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Abstract

A uniparametric 4-DOF family of perturbed Hamiltonian oscillators in 1:1:1:1
resonance is studied as a generalization for several models for perturbed Keplerian
systems. Normalization by Lie-transforms (only first order is considered here) as
well as geometric reduction related to the invariants associated to the symmetries
is used based on previous work of the authors. A description is given of the lower
dimensional relative equilibria in such normalized systems. In addition bifurcations
of relative equilibria corresponding to three dimensional tori are studied in some
particular cases where we focus on Hamiltonian Hopf bifurcations and bifurcations
in the 3-D van der Waals and Zeeman systems.
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1 Introduction

Continuing previous work [9] and [10], [11] on perturbed isotropic oscillators in four dimen-
sions (other authors refer to them as perturbed harmonic oscillators in 1:1:1:1 resonance),
we consider in R8, the symplectic form ω = dQ ∧ dq, and the uniparametric family of
Hamiltonian systems defined by

Hβ(Q,q) = H2 + εH6 (1)

where

H2 =
1

2
(Q2

1 + Q2
2 + Q2

3 + Q2
4) +

1

2
(q2

1 + q2
2 + q2

3 + q2
4) (2)

is the isotropic oscillator,

H6(Q,q) =
(
q2
1 + q2

2 + q2
3 + q2

4

) (
β2

(
q2
1 + q2

2 − q2
3 − q2

4

)2
+ 4

(
q2
1 + q2

2

) (
q2
3 + q2

4

))

and ε is an small parameter ε << 1. Without loss of generality ε can be scaled to 1.
The ε is only used to indicate a small perturbation. The system defined by Hamiltonian
function Eq. (1) has two first integrals in involution given by

Ξ = q1Q2 −Q1q2 + q3Q4 −Q3q4, L1 = q3Q4 −Q3q4 − q1Q2 + Q1q2, (3)

associated to which we have rotational symmetries. We use the same notation as in [10].
Let H̄β(Q,q) = H2 + ε H̄6 denote the normal form of the system (1) with respect to

H2 which is truncated after terms of order ε (or order 6 if one wishes to put ε equal to
1). The normalized truncated system is an integrable system with integrals H̄β, H2, Ξ,
and L1. When this system is reduced with respect to the symmetries given by H2 and Ξ,
and one considers the reduced phase space given by Ξ = 0, then this reduced phase space
is isomorphic to S2 × S2 and by combining the results in [10] and [5] on sees that, as a
symmetric Poisson system, the system is equivalent to a regularized perturbed Keplerian
system in normal form. More precisely the system under consideration then is equivalent
to the model for the hydrogen atom subject to a generalized van der Waals potential (see
[12], [15] and references therein). For β = 0 this system reduces to the model for the
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quadratic Zeeman effect. When β =
√

2 we have the Van der Waals sytem [1]. For this
reason we propose to name our system as the generalized Van der Waals 4-D oscillator.
The generalized van der Waals system has, as a perturbed Keplerian system, been subject
of many studies concerning bifurcations and integrability (see [12], [15], [16], [14]).

This paper will concentrate on several particular aspects concerning relative equilibria
of this generalized 4-D Van der Waals oscillator.

In Section 2 the Hamiltonian (1) is put into normal form with respect to H2. Con-
sidering the truncated normal form a system is obtained that is invariant under the the
S1-actions corresponding to H2, Ξ, and L1. These three actions together generate a T3-
action. Reduction with respect to this T3-action will then give a one-degree-of-freedom
system. In the subsequent sections 2, 3, 4 a constructive geometric reduction in stages
will be performed. Constructive because the orbit spaces and reduced phase spaces will
actually be constructed using invariants and orbit maps. In stages because the reduc-
tion will be performed by three consecutive reductions with respect to one S1-action at
a time. In this paper only the first order normalization will be considered. For most
results this will be sufficient. Only when degeneracies occur a higher order normalization
will be needed. The first reduction is the reduction with respect to the H2 symmetry.
This is a regular reduction and the reduced phase space is isomorphic to CP3(see [26]).
However, we will not use the standard invariants and therefore obtain a slightly different
Lie-Poisson system rather than the common one based on the well known invariants of
the isotropic oscillator (see [6]).

In Section 3 we carry out a second reduction associated to the S1-action generated by
the Hamiltonian flow defined by Ξ. The resulting orbit space is stratified with reduced
phase spaces of which the regular ones are four dimensional and isomorphic to S2 × S2.
However, there are also two singular strata corresponding to two dimensional reduced
phase spaces isomorphic to S2.

In Section 4, we make use of the third reduction, this time with respect to the integral
L1, which reduces our system to a one degree of freedom system on the thrice reduced
phase space. The regular reduced phase spaces are isomorphic to a 2-sphere which is a
symplectic leaf for the Poisson structure on the orbit space. There are singular reduced
phase spaces which are homomorphic to a 2-sphere, and which contain one or two singular
points. These reduced phase spaces are build from two or three symplectic leafs. Besides
these there are singular reduced phase spaces consisting of a single point. (see figure (1)
and [10]).

At each reduction step we will compute some stationary points of the reduced system
which of course correspond to relative equilibria of our system. It turns out that the
computable relative equilibria coincide with those implicated by the symmetry group. In
section 5 we will further concentrate on relative equilibria as singular points of the energy-
moment map. We will show that the lower dimensional relative equilibria, i.e. those that
correspond to invariant S1 or T2, are given by the singularity of the moment map for the
T3-symmetry group, and can be described by a moment polytope. The relation between
toric fibrations of phase space and moment polytopes has recently also been considered in
[29] for systems with less degrees of freedom. The edges and faces of the moment polytope
can be considered as a generalization of the idea of a normal mode in systems with two
degrees of freedom. At particular points of these sets we may then find bifurcations of
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families of relative equilibria corresponding to T3. The regular T3 relative equilibria will
correspond to stationary points of the trice reduced system on the regular parts of the
reduced phase spaces.

The final sections are devoted to studying some particular bifurcations. In section 6
we set β = 0 obtaining a generalized Zeeman problem, because the model describing the
Zeeman effect is obtained by setting ξ = 0. In this case the bifurcation of relative equilibria
can completely be described. In section 7 we will show that for Ξ = ξ, L1 = l, ξ = l
Hamiltonian Hopf bifurcation are present for particular values of λ. Similar arguments
can be used for ξ = −l. In Section 8 we consider the generalized 3D Van der Waals model
which is obtained from our model by setting ξ = 0. This problem was considered earlier
in [13]. Our approach allows us to give a more refined description as the one presented in
[13].

2 Normalization and reduction with respect to the

oscillator symmetry H2

2.1 The first reduced phase space

In order to normalize the system defined by (1) with respect to H2, and reduce the
normalized system we compute the invariants for the H2 action. There are 16 quadratic
polynomials in the variables (Q,q) that generate the space of functions invariant with
respect to the action given by the flow of H2. Explicitly they are

π1 = Q2
1 + q2

1 π2 = Q2
2 + q2

2 π3 = Q2
3 + q2

3 π4 = Q2
4 + q2

4

π5 = Q1Q2 + q1q2 π6 = Q1Q3 + q1q3 π7 = Q1Q4 + q1q4 π8 = Q2Q3 + q2q3

π9 = Q2Q4 + q2q4 π10 = Q3Q4 + q3q4 π11 = q1Q2 − q2Q1 π12 = q1Q3 − q3Q1

π13 = q1Q4 − q4Q1 π14 = q2Q3 − q3Q2 π15 = q2Q4 − q4Q2 π16 = q3Q4 − q4Q3

(4)

The invariants are obtained using canonical complex variables (see [9] for more details).
Expressing the H2 normal form up to first order in ε for (1) in those invariants we have

H = H2 + εH6 (5)

where

H2 =
1

2
(π1 + π2 + π3 + π4) = n (6)
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and

H6 =
1

2

[
n (1− 4β2)(π2

15 + π2
14 + π2

13 + π2
12)

+2(β2 − 1)(π2
11(π4 + π3)− π2

16(π3 + π4))

+ 5n (1− β2)(π2
9 + π2

8 + π2
7 + π2

6) + β2n (5n2 − 3π2
11) + n(β2 − 4)π2

16

]

The reduction is now performed using the orbit map

ρπ : R8 → R16; (q, Q) → (π1, · · · , π16) .

The image of this map is the orbit space for the H2-action. The image of the level surfaces
H2(q,Q) = n under ρπ are the reduced phase spaces. These reduced phase spaces are
isomorphic to CP3. The normalized Hamiltonian can be expressed in the invariants and
therefore naturally lifts to a function on R16, which, on the reduced phase spaces, restricts
to the reduced Hamiltonian.

However, in the following we will not use the invariants πi as is done in [10], but
instead use the (Ki, Lj, Jk) invariants as introduced in [9]. That is we replace the gener-
ating invariants πi by the following set of invariants which is actually a linear coordinate
transformation on the image of the orbit map. By this change of coordinates the integral
are now among the invariants defining the image.

