

Performance analysis of production lines with continuous
material flows and finite buffers
Citation for published version (APA):
Bierbooms, R., Adan, I. J. B. F., & Vuuren, van, M. (2010). Performance analysis of production lines with
continuous material flows and finite buffers. (Report Eurandom; Vol. 2010044). Eurandom.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/96f66ebe-a3b2-457d-b319-d338c86113f6

EURANDOM PREPRINT SERIES
2010-044

PERFORMANCE ANALYSIS OF PRODUCTION
LINES WITH CONTINUOUS MATERIAL

FLOWS AND FINITE BUFFERS

Remco Bierbooms, Ivo J.B.F. Adan, and Marcel van Vuuren
ISSN 1389-2355

1

PERFORMANCE ANALYSIS OF PRODUCTION LINES WITH CONTINUOUS
MATERIAL FLOWS AND FINITE BUFFERS

Remco Bierbooms, Ivo J.B.F. Adan, and Marcel van Vuuren
Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

E-mail: r.bierbooms@tue.nl, i.j.b.f.adan@tue.nl, vanvuuren@cqm.nl

Abstract: This paper deals with the approximative analysis of production lines with continuous mate-
rial flow consisting of a number of machines or servers in series and finite buffers in between. Each
server suffers from operational dependent breakdowns, characterized by exponentially distributed up-
and down-times. We construct an iterative method to efficiently and accurately estimate performance
characteristics such as throughput and mean total buffer content. The method is based on decomposition
of the production line into single-buffer subsystems. Novel features of the method are (i) modeling of the
aggregate servers in each subsystem, (ii) equations to iteratively determine the processing behavior of
these servers, and (iii) use of modern matrix-analytic techniques to analyze each subsystem. The pro-
posed method performs very well on a large test set, including long and imbalanced production lines.
For production lines with imbalance in mean down-times, we show that a more refined modeling of the
servers in each subsystem performs significantly better. Lastly, we apply the iterative method to predict
the throughput of a bottle line at brewery Heineken Den Bosch yielding errors of less than two percent.

Keywords: production line, finite buffer, fluid flow, approximation, decomposition

1 Introduction

In this paper we analyze production lines with continuous material flow consisting of a number of ma-
chines or servers in series and a finite buffer between each of the servers. We are interested in both
throughput and buffer content distributions. Figure 1 illustrates a production line of length four, where
Mi denotes the ith server and Bi denotes the ith buffer. Each server Mi has a maximum production
rate and is subject to breakdowns, which are characterized by an up- and down cycle. First, the server
is “up” for an exponentially distributed amount of time, after which it is “down” for an exponentially
distributed amount of time. During an uptime the server is able to produce; during a downtime it is not.
Each buffer has a finite capacity. When buffer Bi becomes full, server Mi will slow down its production
rate to that of server Mi+1; similarly, when buffer Bi−1 becomes empty, server Mi will slow down to the
production rate of server Mi−1. In this system, blocking and starvation play significant roles: a server
can become blocked when the downstream buffer is full, or it can become starved when the upstream
buffer is empty. The servers can only break down when they are actually producing; these are called
operationally dependent failures (ODFs). We assume that breakdown rates are constant and independent
of the production rates. This assumption is not common in the literature on production lines with ODFs,
typically assuming a (linear) relation between production and breakdown rates. However, in the prac-
tical case described below, there appeared to be no evidence for dependencies between production and
breakdown rates.

B11 B2 B3L M
2M

3M 4M

Figure 1: A production line L with four servers, labeled M1 up to M4

Our research is inspired by a production line at brewery Heineken Den Bosch, where retour bottles are
being filled and processed by eleven machines in series having different machine speeds. Each machine

1

has its own up- and downtime distributions. A conveyor belt between each pair of machines is being
used for transportation, but also for buffering in case of machine breakdowns. The number of bottles
handled per hour by the machines is very large, which makes it natural to treat the material flows as fluid
rather than as discrete items.

There are many papers considering production lines with fluid flows. Production lines with two machines
(or two production stages) and one buffer can usually be analyzed exactly by modeling the system as a
Markov chain. The dynamics of this Markov chain are described by a set of linear differential equations,
see, e.g., [7, 19] for both production stages having two states (up and down) and [9, 14] for both stages
having more than two states. Typically, a matrix exponential function or spectral analysis is used to solve
the set of differential equations. However, since these procedures can lead to numerical problems in case
of a large buffer, a more stable approach is needed. Adan et al. [1] and Ramaswami [15] found that
there is a connection between production lines with fluid flows and discrete-state quasi-birth-and-death-
processes (QBDs). Soares and Latouche [16] propose a numerically reliable method for the analysis of
a single-buffer fluid flow model with time-dependent failures (TDFs), where a mixture of two matrix-
exponentials is used to express the buffer content distribution. They employ matrix-analytic methods,
typically used for discrete-state QBDs. Their method is extended in [17] to the case of ODFs. This
matrix-analytic method also works well in case of a large buffer. In Section 2, we elaborate on the
analysis of two-stage production lines with ODFs.

Production lines with more than two stages and exponential up- and down-times cannot be analyzed
exactly, justifying the development of approximation methods. De Koster [10] suggests an aggregation
method, where repeatedly two stages are aggregated into one stage, until a system of two stages and
one buffer remains to be analyzed. The performance estimates are good for balanced lines; however
for non-balanced lines the estimation error increases rapidly. Gershwin [8] introduces a decomposition
algorithm for production lines with machines that take an equal amount of time to process parts; this idea
is exploited by Dallery et al. [3] in the DDX algorithm. Burman [2] extends this algorithm to production
lines where machines have different production rates. However, convergence problems may arise in
this case, requiring (ad-hoc) modifications to secure convergence. Levantesi et al. [12] propose a more
detailed decomposition method, where the upstream machine of each subsystem has a “starved-state”
for each upstream subsystem and the downstream machine has a “blocked-state” for each downstream
subsystem. Also, multiple failure states can be modeled in their approach. Although their method
performs well, the state space of the Markov chain will collapse for longer production lines.

An alternative method is the use of homogenization techniques, see, e.g., [4, 6, 13]. In these papers, a
non-homogeneous production line is replaced by an equivalent homogeneous line, in which all machines
have the same processing times. The homogeneous line can be analyzed by, for example, the DDX
algorithm. Dallery and Le Bihan [5] propose an algorithm in which several homogenization techniques
are combined.

In Section 3 of this paper, we develop a new approach to approximate the performance of production
lines with continuous materials. The approach is based on decomposition of the production line into
single-buffer subsystems consisting of an “arrival server” describing the upstream part of the production
line and a “departure server” describing the downstream part. The upstream and downstream parts of the
production lines are aggregated into single servers to be able to analyze long production lines. We will
propose two models for the servers, that differ in the level of aggregating the behavior of the upstream
and downstream parts of the production line. The first and simplest model describes the arrival and
departure server as a two-state Markov chain with an up and down state, where blocking and starvation
are aggregated into the downtime. The novelty of this model lies in the determination of the transition
rates and average speeds. In the second and more detailed model, blocking and starvation are described
as a separate state, different from a “real” breakdown, so in this case we have a three-state Markov chain
for the arrival and departure server. The rates of the Markov chains are determined iteratively. In our
approach, we avoid numerical instability problems inherent to the use of matrix exponential functions or

2

spectral analysis, by adopting modern matrix-analytic methods as described in Section 2. Further, it will
appear that no convergence problems occur in the iterative algorithm, and that conservation of flow is
satisfied automatically without the need to explicitly add this law as extra constraints.

In Section 4, we discuss the performance of approximation method on a large test set of 1728 cases,
containing long production lines and imbalance in all parameters. We show that the method performs
well on this test set, with an average error in throughput over the whole test set of 1.7% and 1.5% in
case the first, respectively second model is used. The second model performs significantly better than
the first model for production lines with different repair rates, which justifies modeling starvation of the
arrival machine and blocking of the departure machine as separate states. Furthermore, a practical case
at Heineken Den Bosch is discussed in Section 4. For their 11-machine production line, the error of
the throughput predicted by the approximation method, using the second model, is 1.44 %. Section 5
discusses the results of the test bed. Finally, Section 6 contains conclusions and directions for further
research.

