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Free energy of the Lennard-Jones solid
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The Netherlands

(Received 12 April 2000; accepted 10 August 2000

We have determined a simple expression for the absolute Helmholtz free energy of the fcc
Lennard-Jones solid from molecular dynamics simulations. The pressure and energy data from these
simulations have been fitted to a simple functional f¢&@ parametejsfor densities ranging from
around 0.94-1.20, and temperatures ranging from 0.1 to\&llies in reduced Lennard-Jones
units). The absolute free energy at an arbitrary state point in this range is obtained by integrating
over density and temperature from the triple-point. Our result for the free energy is in very good
agreement with the values reported in literature previously. Also the melting line obtained from our
free energy expression, in combination with an equation of state for the liquid phase, is in excellent
agreement with results by Agrawal and Koflkdol. Phys.85, 43 (1995] obtained via the Gibbs—
Duhem integration method. @000 American Institute of PhysidsS0021-96060)50342-(

I. INTRODUCTION sion for the free energy, analogous to the Johnson EoS for
the liquid, at least not for densities and temperatures close
The Lennard-Joned.J) 6-12 potential is one of the most the solid—liquid coexistence line. Broughton and Gilfer
widely studied model potentials for simple fluids, owing to have determined an expression for the free energy by ther-
its simple functional form which greatly facilitates both the- modynamic integration of the internal energy from the har-
oretical evaluations and computer simulations, and yemonic crystal, but only for thee=0 isochore. Lacks and
proves to capture much of the essential physics. Althougishukld? have obtained an expression for the anharmonic
the potential is clearly an oversimplification—in particular it free energy from molecular dynamics simulation and pertur-
neglects higher-order dispersion interactions suah dsand  bation theory in the density range=0.864 top=1.0, and
r 10 attractions and three-body interactions—it gives surtemperature rang&=0 to T=0.5, which is well below the
prisingly good results for the liquid properties of systems oftriple-point, and therefore not applicable to solid—liquid co-
closed-shell atoms or molecules, in particular of those whictexistence properties. Moreover, the normal-mode frequen-
contain a high degree of spherical symmetry such as metteies required for the harmonic part of the free energy are not
ane. But also for nonspherical molecules such as nitrogerexplicitly given, and have to be calculated separately to ob-
carbon dioxide, and even alkanes, the LJ potential may provtain the total free energy.
accurate if a temperature-dependent well-depth parameter The goal of the present work is to obtain a simple but
€(T) is used =3 Therefore, the determination of the thermo- accurate expression for the Helmholtz free energy of the LJ
dynamic properties of the “Lennard-Jonesium” has been thesolid (fcc) phase, in the same spirit as the Johnson EoS for
subject of intense research over the past 40 years. The masie liquid phase. To this end, we have performed molecular
fundamental(and most difficult to obtainthermodynamic dynamics simulations for a large number of state poi@®
property of any system is the free energy. Once the Helmin total) for densities ranging fronp=0.94 top=1.20, and
holtz free energy is known as function of density and tem-temperatures ranging frofi= 0.1 up toT=2.0. The data for
perature, any other thermodynamic quantity can be calcuthe energy and pressure from the simulations have been fitted
lated. Moreover, the stability of a system with respect toto polynomial functions of density and temperature. It should
some other system is directly related to the value of the fre®e noted that these fits cannot be determined independently,
energy. There have been several attempts to determine aince the expression for energy and pressure should obey the
explicit functional form for the Helmholtz free energy of the Maxwell relation given by Eq(6), which we will use explic-
LJ system for theliquid phase; one of the most accurate itly in the derivation of the free energy. The absolute free
expressions has been obtained by Johresoml* (hereafter energy at some arbitrary state-point can then be obtained by
called the Johnson E9Swho have fitted a modified integrating the expressions for energy and pressure from
Benedict—Webb—Rubin-type expression to the data of &ome reference state-point, for which the free energy is
large number of molecular dynamics simulations. For a comknown. For the liquid phase, one normally integrates from
parison of the Johnson EoS with other equations of statéhe ideal gas state, for which the absolute value of the free
which have appeared in literature we refer to a recent papegnergy is known. However, this cannot be done for the solid
by Mulero et al® For the solid phase, the situation is differ- phase, since along this path the system undergoes a phase
ent. Although over the years there have been many studigsansition. For our reference state point we have therefore
on the determination of the free energy of the LJ sbiitfto  chosen the triple-point, for which the absolute free energy
our knowledge there does not exist a simple single expressan be obtained from an equation of stéE®9 for the lig-
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uid, if the coexisting pressure is known. Thus both the triple- IuX aBIIe