H2 = 1
2
(π1 + π2 + π3 + π4) K2 = π8 − π7 L2 = π12 + π15 K3 = −π6 − π9

K1 = 1
2
(−π1 − π2 + π3 + π4 J3 = π8 + π7 J7 = π12 − π15 J6 = π6 − π9

J1 = 1
2
(π1 − π2 − π3 + π4) J4 = π5 + π10 L3 = π14 − π13 Ξ = π16 + π11

J2 = 1
2
(π1 − π2 + π3 − π4) J5 = π5 − π10 J8 = π14 + π13 L1 = π16 − π11

(7)

The normal form is in these invariants

HΞ = 1
2
[n (5 K2

2 + 5 K3
2 + 2 L1

2 + L2
2 + L3

2 + β2 (5 K1
2 + L2

2 + L3
2) )

− ((4 + β2) (K2 L2 + K3 L3) + (2 + 3 β2)K1L1) ξ]
(8)

The reduction of the H2 action may now be performed through the orbit map

ρK,L,J : R8 → R16; (q, Q) → (H2, · · · , J8) .

Note that on the orbit space we have the reduced symmetries due to the reduced actions
given by the reduced flows of XΞ and XL1 . The orbit space is defined by the following
relations (9) and (10). These relations can be obtained by applying (7) to the 36 relation
among the generators πi as given in [9], [10].
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K1 L1 + K2 L2 + K3 L3 − Ξ n = 0, J6 L1 + J4 L2 − J1 L3 − J8 n = 0

J3 L1 − J2 L2 − J5 L3 + J7 n = 0, J8 K3 + J2 L1 + J3 L2 + J1 Ξ = 0

J7 K3 − J4 L1 + J6 L2 − J5 Ξ = 0, J8 K2 − J5 L1 − J3 L3 − J4 Ξ = 0

J7 K2 − J1 L1 − J6 L3 − J2 Ξ = 0, J5 K2 − J2 K3 + J8 L1 − J6 n = 0

J1 K2 + J4 K3 + J7 L1 + J3 n = 0, J8 K1 + J5 L2 − J2 L3 − J6 Ξ = 0

J7 K1 + J1 L2 + J4 L3 + J3 Ξ = 0, J6 K1 + J4 K2 − J1 K3 − J8 Ξ = 0

J5 K1 + J3 K3 − J8 L2 + J4 n = 0, J4 K1 − J6 K2 − J7 L3 + J5 n = 0

J3 K1 − J2 K2 − J5 K3 + J7 Ξ = 0, J2 K1 + J3 K2 + J8 L3 + J1 n = 0

J1 K1 + J6 K3 − J7 L2 + J2 n = 0, J6 J7 + J3 J8 + K3 L2 −K2 L3 = 0

J5 J7 − J1 J8 + K3 Ξ− L3 n = 0, J4 J7 − J2 J8 −K3 L1 + K1 L3 = 0

J3 J7 − J6 J8 −K1 Ξ + L1 n = 0, J2 J7 + J4 J8 + K2 Ξ− L2 n = 0

J1 J7 + J5 J8 −K2 L1 + K1 L2 = 0, J3 J5 + J1 J6 −K1 K3 + L1 L3 = 0

J3 J4 + J2 J6 − L3 Ξ + K3 n = 0, J2 J4 − J1 J5 − J3 J6 − J7 J8 = 0

J1 J4 − J2 J5 −K2 K3 + L2 L3 = 0, J2 J3 − J4 J6 −K1 K2 + L1 L2 = 0

J1 J3 − J5 J6 − L2 Ξ + K2 n = 0, J1 J2 + J4 J5 − L1 Ξ + K1 n = 0, (9)

joint with

K1
2 + K2

2 + K3
2 + L1

2 + L2
2 + L3

2 − Ξ2 − n2 = 0

J7
2 + J8

2 − L1
2 − L2

2 − L3
2 + Ξ2 = 0

J4
2 − J5

2 + J6
2 − J8

2 −K3
2 + L3

2 = 0

J3
2 + J6

2 −K2
2 −K3

2 − L1
2 + Ξ2 = 0

J2
2 + J5

2 − J6
2 + J8

2 + K2
2 + K3

2 + L1
2 − n2 = 0

J1
2 + J5

2 + K3
2 + L1

2 + L2
2 − n2 = 0 (10)

and

H2 = n. (11)

The last relation H2 = n defines the symplectic leaves for the induced Poisson structure
on this orbit space which are the reduced phase spaces. Let BK,L,J denote the structure
matrix for induced Poisson structure{ , }(K,L,J). This matrix is given in table 1.

Note that the motivation for this choice of invariants is that the reduced Ξ invariants
are the (Ki, Lj), which makes that the second reduction is easily obtained (see section 3).

2.2 Relative equilibria on CP3.

A relative equilibrium for a Hamiltonian system with respect to a symmetry group G is
an orbit which is a solution of the system and simultaneously an orbit of the group. In
our case the relative equilibria are therefore orbits of XH̄ as well as orbits of XH2 , where
H̄ denotes the first order normal form for H. These relative equilibria correspond to
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{, } H2 K1 J1 J2 K2 J3 J4 J5 K3 J6 Ξ L1 L2 J7 L3 J8

H2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K1 0 0 0 0 -2L3 -2J8 0 0 2L2 -2J7 0 0 -2K3 2J6 2K2 2J3

J1 0 0 0 0 0 0 -2L1 2Ξ -2J7 2L2 -2J5 2J4 -2J6 2K3 0 0

J2 0 0 0 0 -2J8 -2L3 2Ξ -2L1 0 0 -2J4 2J5 0 0 2J3 2K2

K2 0 2L3 0 2J8 0 0 -2J7 0 -2L1 0 0 2K3 0 2J4 -2K1 -2J2

J3 0 2J8 0 2L3 0 0 0 -2L2 0 -2Ξ 2J6 0 2J5 0 -2J2 -2K1

J4 0 0 2L1 -2Ξ 2J7 0 0 0 0 2L3 2J2 -2J1 0 -2K2 -2J6 0

J5 0 0 -2Ξ 2L1 0 2L2 0 0 -2J8 0 2J1 -2J2 -2J3 0 0 2K3

K3 0 -2L2 2J7 0 2L1 0 0 2J8 0 0 0 -2K2 2K1 -2J1 0 -2J5

J6 0 2J7 -2L2 0 0 2Ξ -2L3 0 0 0 -2J3 0 2J1 -2K1 2J4 0

Ξ 0 0 2J5 2J4 0 -2J6 -2J2 -2J1 0 2J3 0 0 0 2J8 0 -2J7

L1 0 0 -2J4 -2J5 -2K3 0 2J1 2J2 2K2 0 0 0 -2L3 0 2L2 0

L2 0 2K3 2J6 0 0 -2J5 0 2J3 -2K1 -2J1 0 2L3 0 0 -2L1 0

J7 0 -2J6 -2K3 0 -2J4 0 2K2 0 2J1 2K1 -2J8 0 0 0 0 2Ξ

L3 0 -2K2 0 -2J3 2K1 2J2 2J6 0 0 -2J4 0 -2L2 2L1 0 0 0

J8 0 -2J3 0 -2K2 2J2 2K1 0 -2K3 2J5 0 2J7 0 0 -2Ξ 0 0

Table 1: Poisson brackets structure in the K, L, J invariants

stationary points of the reduced system obtained from XH̄ after reduction with respect
to the XH2-action, i.e. the action of the one-parameter group given by the flow of XH2 .

The reduced system on R16 is given by the differential equations

dz

dt
= {z, H̄(z)}(K,L,J) =< z,B(K,L,J)DH̄(z) > , (12)

with z = (H2, K1, J1, J2, K2, J3, J4, J5, K3, J6, Ξ, L1, L2, J7, L3, J8), which on the reduced
phase spaces restrict to a Hamiltonian system.

For computing the H2 relative equilibria it is sufficient to compute the stationary
points of (12) on the reduced phase space, that is, these stationary points should also
fulfill relations (9) to (11). Which gives a total of 52 nonlinear equations to be solved for
15 unknowns, taking into account that H2 = n is given. Now on the reduced phase space
we still have the T 2-action induced by the two integrals Ξ and L1. Let GΞ denote the
one-parameter group given by the action of XΞ. Similarly introduce GL1 and GΞ,L1 . Let
FixCP3(GΞ,L1) denote subspace of the reduced phase space which is the fixed point space
for the actions of Ξ and L1. Furthermore let FixCP3(GΞ) be the fixed point space for the
Ξ-action and let FixCP3(GL1) be the fixed point space for the L1-action. Any stationary
point belonging to FixCP3(GΞ,L1) is an isolated relative equilibrium. A stationary point
belonging to either FixCP3(GΞ) or FixCP3(GL1) will belong to a circle of stationary points.
Finally stationary points belonging to none of these fixed point spaces will be rotated by
both actions and therefore fill a two-torus of stationary points.
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From the bracket table for the (K,L, J) variables we see that the action of Ξ on
R16 consists of four harmonic oscillators in 1:1 resonance simultaneously rotating in the
(J1, J5), (J2, J4), (J3, J6) and (J7, J8) planes. Similarly the L1 action on R16 consists of
four harmonic oscillators in 1:1 resonance simultaneously rotating in the (J1, J4), (J2, J5),
(K2, K3) and (L2, L3) planes.

Using these specific actions in (K,L, J) coordinates any stationary point, not equal
to the origin, in FixCP3(GΞ,L1) will have H2 = n, and J1 = J2 = J3 = J4 = J5 =
J6 = J7 = J8 = K2 = K3 = L2 = L3 = 0. A straightforward computation solving the
set of equations using Mathematica or Maple gives the four isolated stationary points
(H2, Ξ, K1, L1) = (n, n, n, n), (n, n,−n,−n), (n,−n, n,−n) or (n,−n,−n, n), with all the
other variables equal to zero.