2 Two-stage production lines with ODFs

This section treats the analysis of two-stage production lines with ODFs, for which exact methods are
available. These methods form the basis of approximation methods for multi-stage production lines as
analyzed in the next section. The system consists of an arrival server MA, a departure server MD, and a
buffer B of size b in between; see Figure 2.

BAM
DM

Figure 2: Two-stage production line with servers MA and MD, and buffer B in between

The phase process of each server is driven by a continuous-time Markov chain. For the arrival server, we
are given a finite set of states SA of size NA = |SA| with transition matrix QA. In state iA ∈ SA, the
arrival server provides the buffer with fluid at a speed of rA,iA per time unit. The finite set of states for
the departure server is given by SD of size ND = |SD| with transition matrix QD. The departure server
depletes the fluid buffer at a speed of rD,iD in state iD ∈ SD. The phase process of the two-stage system
is given by S = SA ∪ SD with a total number of N = NA ×ND states. To determine the generator of
the phase process, we use the Kronecker product: when A is an n1 × n2 matrix and B is an n3 × n4

matrix, the Kronecker product A⊗B is defined as

A⊗B =

 A(1, 1)B . . . A(1, n2)B
...

...
A(n1, 1)B . . . A(n1, n2)B

 .

The generator Q of the phase process and net speed vector r are given by

Q = QA ⊗ IND
+ INA

⊗QD,

r = rA ⊗ 1ND
− 1NA

⊗ rD,

where In is an identity matrix of size n× n and 1n is a column vector of ones of size n.

We assume operationally dependent failures (ODFs), meaning that the arrival server cannot break down
when it is not producing because of blocking, and the departure server cannot break down when it is not
producing because of starvation. For the arrival server this implies that whenever the buffer is full and

3

the departure machine is in a state with zero-speed, the arrival machine is blocked and it cannot jump to
a state with zero-speed. Formally we define a full-buffer process, with generator QF given by

QF(iA,iD)→(jA,jD) =
{

0 if rjA = 0, riD = 0,
Q(iA,iD)→(jA,jD) else.

Similarly, when the arrival server is in a state with zero-speed and the buffer is empty, the departure
server is starved and it cannot jump to a state with zero-speed. The generator QE of the empty-buffer
process is defined as

QE(iA,iD)→(jA,jD) =
{

0 if rjD = 0, riA = 0,
Q(iA,iD)→(jA,jD) else.

The two-stage production system can be described by a Markov process with states (i, x) where i is the
state of the phase process and x is the fluid level of the buffer. We are interested in the steady state
distribution of this Markov process. We define Fi(x) as the steady state probability that the system is in
state i ∈ S and the buffer content is less or equal to x. This probability can be related to its derivative
(or density) dFi(x)

dx and probabilities Fj(x), j 6= i in the following way,

ri
dFi(x)
dx

+
∑
j 6=i

Qi,jFi(x) =
∑
j 6=i

Qj,iFj(x).

This relation is based on a balance principle, stating that the probability flux into the set of states
{(i, y), 0 ≤ y ≤ x} is equal to the flux out of that set. Rearranging terms gives

ri
dFi(x)
dx

=
∑
j∈S

Qj,iFj(x).

Defining F (x) as the column vector with elements Fi(x) and R as the diagonal matrix with elements
Ri,i = ri, we can write

dF (x)
dx

= ZF (x), (1)

where Z = R−1QT . Here we assume that none of the rates ri are equal to 0, so R is invertible (see also
Remark 1). By differentiating (1) and introducing the probability density vector f(x) = dF (x)

dx , we get

df(x)
dx

= Zf(x).

The solution to these linear differential equations is a matrix-exponential density function of the form

f(x) = ceZx, (2)

where c is a vector of constants. Note that we have probability mass at the boundaries x = 0 and x = b.
It is convenient to define p(0)

i as the probability that the system is in state i ∈ S and the buffer is empty;
p
(b)
i is the probability that the system is in state i ∈ S and the buffer is full. So

p
(0)
i = Fi(0), p

(b)
i = Fi(b)− lim

x↑b
Fi(x).

We can determine the probabilities p(0)
i and p(b)

i , and the constants ci, i ∈ S in (2) by solving a set of
boundary equations plus the normalizing equation. The boundary equations are determined by applying
the balance principle to the boundary levels x = 0 and x = b, yielding∑

j∈S
QE(j, i)p(0)

j − rifi(0) = 0, i ∈ S, (3)

4

∑
j∈S

QF (j, i)p(b)
j + rifi(b) = 0, i ∈ S, (4)

∑
i∈S

Fi(b) = 1. (5)

Note that Fi(b) can be expressed in terms of the density and boundary probabilities,

Fi(b) = p
(0)
i +

∫ b

0
fi(x)dx+ p

(b)
i .

We divide the state space in two parts, S+ being the set of states with positive net speeds and S− being
the set of states with negative net speeds. Then p(0)

i = 0 if i ∈ S+ because the buffer immediately starts
to fill in a state with positive net speed. Similarly, p(b)

i = 0 if i ∈ S− since the buffer immediately
empties in a state with negative net speed. This leaves us with 2N unknown quantities in the set of
equations (3)-(5).

Remark 1 If there are i ∈ S with ri = 0, then the matrix R is a singular matrix. So we have to treat
these states differently. Note that, for states i with ri = 0, equation (1) reduces to∑

j 6=i
Qi,jFi(x) =

∑
j 6=i

Qj,iFj(x). (6)

These equations define Fi(x) in terms of the probabilities Fj(x) with rj 6= 0. Now we use these equa-
tions to eliminate the probabilities Fi(x) and we adjust the generators Q, QE , and QF accordingly.
Once the steady state distribution for states with non-zero speeds is determined, we obtain the steady
state probabilities Fi(x) with ri = 0 from the balance equations (6).

The solution as described above suffers from numerical instability, since eZx becomes very large when-
ever b is large and Z has (large) positive eigenvalues. Scaling with a factor e−Zb would solve this
problem, however, then the negative eigenvalues cause similar problems. The use of spectral analysis
to solve this problem can be very time consuming (and also numerically unstable), since Z may have
defective eigenvalues.

A solution to this numerical problem is to split the state space in two parts and to analyse the Markov pro-
cess restricted to one of these parts; one part consisting of all states with positive net speeds and the other
part consisting of all states with negative net speeds, each part having its own transition rate matrix. The
corresponding matrices Z1 and Z2 in the matrix-exponential density functions both have only negative
eigenvalues, which solves the numerical problem. To analyze the Markov process restricted to one part,
we need probabilities of returning to a certain fluid level in a particular state. Such return probabilities can
be determined by using matrix-analytic methods, as for discrete-state Quasi-Birth-and-Death processes.
In Appendix A, we explain in detail how to obtain the density function and performance measures of the
two-stage system, using matrix-analytic methods as in the analysis of Soares and Latouche [17].

3 Decomposition method for N -stage production lines

We consider a production line L consisting of N servers M1, ...,MN and N − 1 buffers B1, ..., BN−1

as illustrated in Figure 1. We define the maximum speed of server Mi as vi; the up- and downrates are
given as λi and µi respectively. The size of buffer Bi is bi.

Since this production line cannot be analyzed exactly, we develop a method to approximate the through-
put and buffer content distribution. We decompose production line L into two-stage subsystems, each
subsystem consisting of an arrival server Ai, a departure server Di, and buffer Bi in between. The de-
composition is illustrated in Figure 2. In the description of the (phase) behavior of the arrival server we

5

include possible starvation caused by the upstream part of the production line. Similarly, in the descrip-
tion of the behavior of the departure server we include possible blocking caused by the downstream part
of the production line. The generator corresponding to the phase process for arrival server Ai of the ith
subsystem is defined as Q(i)

A . The vector of speeds is defined as r(i)A , where the jth element of this vector
is the speed in state j. For the departure server, we define generator Q(i)

D and speed vector r(i)D .

