN ]

µ

The numerator is this fraction can be rewritten as

E [VN ] = E [min{V∞, N}] = E
[

V∞ − (V∞ −N)+
]

= µ− E
[

(V∞ −N)+
]

Using furthermore that

2(V∞ −N)+ = (V∞ −N) + (V∞ −N)− + (V∞ −N)+ = (V∞ −N) + |V∞ −N |,

we have

E [VN ]

µ
= 1−

E [(V∞ −N)+]

µ
= 1−

µ−N + E [|V∞ −N |]

2µ
.

It follows that a stability condition for the system is

ρ < ρmax = 1−
µ−N + E [|V∞ −N |]

2µ

By Jensen’s inequality we have

µ−N + E [|V∞ −N |] ≥ µ−N + |E [V∞ −N ] | = 2(µ−N)+ ≥ 0

which shows that ρmax ≤ 1 and ρmax < 1 for µ > N .

5
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Remark 1. Although we consider a facility with Poisson arrival and service
processes, Proposition 1 holds for any independent and identical discretely dis-
tributed A and V∞.

As we already mentioned in the introduction, it seems to be a natural choice
to set the capacity parameter in MP models for production planning equal to
the mean or expected throughput (i.e. N = µ). In this case, the formula for
maximum utilization simplifies as follows.

Corollary 1. The maximum utilization rate for a resource with a workload limit
N = µ is

ρmax = 1−
MAD[V∞]

2µ

where MAD stands for the Mean Absolute Deviation.

Proof. The proof follows readily from Proposition 1.

The MAD is a measure of variability that is often used by practitioners.
Figure 2 shows the maximum utilization rate for three different squared coeffi-
cients of variation (scv) of the maximum throughput. The workload constraint
is plotted on the horizontal axes as a multiple of µ and the maximum utilization
level for that constraint is plotted on the vertical axes. The figure shows that
the maximum utilization is strongly reduced for if the workload constraint is set
equal to the expected maximum throughput.

1.0 1.2 1.4 1.6 1.8 2.0

0.70

0.75

0.80

0.85

0.90

0.95

1.00

μ = 20μ = 10μ = 5

N/μ

max. util.

Figure 2: Maximum Utilization Level

It is well known that queue-lengths explode as the utilization rate reaches its
maximum. In the next section we discuss how the queue-lengths for our model
can be calculated if the utilization rate is less than its maximum (ρ < ρmax).

4. The Stationary Distributions

4.1. A Discrete Time Markov Chain Representation

We consider the model in Figure 1 at the release epochs. Since An are inde-
pendent, and VXn,n depends only on the state of the system at the nth release

6
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epoch, the process {Ln}n∈N+ forms a discrete time Markov Chain (DTMC)
with transition matrix

P =

































β00 β01 β02 β03 · · ·
β10 β11 β12 β13 · · ·
β20 β21 β22 β23 · · ·
...

...
...

...
...

βN−1,0 βN−1,1 βN−1,2 βN−1,3 · · ·
α0 α1 α2 α3 · · ·
0 α0 α1 α2 · · ·
0 0 α0 α1 · · ·
...

...
...

...
. . .

































, (5)

where

βij = P {A− Vi = j − i} , for all 0 < i ≤ N, j ≥ 0 (6)

αj = P {A− VN = j −N} , for all j ≥ 0 (7)

The elements of the matrix P can be calculated as follows:

βij :=

{
∑j

k=0 P {A = k}P {Vi = i− j + k} , if 0 ≤ j < i
∑i

k=0 P {A = j − i+ k}P {Vi = k} , if j ≥ i

and

αj :=

{
∑j

k=0 P(A = k)P(VN = N − j + k) if 0 ≤ j < N
∑N

k=0 P(A = j −N + k)P(VN = k) if j ≥ N

If the stability condition is satisfied, the DTMC is ergodic. We define the
stationary probabilities pi := limn→∞ P {Ln = i}. We characterize the station-
ary distribution of the DTMC by its PGF. First consider the PGF’s for the
arrival and service processes:

GA(z) := E
[

zA
]