point temperature and an equation of state for the liquid are W) :( B ; (6)
a prerequisite in our approach. This paper is organized as B p

follows. In Sec. Il we introduce an expression for the freefrom which follows that

energy from basic thermodynamic concepts. In Sec. Il we

discuss the details of the simulations and compare the results BII(p. B)=b(p) + ——PF) JU™(p, ,3) )
for the free energy with those from literature. In Sec. IV we p: P ap

calculate the melting line from the present EoS for the solid,
in combination with the Johnson EoS for the liquid, and we
have some concluding remarks in Sec. V.

where U®{(p,B) is defined as the primitive function of

u®{(p,B), with respect tg3, and the “integration constant”
b(p) is a yet unknown function of the density only. Inserting
this into Eq.(5) gives

Il. EXPRESSION FOR THE FREE-ENERGY Ba*(p,B)— Boa*(po,Bo)=U(p,B) —U(po,Bo)
We consider a fcc crystal at finite temperature, where the + g b(p')dp’. @)
particles interact via a Lennard-Jones potential, o
_4 o\? [o)® For a crystal it is convenient to split the total excess energy
P(r)=4e T into a harmonigharm and anharmoni¢ah) part,

As is common for Lennard-Jones systems, we will use re-  u®{(p,8)=uMp,B)+up,B), 9
duced units throughout the remainder of the paper, i.e., we
define distances in units of and energies in units af, from  Where the harmonic energy is equal to

. . . . 3 . _
Wh.ICh follogvg that densities are in un|t§ of °, pressures in uharn*(p,ﬁ): ust(p)+ 2871, (10)
units of ec™°, and temperatures in units efk, wherek is
Boltzmann’s constant. where the static energy®® is the excess energy at zero

We define the excess free energy per particteof the  temperature, i.e., the energy of the atoms if positioned ex-
system at density and inverse temperatu@=1/T as the actly at the fcc lattice sites. From a simple scaling argument
total free energya minus the free energg® of an ideal gas it follows that for the Lennard-Jones potential,
at the same density and inverse temperature, viz., WS p) = Cop2 4 Cap. (11)

a(p,B)=a"p,B)+a*(p.B), . .
(é A (p.B) p.8) The coefficientsc, andc, have been evaluated numerically
Ba%p,B)=In(A%e)+Inp, (1)  for the fcc lattice, and are found to be equal to

whereA is the de Broglie wavelength. In the same way we >=—14.45392093¢,=6.065 940 096.

define the excess energy and pressure, ) .
We next make the assumption that the anharmonic part of

u(p,B)=up,B)+u(p,B), u%p.B)=38"" (2 the excess energy’{p, ) can be represented by the follow-
N(p,B)=T1p,B) +11%(p, B), T1%p,p)=(pp)~%, ~ NgTunctionalform,
()

2 5
where we have introduceH = P/p?, with P the pressure. Uah(PﬁFﬂEO mE:Z Anmp" B (12
The excess pressure and energy are related to the excess free
energy via which form ensures that in the limit of low temperature the
9B Jat total excess energy approaches that of a harmonic crystal.
( §3 ) =u(p,B), ( > ) =I1%(p, ). (4) From Eq.(7) then follows that
P
o ? , aup) UM p,B)
Thus one can obtain the excess free energy for an arbitrary b(p)=BII*(p,B)— B P (13
state-point p,8) by integratingu®* andIT®* from a reference P P
state-point pg,B0), with
e e B (S ! ! 2 >
Ba YP!B)_BOa X(po,ﬁO)_J‘ﬁou X(po )dﬁ Uah(p,ﬁ):_nz Z=2 m lpnB*I’TH'l. (14)
+:30f 1%p’, Bo)dp’. We make the second assumption that the functifw) can
be represented by a polynomial jn
(5) 3