For stationary points in FixCP3(GΞ), we need to have H2 = n and J1 = J2 = J3 = J4 =
J5 = J6 = J7 = J8 = 0. Again solving the equations using Mathematica or Maple gives
the isolated stationary points already found and the following invariant sets of stationary
points

K2
2 + K2

3 = n2 , L2
2 + L2

3 = n2 , K2 = L2 , H2 = Ξ = n , (13)

K2
2 + K2

3 = n2 , L2
2 + L2

3 = n2 , K2 = −L2 , H2 = −Ξ = n , (14)

K2
2 + K2

3 = n2 , L2
2 + L2

3 = n2 , K3 = L3 , H2 = Ξ = n , (15)

K2
2 + K2

3 = n2 , L2
2 + L2

3 = n2 , K3 = −L3 , H2 = −Ξ = n . (16)

Note that the variables not mentioned are equal to zero. It describes the reduced XL1

orbit with initial value (H2, Ξ, K2, K3, L2, L3) = (n,±n, n, 0, n, 0) and the other variables
zero.

For stationary points in FixCP3(GL1), we need to have H2 = n and J1 = J2 = K2 =
J4 = J5 = K3 = L2 = L3 = 0. Again solving the equations gives the isolated stationary
points already found and the following invariant sets of stationary points

J2
3 + J2

6 = n2 , J2
7 + J2

8 = n2 , H2 = n , L1 = ±n . (17)

Note that the variables not mentioned are equal to zero. Thus we obtain again two
invariant “circles” of stationary points. These are reduced XΞ orbits with initial values
for instance (H2, L1, J3, J6, J7, J8) = (n, n, n, 0, n, 0), (n,−n, n, 0, n, 0) and other variables
zero.

Finding invariant stationary sets which are fixed by neither the action of Ξ nor the
action of L1 is much harder because we have to solve the full set of equations. Therefore
we will restrict to some examples which do not form an exhaustive list.

Set H2 = n,K2 = K3 = J3 = J6 = L2 = L3 = J7 = J8 = 0. Then we obtain the
invariant T 2 with a basis given by the “circles”

J2
1 +J2

5 = n2 , J2
2 +J2

4 = n2 , and J2
1 +J2

4 = n2 , J2
2 +J2

5 = n2 , H2 = n , K1 = ±n . (18)

This set is obtained by rotating the stationary point (H2, K1, J1, J2, J4, J5) = (n,±n, n, n, 0, 0),
(other variables zero),with the Ξ and L1 action.
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When we set H2 = n, K1 = L1 = Ξ = K2 = K3 = J3 = J6 = 0. Then we obtain the
torus with basic “circles”

J2
7 + J2

8 = n2 , J2
1 + J2

5 = n2 − J2
7 , J2

2 + J2
4 = n2 , and (19)

L2
2 + L2

3 = n2 , J2
1 + J2

4 = n2 − L2
2 , J2

2 + J2
5 = n2 , H2 = n .

So the precise choice of basic “circles” depends on the initial stationary point. The precise
nature of this set is still to be investigated.

Similar sets can be found when other combinations of variables are set equal to zero.

3 Further reduction with respect to the rotational

symmetry Ξ

3.1 The second reduced phase space S2
n+ξ × S2

n−ξ

The rotational symmetry Ξ reduces CP3 to a variety made of strata of dimension 4, and
two strata of dimension 2. In order to see that, we fix Ξ = ξ and consider CP3/S1 where
S1 is the action generated by the symmetry Ξ. We perform this reduction by expressing
the second reduced system in the 8 invariants defined by this action

H2 = 1
2
(π1 + π2 + π3 + π4) Ξ = π16 + π11

K1 = 1
2
(π3 + π4 − π1 − π2) L1 = π16 − π11

K2 = π8 − π7 L2 = π12 + π15

K3 = −(π6 + π9) L3 = π14 − π13

This, in turn, leads us to the orbit mapping

ρ2 : R16 → R8; (π1, · · · , π16) → (K1, K2, K3, L1, L2, L3,H2, Ξ)

The orbit space ρ2(CP3) is defined as a six dimensional algebraic variety in R8 by the two
relations

K2
1 + K2

2 + K2
3 + L2

1 + L2
2 + L2

3 = H2
2 + Ξ2 , K1L1 + K2L2 + K3L3 = H2Ξ . (20)

the reduced phase spaces are obtained by setting

Ξ = ξ , H2 = n .

Thus there are 2+2 relations defining the second reduced space with n ≥ 0. The reduced
phase spaces can now be represented as, in general, four dimensional varieties in R6, with
the variables (K1, K2, K3, L1, L2, L3), given by the relations

K2
1 + K2

2 + K2
3 + L2

1 + L2
2 + L2

3 = n2 + ξ2,

K1L1 + K2L2 + K3L3 = nξ.
(21)
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{·, ·}2 K1 K2 K3 L1 L2 L3

K1 0 −2L3 2L2 0 −2K3 2K2

K2 2L3 0 −2L1 2K3 0 −2K1

K3 −2L2 2L1 0 −2K2 2K1 0
L1 0 −2K3 2K2 0 −2L3 2L2

L2 2K3 0 −2K1 2L3 0 −2L1

L3 −2K2 2K1 0 −2L2 2L1 0

Table 2: Bracket relations for the (K, L) variables.

Introducing a new set of coordinates (σ1, σ2, σ3, δ1, δ2, δ3) by the relations σi = Ki + Li

and δi = Li −Ki with i = 1, 2, 3 we obtain

σ2
1 + σ2

2 + σ2
3 = (n + ξ)2

δ2
1 + δ2

2 + δ2
3 = (n− ξ)2

Thus (21) is isomorphic to S2
n+ξ × S2

n−ξ. Note that when ξ = 0 the second reduced space
is isomorphic to S2

n × S2
n. This space, as we know, may be obtained when normalizing

perturbed Keplerian systems by immersion in a space of dimension 4 by means of regular-
ization by the Kustaanheimo-Stiefel transformation [25] or by Moser regularization [26].
When n = ξ or n = −ξ we obtain singular symplectic leaves of dimension two in stead of
four dimensional reduced phase spaces.

Note that in the following we will refer to the second reduced phase spaces as S2
n+ξ ×

S2
n−ξ although strictly speaking in (K, L) coordinates the reduced phase spaces are only

isomorphic to this representation.
Brackets for the invariants (K1, K2, K3, L1, L2, L3) defining the second reduced phase

spaces S2
n+ξ × S2

n−ξ are given in table (2). Moreover the second reduced Hamiltonian up
to first order, modulo a constant takes the form

HΞ =
1

2

[
n

(
5 K2

2 + 5 K3
2 + 2 L1

2 + L2
2 + L3

2 + β2 (5 K1
2 + L2

2 + L3
2)

)

− (
(4 + β2) (K2 L2 + K3 L3) + (2 + 3 β2)K1L1

)
ξ
]

(22)

Thus (S2
n+ξ × S2

n−ξ, {·, ·}2,HΞ) is a Lie-Poisson system. Identifying R6 with so(4)∗, the
linear coordinate change from (K,L) to (ρ, δ) is precisely the Lie algebra isomorphism
between so(4)∗ and so(3)∗ × so(3)∗. The regular reduced phase spaces can be considered
as co-adjoint orbits of SO(3)×SO(3) on the dual of its Lie algebra. The symplectic form
is the standard Lie Poisson structure [30]. The dynamics in S2

n+ξ × S2
n−ξ is given by the

following set of equations

dK

dt
= {K,HΞ}2 (23)
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with K =(K1, K2, K3, L1, L2, L3). Explicitly, the equations (23) are




dK1

dt
= 2n(4− λ) (L2K3 − L3K2) ,

dK2

dt
= 2n(4λ− 1)L3K1 + 2ξ(1− λ)(L3L1 + K3K1)− 6nL1K3,

dK3

dt
= 2 n(1− 4λ)L2K1 − 2(1− λ) ξL2L1 + 6 nL1K2 + 2(λ− 1)ξK2K1,

dL1

dt
= 0,

dL2

dt
= 2 (1− λ) (−5 nK1K3 + ξK1L3 + ξK3L1 + nL3L1) ,

dL3

dt
= −2 (1− λ) ( ξK1L2 + ξK2L1 + nL2L1 − 5 nK1K2) ,

(24)

where, in what follows, λ = β2.

Remark 3.1 Note that when λ = 1 the normal form approximation has L1 and L2 as
additional integrals. When λ = 4 one obtains K1 is an additional integral for the normal
form approximation. As we will see, in the latter case, the fully reduced Hamiltonian is
just a function of K1.

3.2 Relative equilibria in S2
n+ξ × S2

n−ξ

Equilibria ze = (Ke
1 , K

e
2 , K

e
3 , L

e
1, L

e
2, L

e
3) are obtained using the Lagrange multiplier pro-

cedure to determine the points where the reduced Hamiltonian is tangent to the reduced
phase space. We get the equations

dHΞ + α1 df1 + α2 df2= 0 , f1 = 0 , f2 = 0 . (25)

where

f1 = K2
1 + K2

2 + K2
3 + L2

1 + L2
2 + L2

3 − (n2 + ξ2) ,

f2 = K1L1 + K2L2 + K3L3 − nξ , (26)

and α1, α2 ∈ R. The search for roots in that system leads us to the following set of
solutions

ze = (n, 0, 0, ξ, 0, 0) , ze = (−n, 0, 0,−ξ, 0, 0) ,

ze = (ξ, 0, 0, n, 0, 0) , ze = (−ξ, 0, 0,−n, 0, 0) . (27)

In the S2
n+ξ × S2

n−ξ representation these points correspond to the poles on the σ1- and
δ1-axis.