=

∞
∑

k=0

P {A = k} zk (8)

GVi
(z) := E

[

zVi
]

=

N
∑

k=0

P {Vi = k} zk (9)

The PGF for the limiting distribution of the DTMC is:

GL(z) := E
[

zL
]

=
∞
∑

i=0

pi z
i

7
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From (3) we have:

GL(z) = E
[

zL+A−Vmin{L,N}
]

=

N−1
∑

i=0

pi z
iGA(z)GVi

(z−1) +

∞
∑

i=N

pi z
iGA(z)GVN

(
1

z
)

=

N−1
∑

i=0

pi z
iGA(z)

(

GVi
(z−1)−GVN

(z−1)
)

+GL(z)GA(z)GVN
(z−1)

which reduces to

GL(z) =
GA(z)

∑N−1
i=0 pi z

N+i
(

GVi
(z−1)−GVN

(z−1)
)

zN − zNGA(z)GVN
(z−1)

(10)

The numerator of GL has N unknowns that can be found by considering
the roots z1, z2, . . . of the denominator within the unit circle in the complex
plane. It can be shown using Rouché’s theorem that there are exactly N − 1
such roots [1] and these roots can routinely be found using computer packages
such as Wolfram Mathematica and MATLAB. Since the PGF is finite inside
the unit circle, the numerator must be zero for these roots. Substituting the
roots in the numerator and adding the normalization equation GL(1) = 1 gives
a system of N linear equations in N unknowns. The following normalization
equation is obtained by applying l’Hopital’s rule:

N−1
∑

i=0

pi

(

E [VN ]− E [Vi]
)

= E [VN ]− E [A] (11)

Note that equation (11) is precisely the equation that balances inflow and out-
flow:

E [A] =
N−1
∑

i=0

piE [Vi] + P {L ≥ N}E [VN ]

The system of equations that needs solving becomes:

(

ZV − zN v̄T
)

p =

(

0

E [VN ]− E [A]

)

, (12)

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

where

zN =















zN1
zN2
...

zNN−1

0















, Z =















zN−1
1 zN−2

1 . . . z1 1

zN−1
2 zN−2

2 . . . z2 1
...

...
...

...

zN−1
N−1 zN−2

N−1 . . . zN−1 1
1 2 . . . N − 1 N















,

v̄ =















v̄1
v̄2
...

v̄N−1

v̄N















, V =















v1 v2 . . . vN−1 v̄N
v2 v3 . . . v̄N 0
...

...
...

...
vN−1 v̄N . . . 0 0
v̄N 0 . . . 0 0















,

with vi = P {V∞ = i}, and v̄i = P {V∞ ≥ i}. With the solution p = (p0, p1, . . . , pN−1)
T ,

the PGF GL(z) is fully defined. For more information on finding the unknowns
in PGF’s, see for example chapter 2 of [20].

In Appendix Appendix B we give equations that can be used to obtain
the entire probability distribution and expressions for the first two moments
of L, W , and X . In Appendix Appendix A we also describe an alternative,
numerically stable method for obtaining the stationary distribution of L by
analyzing an embedded Markov Chain.

So far, we have not used the fact that arrivals and departures have exponen-
tially distributed interarrival times. The result up to here hold for any discrete
distribution of periodic arrivals and departures. The analysis can also be applied
to facilities with load-dependent exponential servers (including the multi-server
queue). For the determination of the sojourn times in the next sub-section, we
do rely on the exponential distribution of the interarrival and service times.

4.2. Sojourn times

In queueing systems where jobs arrive in unit size according to a Poisson
process, a distributional form of Little’s Law applies (cf. [7]). Consider a job
departing from the system. The number of jobs L̃ in the system after its de-
parture is equal to the number of arrivals that occurred during its sojourn time
S. By a level crossing argument and the PASTA property, the number of cus-
tomers arriving during an arbitrary sojourn time is equal in distribution to the
number of jobs in the system at an arbitrary point in time. If arrivals follow a
Poisson process, the PGF of the arbitrary time number of jobs in the system
GL̃ is related to the LST of the time spent in the system S∗ as follows:

GL̃(z) =

∞
∑

k=0

zk
∫ ∞

t=0

e−λ t (λ t)k

k!
dP {S < t}

= S∗
(

λ(1 − z)
)

9
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Hence, the LST of the time spent in the system becomes:

S∗(s) = GL̃

(λ− s

λ

)

(13)

In a similar way, we can find the sojourn time in the admission queue using
GW̃ . The PGF’s GL̃ and GW̃ are derived in Appendix Appendix C.