B11 B2 B3L M
2M

3M 4M

B11A
1DL1

B22A
2D

B33A
3D

L2

L3

Figure 3: Decomposition of a production line L in three two-stage subsystems L1, L2 and L3

The challenge is to iteratively determine the elements of Q(i)
A , r(i)A , Q(i)

D , and r
(i)
D . In the following

subsections, two approaches are described. Firstly, Subsection 3.1 uses two-state Markov chains for Ai
and Di. In this case we have an ”up”state and a ”down”state; starvation and blocking are aggregated into
the downstate. In Subsection 3.2, we treat starvation and blocking as separate states, which means that
we have three-state Markov chains. Subsection 3.3 proposes an iterative algorithm to obtain the elements
of Q(i)

A , r(i)A , Q(i)
D , and r(i)D .

3.1 Subsystem analysis using two-state Markov processes

In this subsection, we model the behavior ofAi andDi of subsystem Li, i = 1, 2, . . . , N−1, as two-state
Markov chains, the states and transitions of which are illustrated in Figure 4. Starvation of the arrival
server and blocking of the departure server are included in the downstate of that server. In the remainder
of this subsection we refer to this aggregated state as downstate.

Ai

UP DOWN

Di

UP DOWN

)(i
Aλ

)(i
Dλ

)(i
Aμ

)(i
Dμ

Figure 4: Two-state Markov chains describing the states and transitions of the arrival and departure server

For the arrival server, we define the generator Q(i)
A and speed vector r(i)A as

Q
(i)
A =

(
−λ(i)

A λ
(i)
A

µ
(i)
A −µ(i)

A

)
, r

(i)
A =

(
v

(i)
A

0

)
,

6

where λ(i)
A is the estimated rate of jumps from up to down, µ(i)

A is the estimated rate of jumps from down
to up, and v(i)

A is the average speed in the upstate. Note that this average speed is not necessarily equal to
the maximum speed vi, since it can be the case that server Ai has to adjust its speed sometimes because
of a slower upstream server and an empty buffer.

The generator Q(i)
D and speed vector r(i)D of the departure machine are defined as

Q
(i)
D =

(
−λ(i)

D λ
(i)
D

µ
(i)
D −µ(i)

D

)
, r

(i)
D =

(
v

(i)
D

0

)
,

where λ(i)
D , µ(i)

D , and v(i)
D have a similar interpretation as λ(i)

A , µ(i)
A , and v(i)

A for the arrival server. We first
derive the parameters for the arrival server, after which the departure server parameters will be treated.

To determine the parameters for the arrival server Ai, we use information from the upstream subsystem,
assuming that we have this information available. Note that arrival server Ai of the subsystem of interest
corresponds to departure server Di−1 of the upstream subsystem. We obtain the rates for Ai by linking
these two together: we consider the arrival server as being up whenever the departure server of the up-
stream subsystem is producing and down whenever it is not producing. We use the following information
from the upstream subsystem:

• π(i−1)
j,j′ : the probability that Ai−1 is in state j and Di−1 is in state j′ (j, j′ ∈ {u, d}, where u=up

and d=down).

• p(i−1)
j,j′ (0): the probability that Ai−1 is in state j, Di−1 is in state j′ and Bi−1 is empty.

• f (i−1)
j,j′ (0): the density of the upstream subsystem’s buffer content, for Ai−1 being in state j, Di−1

being in state j′ and Bi−1 being empty.

• Q(i−1)
A (j, j′): the rate of jumps from state j to state j′ of Ai−1.

We can distinguish three different ways in which the state of arrival serverAi can jump from up to down.
In the first situation, the down is caused by an actual breakdown of the arrival server; in the second and
third situation the down is caused by a down of arrival server Ai−1 and an empty buffer Bi−1. Figure 5
illustrates the two possible ways for the arrival server to get starved by the upstream subsystem.

Bi-1i-1A
i-1D

UPDOWN

Bi-1i-1A
i-1D

UPDOWN EMPTY

UPEMPTYUP UPDOWN EMPTY

Figure 5: Two possible events in subsystem Li−1 causing Ai to get starved

We divide the rate λ(i)
A into three parts:

λ
(i)
A = λ

(i)
A,1 + λ

(i)
A,2 + λ

(i)
A,3.

The first part corresponds to an actual breakdown of the arrival server, which occurs at a rate of λi, so

λ
(i)
A,1 = λi.

7

Secondly, Ai can go down when Ai−1 is down and buffer Bi−1 empties. The number of jumps per
time unit of this type is obtained from the upstream subsystem as f (i−1)

d,u (0). This quantity is multiplied

by the speed v(i−1)
D at which Di−1 empties buffer Bi−1. We have to condition on the probability that

the upstream departure server is able to produce, which is given by π(i−1)
u,u + π

(i−1)
d,u − p(i−1)

d,u (0). The

expression for λ(i)
A,2 becomes

λ
(i)
A,2 =

f
(i−1)
d,u (0)

π
(i−1)
u,u + π

(i−1)
d,u − p(i−1)

d,u (0)
v

(i−1)
D .

The last type of jump from up to down occurs when the usptream buffer is empty and the upstream arrival
server is up, which is the case with probability p(i−1)

u,u (0). If in this case the upstream arrival server goes
down, which happens with rate Q(i−1)

A (u, d), the arrival server of interest also goes down. Again we
condition on the probability that the upstream departure server is able to produce, yielding

λ
(i)
A,3 =

p
(i−1)
u,u (0)

π
(i−1)
u,u + π

(i−1)
d,u − p(i−1)

d,u (0)
Q

(i−1)
A (u, d).

To determine the mean downtime (µ(i−1)
A)−1, we use the fact that a jump from up to down is with

probability
λ
(i)
A,1

λ
(i)
A

an actual breakdown and with probability
λ
(i)
A,2+λ

(i)
A,3

λ
(i)
A

a starvation. In the first case we

have a mean downtime of (µi)−1 and in the second case the mean downtime is obtained as the mean time
in the downstate of the upstream arrival server, (Q(i−1)

A (d, u))−1. Thus, the estimated mean downtime
of the arrival server is a weighted average over these two probabilities:

1

µ
(i−1)
A

=
λ

(i)
A,1

λ
(i)
A

1
µi

+
λ

(i)
A,2 + λ

(i)
A,3

λ
(i)
A

1

Q
(i−1)
A (d, u)

.

The average production rate in the upstate, v(i)
A , is a weighted average over two possible speeds. Condi-

tioned on the fact that Di−1 is producing (and thus, Ai is up), the upstream buffer Bi−1 is empty with

probability p
(i−1)
u,u (0)

π
(i−1)
u,u +π

(i−1)
d,u −p(i−1)

d,u (0)
. In this case, the arrival server has to adjust its speed to its predeces-

sor, which produces at v(i−1)
A . With complementary probability, the arrival server is able to produce at

its maximum speed vi. This gives

v
(i)
A = vi −

p
(i−1)
u,u (0)

π
(i−1)
u,u + π

(i−1)
d,u − p(i−1)

d,u (0)
(vi − v(i−1)

A). (7)

This completes the analysis of the arrival server.

For the departure server we obtain symmetrical expressions; blocking of the downstream subsystem is
modeled as part of the downtime for this server. We define the following variables, obtained from the
downstream subsystem:

• π(i+1)
j,j′ : the probability that Ai+1 is in state j and Di+1 is in state j′ (j, j′ ∈ {u, d}, where u=up

and d=down).

• p(i+1)
j,j′ (b): the probability that Ai+1 is in state j, Di+1 is in state j′ and buffer Bi+1 is full.

• f (i+1)
j,j′ (b): the density of the buffer content of Bi+1, for Ai+1 being in state j, Di+1 being in state
j′ and Bi+1 being full.

8

• Q(i+1)
D (j, j′): the rate of jumps from state j to state j′ of Di+1.

As for the arrival server, we can divide the transition rate from up to down of the departure server into
three parts:

λ
(i)
D = λ

(i)
D,1 + λ

(i)
D,2 + λ

(i)
D,3.