Furthermore we obtain the following 1-dimensional manifolds of stationary solutions

K1 = 0 , L1 = 0 , nK2 = ξL2 , nK3 = ξL3 , L2
2 + L2

3 = n2

and

K1 = 0 , ; L1 = 0 , ξK2 = nL2 , ξK3 = nL3 , L2
2 + L2

3 = ξ2 . (28)
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When, on the second set, we pick one of the points

ze = (0, 0,±n, 0, 0,±ξ)

and we make the reconstruction of this relative equilibrium to the full phase space, we
obtain a 2-torus, consequently reconstruction of the full set given by the second equation
in (28) gives a 3-torus of periodic orbits.

For the very particular case ξ = 0, the above relative equilibria in 27 correspond to
the poles on S2

n×S2
n on the σ1- and δ1-axis. The relative equilibria in 28 collapse onto one

set corresponding to the equators on S2
n × S2

n around the σ1- and δ1-axis. The solutions
are

ze = (±n, 0, 0, 0, 0, 0) , ze = (0, 0, 0,±n, 0, 0) and
{(0, 0, 0, 0, L2, L3)|L2

2 + L2
3 = n2} , {(0, 0, 0, 0, K2, K3)|K2

2 + K2
3 = n2} .

The above computed relative equilibria are all induced by the symmetry of the prob-
lem. There are relative equilibria that involve the specific Hamiltonian, these can be
computed using more complicated numerical calculations. These solutions then may de-
pend on the parameter λ.

4 Further reduction with respect to the rotational

symmetry L1.

4.1 The third reduced space Vn ξ l

As we said in the Introduction the process of reduction of the 4-D isotropic oscillator with
the symmetries Ξ and L1 has already been reported in [9] and [10]. In order to make the
paper self contained, we will reproduce the main aspects contained in those references.

To further reduce from S2
n+ξ × S2

n−ξ to Vn ξ l one divides out the S1-action generated
by L1 and fixes L1 = l. The 8 invariants for the L1 action on R8 are

H2 , Ξ , L1 , K = K1 ,

M = 1
2
(K2

2 + K2
3) + 1

2
(L2

2 + L2
3) , N = 1

2
(K2

2 + K2
3)− 1

2
(L2

2 + L2
3) ,

Z = K2L2 + K3L3 , S = K2L3 −K3L2 . (29)

There are 3 + 3 relations defining the third reduced phase space

K2 + L2
1 + 2M = H2

2 + Ξ2

KL1 + Z = H2Ξ

M2 −N2 = Z2 + S2

L1 = l, Ξ = ξ, H2 = n

Consequently we may represent the third reduced phase space Vn ξ l in (K,N, S)-space
by the equation

(n2 + ξ2 − l2 −K2)2 − 4(nξ − lK)2 = 4N2 + 4S2. (30)
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If we set

f(K) = (n2 + ξ2− l2−K2)2− 4(nξ− lK)2 = [(n+ ξ)2− (K + l)2][(n− ξ)2− (K− l)2]

then our reduced phase space is a surface of revolution obtained by rotating φ(K) =√
f(K) around the K-axis.

Remark 4.1 The reduced phase spaces as well as the Hamiltonian are invariant (see
Eq. (32)) under the discrete symmetry S → −S. Thus all critical points of the reduced
Hamiltonian on the reduced phase space will be in the plane S = 0

The shape of the reduced phase space is determined by the positive part of f(K). The
polynomial f(K) can be written as

f(K) = (K + n + ξ + l)(K − n− ξ + l)(K − n + ξ − l)(K + n− ξ − l),

thus, the four zeroes of f(K) are given by

K1 = −l − n− ξ , K2 = l + n− ξ , K3 = l − n + ξ , K4 = −l + n + ξ .

So f(K) is positive (or zero) in the subsequent intervals of K:

l < ξ , −l < ξ K1 < K3 < K2 < K4 K ∈ [K3, K2] (31)

l > ξ , −l < ξ K1 < K3 < K4 < K2 K ∈ [K3, K4]

l < ξ , −l > ξ K3 < K1 < K2 < K4 K ∈ [K1, K2]

l > ξ , −l > ξ K3 < K1 < K4 < K2 K ∈ [K1, K4]

When we have a simple root of f(K) which belongs to one of the above intervals, we
have that the intersection of the reduced phase space with the K-axis is smooth. f(K)
has four different roots in the following two cases: (i) l 6= ξ and ξ, l 6= 0; (ii) l 6= ξ and
ξ = 0 or l = 0. In these cases the reduced phase space is diffeomorphic to a sphere. A
point on this sphere corresponds to a three-torus in original phase space.

To find the the double zeroes of f(K) we compute the discriminant of f(K) = 0. It is

(l − n)2(l + n)2(l − ξ)2(l + ξ)2(n− ξ)2(n + ξ)2 .

Thus there are double zeroes at l = ±n, l = ±ξ and ξ = ±n. If we have just one double
zero the reduced phase space is a sphere with one cone-like singularity at the intersection
point given by the double root (l = ±ξ 6= 0). If we have two double zeroes the reduced
phase space is a sphere with two cone-like singularities at the intersection points given
by the double roots (l = ξ = 0). In the other cases the reduced phase space is just one
singular point. The singular points correspond to two-tori in original phase space.

Triple zeroes occur when |l| = |ξ| = n. The reduced phase space is just a point which
corresponds to a circle in original phase space.

Quadruple zeroes only occur when l = n = ξ = 0, which corresponds to the origin
in original phase space and is a stationary point. See figure (1). More details on this
analysis can be found in [9].
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ξ = l = 0
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Figure 1: The thrice reduced phase space over the parameter space. K is the symmetry axis of
each surface.(See [10])

{·, ·}3 M N Z S K L1

M 0 4KS 0 −4KN 0 0
N −4KS 0 −4L1S −4(KM − L1Z) 4S 0
Z 0 4L1S 0 −4L1N 0 0
S 4KN 4(KM − L1Z) 4L1N 0 −4N 0
K 0 −4S 0 4N 0 0
L1 0 0 0 0 0 0

Table 3: Bracket relations for the M, N, Z, S,K,L1 variables.

14



The cone-like singularities of the reduced phase space are candidates for the occurrence
of Hamiltonian Hopf bifurcations. Hamiltonian Hopf bifurcations might therefore occur
along the lines l = ξ and l = −ξ in parameter space.

The Poisson structure for M, N, Z, S,K,L1 is given
The Hamiltonian on the third reduced phase space is

HΞ,L1 =
3n

4
(3λ− 2) K2 + ξl(1− λ)K +

n

2
(4− λ) N

+ n3(
3

2
+

λ

4
)− (

l2 + ξ2
)
(
λ

2
+ 1)

n

2

(32)

In (K,N, S)-space the energy surfaces are parabolic cylinders. The intersection with
the reduced phase space give the trajectories of the reduced system. Tangency with
the reduce phase spaces gives relative equilibria that generically will correspond to three
dimensional tori in the original phase space.

Thus (Vn ξ l, {·, ·}3,HΞ,L1) is a Lie-Poisson system. The corresponding dynamics is
given by

dK

dt
= 2n(λ− 4) S,

dN

dt
= 2[3n(3λ− 2)K + 2ξl(1− λ)] S, (33)

dS

dt
= n(λ− 4)(K3 − (ξ2 + l2 + n2)K)− (3λ− 2)[6nKN + 4ξl(λ− 1)N + 2ln2ξ].

Remark 4.2 Note that for λ = 2/3, the function H is linear in the variable space
(K,N, S). Likewise for λ = 1, we note that H, modulo constants, is independent of
ξ and l. Moreover when λ = 4, H is only a function of K.

Remark 4.3 It is easy to see that this system can be integrated by means of elliptic
functions, but we do not plan to follow that path. We intend to classify the different
types of flows as functions of the integrals and parameter of the system. Only then we
will be ready for the integration of a specific initial value problem.

4.2 Equilibria in the thrice reduced space Vn ξ l

In order to search for equilibria we have to study the tangencies of (32) with the third
reduced space Vn,ξ,l. This leads us to the following set of equations

dH + α1dg1 = 0, g1 = 0, α1 ∈ R (34)

where

g1 = (n2 + ξ2 − l2 −K2)2 − 4(nξ − lK)2 − 4(N2 + S2).