As we study the trade-off between a workload constraint and lead time reli-
ability in this paper, we are particularly interested in the time that a job spends
in the facility. The PASTA property does not hold for the arrivals into the fa-
cility so it is not possible to follow the approach described above here. Instead,
we condition the sojourn time in the facility on the number of jobs residing in
the facility just before a new admission, and the size of the batch in which a job
enters. Here we must take into account the inspection paradox: an arbitrary
job is more likely to be part of a large admission batch. We use the following
lemma for the calculation of the sojourn time of an arbitrary job:

Lemma 1. Let (Y,Q) be the number of jobs in the manufacturing system just
before a release epoch and the number of jobs subsequently admitted. Let (Ỹ , Q̃)
be the number of jobs prior to a release and the number of jobs admitted as seen
by an arbitrary job. Then the joint probability distributions of these random
variables are related in the following way:

P

{

Ỹ = y, Q̃ = q
}

=
q P {Y = y,Q = q}

E [Q]
(14)

Proof. Take a large number of release epochs M and mark each job that enters
by with the size q of the batch in which it enters. The fraction of batches of size q
is P {Q = q|Q > 0}, and the expected number of batches is M P {Q = q|Q > 0}.
We put all jobs together in a bin. By the law of large numbers, for large enough
M , the number of jobs marked q in the bin is q P {Q = q|Q > 0} M and the

total number of jobs in the bin is
∑N

q=1 qM P {Q = q|Q > 0}. Letting M go to
infinity and randomly picking one job from the bin, the probability of having
picked a job marked q is:

P

{

Q̃ = q
}

= lim
M→∞

(

q P {Q = q|Q > 0} M
1

)

(
∑N

q=1 uP {Q = q|Q > 0} M

1

)

= lim
M→∞

q P {Q = q} /P {Q > 0} M
∑N

q=1 uP {Q = q} /P {Q > 0} M

=
q P {Q = q}

E [Q]

Finally, we condition the number of jobs in the manufacturing system before
admission on the admission batch size to get

P

{

Ỹ = y, Q̃ = q
}

=
q P {Q = q}

E [Q]
P {Y = y|Q = q} =

q P {Y = y,Q = q}

E [Q]

10



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Proposition 2. Consider the workload constrained manufacturing system con-
sisting of a single server with exponential service rate µ to which orders arrive
with a rate λ. Let GY (z) :=

∑N
y=0 P {Y = y} zy and GX(z) :=

∑N
x=0 P {X = x} zx

be the PGF’s of respectively the number of jobs in the manufacturing system just
before and just after the release epoch. Then the LST of the sojourn time in the
manufacturing system for an arbitrary job has a distribution with LST T ∗:

T ∗(s) =
µ

sλ

[

GY

( µ

s+ µ

)

−GX

( µ

s+ µ

)

]

(15)

The CDF of the sojourn time is FT (t):

FT (t) =
µ

λ

[(

P {Y = 0} − P {X = 0}
)

t

+

N
∑

k=1

(

P {Y = k} − P {X = k}
)(

tΓk,µ(t)−
k

µ
Γk+1,µ(t)

)]

, (16)

where Γk,µ(t) is the CDF of the Gamma distribution with mean k µ−1 and vari-
ance k µ−2.