The first part λ(i)
D,1 corresponds to an actual breakdown of the departure server; the second and third part

are jumps caused by blocking. Figure 6 illustrates the two different ways for the departure server to get
blocked by the downstream subsystem.

Bi+1i+1A
i+1D

UP DOWN

Bi+1i+1A
i+1D

UP DOWNFULL

UPUP UP DOWNFULL FULL

Figure 6: Two possible events in subsystem Li+1 causing Di to get blocked

Since the analysis follows along the same (symmetrical) lines as for the arrival server, we only give the
resulting expressions for the transition rates and speed;

λ
(i)
D,1 = λi+1,

λ
(i)
D,2 =

f
(i+1)
u,d (b)

π
(i+1)
u,u + π

(i−1)
u,d − p(i−1)

u,d (b)
v

(i+1)
D ,

λ
(i)
D,3 =

p
(i+1)
u,u (b)

π
(i+1)
u,u + π

(i+1)
u,d − p(i+1)

u,d (b)
Q

(i+1)
D (u, d),

1

µ
(i)
D

=
λ

(i)
D,1

λ
(i)
D

1
µi+1

+
λ

(i)
D,2 + λ

(i)
D,3

λ
(i)
D

1

Q
(i+1)
D (d, u)

,

v
(i)
D = vi+1 −

p
(i+1)
u,u (b)

π
(i+1)
u,u + π

(i+1)
u,d − p(i+1)

u,d (b)
(vi+1 − v(i+1)

D). (8)

This completes the two-state analysis of subsystem Li.

3.2 Subsystem analysis using three-state Markov processes

A more sophisticated approach is to model starvation in the arrival process and blocking in the departure
process as separate states. This gives us a three-state Markov process for both servers. The states of
the arrival server are defined as {u, d, st}: up, down, and starved; the states of the departure server
are labeled {u, d, bl}: up, down, and blocked. Notice that the downstate in this subsection is not the
same as the downstate in the previous subsection, where starvation and blocking were aggregated into
the downstate. Figure 7 illustrates both Markov processes and corresponding transitions. Because of
operationally dependent failures it is not possible to jump from starved to down or from blocked to
down. It is readily seen that direct transitions in the opposite direction are also not possible.

9

Ai

DOWN STARVED

UP

Di

DOWN BLOCKED

UP

)(i
Aλ

)(i
Dλ

)(i
Aμ

)(i
Dμ

)(i
Aθ

)(i
Dθ

)(i
Aψ)(i

Dψ

Figure 7: Three-state Markov chains describing the states and transitions of the arrival and departure
server

The transition matrix and speed vector of the arrival server are given by

Q
(i)
A =

 −λ
(i)
A − θ

(i)
A λ

(i)
A θ

(i)
A

µ
(i)
A −µ(i)

A 0
ψ

(i)
A 0 −ψ(i)

A

 , r
(i)
A =

 v
(i)
A

0
0

 .

The net speed in the upstate v(i)
A can be determined as, similar to (7),

v
(i)
A = vi −

p
(i−1)
u,u (0)

π
(i−1)
u,u + π

(i−1)
d,u − p(i−1)

d,u (0) + π
(i−1)
st,u − p

(i−1)
st,u (0)

(vi − v(i−1)
A).

This leaves us with obtaining the elements of Q(i)
A . The transition rates from up to down and from down

to up are retrieved easily from the input data:

λ
(i)
A = λi,

µ
(i)
A = µi.

We obtain the transition rate from up to starved in a similar way as λ(i)
A,2+λ(i)

A,3 in the previous subsection:

θ
(i)
A =

f
(i−1)
d,u (0) + f

(i−1)
st,u (0)

π
(i−1)
u,u + π

(i−1)
d,u − p(i−1)

d,u (0) + π
(i−1)
st,u − p

(i−1)
st,u (0)

v
(i−1)
D

+
p
(i−1)
u,u (0)

π
(i−1)
u,u + π

(i−1)
d,u − p(i−1)

d,u (0) + π
(i−1)
st,u − p

(i−1)
st,u (0)

(Q(i−1)
A (u, d) +Q

(i−1)
A (u, st)).

When arrival serverAi is starved, the downstream bufferBi−1 is empty and the downstream arrival server

Ai−1 is either down (with probability
p
(i−1)
d,u (0)

p
(i−1)
d,u (0)+p

(i−1)
st,u (0)

) or starved (with probability
p
(i−1)
st,u (0)

p
(i−1)
d,u (0)+p

(i−1)
st,u (0)

).

Arrival server Ai jumps from starved to up whenever Ai−1 jumps to up. This gives the following transi-
tion rate from starved to up:

ψ
(i)
A =

p
(i−1)
d,u (0)

p
(i−1)
d,u (0) + p

(i−1)
st,u (0)

Q
(i−1)
A (d, u) +

p
(i−1)
st,u (0)

p
(i−1)
d,u (0) + p

(i−1)
st,u (0)

Q
(i−1)
A (st, u).

10

The transition matrix and net speed vector of departure server Di are given by

Q
(i)
D =

 −λ
(i)
D − θ

(i)
D λ

(i)
D θ

(i)
D

µ
(i)
D −µ(i)

D 0
ψ

(i)
D 0 −ψ(i)

D

 , r
(i)
D =

 v
(i)
D

0
0

 .

We can obtain v(i)
D as in (8),

v
(i)
D = vi+1 −

p
(i+1)
u,u (b)

π
(i+1)
u,u + π

(i+1)
u,d − p(i+1)

u,d (b) + π
(i+1)
u,bl − p

(i+1)
u,bl (b)

(vi+1 − v(i+1)
D).

In a symmetrical way as for the arrival server, we can obtain the transition rates for the departure machine:

λ
(i)
D = λi+1,

µ
(i)
D = µi+1,

θ
(i)
D =

f
(i+1)
u,d (b) + f

(i+1)
u,bl (b)

π
(i+1)
u,u + π

(i−1)
u,d − p(i−1)

u,d (b) + π
(i+1)
u,bl − p

(i+1)
u,bl (b)

v
(i+1)
D

+
p
(i+1)
u,u (b)

π
(i+1)
u,u + π

(i+1)
u,d − p(i+1)

u,d (b) + π
(i+1)
u,bl − p

(i+1)
u,bl (b)

(Q(i+1)
D (u, d) +Q

(i+1)
D (u, bl)),

ψ
(i)
D =

p
(i+1)
u,d

p
(i+1)
u,d + p

(i+1)
u,bl

Q
(i+1)
D (d, u) +

p
(i+1)
u,d

p
(i+1)
u,d + p

(i+1)
u,bl

Q
(i+1)
D (bl, u).

This concludes the analysis of this subsection.

3.3 Iterative algorithm

We analyze an N -stage production line L decomposed into subsystems L1, ..., LN−1. The following
iterative procedure can be applied to obtain the throughput and average total buffer content, where either
the method in Subsection 3.1 or 3.2 is used.

Step 0: Initialize
For each subsystem Li, i = 1, ..., N − 1, set λ(i)

A = λi, λ
(i)
D = λi+1, µ(i)

A = µi, and µ(i)
D = µi+1. When

using the method in Subsection 3.2, set θ(i)
A = θ

(i)
D = ψ

(i)
A = ψ

(i)
D = 0. Set the iteration counter k = 0.

Step 1: Calculate
For each subsystem Li, i = 1, ..., N − 1:

• Increase the iteration counter by one, k = k + 1.

• Using the matrix-analytic methods as in Appendix A, calculate the steady state probabilities π(i),
boundary probabilities p(i)(0) and p(i)(b), buffer content probability density function f (i), and
throughput estimate T (i)

k (the subscript k refers to the estimate obtained in the kth iteration).

• If i < N -1, adjust the arrival server transition matrix Q(i+1)
A and speed vector r(i+1)

A of the down-
stream subsystem using the expressions from either Subsection 3.1 or 3.2.

• If i > 1, adjust the departure server transition matrix Q(i−1)
D and speed vector r(i−1)

D of the up-
stream subsystem using the expressions from either Subsection 3.1 or 3.2.