After some computations we arrive to the following equation

n(λ− 4)(K3 − (ξ2 + l2 + n2)K + 2lξn)±
√

f(K)(4ξl(λ− 1) + 6n(2− 3λ)K) = 0 (35)
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which, after some manipulations may be written as sixth degree polynomial

p(K) = a0K
6 + a1K

5 + a2K
4 + a3K

3 + a4K
2 + a5K + a6 = 0 (36)

with coefficients given by

a0 = −20n2 (4λ− 1) (λ− 1)

a1 = 12lnξ (3λ− 2) (λ− 1)

a2 = 4 (λ− 1)
(
40l2n2λ + 40ξ2n2λ + 40n4λ− ξ2l2λ− 10ξ2n2 + ξ2l2 − 10n4 − 10n2l2

)

a3 = −4lnξ(−238n2λ− 3ξ2λ + 68n2 + 18ξ2λ2 − 30l2λ + 179n2λ2 + 12ξ2 + 12l2 + 18l2λ2)

a4 = −20n6 + 460ξ2n2λ2l2 + 100n6λ− 728ξ2n2l2λ− 232ξ2n4λ + 104ξ2n4 − 20ξ4n2

− 232l2n4λ− 80ξ4n2λ2 + 164l2n4λ2 + 104l2n4 − 80l4n2λ2

+ 100l4n2λ + 100ξ4n2λ + 8ξ4l2λ2 − 16ξ4l2λ + 304ξ2n2l2

− 16l4ξ2λ + 8ξ4l2 + 8l4ξ2λ2 + 164ξ2n4λ2 − 20l4n2 − 80n6λ2 + 8l4ξ2

a5 = 4lnξ
(
38l2n2λ + 9ξ4λ2 − 10n4 + 38ξ2n2λ− 15l4λ + 9l4λ2

−28n2l2 + 46ξ2l2λ− 19ξ2n2λ2 − 7n4λ− 15ξ4λ− 20ξ2l2

−26ξ2l2λ2 + 6ξ4 − 28ξ2n2 + 8n4λ2 + 6l4 − 19l2n2λ2
)

a6 = 4 ξ2l2
(
15n4 + 2ξ2l2 + 2ξ2l2λ2 − 4ξ2l2λ− 6n4λ− ξ4λ2 + 2ξ4λ

− 4ξ2n2λ + 2l2n2λ2 − 4l2n2λ + 2ξ2n2 − ξ4 + l4 + 2n2l2

+2l4λ + 2ξ2n2λ2 − l4λ2
)

The general study of thrice reduced system, with four parameters: three integrals
(n, ξ, l) and a physical parameter λ, will not be done here. However in the next section
we will derive some general results concerning the relative equilibria in systems with sym-
metries generated by H2, Ξ, and L1. As for the Hamiltonian system under consideration
we will satisfy ourselves with some particular scenarios. More precisely, in what follows
we will consider in some detail three situations:

(i) λ = 0, (ii) ξ = l, (iii) ξ = 0

The first situation is a generalization of the Zeeman model in four dimensions. The second
corresponds to the case where the thrice reduced space has singular points; we will show
that there are Hamiltonian Hopf bifurcations related to those points. The third case is
the generalized Van der Waals model in three dimensions. We will recover known results
as well as clarify some aspects of the polar case of this system.

5 Relative equilibria and moment polytopes

In this section we will consider the relation between the relative equilibria and moment
polytopes. This relation has recently also been observed by others (see [29]).
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Recall that a relative equilibrium for a Hamiltonian system with respect to a symmetry
group G is an orbit which is a solution of the system and simultaneously an orbit of the
symmetry group. In the following we will use the equivalent definition that a relative
equilibrium is a critical point of the energy-momentum map. For the normalized truncated
system XH̄ the energy-momentum map is

EM : R8 → R4; (q,Q) → (H̄, H2, Ξ, L1) .

In this case the full symmetry group is GH2,Ξ,L1 , the group generated by the actions of
H2, Ξ, and L1. Because the H2 level surfaces are compact we know that, according to
the Arnold-Liouville theorem, EM−1(p), for p a regular value, will be a T4 or a disjoint
union of T4. When p is not a regular value the counter images EM−1(p) will be tori of
lower dimension, which are group orbits and invariant under the dynamics of the system
XH̄. Thus for each point ze on such a torus there exists a one-parameter subgroup gt of
GH2,Ξ,L1 such that ze(t) = gt · ze is an orbit of XH̄. That is ze is a relative equilibrium
(see [3]). Consider the moment map J1 : CP3 → (Ξ, L1, H2) ⊂ R3 for the torus action
GH2,Ξ,L1 . It is clear that any critical point for this moment map is also a critical point for
EM. Thus the critical points of J1 will describe relative equilibria for any Hamiltonian
system with these symmetries.

According to a theorem by Atiyah [2] and Guillemin and Sternberg [18, 19] the image
for a moment map for a torus action is a convex polytope.

Considering 4-DOF families of perturbed Hamiltonian oscillators in fourfold 1:1 res-
onance with integrals Ξ and L1 we may, after H2-reduction, introduce the moment map
J3 : CP3 → (Ξ, L1, K) ⊂ R3. Because we have the inequalities

H2 ± Ξ = 1
2

(
(q1 ±Q2)

2 + (q2 ∓Q1)
2 + (q3 ±Q4)

2 + (q4 ∓Q3)
2
) ≥ 0 ,

and

H2 ± L1 = 1
2

(
(q1 ∓Q2)

2 + (q2 ±Q1)
2 + (q3 ±Q4)

2 + (q4 ∓Q3)
2
) ≥ 0 .

and the for the thrice reduced phase space

L1 < Ξ , −L1 < Ξ K1 < K3 < K2 < K4 K ∈ [K3, K2] (37)

L1 > Ξ , −L1 < Ξ K1 < K3 < K4 < K2 K ∈ [K3, K4]

L1 < Ξ , −L1 > Ξ K3 < K1 < K2 < K4 K ∈ [K1, K2]

L1 > Ξ , −L1 > Ξ K3 < K1 < K4 < K2 K ∈ [K1, K4]

with

K1 = −L− 1− n− Ξ , K2 = L1 + n− Ξ , K3 = L1 − n + Ξ , K4 = −L1 + n + Ξ .

we obtain as the Delzant [7] polytope for the moment map J3 the tetrahedron given in
figure (2).

The critical values of this map correspond to the vertices, edges, and faces of the tetra-
hedron. Note that each vertical line in this tetrahedron represents a reduced phase space.
The K-action itself does not have any dynamical meaning for our system. Projecting in
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Figure 2: The image of J3.
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Figure 3: The image of J1.

the K-direction we obtain a square with corners (n, n), (n,−n), (−n,−n), and (−n, n)
as the image of the T 2 moment map J2 : CP3 → (Ξ, L1) ⊂ R2. The critical values of
this moment map are the vertices, edges, and diagonals of the square. The latter being a
simple example of a moment map of deficiency one [24] on CP3. We may also consider the
moment map J1 : CP3 → (Ξ, L1, H2) ⊂ R3. The image of J1 is given in figure (3). It is
now clear how points in the image of J1 correspond to the different types of reduced phase
spaces (see figure (1)). The critical values correspond to the edges, faces and diagonal
surfaces of this infinite polytope.

Points in the fixed point space of a subgroup of the symmetry group G will have this
subgroup as its isotropy subgroup. Consequently these points belong to lower dimensional
group orbits. Thus fixed point spaces for subgroups of G are fibred with relative equilibria.
To be more precise we have the following proposition (see [17])

Proposition 5.1 Let M be a symplectic manifold and G be Lie a group acting symplec-
tically on M . Let H : M → R be a G-invariant Hamiltonian and let XH be the associ-
ated Hamltonian vector field. Then XH leaves FixM(G) invariant and XH|FixM(G) is a
Hamiltonian vector field with Hamiltonian H|FixM(G).

To illustrate this consider the action of π16 = 1
2
(L1 + Ξ). Gπ16 is a subgroup of GH2,Ξ,L1 ,

and FixR8(Gπ16) = {(q,Q) ∈ R8|q1 = Q1 = q2 = Q2 = 0} is an invariant space. Similarly
for the action of π11 = 1

2
(Ξ − L1), Gπ11 is a subgroup of GH2,Ξ,L1 , and FixR8(Gπ11) =

{(q,Q) ∈ R8|q3 = Q3 = q4 = Q4 = 0} is an invariant space.

Theorem 5.2 J1(FixR8(Gπ16)) is the restriction of the image of J1 to the plane Ξ = L1.
J1(FixR8(Gπ11)) is the restriction of the image of J1 to the plane Ξ = −L1. The fibration
in each diagonal plane is equivalent to the fibration of the energy-moment map for the
harmonic oscillator. Points in the interior correspond to a fibre topologically equivalent
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to T2, points on the edges correspond to a fibre topologically equivalent S1. A line with
H2 = n corresponds to an invariant surface topologically equivalent to S3.

Proof : On FixR8(Gπ16) we have that H̄ has integrals H̃2 = H2|FixR8(Gπ16) = 1
2
(q2

3 +
Q2

3 + q2
4 + Q2

4) and π16 = q3Q4 − q4Q3. The associated moment map has image given by
H̃2 > |π16| which corresponds to the standard harmonic oscillator (see [28]). Because on
this fixed point space H2 = K1 it follows from the relations that Ξ = L1. The results now
follow. For FixR8(Gπ11) we have the same but with H2 = −K1 and Ξ = −L1. q.e.d.

Remark 5.3 The points in the interior of the diagonal planes correspond to the zero
dimensional symplectic leaves of the final orbit space, that are the cone-like singularities
in the singular reduced phase spaces.

The fixed point spaces corresponding to the actions of Ξ and L1 are not so easy to
characterize on R8 with the present choice of coordinates. However, they can easily be
characterized on CP3 (see section 2.2).

Theorem 5.4 J1(FixCP3(GΞ)) is the restriction of the image of J1 to the planes Ξ =
±H2. J1(FixCP3(GL1)) is the restriction of the image of J1 to the planes L1 = ±H2.
Points in the interior correspond to a fibre topologically equivalent to T2, points on the
edges correspond to a fibre topologically equivalent S1.