Proof. Let B denote a service time with E [B] = µ−1 and denote the PGF

B∗(s) :=
s

s+ µ

For a job entering in the jth position of a batch into a system with y
customers already present, the sojourn time T is the (y + j)-fold convolu-
tion of B. Let χ = {(y, q) ∈ N

2 : y ≥ 0, q > 0, y + q ≤ N} and denote
pyq = P {Y = y,Q = q}. Noting that the probability that a job is in the jth

place of a batch of size q is 1
q and using Lemma 1 the LST of T can be written

as

T ∗(s) = E
[

e−sT
]

=
∑

(y,q)∈χ

P

{

Ỹ = y, Q̃ = q
}

q
∑

j=1

1

q
E

[

e−sB(y+j)
]

=
∑

(y,q)∈χ

q pyq
E [Q]

q
∑

j=1

1

q

(

B∗(s)
)y+j

=
∑

(y,q)∈χ

pyq

(

B∗(s)
)y+1

E [Q]

1−
(

B∗(s)
)q

1−B∗(s)

=
B∗(s)

E [Q]
(

1−B∗(s)
)

[

N−1
∑

y=0

N−y
∑

q=1

pyq
(

B∗(s)
)y

−
N−1
∑

y=0

N−y
∑

q=1

pyq
(

B∗(s)
)y+q

]

We are free to extend the summation ranges in the term between square
brackets to include q = 0 and y = N since these terms cancel out. Since

11
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X(t) = Y (t) +Q(t) we have

T ∗(s) = B∗(s)

E[Q]
(

1−B∗(s)
)

[

∑N
y=0

∑N−y
q=0 pyq

(

B∗(s)
)y

−
∑N

y=0

∑N−y
q=0 pyq

(

B∗(s)
)y+q

]

= B∗(s)

E[Q]
(

1−B∗(s)
)

[

GY

(

B∗(s)
)

−GX

(

B∗(s)
)]

= µ
sλ

[

GY

(

µ
s+µ

)

−GX

(

µ
s+µ

)

]

,

where in the last step, we used that E [Q] = λ.
Equation (15) can be written as

T ∗(s) =
µ

λ

N
∑

k=0

(

P {Y = k} − P {X = k}
)1

s

( µ

s+ µ

)k

It can easily be verified that the Laplace transform in t of the function Γk,µ(t)
is

1

s

( µ

s+ µ

)k

.

Applying this to T ∗ gives the PDF of T :

fT (t) =
µ

λ

[

P {Y = 0}−P {X = 0}+

N
∑

k=1

(

P {Y = k}−P {X = k}
)

Γk,µ(t)
]

(17)

Finally, using that

∫ t

s=0

Γk,µ(s)ds = tΓk,µ(t)−
k

µ
Γk+1,µ

yields the CDF of T .

Using its LST, we can easily calculate the moments of T . The first two mo-
ments are given in Appendix Appendix B. The CDF of T can be obtained by
numerically inverting the LST.

5. Numerical examples

In this section we present some numerical results for the performance of
the workload constrained manufacturing system. First we compare the queue-
lengths for various settings of the workload constraint. Next, we show the
relation between the workload constraint and the lead-time reliability. For our
numerical examples, we consider three cases corresponding to a system with a
production rate of µ = 20, µ = 10, and µ = 5 (increasing coefficient of variation).

Table 1 shows the expectation and variance of the number of jobs in the
manufacturing system after a release epoch. The data is vertically organized
according to the workload constraint expressed as a multiple of µ such that the
figures may be easily compared. The data is horizontally organized according

12
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to the utilization level ρ. Table 2 shows information about the corresponding
sojourn times T . Besides the mean an variance, also the probability that the
sojourn time is less than a planned lead time of 1, 2, and 3 periods respectively
is given.

Table 1: Effect of the Workload Constraint on Queue Lengths

Table 2: Effect of the Workload Constraint on Sojourn Times

As was expected, the admission queue-length increases with both the uti-
lization and the reciprocal of the workload limit. We can see that even for a
moderately variable Var [V∞], E [W ] grows rapidly as N is reduced to µ. The
effect of the workload constraint on E [X ] is relatively small but Var [X ] is re-
duced substantially with a more restrictive workload constraint. The squared
coefficient of variation (SCV) of V∞ appears to be an important factor for the
sensitivity of the sojourn times. For µ = 20 (SCV = 0.05) the effect of the
workload constraint on the sojourn time is relatively small. On the other hand,
for µ = 5 (SCV = 0.2) reliable production is hardly possible unless a planned
lead time of more than one period is selected.