11

Step 2: Repeat
Repeat Step 1 until all throughput estimates have converged. In other words, if

min
i

(
|T (i)
k − T

(i)
k−1|

T
(i)
k−1

)
> ε,

for some small ε, we do another iteration; otherwise we stop.

Note that the throughput values for the different subsystems are not necessarily the same when using
this algorithm. In the literature, one often forces equal throughput values by applying a conservation of
flow equation to determine estimates for (one of) the parameters. In our algorithm, it appeared to be not
necessary, as in all experiments that we carried out, we found that the throughput values of all subsystems
converge to the same value.

4 Results

In this section, we test the approximation method as proposed in the previous section. In the first subsec-
tion we test the algorithm on a large test set; the second subsection treats a practical case from brewery
Heineken Den Bosch. The results of both are compared to those of a discrete-event simulation, where the
95% confidence intervals for the performance characteristics of interest have a width of at most 0.5%.

4.1 Test set

We test our method on a large test set, where five parameters are varied:

• Number of servers in the production line,

• Mean uptimes,

• Mean downtimes,

• Machine speeds,

• Buffer sizes.

Our “standard” case has mean uptimes of 10, mean downtimes of 1, machine speeds of 10, and buffer
sizes of 10. In this case, each machine is theoretically up for 91% of the time, assuming it is not affected
by other machines. The buffer sizes are chosen such that the buffers are exactly large enough to store
fluid produced during an average downtime.

From the standard case we build a test set consisting of 1728 cases. The number of machines in the
production line is varied between 4, 8, 12, and 16. The mean uptimes in the test set are 5, 10, and 20.
Imbalance in mean uptimes is included by dividing the mean uptime of each even server by 2. The mean
downtimes are varied between 0.5, 1, and 2. Also for the downtimes we include imbalance by dividing
the mean downtimes of even servers by 2. For the machine speeds we chose three possible setups. In
the first case, the speeds of all servers are 10. Secondly, the speed of each odd server is 10 and the speed
of each even server is 15. The third setup is called a V-shape; in this case the first and last servers have
a speed of 15 and the middle server(s) have a speed of 10. The speeds of the servers before the middle
server(s) decrease linearly and the speeds of servers behind the middle server(s) increase linearly. For
instance, in a six-machine production line the machine speeds in a V-shape production line would be
15-12.5-10-10-12.5-15. Such machine speeds are motivated by practice. For instance, the Heineken case

12

as described in the next subsection has a V-shape setup. The buffer sizes are chosen to be 1, 10, 25, and
50.

In Tables 1-5 the results for this test set are summarized. The left part of the tables shows the relative
errors in throughput of our approximative methods compared to the simulation results; the right part
shows the relative errors in average total buffer content (i.e. average amount of fluid in the system). For
each table row, the average error is taken over all the cases specified in the first column. For example,
the percentages in the first row of Table 2 give the average errors for all 288 cases with all mean uptimes
equal to 5. The columns ”Two-states” corresponds to the two-state approach as described in Subsection
3.1; ”Three-state” refers to the three-state approach as described in Subsection 3.2.

To focus on the difference between the two approaches, Table 6 presents results for “extreme” cases with
increasing imbalance in mean downtimes. In these cases the line length is 9, the mean down times are
specified in the first column (e.g., in the last case 10, 1, 0.1, 10, 1, 0.1, 10, . . .); the other parameters are
the same as for the standard case.

Table 1: Results for production lines with different lengths
Line Error (%) in Error (%) in
length the throughput avg buffer content

Two-state Three-state Two-state Three-state
4 0.50 0.44 0.63 0.60
8 1.39 1.24 0.55 0.50
12 2.13 1.93 0.57 0.52
16 2.74 2.52 0.63 0.58

Table 2: Results for production lines with different mean uptimes
Mean Error (%) in Error (%) in
uptimes the throughput avg buffer content

Two-state Three-state Two-state Three-state
5,5,5,5,... 2.22 2.01 0.72 0.66
5,2.5,5,2.5,... 2.32 2.08 0.72 0.67
10,10,10,10,... 1.59 1.45 0.60 0.55
10,5,10,5,... 1.78 1.62 0.58 0.54
20,20,20,20,... 1.01 0.93 0.50 0.46
20,10,20,10,... 1.21 1.11 0.47 0.43

Table 3: Results for production lines with different mean downtimes
Mean Error (%) in Error (%) in
downtimes the throughput avg buffer content

Two-state Three-state Two-state Three-state
0.5,0.5,0.5,0.5,... 0.88 0.88 0.28 0.28
0.5,0.25,0.5,0.25,... 0.95 0.83 0.27 0.26
1,1,1,1,... 1.54 1.54 0.31 0.31
1,0.5,1,0.5,... 1.81 1.53 0.42 0.36
2,2,2,2,... 2.08 2.08 0.79 0.79
2,1,2,1,... 2.87 2.34 1.51 1.31

4.2 Heineken production line

We analyze a production line at Heineken Den Bosch, where retour bottles are processed by eleven
machines in series. Between each of the machines is a conveyor belt, which is used for transportation
and for buffering. The number of bottles processed per hour is very large, typically in the order of 30,000,
which justifies considering the flow of bottles through the machines as fluid.

The production line consists of the following eleven machines:

13

Table 4: Results for production lines with different machine speeds
Machine Error (%) in Error (%) in
speeds the throughput avg buffer content

Two-state Three-state Two-state Three-state
10,10,10,10,... 1.52 1.37 0.24 0.24
10,15,10,15,... 2.88 2.68 1.46 1.34
15,...,10,...,15 0.66 0.55 0.09 0.07

Table 5: Results for production lines with different buffer sizes
Buffer Error (%) in Error (%) in
sizes the throughput avg buffer content

Two-state Three-state Two-state Three-state
1 0.86 0.78 0.18 0.19
10 2.42 2.16 0.32 0.31
25 2.02 1.83 0.54 0.47
50 1.46 1.36 1.35 1.23

• Retour bottles enter the production line in crates on pallets; these pallets are put on the production
line by the depallatizer.

• The logo detection checks the logo on the crates.

• Bottles are taken out of the crates by the depacker. From here on we follow the bottles.

• The bottles are washed by the bottle-washer.

• The Empty Bottle Inspector (EBI) checks the bottles for bursts. Broken bottles are rejected and
taken out of the production line. The number of rejected bottles is typically very small, so they do
not have a significant impact on the throughput.

• The filler grabs the bottles, fills them with beer, closes the bottles, and puts them on a conveyor
belt.

• Next, the bottles move to the pasteurizer.

• The labeler provides the bottles with the correct labels.

• In the packer, the bottles are either packed into six-packs or into crates.

• Before leaving the production line, the filled crates have to be checked by the cratemanco.

• Lastly, the palletizer puts the crates on pallets, after which they can be transported to customers.

Each machine has an up- and down behavior. Typically, machines cannot go down whenever they are
not producing because of blocking and starvation. From a large data set, we obtained the mean uptimes
and downtimes in hours, as can be seen in table 7. From the same data set we were able to obtain the
maximum machine speeds, since the number of bottles processed per time unit of each machine was
recorded. By measuring the length and width of the conveyor belts we were able to obtain the maximum
number of bottles fitting into each buffer. We also investigated whether there exist dependencies between

Table 6: Results for production lines with increasing imbalance in mean downtimes
Mean Error (%) in
downtimes the throughput

Two-state Three-state
1,1,1,... 1.71 1.71
1.33,1,0.67,1.33,1,0.67... 2.22 1.93
2,1,0.5,2,1,0.5,... 3.82 2.58
4,1,0.25,4,1,0.25,... 7.95 3.62
10,1,0.1,10,1,0.1,... 11.86 3.99

14

Table 7: Data for the Heineken production line
Machine name Mean uptime (hrs) Mean downtime (hrs) Machine speed Buffer size
Depalletizer 1.3712 0.0595 48349 3647
Logo-detection 0.5821 0.0256 43284 1823
Depacker 0.1389 0.0283 43284 6895
Bottle-washer 0.3229 0.0473 40389 5300
EBI 0.5828 0.0336 37407 270
Filler 0.4244 0.0361 37407 4874
Pasteurizer 3.9386 0.0806 40170 7014
Labeler 0.2930 0.0246 37094 6622
Packer 0.2698 0.0349 40988 4630
Cratemanco 2.8161 0.1517 41500 6945
Palletizer 1.9550 0.0685 42559 -

breakdown rates and machine speeds; there appeared to be no evidence for such dependencies, justifying
our assumption of constant breakdown rates.