The functionsu®(p,8) andI1®{(p,B) are not independent, b(p)= 20 bnp"
however, since they should obey the Maxwell relation which
follows from Eq.(4), From the above formulas we may finally write H§) as
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Ba™(p,B)=Cl(po.Bo) + Bup)+3In +U¥p,B) 50 T T T T
3
b
+ n n+l, 15 p=12
Eo nt1” (19 wo b T=10 _
with
C(po.Bo) = Boa®(po.Bo) — Bou®™pg) — 3In By
3, 30 | -
~U™po, B0~ 2 7770 (16) <

The absolute free energy is now completely determined by
18 parametersa,,, (n=0-2,m=2-5), b, (n=0-3),

C,, C4, and the absolute free energy of the reference point
(po,Bo); the latter can be estimated from a single known
point on the liquid—solid coexistence line. From the coexist- 14 |- .
ence pressur® .., at temperature3, one can obtain the
corresponding crystal densipg from the EoS given above;

the liquid density at coexistengg can be obtained from a
separate EoS for the liquid, such as Johnson EoS. From th 0.0

20 - —

o . 0.0 2.0 4.0 6.0 8.0
conditions for coexistence follows that r
(S _pn—1 ex
a(po Bo)=Bo " In(p /p0)+aliq(p| Bo) FIG. 1. Radial distribution function of the fcc Lennard-Jones system at a
densityp=1.2 and temperaturé=1.0.
yp  PoTP (17)
% popy

where the absolute free energ% can be obtained from the noted that the correction term ?tself is relatively smi@k-
liquid EoS. The values for the parameters which determiniéept for ve%/ |0\|N temEeraturhssmce we hav_lej\busedda; rather
the equation of state described above will be obtained byA'9€ cut-off value. The systems were equilibrated for 1000
fitting the expressions for energy and pressure to the da e steps from their initial state in which the particles were

from molecular dynamics simulations for a large number of:positioned at the fcc lattice sites with a Maxwellian velocity
state-points, which is described in the next section. distribution. Production runs during which pressure and en-

ergy were recorded lasted 50 000 time steps, where the tem-
perature was kept at a constant value via a Néssover

Ill. RESULTS FROM MOLECULAR DYNAMICS
SIMULATION

10

From molecular dynamics simulation we have evaluated I I I
u®™{(p,B) and I1%(p,B) for a total of 877 different state-
points (p,B), in the density range from aroung=0.94 to
p=1.2, but not smaller than the melting density, and for 9 F 1
temperatures ranging fromi=0.1 to T=2.0. The system
contained 2048 particles, and periodic boundary conditions
were employed. The particles were interacting via a
Lennard-Jones potential which was truncat@olt not
shifted at a distance ;=6, which was in any case smaller ‘&
than half the periodic box-length. We have added the usuag
long-range correction to the values for energy and pressurt
obtained with the truncated potential,

u™(p,B)=ugindp.B)— 5 %p,

%(p,B) =155 (p.B) = Frr . 6 - -

Note that in these corrections it is assumed that the radia
distribution function equals one from the cut-off value to
infinity; This might be a valid approximation for the liquid l !
phase, however for the crystal phase this is not true, as 0.9 1.0 1.1 1.2

shown in Fig. 1, where we show tligr) for a much larger p

system(8000 particlesat densityp=1.2 andT=1.0. How- FIG. 2. b(p) constructed according to E(L3) from the simulation data for

ever, the error that is made i”_ the correction t_erm by assuMpe pressure and the fit parametags,, for various inverse temperaturgs
ing thatg(r)=1 beyondr =6 is small, where it should be The results for differeng are almost indistinguishable.

~
I
1

(3]
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TABLE I. Values for the parameters in Eq4.9)—(21).

n an2 ans Ang aps bn
0 —8.2151768 12.070 686 —6.659 4615 1.321 1582 69.833 875
1 13.404 069 —20.632 066 11.564 825 —2.306 4801 —132.869 63
2 —5.548 1261 8.8465978  —5.0258631 1.007 0066 97.438 593
thermostat. The _parameteg,sm in I_Eq. (12) were obtained by . Ba®™(p,B)=C(Ty)+ Bus®(p)+2In B+ u(p,B)
a least-square fit to the simulation data for the anharmonic 3
energy, where we used the singular value decomposition N E by .4 21)
method!® We should note that in this fit we have given less “n+rif