We now turn to the trade-off between the efficiency of the resource utilization

13
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ρ

ρ

ρ ρ

ρ

ρ

ρ
max τ = 1 τ = 2 τ = 3

Figure 3: Maximum Utilization
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and the reliability of the planned lead time. Figure 3 shows the maximum
utilization rate of the manufacturing system for a given lead time reliability α ∈
{0.9, 0.98} and planned lead time τ ∈ {1, 2, 3}. Lead time reliability is defined
as P {T ≤ τ} ≥ α. The workload constraint N is set out on the horizontal axis.
The maximum utilization under which the system is stable and the planned lead
time is reliable is set out on the vertical axis.

Figure 3 gives two important insights. Firstly, we observe that the utilization
of the manufacturing system is highly restricted if τ = 1. Secondly, for τ >
1, we see that the best choice for the workload constraint is not trivial. In
fact, particularly for smaller τ the curve is rather sharp near the maximum.
Furthermore, the seemingly obvious choice of setting N = τ µ is clearly not
the best in most cases. If the setting N = τ µ is desirable (e.g. because it
corresponds more closely to the available capacity over the planning horizon),
Figure 3 can be used to find which settings of τ are feasible under the reliability
constraint α. For example, a system with µ = 10 that is running at ρ = 0.8
must have τ ≥ 2 for α = 0.9.

6. Conclusions

Mathematical programming (MP) models for production planning found in
today’s Advanced Planning Systems typically treat production capacity as a
simple deterministic upper bound on the period throughput. Following the
principles of rolling schedule planning, the amount of work that is released to
the facility is limited by the choice of the capacity parameter. The obvious
choice of the capacity parameter seems to be the average production rate. In
this paper we show that this approach may substantially reduce the efficiency
of the manufacturing system if the throughput is subject to uncertainty. We
show that there is a simple relation between the maximum utilization rate of a
manufacturing system, and the variability of the output. For the special case
where the workload is restricted to the production rate, we see that the MAD
measure of variation naturally arises in this relation.

We also present expressions for the stationary queue-length and sojourn
time distributions of the manufacturing system. In order to evaluate these
expressions, we require the first N probability masses of the stationary queue-
length distribution of the total number of jobs L in the manufacturing system.
We propose numerical procedures to obtain these probabilities.

We use the results to study the trade-off between the efficiency of resource
utilization and the reliability of the planned lead time. The special case where
lead times are not explicitly modeled is equivalent to setting τ = 1. The effi-
ciency is given by the maximum utilization rate of the system, and the extend
of the load smoothing effect that is the result of the workload constraint. The
load smoothing effect is the average number of items in backlog or produced
in advance of the requirement due to the workload constraint. This effect is
reflected in the number of jobs waiting to be admitted to the manufacturing
system.
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The numerical study shows that the common practice of setting the ca-
pacity parameter in MP models for production planning equal to the average
production rate (N = µ) leads both to poor reliability and a poor efficiency.
Whereas relaxing the workload constraint leads to deterioration of the reliabil-
ity, restricting it further leads to a increase of the smoothing effect. A better
trade-off between reliability and efficiency is obtained for higher values of the
planned lead time parameter.
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Appendix A. An Embedded Markov Chain Approach for Obtaining

the Unknowns of GL

The transition matrix for the DTMC of L may be reduced to a finite Markov
chain by embedding on the states 0, . . . , N−1. That is, the Markov Chain is only
observed at the times n where Ln < N . There are two types of transitions in the
embedded Markov Chain. Firstly, there are the direct transitions between states
0, . . . , N − 1. Secondly, there are the indirect transitions via states outside the
embedded Markov chain. For these indirect transitions, we require the return
probabilities that are determined as follows.