We compared the estimated throughput of a discrete event simulation to the results obtained by using
our approximation method as described in Section 3. Simulation gives an average throughput of 31,523
bottles per hour. The estimated throughput of our two-state approach as described in Section 3.1 is 32,046
bottles per hour, which is a difference of 1.66 % compared to simulation. The three-state approach of
Section 3.2 estimates a throughput of 31,976 bottles per hour, which is a difference of 1.44 % with
simulation.

5 Discussion

In this section, we discuss the results of the testset as presented in the previous section. We are interested
in differences in throughput and mean buffer content between our approximation and a simulation model.
Both the two-state model and the three-state model perform well on this testset. The average error in
throughput is 1.69% and 1.53% respectively; the average error in mean buffer content is 0.60% and
0.55% respectively.

Table 1 shows that the error in throughput is larger for longer production lines, although the results are
still satisfying for production lines with 16 servers. More surprisingly, there seems to be no dependency
between the length of the production line and the error in mean buffer content. In Table 2, it can be
seen that results are better for lines with larger mean uptimes. Table 3 shows that for mean downtimes
the opposite holds: for smaller mean downtimes, the results are better. A possible explanation for this
effect is that we estimate time until a starvation or blocking by an exponential distribution, while these
transitions are not exponentially distributed in reality. For cases with small mean uptimes or large mean
downtimes, these transitions occur more frequently. Tables 2 and 3 also show that the results are fairly
insensitive to imbalance in mean uptimes; while imbalance in mean downtimes does seem to give slightly
worse results.

In Table 4, we see the average results depending on the machine speed configuration. When adding
imbalance, we see that results become worse for lines with jumping speeds and better for lines with a V-
shape speed configuration, which seems a surprising results at first sight. This effect can be explained by
the following argument. As said, we approximate the non-exponentially distributed time until starvation
or blocking by an exponential distribution. For lines with jumping speeds, we deal with these type of
transitions a lot, which is why results deteriorate for these cases. For the V-shape production lines there
is another effect playing a role. In the first part of these lines, speeds are decreasing and buffers are
typically full when all servers are producing for some time. When all buffers in the first part are full, the
time until blocking is exponentially distributed (as we estimated it) and starvation will not occur. In the
second part of the production line, speeds increase and the buffers are frequently empty. This implies
that the time until starvation is mostly exponentially distributed and blocking is not likely to happen very

15

often.

Table 5 shows that the error in throughput is the smallest for production lines with very small buffers or
large buffers. This again has to do with the frequency of occurrence of jumps to starvation and blocking.
The average error in mean buffer content is the largest for lines with large buffers.

To show the difference between the two-state and the three-state model, we focus on imbalance in mean
downtimes. As can be seen in Table 2, both approximations give exactly the same results for production
lines with equal mean downtimes. For these cases, the mean time spent in the down-state is the same
as the mean time spent in the starved or blocked-state in the three-state model (see Figure 7). Therefore
combining these states, as we do in the two-state model, will give exactly the same approximations.
For cases with imbalance in mean downtimes, we see that the three-state model performs slightly better
than the two-state model. However as we increase the imbalance in mean downtimes and take it to the
extreme, we see in Table 6 that the three-state model performs significantly better.

As can be seen in Table 7, the Heineken production line has imbalance in all parameters. The results
for this line are very satisfying, with an average error of 1.66% and 1.44% in throughput compared to
simulation for the two-state and three-state approach respectively.

6 Conclusions

In this paper, we develop an approximative method to analyze production lines with fluid flows and expo-
nentially distributed breakdown and repair times. We assume operationally dependent failures, meaning
that a server cannot break down when it is not producing because of starvation or blocking. The method
decomposes the line into subsystems, each subsystem consisting of an arrival server, a departure server,
and a buffer in between. In the description of the arrival server, we include the fact that this server can be
starved or has to slow down because of the upstream part of the production line. Similarly, in the descrip-
tion of the departure server we include possible blocking or speed adaption because of the downstream
part of the production line.

We propose two approaches to analyze a subsystem. In the first approach, we model the behavior of both
the arrival and departure servers as two-state Markov chains, with a state where the server is producing
and a state where the server is not producing, either because of a breakdown or because of starvation or
blocking. The second approach is to model both servers as three-state Markov chains, where blocking
and starvation are treated as separate states. The transition rates and average speed of both servers are
determined iteratively.

For both two-state and three-state models, the iterative algorithm to determine the parameter values
converge rapidly. By using a large test set, we compare the throughput and mean buffer content of both
approximations to those obtained from a discrete-event simulation. The average error in both quantities is
small. For cases with lots of imbalance in mean downtimes, the three-state model performs significantly
better than the two-state model. For the real-life production line at Heineken Den Bosch, both models
produces accurate estimates of the throughput.

Since in reality breakdown and repair distributions are typically not exponentially distributed, further
research will include the extension towards general breakdown and repair distributions.

References

[1] I.J.B.F. Adan, V.G. Kulkarni, J.A.C. Resing (2003) Stochastic discretization for the long-run average reward
in fluid models. PEIS 17, 251-265.

16

[2] M.H. Burman (1995) New results in flow line analysis. Ph.D. thesis, Massachusetts Institute of Technology.

[3] Y. Dallery, R. David, X.L. Xie (1988) An efficient algorithm for analysis of transfer lines with unreliable
machines and random processing times IIE Transactions 20 (3), 280-283.

[4] Y. Dallery, R. David, X.L. Xie (1989) Approximate analysis of transfer lines with unreliable machines and
finite buffers IEEE Transactions on Automatic Control 34 (9), 943-953.

[5] Y. Dallery and H. Le Bihan (1997) Homogenization techniques for the analysis of production lines with
unreliable machines having different speeds. European Journal of Control 3 (3), 200-215.

[6] M. Di Mascolo (1988) Méthode analytique d’évaluation des performances d’une ligne d’assemblage. Rap-
port de DEA, Laboratoire d’Automatique de Grenoble.

[7] S.B. Gershwin and I.C. Schick (1980) Continuous model of an unreliable two-machine material flow system
with a finite interstage buffer. Report LIDS-R-1039, Massachussets Institute of Technology.

[8] S.B. Gershwin (1987) An efficient decomposition algorithm for the approximate evaluation of tandem queues
with finite storage space and blocking Operations Research 35 (2), 291-305.

[9] S.B. Gershwin (1987) Representation analysis of transfer lines with machines that have different processing
rates. Annals of Operations Research 9, 511-530.

[10] M.B.M. de Koster (1987) Estimation of line efficiency by aggregation. International Journal of Production
Research 25 (4), 615-626.

[11] G. Latouche and V. Ramaswami (1999), Introduction to matrix-analytic methods in stochastic modeling.
ASA-SIAM Series on Statistics and Applied Probability, Philadelphia.

[12] R. Levantesi, A. Matta, and T. Tolio (2003) Performance evaluation of continuous production lines with
machines having different processing times and multiple failure modes. Performance Evaluation 51, 247-
268.

[13] X.G. Liu and J.A. Buzacott (1990) Approximate models of assembly systems with finite banks. European
Journal of Operational Research 45, 143-154.

[14] D. Mitra (1988) Stochastic theory of a fluid flow model of multiple failure-susceptible producers and con-
sumers coupled by a buffer. Advances in Applied Probability 20, 646-676.

[15] V. Ramaswami (1999) Matrix analytic methods for stochastic fluid flows. Teletraffic Engineering in a Com-
petitive World (Proceedings of the 16th International Teletraffic Congress Elsevier Science B.V., Edinburgh,
UK, 1019-1023.