weight to the data for temperatures lower than 0.3; we will <t o ) )
come back to this point in the discussion in Sec. V. From the/hereu (p), u(p.B), U¥(p,B), andC(T,,) are given by

resulting fit parameters,,, and the simulation data for Eq.s.(ll), (12), (14), and(18), respectively. For the triple-
T1%(p, B), the functionb(p) can be constructed according to point temperature we choose the vallig=0.687 from
Eq. (13. Note that both the function&J®(p,8) and Agrawal and Kofke: From Eq.(18) then follows that
I1*9p,B) depend onB, howeverb(p) itself shouldnot de- C=-23.3450759, (22
pend onB. This is indeed the case, as shown in Fig. 2, where . _ . .
we have plottec(p) as function ofp for all 35 values of3 which value we will use in the remainder of the paper.

studied in the rang&=0.3 toT=2.0. The data for different ’_A‘S a first fces_t of the validity of ex_press_idﬂl) we in-
3 all fall onto a single curve, which indicates that the Simu_vesugate the limit of low temperature, in which case the free

lation data are thermodynamically consistent, i.e., the dat§"ereY should approach that of a harmonic grystal, wf_nqh
for pressure and energy obey the Maxwell relatiéh The can be calculated from a normal-mode analysis. In the limit
curve shown in Fig. 2 has been fitted to a polynomial ofOf T small, Eq.(21) reduces to

order 3 to obtain the parametebs. The final values ob- lim Ba®(p,B)=—23.345075% Bu{p)+3In B
tained for botha,,, and b,, from the procedure described B—o
above are given in Table I. In order to obtain the absolute 3
. . by,
free energy, we choose the triple-point as our reference state + 2 p" L
point. From a triple-point temperatuilg, we can determine n=o N+1

the triple point pressure by implying the conditions for co-
existence(equal pressure and equal chemical potenfiad N3 .

the gas and the liquid phase at that temperature. The values 1 D B bn 41

for the gas phase are calculated from the virial equation of N <4 In wi(p)=—23.345075% zfo nt1P

state up to the third virial coefficient, and the values for the

liquid phase are calculated from the Johnson EoS. Once the +Inp+3In(2m) -1, (23

coexisting pressure is determined, we evaluate the exce§gere , are the normal-mode frequencies. In Table Il we
free energy of the solid at the triple-point from EA-7),  compare the LHS of Eq23) with the RHS for five different
from which the constan€ can be determined according t0 gensities, where the normal-mode frequencies are taken from
Eq. (16). We have performed this procedure for various val-| gcys and Rutledg¥ Table I. We find that the agreement is
ues of the triple point temperature ranging from 0.683 tQythin 0.59%. After having confirmed that the expressia)
0.691. The coefficien€ was found to fit well to the follow- 1,55 the correct low-temperature behavior, we next compare

which is equal to the free energy of a harmonic crystal if

ing function of the triple-point temperature, in Fig. 3 with results from literature at finite temperatures. In
Fig. 3 the lines represent the free energy calculated from Eq.
C(Ty)=—19.4503982-8.891 038 55T, (21) at temperatures 0.75, 1.15, and 1.35; the open symbols

) are the results obtained by Monte Carlo simulatiotie
+4.689 854 18Tj,. (18

From the equations of Sec. Il, we thus finally arrive at theTABLE II. Comparison of the low-temperature limit of the free energy
following expressions for energy, pressure and Helmholtzxpression with the normal-mode frequencies.
free energy of the solid fcc state,

1 RHS of Eq.(2
p SEi 0 6(p) S orEa(z9
u™(p,B)=up)+ 3B 1+ u(p,B), (19  0.9423 7.210 7.248
0.9706 7.503 7.540
, 1.0000 7.790 7.828
pex  gsta JU . 1.0306 8.070 8.113
BP** tp) , 2Utp B)+z byp" (200 10625 8.346 8.395
2 a a -
P p p =0
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20 T T T mind however that the location of “our” triple-point is equal

to that of Agrawal and Kofke by construction. It was sug-
AT gested by these authors that the coexistence pressure can be

e well represented by the following function:

00 T _- . Peoe= B P exp(—0.47598Y)[16.89+ A+ BB,
------ -7 (24)

_______ - which satisfies the soft-sphere result ®+ 0. We find that
this expression fits the coexistence pressure extremely well,

where inclusion of higher powers @ in Eq. (24) will not
give any improvement. From our data we obtain the values

pa”(p,T)
|
|

T=075 A=—7.2866 andB= —2.9895, where Agrawal and Kofke
found the value®\=—7.19 andB= —3.028. For complete-
40 |- . ness we also give expressions for the liquid dengjtyand

the solid densitypg, at coexistence, which are found to be
well described by the following fits:

piq=B""10.91070-0.251 243+ 0.858 613
6.0 L , .
0.90 1.00 1.10 1.20 1.30 —1.08918°%+0.63938%—0.1443%%], (25

density p
pso= B~ Y40.92302-0.092 18+ 0.623 8132

FIG. 3. Excess free energy divided by temperature as a function of density
at three different temperatures. The lines follow from the expression derived —0.826 7$3+ 0.491 2434— 0.108 4735]. (26)
in this paper. The open circles, squares and triangles are from Monte Carlo
simulations at temperaturéb=0.75, T=1.15, andT=1.35, respectively Next, we compare the melting line with the experimental
(Ref. 7. The plus-, cross-, and star-symbols are from perturbation theory agesults for argot? and kryptont® see Fig. 5. The experimen-
temperatured =0.75,T=1.15, andT=1.35, respectivelyRef. 7. tal data has been reduced by the Lennard-Jones parameters

e/k=119.8 K and 0=0.3405 nm for argon, and/k

plus-, cross-, and star-symbols are calculated from perturba- 172.7 K ando=0.3591 nm for krypton, which are ob-

tion theory” Again the agreement is good to very good. tained from a fi'g of thg second virial coefficient to experi-
mental PV-datd’ We find that the Lennard-Jones potential

with these parameters describe the solid—liquid coexistence
properties very well, which is to some extent remarkable
From the expression for the free energy of the solid obsince the LJ parameters have been obtained from gas-phase
tained in the previous section, combined with the expressiodata. We also compare with resdft®btained by perturba-
for free energy of the liquid from the Johnson EoS, we havdion theory for the two-body Aziz potential plus an approxi-
calculated the liquid—solid coexistence line by equating thanation to the Axilrod—Teller triple-dipole three-body poten-
chemical potential and pressure for both phases. In Fig. 4 wigal (open symbols in Fig. 6 It is shown that the Lennard-
compare our resultgsolid lineg with the results from Jones potential gives a better agreement with experiment
Agrawal and Kofke(open symbolswhich were obtained by than the full three-body potential. One cause might be the
the Gibbs—Duhem integration methbd\e find excellent approximate nature of the three-body interactions in Ref. 18;
agreement between the two results; it should be borne iim that paper they use an effective isotropic® potential,

IV. APPLICATION TO THE MELTING LINE

25 ,
20 |- -
15 |- —
FIG. 4. Coexistence pressure vs denglsft) and vs
§ temperature(right) for the fcc-liquid Lennard-Jones
o liquid system. The solid lines follow from the expression for
10 |- - the free energy derived in this paper. The open symbols
are the results by Agrawal and KofkRef. 1).
5 -
0 ]
0.8 0.9 2.5
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25 T T T 30 T T T
this work .
® argon (exp.) o
A krypton (exp.) 25 |- —
20 - o krypton(theory) -
20 |- —
15 |- —
o o
10 |- —
10 |- -
5 -
5 _
0 ] ] ] 0 ] ] ]
0.5 1.0 1.5 2.0 25 0.5 1.0 1.5 2.0 25
T T

FIG. 5. Coexistence pressure vs temperature for the fcc-liquid LennardFIG. 7. Coexistence pressure calculated from Ross’ melting(soled sym-
Jones system. The solid line is the same as in Fig. 4. The filled circles anbols), compared with the true coexistence presqsmid line) and the co-
open triangles are the experimental results for argon and krypton, respeexistence pressure calculated from E2p) (open symbols

tively. The open circles are the results from perturbation theory for krypton,

where the atoms interact via a two-body Aziz potential plus a three-body

Axilrod—Teller potential. The data for argon and krypton have been reduced

by the Lennard-Jones parameters derived from gas-phase data. Finally, we test the validity of Ross’ melting rufé,
which states that along the melting line,
ex__ stat_
instead of the full an-isotropic three-body potential. A sec- A& —Bu”"=constant, (27)

ond cause might be the neglect of higher-order dispersiowhich follows from the assumption that along the melting
interactions in the three-body potential. Receftlyt was  line the reduced free volume of the crystal is constant. For
found that the dipole—dipole—quadrupole three-body forceshe inverse power potential " the relation is exact, where
contribute substantially to the pressure in dense liquidsihe constant is around 6 for all values of?* From the
bringing the results from simulation very close to the experi-present expression for the free enetg{) we can write Eq.
mental results for argon. (27) as