Suppose the DTMC is in state n +m, where n ≥ N,m ≥ 0. We define the

return probability b
(k)
m,i, i > 0, k ≥ 0 to be the probability that the first transition

to a state j ≤ n will be to the state n− i and will take at most k jumps. These
probabilities can be calculated recursively:

b
(0)
m,i = 0

b
(k)
m,i = αN−(m+i) +

∞
∑

j=0

αN+(j−m) b
(k−1)
j,i , k > 0

Note that a jump to the right in k steps is of maximum size N such that we
can restrict the above summation and obtain:

b
(k)
m,i = αN−(m+i) +

(k−1)N−i
∑

j=0

αN+(j−m) b
(k−1)
j,i , k > 0 (A.1)

This sequence is increasing and bounded so the limit exists. We now define the
Markov Chain embedded on {0, 1, . . . , N − 1} with transition matrix Q = (qij),

qij = βij +

∞
∑

m=0

βi,N+m bm,N−i, , 0 ≤ i, j < N (A.2)

Let p̃ be the solution of the embedded Markov Chain (i.e. p̃ Q = p̃). Then we
use (11) for normalization to find the original probabilities pi, i = 0, . . . , N − 1:

pi =
1

c
p̃i, (A.3)

where

c =

∑N−1
i=0 p̃i

(

E [VN ]− E [Vi]
)

E [VN ]− E [A]

Remark 2. To obtain the numerical results presented in this paper, we use
the following stopping criterion for the iteration in A.2. For a given i, let

β̂i := max{j : βi,j > ǫ}, where ǫ is small. Stop whenever maxm≤β̂i−N{b
(k)
i,m −

b
(k−1)
i,m } < ǫ.
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Appendix B. More Details of the Stationary Probability Distribu-

tions

Appendix B.1. The probability masses for states i ≥ N

The probability masses of the stationary distribution of L for the states
i ≥ N can be found through the following balance equation for state i:

pi =
1

α0

(

pi−N −

i−1
∑

j=N

αi−j pj −

N−1
∑

j=0

βj,i−N pj

)

, 0 < n < N, (B.1)

The balance equation in (B.1) involves subtractions which may lead to nu-
merical instabilities (i.e. with negative probabilities). Alternatively we may
obtain the probabilities by extending the embedded Markov Chain to include
higher states. Given the return probabilities bm,1 we can calculate the stationary
probability pi for i = N,N +1, . . . by considering the Markov Chain embedded
on states {0, 1, . . . , i}, i ≥ N . The balance equation for state i becomes:

pi =
1

(1− αN −
∑∞

k=0 αN+k+1 bk,1)
×

[

N−1
∑

j=0

pj

(

βji +
∞
∑

k=0

βj,i+k+1 bk,1

)

+

i−1
∑

j=N

pj

(

αN+(i−j) +

∞
∑

k=0

αN+(i−j)+k+1 bk,1

)]

(B.2)

Note that this balance equation needs no further normalization since p0, p1, . . . , pN−1

are already properly normalized.

Appendix B.2. Moments of the distribution of the number of jobs

The moments of the distribution of the number of jobs in the system can
be found by standard differentiation of the PGF in (10) and taking the limit
z → 1. Applying l’Hopital’s rule, the first two moments become:

E [L] =
∆1 (Θ2 −Θ1)−Θ1 (∆2 −∆1)

2∆2
1

(B.3)

E
[

L2
]

=
1

6∆3
1

[

3 (∆2 −∆1) (Θ1 (∆2 −∆1)−∆1 (Θ2 −Θ1))

+ 2∆1 (∆1 (Θ3 − 3Θ2 − 3Θ1)−Θ1 (∆3 − 3∆2 + 3∆1))
]

(B.4)

where

∆k = Nk − E
[

Jk
N

]

Θk =

N−1
∑

i=0

E
[

(N + Ji)
k
]

− E
[

(i+ JN )k
]
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Although these equations look somewhat ugly, they are straightforward to
calculate once the probabilities p0, . . . , pN−1 are known. The moments of the
distribution of the number of jobs waiting to be admitted (W ) and the number
of jobs in the production unit (X) are directly found through their relation to
the total number of jobs:

E [X ] =
∑

i<N

pi i +N(1−
∑

i<N

pi) (B.5)