Proof : FixCP3(GΞ) consists of those points on CP3 for which Ji = 0, 1 6 i 6 8 (see
section 2.2). Using the relations it follows that Ξ = ±H2. These points correspond to
zero dimensional symplectic leaves on the final orbit space that correspond to the cases
where the reduced phase space reduces to an isolated point. Such a point can bee traced
back through the different stages of the reduction to see that its corresponding fibre in
the original phase space is topological equivalent to T2. A similar argument holds for
FixCP3(GL1). The points on the edges correspond to the four normal modes found on
CP3 in FixCP3(GΞ,L1), and thus the corresponding fibre in the original phase space is
topological equivalent to S1. q.e.d.

These theorems describe all relative equilibria corresponding to tori of dimension one
and two. Relative equilibria corresponding to three dimensional tori will correspond to
critical points of the Hamiltonian system on the regular parts of the reduced phase spaces
for the T3 reduction, i.e. stationary points of the reduced system on the parts of the
reduced phase spaces that are symplectic leaves of maximal dimension. These are the
points that correspond to solutions of equation (36) under the conditions given by (37).
That is, the points where the reduced Hamiltonian is tangent to the reduced phase space.
When such a point coincides with a singular point of the reduced phase space one will
obtain one of the lower dimensional tori found above. However, such a torus might then
be fibred with still lower dimensional tori. An example is found in section 2.2 where the
circles of stationary points correspond to T2 fibred with S1. These are special cases of the
relative equilibria described in Theorem 5.4.
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6 Generalized Zeeman model, the case λ = 0

Recall that, taking λ = 0, our model on the second reduced phase space with ξ = 0 is
equivalent to the normalized perturbed Keplerian system modeling the hydrogen atom
subject to the Zeeman potential. Allowing all values of ξ we call the resulting model
the generalized Zeeman model. Using the general result given in section 4 the relative
equilibria are given by the admissible roots of the polynomial (36), i.e. those roots that
lie on the reduced phase space. For this case the polynomial (36) reduces to the following
expression

p(K) = 4 (Kn− lξ)
(−5 nK5 + lξ K4 + C0K

3 + C1K
2 + C2K + C3

)
, (38)

where

C0(n, ξ, l) = 10 n
(
l2 + n2 + ξ2

)
,

C1(n, ξ, l) = −2 lξ
(
ξ2 + 29 n2 + l2

)
,

C2(n, ξ, l) = −n
(
5 l4 − 26 n2ξ2 − 26 n2l2 − 18 ξ2l2 + 5 n4 + 5 ξ4

)
,

C3 = lξ
(
l4 − 15 n4 + ξ4 − 2 n2l2 − 2 ξ2l2 − 2 n2ξ2

)
.

In particular the discriminant locus D for (38) describes where in the parameter space
the number of solutions and thus the number of relative equilibria changes. The discrim-
inant of (38) is (omitting the multiplicative constant)

D(n, ξ, l) = n2ξ2l2 (l−ξ)2(l+ξ)2(ξ−n)2(l−n)2(ξ+n)2(l+n)2D1(n, ξ, l)D2(n, ξ, l)D3(n, ξ, l) ,

with

D1(n, ξ, l) =
(
ξ2l2 − ξ2n2 − l2n2 + 5n4

)2
,

D2(n, ξ, l) =
(
9 n2l2 − 45 n4 − ξ2l2 + 9 n2ξ2

)2
,

D3 = ξ8l8 + 15625 ξ8n8 − 87500 ξ6n10 + 82000 n8ξ2l6 − 2992 n4ξ6l6

+ 76 n2ξ6l8 − 15480 n6ξ4l6 − 76 n2ξ8l6 − 17500 n6ξ2l8 − 185052 ξ4n8l4

+ 1950 ξ8n4l4 + 77400 ξ2n10l4 − 74800 n12ξ2l2 + 15480 ξ6n6l4 + 87500 l6n10

77400 ξ4n10l2 − 17500 ξ8n6l2 + 82000 ξ6n8l2 + 1950 n4ξ4l8 + 15625 l8n8

+ 48750 ξ4n12 − 9500 ξ2n14 + 625 n16 + 48750 l4n12 − 9500 l2n14

The discriminant is zero if n = 0 in which case the first reduced phase space reduces
to a point and we find the origin as a stationary point. When ξ = n or l = n the
third reduced phase space is a point corresponding to a single relative equilibrium. When
ξ = 0 or l = 0 the discriminant has a double zero corresponding to a double zero of
the equation. However in this case the Hamiltonian as well as the reduced phase space
are symmetric with respect to the reflection K → −K, and, although we find a double
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admissible solution of (38), the double solution corresponds to two relative equilibria
on different energy levels. Furthermore the discriminant is zero if ξ = l or ξ = −l.
Crossing these lines the discriminant does not change sign and consequently there is no
change in the number of solutions, perhaps possibly at these lines. However at these lines
the number of admissible solutions does not change. At these lines one of the relative
equilibria correspond to a relative equilibrium on a Hamiltonian level surface caused by
the fact that this level surface passes through the singular point of a singular reduced
phase space. Note that |ξ| 6 n and |l| 6 n. Consequently D1 and D2 are strictly positive.
Thus all bifurcations will take place along the set given by D3(n, ξ, l) = 0 which is drawn
in figure (4) and turns out to be a square with cusp-like vertices.
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-1.0 -0.5 0.0 0.5 1.0
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0.0
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1.0

Ξ

l

S K

N

Figure 4: Curve of bifurcation D3(n, ξ, l) = 0 for n = 1 together with the reduced phase
spaces

In figure (4) we also find the different intersections of reduced phase spaces and Hamil-
tonian level surfaces which are illustrated by painting the reduced phase space, a method
introduced in [4]. Furthermore in figure (6) it is illustrated how the saddle-center points
move along the reduced phase spaces passing through a pitchfork point. By carefully
studying the intersections of reduced phase spaces and Hamiltonian level surfaces we
obtain the following result.

Theorem 6.1 The bifurcation surface D3(n, ξ, l) = 0 defines a region around the On axis
in the space of parameters. Inside the region there are four relative equilibria, three stable
and one unstable. Outside there are two stable relative equilibria. Fixing a value of n,
saddle-center bifurcations take place when we cross D3 = 0, except for the cuspidal points
A,B, C and D, i.e. the points (n, 0,± n√

5
) and (n,± n√

5
, 0) , where pitchfork bifurcation

occur when we move along the lines ξ = 0 or l = 0.
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Figure 5: Shifting of the saddle-centre bifurcation point

In this case we may also draw the singularity of the energy-moment map (H2, Ξ, L1, H)
for a fixed value n of H2, which is given in figure (6). The lower part of this singularity
is the most interesting part and is given in figure (7). The equations for this surface
are obtained in the following way. Set the Hamiltonian (32) equal to h and solve for N .
Substitute this N into te relation (30) defining the third reduced phase space, and put
S = 0. One obtains an equation in K with parameters h, ξ and l if one sets λ = 0 and
takes n fixed. The discriminant locus of this equation then describes the singularity of
the energy-momentum mapping in ξ, l, h-space. Note that one has to take into account
that the relation (30) is subjected to the inequalities defining the reduced phase space.
The h-axis is the vertical axis. One recovers the curve D3(n, ξ, l) = 0 in figure (7). Inside
this curve there are four h-values corresponding to a relative equilibrium, outside there
are two.

Remark 6.2 The section ξ = 0 of the singularity of the energy-moment map is the same
as the one presented for several normalized perturbed Keplerian systems, including the
Zeeman problem, in [5],[30].

Remark 6.3 Note that the stability of the stationary points on the two-dimensional
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Figure 6: Singularity of the energy-
moment map

Figure 7: Detail of the singularity
of the energy-moment map

reduced phase space follows directly from the geometry. The stability of the corresponding
solutions in original phase space can now be studied using the notion of Gµ-stability as
introduced in [27].

7 Hamiltonian Hopf Bifurcations in the case ξ = l

Consider the relative equilibrium ze = (n, 0, 0, ξ, 0, 0) on the second reduced phase space.
This equilibrium, after the third reduction has been implemented, corresponds to a cone-
like singular point of that orbit space. We are interested in studying the possible existence
of Hamiltonian Hopf bifurcations, degenerate or not.

The matrix of the tangent flow of the second reduced vector field (24)at ze takes the
following form




0 0 0 0 0 0
0 0 −2ξn (2 + λ) 0 0 Γ
0 2ξn (2 + λ) 0 0 −Γ 0
0 0 0 0 0 0
0 0 −2(λ− 1) (ξ2 − 5n2) 0 0 −4ξn(λ− 1)
0 2(λ− 1) (ξ2 − 5n2) 0 0 4ξn(λ− 1) 0




(39)

where Γ = 2(4λ− 1)n2 + 2(1− λ)ξ2. The associated characteristic polynomial is

p(X) = X2(X4 + aX2 + b) (40)

where

a = (8 ξ4 − 52 n2ξ2 + 160 n4) λ2 + (−200 n4 − 16 ξ4 + 104 n2ξ2) λ− 16 n2ξ2 + 8 ξ4 + 40 n4

b = 16 (λ− 1)2 (20 n4λ− 5 n4 + ξ4λ− ξ4 − 11 n2ξ2λ + 2 n2ξ2)
2
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(41)

Solutions of p(X) = 0 are 0 (double) and

X = ±
√
−(9n2ξ2λ2 + ∆)± nξλi

√
|∆| (42)

where

∆ = (4 ξ4 − 35 n2ξ2 + 80 n4) λ2 + (−8 ξ4 + 52 n2ξ2 − 100 n4) λ + 4 ξ4 − 8 n2ξ2 + 20 n4.