[16] A. da Silva Soares and G. Latouche (2006) Matrix-analytic methods for fluid queues with finite buffers.
Performance Evaluation 63, 295-314.

[17] A. da Silva Soares and G. Latouche (2005) A matrix-analytic approach to fluid queues with feedback control.
International Journal of Simulation: Systems, Science and Technology 6 (1-2), 4-12.

[18] B. Tan and S.B. Gershwin (2009) Analysis of a general Markovian two-stage continuous-flow production
system with a finite buffer. International Journal of Production Economics 120, 327-339.

[19] J. Wijngaard (1979) The effect of interstage buffer storage on the output of two unreliable production units
in series with different production rates. AIIE Transactions 11 (1), 42-47.

17

A Matrix-analytic methods for two-stage production lines with ODFs

This appendix is devoted to obtaining the steady state distribution and performance measures of the
two-stage system as defined in Section 2, using matrix-analytic methods. The method is based on the
analysis of Soares and Latouche [17]. The system is characterized by generator Q, speed vector r,
full-buffer process generator QF and empty-buffer process generator QE . In Section A1, we analyze a
system where the net speed ri in each state i ∈ S is either 1 or −1. Section A2 describes how to obtain
the density function for a general system by transforming it into a system with two possible net speeds.
Finally, Section A3 shows how to derive performance measures from the steady state distribution.

A.1 Analysis of two-stage systems with two possible net speeds

We assume that ri = 1 or ri = −1 for each i ∈ S. First, we divide the state space in two sets: S+ with
phases i for which ri = 1, and S− with phases i for which ri = −1. We partition the transition matrix
Q and the speed vector r in a similar way,

Q =
(
Q++ Q+−
Q−+ Q−−

)
, r =

(
r+
r−

)
.

We introduce a matrix Ψ, where the element Ψij for i ∈ S+ and j ∈ S− is the probability that when
starting in state iwith an empty buffer, the system returns to an empty buffer situation and does so in state
j. To obtain Ψ, we use matrix-analytic methods. The following procedure is proposed in [16] (Appendix
B). Define c ≤ maxi∈S |Qii|, P = I + 1

cQ, and V = I + 1
cU . A Quasi-Birth-and-Death process can be

defined with transition matrices

A0 =
(

1
2I 0
0 0

)
, A1 =

(
1
2P++ 0
P−+ 0

)
, A2 =

(
0 1

2P+−
0 P−−

)
.

We can now define

G =
(

0 Ψ
0 V

)
,

where G is the minimal nonnegative solution of the equation G = A2 + A1G + A0G
2. The logarithm

reduction algorithm of [11] can be used to efficiently calculate the minimal nonnegative solution of this
equation.

We define K and U as the generator of an irreducible Markov process on S+ and S− respectively, where

K = Q++ + ΨQ−+,

U = Q−− +Q−+Ψ.

We can also consider the level-reversed process, which has the same generatorQ and (reversed) net speed
rates r̂i = −ri. The matrices Ψ̂, K̂ and Û for the level-reversed process have the same interpretation as
the matrices Ψ, K and U for the original queue, so we obtain

K̂ = Q−− + Ψ̂Q+−,

Û = Q++ +Q+−Ψ̂.

Soares and Latouche [17] show that the stationary density function of the buffer content is given by

(f+(x), f−(x)) = (p(b)
+ , p

(0)
−)

(
0 Q+−

Q−+ 0

)(
I eKbΨ

eK̂bΨ̂ I

)−1(
eKx eKxΨ

eK̂(b−x)Ψ̂ eK̂(b−x)

)
, (9)

18

where x is the buffer content. We define p(b)
+ as the upper bound probability vector, where the ith element

denotes the probability that the system is in state i ∈ S+ and the buffer is full. Similarly, p(0)
− is the vector

of lower bound probabilities, where the ith element represents the probability of the system being in state
i ∈ S− and the buffer being empty. To obtain the boundary probability vectors (p(b)

+ , p
(0)
−), we have to

solve the following system:

(p(b)
+ , p

(0)
−)W = 0, (10)

N∑
i=1

∫ b

0
(f+(x), f−(x))dx = 1, (11)

where

W =
(
QF++ +QF+−Ψ̂−+ QF+−Λ̂−−

QE−+Λ++ QE−− +QE−+Ψ+−

)
.

The matrices Ψ+−, Ψ̂−+, Λ++ and Λ̂−− are obtained in [17] as

Ψ+− = (Ψ− eÛbΨeUb)(I − Ψ̂eÛbΨeUb)−1,

Ψ̂−+ = (Ψ̂− eUbΨ̂eÛb)(I −ΨeUbΨ̂eÛb)−1,

Λ++ = (I −ΨΨ̂)eÛb(I −ΨeUbΨ̂eÛb)−1,

Λ̂−− = (I − Ψ̂Ψ)eUb(I − Ψ̂eÛbΨeUb)−1.

The normalizing equation (11) can be written as
N∑
i=1

∫ b

0
(f+(x), f−(x))dx =

(p(b)
+ , p

(0)
−)

(
0 Q+−

Q−+ 0

)(
I eKbΨ

eK̂bΨ̂ I

)−1(∫ b
0 e

Kxdx
∫ b
0 e

KxdxΨ∫ b
0 e

K̂(b−x)dxΨ̂
∫ b
0 e

K̂(b−x)dx

)
1N . (12)

Since either K or K̂ in this equation is singular, we make use of the group inverse concept. The group
inverse P# of a matrix P is a unique matrix satisfying PP#P = P , P#PP# = P#, and PP# =
P#P . With the following property we are able to compute the group inverse:{

P#P = I − vu,
P#v = 0,

where u and v are respectively the left and right eigenvectors of P for the eigenvalue 0, normalized by
uv = 1 and u1 = 1.

The integrals in (12) can be computed by using either the inverse or the group inverse of K and K̂ to
obtain (see [17] for the proof):

∫ b

0
eKxdx =

{
(eKb − I)K# + bvu if K is singular,
(eKb − I)K−1 otherwise,∫ b

0
eK̂(b−x)dx =

{
(eK̂b − I)K̂# + bv̂û if K̂ is singular,
(eK̂b − I)K̂−1 otherwise.

The values for (p(b)
+ , p

(0)
−) obtained from (10)-(11) can be plugged into (9) to complete the buffer content

density function. By integrating (9) and adding the probabilities at the boundaries, we can retrieve the
steady state probability vector π:

π = (π+, π−) = (p(b)
+ , p

(0)
−) +

∫ b

0
(f+(x), f−(x))dx.

19

A.2 Analysis of general two-stage systems

In this subsection, we analyze a general two-stage fluid system with a finite set of states S̃, transition
matrix Q̃ and net speed vector r̃, where r̃i can have any real value for all i ∈ S. We analyze this system
by transforming it into a system with a set of states S, rate matrix Q and speed vector r, where ri = 1
or ri = −1 for each i ∈ S. From this system, we can obtain the steady state distribution as described
in the previous subsection. Secondly, we show how to transform this distribution into the steady state
distribution of the original system, f̃ .

First, we divide the state space S̃ into three subsets; S+, S− and S0 consist of all states i ∈ S̃ for which
r̃i > 0, r̃i < 0 and r̃i = 0 respectively. We divide the rate matrices Q̃, Q̃E and Q̃F accordingly:

Q̃ =

 Q̃00 Q̃0+ Q̃0−
Q̃+0 Q̃++ Q̃+−
Q̃−0 Q̃−+ Q̃−−

 , Q̃E =

 Q̃E00 Q̃E0+ Q̃E0−
Q̃E+0 Q̃E++ Q̃E+−
Q̃E−0 Q̃E−+ Q̃E−−

 , Q̃F =

 Q̃F00 Q̃F0+ Q̃F0−
Q̃F+0 Q̃F++ Q̃F+−
Q̃F−0 Q̃F−+ Q̃F−−

 .