E
[

X2
]

=
∑

i<N

pi i
2 +N2(1−

∑

i<N

pi) (B.6)

E [W ] =
∑

i>N

(i −N) pi = E [L]− E [X ] (B.7)

E
[

W 2
]

=
∑

i>N

(i −N)2 pi = E
[

L2
]

− E
[

X2
]

− 2N(E [L]− E [X ]) (B.8)

Appendix B.3. Moments of the Sojourn Time in the Facility

The first two moments of the sojourn time are found by taking the deriva-
tive of the Laplace-Stieltjes transform T ∗(s) and letting s → 0. The first two
moments are:

E [T ] =
E [B] (E [X ] + E

[

X2
]

− E [Y ]− E
[

Y 2
]

)

2(E [X ]− E [Y ])
(B.9)

E
[

T 2
]

=
3E
[

B2
] (

E [X ] + E
[

X2
]

− E [Y ]− E
[

Y 2
])

6 (E [X ]− E [Y ])
(B.10)

−2E [B]2
(

E [X ]− E
[

X3
]

− E [Y ] + E
[

Y 3
])

6 (E [X ]− E [Y ])

where

E
[

Y k
]

=

N−1
∑

i=1

pi E
[

(

i− Vi

)k
]

+

(

1−

N−1
∑

i=0

pi

)

E

[

(

N − VN

)k
]

Appendix C. Distribution of the Stationary Queue Lengths at Ar-

bitrary Time

In order to obtain the time that a job spends in the admission queue and in
the whole manufacturing system, we require the stationary distributions of the
admission queue length and the total number of jobs in the system at arbitrary
time. Without loss of generality we assume that the length of a period is one.
Let An(t) and Vi,n(t) be the number of arrivals and jobs processed in the in-
terval [rn, rn + t], 0 ≤ t < 1, where , rn is the time of the nth release epoch.
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Furthermore, let Ln(t) be the number of jobs at time rn + t. The queue-length
processes at arbitrary times are given by:

Ln(t) = Ln +An(t)− VXn,n(t) (C.1)

The stationary distribution of Ln(t) is denoted by L(t). We define the PGF’s
GA(z, t), GVi

(z, t), GL(z, t), where

GL(z, t) :=

∞
∑

k=0

zk P {L(t) = k}

and the others are defined similarly.
From (C.1) we obtain expressions for the PGF defined above:

GL(z, t) =
N−1
∑

i=0

piz
iGA(z, t)GVi

(z−1, t)

+
(

1−

N−1
∑

i=0

pi

)

zNGA(z, t)GVN
(z−1, t) (C.2)

We use the notation L̃ to denote the arbitrary-time variant of L. The PGF
of L̃ is

GL̃(z) :=

∫ 1−

0

GL(z, t) dτ (C.3)

(C.4)

For a compound Poisson arrival process and a Poisson departure process we
have:

GA(z, t) = e−tλ
(

1−GD(z)
)

,

GVi
(z, t) = e−t(1−z)/µ Γ̄i,µ(z t) + zi Γi,µ(t),

where GD(z) is the PGF of the size of individual arrivals, Γi,µ is the CDF of
a Erlang/Gamma random variable with mean i µ−1 and variance i µ−2 whose
complement is denoted by Γ̄i,µ.

For notational convenience we introduceGJ̃i
(z) =

∫ 1−

0
ziGA(z, t)GVi

(z−1, t)dt.

Furthermore, let r := λ
(

1−GD(z)
)

, s := µ(1− z−1), and v := µ/(r+ µ). With
some algebra we obtain

GJ̃i
(z) =

∫ 1−

0

ziGA(z, t)GVi
(z−1, t)

=
1

r + s

[

zi
(

1−GA(z)GVi
(z−1)

)

+
s

r
vi
(

1− e−r GVi
(v−1)

)

]

(C.5)

so that

GL̃(z) =

N−1
∑

i=0

piGJ̃i
(z) +

(

1−

N−1
∑

i=0

pi

)

GJ̃N
(z) (C.6)
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