(43)

The curve ∆ = 0 in the parametric plane (ξ, λ) has the graph given in figure (8).
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Figure 8: The curve ∆ = 0 for n = 1

This curve will play a key role in the analysis of the Hopf bifurcation as we will see
later on.

Note that when ∆ = 0 we have a double pair of purely imaginary values ±3nξλi.
Moreover, when ∆ < 0 we have two pairs or complex eigenvalues and for ∆ > 0 we have
two pair of imaginary eigenvalues. Finally, when ξ = 0 and λ = 1/4 or 1, we see that the
linear system is nilpotent with a zero eigenvalue of multiplicity four.

A nonlinear normal mode of a Hamiltonian system is a periodic solution near equi-
librium with period close to that of a periodic trajectory of the linearized vector field.
We will consider the normal modes associated to the rectilinear trajectories through the
origin.

We will use the geometric criterium [21], [23], [10] in order to determine the presence
of non degenerate Hamiltonian Hopf bifurcations. For a (standard) Hamiltonian Hopf
bifurcation to take place one needs in fact three transversality conditions to hold true,
which are described below in geometric terms as conditions T.1-3.. We assume that for
λ = λ0 the Hamiltonian level surface Lλ0 given by Hλ0((S, K, N) = Hλ0((0, n, 0)is tangent
to the reduced phase space at (S, K, N) = (0, n, 0), the cone-like singularity of the reduced
phase space.
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(T1) The coefficient of the semisimple part of the linearized system at the equilibrium
and for the bifurcation value of the parameter has to be nonzero.(This condition
can be relaxed if the S1–symmetry generated by S is externally imposed), i.e. the
the bifurcation of eigenvalues should be be from two pairs of purely imaginary
eigenvalues through a double pair into the complex plane.

(T2) Lλ enters the cone as λ passes through λ0 with a nonzero rate of change of the angle
between Lν and the reduced phase space.

(T3) Lλ0 has second order contact with the reduced phase space in (0, n, 0) .

Theorem 7.1 (Hopf-Bifurcation for K = n) We consider the 4D system given by the
Van der Waals Hamiltonian, where Ξ = ξ and L1 = l are first integrals of he system. For
the corresponding normalized system truncated after terms of order six we have that:

1. For a fixed value n , of the oscillator energy, the geometric locus in the parameter
plane (ξ, λ) where there exists a nondegenerate supercritical Hopf bifurcation is given
by

∆ = (80n4 − 35n2ξ2 + 4ξ4) λ2 − 4 (25n4 − 13n2ξ2 + 2ξ4) λ + 4 (5n4 − 2n2ξ2 + ξ4) = 0

with ξ 6= 0.

2. For ξ = 0 we have two degenerate Hamiltonian Hopf bifurcations for the parameter
values λ = 1/4 and λ = 1.

3. When ξ = n the problem is degenerate for λ = 4/7.

Proof : Let us consider the function

gλ(K) =
3n

2

(
3λ

2
− 1

)
K2 + ξ2(1− λ)K ± (n−K)

√
(K + n)2 − 4ξ2 (44)

describing the difference between the reduced Hamiltonian and the lower and upper arc
of the reduced phase space in the S = 0 plane. Imposing that K = n be a root of gλ, we
obtain the corresponding values of the energy. They are given by

h = −3 (2− 3 λ)n2 + 4 (λ− 1) ξ2

4
n.

Moreover, imposing that K = n is a critical value of gλ we obtain

3n2

2
(3λ− 2) + ξ2(1− λ)∓ n (4 + λ)

2

√
n2 − ξ2 = 0. (45)

After some computations we obtain that (45) is equivalent to ∆ = 0. In other words, we
have verified the condition H1. in the curve ∆ = 0. In order to satisfy the transversality
condition H2 we ought to have

dg
′
λ(n)

dλ
=

9n2

2
− ξ2 ± n

√
n2 − ξ2

2
6= 0, (46)
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but this is the case. Indeed, for a fixed n it is easy to see that there does not exist ξ
verifying the equation. Finally with respect to condition H3 it results that −6

√
n2 − ξ2 +

9
√

n2 − ξ2λ = 3
√
− (ξ − n) (ξ + n) (−2 + 3λ)

g
′′

λ(n) =
n

(
n(λ− 4) + 3

√
n2 − ξ2(3λ− 2)

)

2
√

n2 − ξ2
6= 0

g
′′

λ(n) =
n

(
n(λ− 4) + 3

√
n2 − ξ2(2− 3λ)

)

2
√

n2 − ξ2
6= 0

(47)

Plotting g
′′

λ(n) and ∆ = 0 it is clear that only for ξ = 0 and λ = 1/4 or 1 this condition
is not satisfied. Moreover there exists another degenerate situation when ξ = n, because
the thrice reduce space then collapses to a point. In that case we have λ = 4/7 (see fig.
(9). q.e.d.

Λ1 Λ2

Λ3

Λ3

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-1.0

-0.5

0.0

0.5

1.0

Λ

Ξ

Figure 9: Graphical proof of the condition H3. The green lines are g
′′

λ(n) according to the
sign of gλ. The parameter values λ1 = 1

4
and λ2 = 1 correspond to degenerate Hamiltonian

Hopf Bifurcation for n = 1. The parameter value λ3 = 4
7

is a critical case for n = ±1.

Remark 7.2 At a Hamiltonian Hopf bifurcation the equilibrium changes from stable to
unstable. Inside the curve ∆ = 0 in figure (8) is stable, outside this curve the equilibrium
is unstable.

When ξ = l = 0 the reduced phase space has an additional cone-like singularity
at K = −n, which is a candidate for the presence of a Hamiltonian Hopf bifurcation.
Therefore we have to study the system at the equilibrium ze = (−n, 0, 0, 0, 0, 0) of the
second reduced phase space.
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The matrix of the tangent flow of the second reduced vector field (24)at ze takes the
following form




0 0 0 0 0 0
0 0 0 0 0 2 n2(4λ− 1)
0 0 0 0 −2 n2(4λ− 1) 0
0 0 0 0 0 0
0 0 −10n2(λ− 1) 0 0 0
0 10n2(λ− 1) 0 0 0 0




(48)

The associated characteristic polynomial is

p(X) = X2 (X2 + 20n4 (4λ− 1) (λ− 1))
2 (49)

This polynomial has a zero root of multiplicity six for λ = 1 or λ = 1/4. The system is
nilpotent of multiplicity six. For λ > 1 or λ < 1/4 this polynomial has a pair of imaginary
roots of multiplicity 2. For 1/4 < λ < 1 has a pair of real roots of multiplicity 2.

Theorem 7.3 (Hopf-Bifurcation for K = −n and ξ = l = 0) Under the conditions of
the previous theorem we have a Hamiltonian Hopf bifurcation only for λ = 1, 1/4, these
are degenerate Hamiltonian Hopf bifurcations for the system under consideration.

Proof : In a similar way to the previous proof, we consider the function

gλ(K) =
3n

2

(
3λ

2
− 1

)
K2 ± n(4− λ)(n−K)2 (50)

Imposing that K = −n is a critical value of gλ we obtain −5n2(λ − 1) for positive sign
and −n2(4λ − 1) for minus sign. Only for λ = 1, 1/4 the previous expressions are zero.
On the other and

dg
′
λ(n)

dλ
=

{ −5n2 for +
−4n2 for −

and the condition H2 is verified. Finally, the condition H3 is not verified for the values
λ = 1, 1/4 since

g
′′

λ(n) =

{
5n(λ− 1) for +
n(4λ− 1) for −

q.e.d.

Remark 7.4 For ξ = −l and K = −n one may prove similar results as in the theorems
above. Also along ξ = −l one finds Hamiltonian Hopf bifurcations.
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8 Van der Waals problem: Ξ = 0. Relative equilibria

and bifurcations

As is said before, the reduced space for Ξ = 0 relates to normalized 3-DOF perturbed
Keplerian systems. More on perturbed Keplerian systems can be found in Cushman’s
survey [5] on this issue. The Van der Waals model is not among the examples in [5].
However, from the generic study done about the first order double reduced Hamiltonian,
one notices that the generalized Van der Waals family for Ξ = 0 falls in the class of
systems studied in [5]. However in [5] dependence on a parameter was not considered.
It will turn out that there are special values of the physical parameter λ that will give
rise to degeneracy of the normalized flow in the sense that on the third reduced phase
space there will be nonisolated relative equilibria. In [12] and [14, 15] this degeneracy
was related to integrability in the 3D case. Part of the results in this section can also be
found in the preliminary report in [8].