From this system we determine the following quantities. The buffer content pdf is determined as f̃ =
(f̃0, f̃+, f̃−). The (row) probability vector of being in either of the states in i ∈ S̃ = {S0, S+, S−} is
given by π̃ = (π̃0, π̃+, π̃−). The row vector p̃(0) = (p̃(0)

0 , p̃
(0)
+ , p̃

(0)
−) contains the steady state probabilities

of the system being in state i ∈ S̃ and the buffer being empty. The ith element of row vector p̃(b) =
(p̃(b)

0 , p̃
(b)
+ , p̃

(b)
−) denotes the probability of being in state i ∈ S̃ and the buffer being full. Note that

p̃
(0)
+ (i) = p̃

(b)
− (i) = 0, since the buffer cannot be empty if the net speed is positive and it cannot be full if

the net speed is negative. For ease of notation, we write the (i, j)th element of a matrix G as G(i, j) and
the ith element of a vector g as g(i) from here on.

From the original process, we delete the states in S0 to obtain a new process with state space S̄ =
S+ ∪ S−, net speed vector r̄ and transition matrix

Q̄ =
(
Q̃++ Q̃+−
Q̃−+ Q̃−−

)
+
(
Q̃+0

Q̃−0

)
(−Q̃00)−1(Q̃0+, Q̃0−).

By changing the time scale, we can change this process with nonzero speeds into a process with two
possible speeds. We define C̄ = diag(r̃i : i ∈ S+ ∪ S−). The transition matrix of the simplified process
with state space S = S+ ∪ S− is given by

Q = |C̄|−1Q̄.

By using the method as described in the previous subsection, we can determine the probability density
function f , boundary probability vectors p(0) and p(b), and probability vector π of the simplified process.
By rescaling these results we obtain the function f̄ and vectors p̄(0), p̄(b), and π̄ corresponding to the
process described by Q̄ and r̄:

f̄ = (π|C̄|1)−1f |C̄|−1, π̄ = (π|C̄|1)−1π|C̄|−1,

p̄(0) = (π|C̄|1)−1p(0)|C̄|−1, p̄(b) = (π|C̄|1)−1p(b)|C̄|−1,

where 1 is the column vector of ones. To determine f̃(i), π̃(i), p̃(0)(i), p̃(b)(i) of the original process for
all states i ∈ S+ ∪ S−, we have to scale the original expressions f̄(i), π̄(i), p̄(0)(i), p̄(b)(i):

f̃(i) = (1−
∑
j∈S0

π̃(j))f̄(i), π̃(i) = (1−
∑
j∈S0

π̃(j))π̄(i), (13)

p̃(0)(i) = (1−
∑
j∈S0

π̃(j))p̄(0)(i), p̃(b)(i) = (1−
∑
j∈S0

π̃(j))p̄(b)(i). (14)

20

Since we are dealing with an irreducible Markov chain, we obtain π̃(i), f̃(i), p̃(0)(i), and p̃(b)(i) for
i ∈ S0 by using balance arguments. These arguments imply that the total number of jumps into a certain
state should be equal to the number of jumps out of that state. By applying balance arguments, we derive
sets of equations from which we can solve the unknown quantities.

• To determine the steady state probabilities π̃(i) for i ∈ S0, we argue that the number of jumps into
a state i ∈ S0 should be equal to the number of jumps out of that state. The corresponding balance
equations are given by

−π̃(i)Q̃(i, i) =
∑

j∈S+∪S−

[
(π̃(j)− p̃(b)(j)− p̃(0)(j))Q̃(j, i) + p̃(b)(j)Q̃F (j, i) + p̃(0)(j)Q̃E(j, i)

]
+

∑
j∈S0

π̃(j)Q̃(j, i).

By substituting (13)-(14) into these equations and writing in matrix-form, we obtain the following
set of equations, from which we can solve π̃0 explicitly:[

(π̂+ − p̂(b)
+ , π̂− − p̂(0))

(
Q̃+0

Q̃−0

)
+ p̃

(b)
+ Q̃F+0 + p̃

(0)
− Q̃E−0

]
(1− π̃01) + π̃0Q̃00 = 0.

The solution can be substituted into (13) and (14) to obtain all the quantities for states in S+ and
S−.

• The balance arguments for the functions f̃(i) for i ∈ S0 imply that the total number of jumps into
a state with zero-speed and buffer level x, 0 < x < b, should be equal to the number of jumps out
of that state. Note that the buffer level does not change when the system is in a state in S0, so we
only need to include phase transitions in the balance equations.

−Q̃(i, i)f̃(i) =
∑

j∈S,j 6=i
Q̃(j, i)f̃(j).

Solving this set of equations for f̃0 gives (in matrix-notation)

f̃0 = −(f̃+Q̃+0 − f̃−Q̃−0)Q̃−1
00 . (15)

• Finally, we obtain p̃(0)
0 (i) and p̃(b)

0 (i) for i ∈ S0 by using balance equations at the boundaries:

−Q̃E(i, i)p̃(0)
0 (i) =

∑
j∈S−,j 6=i

Q̃E(j, i)p̃(0)
− (j),

−Q̃F (i, i)p̃(b)
0 (i) =

∑
j∈S+,j 6=i

Q̃F (j, i)p̃(b)
+ (j).

Solving and writing in matrix-notation gives the following set of equations, which we can solve
for p̃(b)

0 and p̃(0)
0 by plugging in (14) for p̃(0)

− and p̃(b)
+ :

p̃
(0)
− Q̃E−0 + p̃

(0)
0 Q̃E00 = 0.

p̃
(b)
+ Q̃F+0 + p̃

(b)
0 Q̃F00 = 0,

21

A.3 Performance measures

We are interested in the mean buffer content and throughput of the system as described in the beginning
of this section. As in the previous subsection, we split the state space into three parts, with S0, S+, and
S− containing the states with zero, positive and negative speeds respectively.

Using the analysis of the previous subsections, we can obtain the mean buffer content E(BC) by taking
the expectation of the buffer content between the lower and upper bound and adding a term for the
maximum buffer content at level b:

E(BC) =
[∫ b

0
(f0(x), f+(x), f−(x))xdx + b(p(b)

+ , 0)
]

1N ,

where 1N is the column vector of ones of size N . For this expression, we show how to obtain the
integral

∫ b
0 (f+(x), f−(x))xdx1N . From this, the integral

∫ b
0 xf0(x)dx follows by applying a similar

analysis using f0(x) from (15). We use (9) to write

N∑
i=1

∫ b

0
(f+(x), f−(x))xdx =

(p(b)
+ , p

(0)
−)

(
0 Q+−

Q−+ 0

)(
I eKbΨ

eK̂bΨ̂ I

)−1(∫ b
0 e

Kxxdx
∫ b
0 e

KxxdxΨ∫ b
0 e

K̂(b−x)xdxΨ̂
∫ b
0 e

K̂(b−x)xdx

)
1N . (16)

The integrals
∫ b
0 e

Kxxdx and
∫ b
0 e

K̂(b−x)xdx can be obtained using integration by parts, where either the
inverse or the group inverse of K and K̂ are used (see [17] for the proof):

∫ b

0
eKxxdx =

{
K#(beKb −K#(eKb − I)) + 1

2b
2vu if K is singular,

K−1(beKb −K−1(eKb − I)) otherwise,
(17)

∫ b

0
eK̂(b−x)xdx =

{
−K̂#(bI − K̂#(eK̂b − I)) + 1

2b
2v̂û if K̂ is singular,

−K̂−1(bI − K̂−1(eK̂b − I)) otherwise.
(18)

To determine the throughput T , recall that each state i = (iA, iD) ∈ S has corresponding arrival machine
speed rA,iA and departure machine speed rD,iD . By using the steady state probabilities π and boundary
probabilities p(0) and p(b) we obtain the throughput as

T =
∑

i=(iA,iD)

(πi − p(b)
i)rA,iA + p

(b)
i rD,iD , (19)

or, equivalently,

T =
∑

i=(iA,iD)

(πi − p(0)
i)rD,iD + p

(0)
i rA,iA . (20)

22