3

T T T T T $nB+UNMp,B)+ > P

n=0 I’H-lp

n+1=constant. (28)

In Fig. 6 we showpa®™— gus@ as a function of inverse
6.50 - 7] temperature along the melting line. We find the same result
as Agrawal and Kofké,namely, a slight variation in Ross’
“constant” from 6.30 to 6.55. Although this variation might
6.45 - 7] seem relatively small, it is still too large for the coexistence
pressure to be accurately predicted from Ross’ rule. In Fig. 7
the filled symbols indicate the coexistence pressure obtained

(?' 6.40 |- T by solving Eq.(28) for one particular value of the constant
35 (at B=1.1). We find rather large deviations from the true
o coexistence pressure, given by the solid ligame as in Fig.
635 7] 4). The functional form of Ross’ constant shown in Fig. 6
suggests that we could accurately predict the melting line
630 L ] from the following “empirical” modification to the Ross
’ melting rule
6.034+0.3483 p<1.1,
6.25 ! ! ! ! ! Ba®— pust= (29
0.4 0.6 0.8 1.0 1.2 14 1.6 6.191+0.208 pB=1.1.
B The coexistence pressure obtained by solving (E§). (Fig.
FIG. 6. The “Ross constantBa®*— gus along the melting line, as func- 7, OPe€N symbolsis found to be in very close agreement with
tion of g. the true coexistence pressure.
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V. DISCUSSION ergy and pressure. Rather, we have chosen simple polyno-
mial functions to which the data could be fitted with good
ccuracy. The purpose of this work is therefore not to give
ny new insight from a statistical mechanics point of view,
ut to provide with an expression fpractical purposes, i.e.,

We would like to conclude with a few remarks.
First, we note that in the fit procedure as described it
Sec. Il we have also included data for temperatures lowe

than 0.3, since we want to explore the low-temperature limi , ) X ;
of our function in order to compare with the normal-mode rom which any thermodynamic quantity of the solid can be

frequencies. It turned out however that the functions couloefs'g ofbtameld W'Ith good accura?/l/’ V\;h'((::h (Tan .b N Iu ?_e d Itn-
not fit the low-temperature data with as high accuracy as fop.cad of a moiecular dynamics or vionte t.ario simufation to

temperatures equal or higher than 0.3, since for lower tem\-’_e”fy results from theory. Moreover, quantities that are dif-

peratures the finite size effects become relatively large, an[fu't to obtaln.fr.qm simulation with goo_d accura(:yuch as
the inadequacy of the “standard” correctior(e.g. the compressibility or the heat capagitgan be obtained

8mr, 3p/3) becomes noticable. In particular, the functionsStra:ghtf.orward%fLo”} the dpr_esetntdgqua?on Otf state..t,?]nother
b(p) constructed at temperatures smaller than 0.3 gigPpication could be found in studies of systems with more

slightly deviate from the curve as shown in Fig. 2, which complicated potentialsuch as three-body, or two-center po-

indicates that there is some inconsistency with respect to thtgntlals) for which the .Lennard-Jones potential C.OUId Serve
s a reference potential, and the thermodynamic properties

pressure and energy data, which could be well caused b . . :

finite size effects. We have therefore given the low- om th_e potentlal OT interest can be obtained by thermody-

temperature data less weight in the fitting procedure than th amic integration. Smc_e the knowle_d_ge .Of the free energy of

high-temperature data, so that the functi@d) is expected the reference system is a prerequisite in such an approach,
to be most accurate i;1 the temperature rafige0.3 to T the present equation of state could serve useful. Work along
—2.0, and less accuratbut still valid), for lower tempera- these lines to obtain the free energy for solid nitrogen is

tures. This could be the cause of thwery smal) deviation currently underway.
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