The dynamics related to the generalized Van der Waals potential corresponds to the
case Ξ = 0, with the integral L1 = l as the axial symmetry. In the case the reduced space
is defined by

[ (n + l)2 −K2 ][ (n− l)2 −K2 ] = 4N2 + 4S2. (51)

which is diffeomorphic to an S2 if l 6= 0, l < |n| as we have shown in Section 4. If l > 0,
the domain of the reduced phase space is −|n − l| ≤ K ≤ |n − l|. When l < 0, it will
be −|n + l| ≤ K ≤ |n + l|. When l = 0 the reduced phase space is not a manifold but
has two singular points, and we will study this case separately. The Hamiltonian function
reduces to

HL1(K,N) =
3n

4
(3λ− 2) K2 +

n

2
(4− λ) N. (52)

the level surfaces of which are, in general, parabolic cylinders. The nature of these level
surfaces changes with λ. HL1−1(h) is a plane N = 3h/(5n) when λ = 2/3; for values
λ < 2/3 the parabolic cylinder has a maximum. When λ > 2/3 it has a minimum. There
is a special case related to the value λ = 4. For this case the Hamiltonian surfaces are

H =
15n

2
K2

i.e. parallel planes to the fundamental plane 0SN which intersect the reduced space in
one circle if K = 0, and a pair of circles if K 6= 0. The corresponding system of differential
equations given by the Poisson structure is now

dK

dt
= 0,

dN

dt
= 60nK S,

dS

dt
= −60nKN. (53)

Thus the flow is a pure rotation, except for the circle N2 + S2 = (n2− l2)2/4 in the plane
K = 0, which is a circle of stationary points. There are also two isolated equilibria at the
points (0,±|n±l|, 0). The two limitting cases are n = |l|, which correspond to the reduced
spaces shrunk to a point, and l = 0 which is, in the context of perturbed Keplerian systems
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referred to as the polar case. The relative equilibria correspond to rectilinear solutions in
configuration space. Because of the presence of nonisolated stationary points on the third
reduced phase space we are in a degenerate case, which might be influenced by adding
higher order terms to our normal form.

Next consider the generic case λ 6= 4 and determine the tangencies between the reduced
space given by equation (51) and the quadratic function

N =
3(3λ− 2)

2(4− λ)
K2 +

2h

n(4− λ)
.

in the plane S = 0. The sign of the coefficient of K2 as a function of λ, will be negative,
positive and negative in λ ∈ (0, 2/3), (2/3, 4) and (4,∞) respectively. We immediately
obtain the first derivative from equation (51)

dN

dK
=

[K2 − (n2 + l2)] K

2N
,

and likewise from the Hamiltonian

dN

dK
= 3

(3λ− 2)

4− λ
K.

Equaling both expressions

[K2 − (n2 + l2)] K

2N
= 3

(3λ− 2)

4− λ
K

we find that for K = 0 we will have a tangent contact, corresponding to the lower and
higher point of the reduced space (0, 0, ±1

2
(n2− l2)), whichever value of the integral and

physical parameter. Then, assuming K 6= 0, we search for the other values related to
tangent contact in

6
(3λ− 2)

4− λ
N = K2 − (n2 + l2).

Replacing the expression of N , (±) we obtain

9

(
3λ− 2

4− λ

)2

[(n + l)2 −K2 ][(n− l)2 −K2 ] = [K2 − (n2 + l2)]2,

which is a biquadratic equation in K, whose roots we have to discuss. Let

P(K) = C4 K4 + C2 K2 + C0 = 0

with

C4 = 5(4λ− 1)(λ− 1),

C2 = −10(4λ− 1)(λ− 1)(l2 + n2),

C0 = [5(λ− 1)l2 − (4λ− 1)n2][(4λ− 1)l2 − 5(λ− 1)n2]
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Then, if λ = 1 and l = 0, the polynomial is zero. Also, if λ = 1/4 and l = 0, the
polynomial is zero. Excluding these two values of the external parameter, we have K = 0
as double root when C0 = 0. And this leads to the stationary points given by

l = n

√
4λ− 1

5(λ− 1)
, λ ∈ [0, 1/4]; l = n

√
5(λ− 1)

4λ− 1
, λ ∈ [1, 4]; l = n

√
4λ− 1

5(λ− 1)
, λ ∈ [4,∞]

which correspond to pitchfork bifurcations. This recovers results from [12] (see also fig.
(10))
For λ ∈ (0, 1/4) and λ ∈ (1, 4), the two stable equilibria emanating from the bifurcation
point are

K = ±
√

l2 + n2 − 3(2− 3λ)√
5(1− 5λ + 4λ2)

,

and for λ > 4

K = ±
√

l2 + n2 +
3(2− 3λ)√

5(1− 5λ + 4λ2)
,

and the value of N is obtained replacing K in equation (51).
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Figure 10: Relative equilibria for the Van der Waals family [12]

Note that when λ ∈ (0, 1/4), and l approaching 0 the stable points will move towards
the the singular points (0,±n, 0) of the third reduced phase space for ξ = 0, l = 0. In the
case λ ∈ (1, 4) and λ ∈ (4,∞), the two equilibria bifurcate at λ = 4. In [12] these orbits
are related to the associated 3D perturbed Keplerian system using Delaunay variables.
The pitchfork bifurcation lines are related to circular orbits at critical inclinations and
equatorial orbits at criticaleccenricities. The stable stationary points bifurcating corre-
spond to circular equatorial orbits.

Finally we will consider in some detail the ‘polar case´,that is, ξ = l = 0 (see also
[13]). In this case the section of the reduced phase space with the plane S = 0 as well as
the section of the reduced Hamiltonian with the plane S = 0. We get

N = ±1

2
(n2 −K2), N =

3

2

3λ− 2

4− λ
K2 +

2 h

n(4− λ)
.
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The two parabola´s coincide for λ = 1
4

and λ = 1 giving rise to a whole parabola of sta-
tionary solutions. For λ = 1

4
along the topside of the reduced phase space and λ = 1 along

the bottom side of the reduced phase space. Again we have a degenerate situation. These
degenerate situations are of interest because the claim is that for these particular values
of the parameter the original system will be integrable, also in the 4D case. Note that
these values also correspond to Hamiltonian Hopf bifurcations (see section 7). Because
of the degeneracy a higher order analysis of the normal form will be needed to show the
presence of a Hamiltonian Hopf bifurcation in these cases. However, if these degenerate
cases correspond to integrable systems the degeneracy might be of infinite co-dimension
(compare [20, 22]).

Another interesting feature of the polar case is that for
1

4
< λ < 1 the flow has a

heteroclinic trajectory for h = −3(3λ−2)n3/4, that passes through the points (0, ±n, 0),
which may be parametrized as follows

N =
3

2

3λ− 2

4− λ
(K2 − n2), S = ±3

2

√
5(4λ− 1)(1− λ)

4− λ
(K2 − n2), K = K

These heteroclinic solutions bifurcate at λ = 1
4

and λ = 1 through the parabola of
stationary points into a stationary point with two homoclinic orbits surrounding the
singular points of the reduced phase space (see fig. (11)) Note that at λ = 4 these

Figure 11: Three snapshots of the separatrix. Left λ = 1/5, center λ = 1/2 and right λ = 2

homoclinic orbits bifurcate through a circle of stationary points by coinciding with each
other.

For the sake of completeness we include the explicit expressions of the separatrices:
• Homoclinic for 0 < λ < 1/4

K = n tanh ω1 t, N =
3(2− 3λ)n2

2(λ− 4)
sech2ω1 t, S =

√
5(1− λ)(4λ− 1)n2

(λ− 4)
sech2ω1 t,

where ω1(λ) = 2n2
√

5(1− λ)(4λ− 1).

• Heteroclinic for 1/4 < λ < 1

K = ±n
√

4− λ√
4λ− 1

sechω2t, N =
n2

2
+

3(2− 3λ)n2

2(4λ− 1)
sech2ω2t, S = ±n2

√
5(λ− 1)√
4λ− 1

senh ω2t

cosh2ω2t
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where ω2(λ) = 2n2
√

5(4− λ)(λ− 1). Note that for λ = 2/3 the heteroclinic is a plane
curve.

• Homoclinic for 1 < λ < 4

K =
±n(λ− 4)sech ω3t√

5
√

(λ− 5)λ + 4
, N = −n2

2
+

3(3λ− 2)n2

10(λ− 1)
sech2ω3t, S =

±n2
√

(4λ− 1)√
5(λ− 1)

senh ω3t

cosh2ω3t

Finally in fig. (12) and fig. (13) the orbits on the reduced phase space for the polar case
are illustrated by painting the reduced energy.
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λ = 0: ‘polar Zeeman’

λ = 1/10

λ = 1/4 integrable case: south pole view: infinite equilibria

λ = 0.26

λ = 2/3 space sliced by horizontal planes

λ = 9/10

Figure 12: Case Ξ = L1 = 0: ‘north pole’ (left) and ‘south pole’ (right) views of the flow on the
thrice reduced space for several values of the physical parameter λ. The integrable case λ = 1/4
is related to a Hopf bifurcation connecting the singular points
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λ = 1, integrable case. north pole view: Infinite equilibria

λ = 1.1

λ = 2 Van der Waals

λ = 3.5

λ = 4, integrable case. Oyster bifurcation. Infinite equilibria in the plane K = 0

λ = 6: stable equilibrium is at the north; the unstable a the south.

Figure 13: Case Ξ = L1 = 0: ‘north pole’ (left) and ‘south pole’ (right) views of the flow on
the thrice reduced space for several values of the physical parameter λ. From λ = 1 to λ = 6
we find two integrable cases. When λ = 1 the bifurcation associated to it involves the singular
points: it is a degenerate Hopf bifurcation. When λ = 4 we identify another bifurcation called
oyster-bifurcations by some authors.
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