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We consider the problem of estimating the state of a large but finite number N of identical 
quantum systems. In the limit of large N the problem simplifies. In particular the only relevant 
measure of the quality of the estimation is the mean quadratic error matrix. Here we present a bound 
on the mean quadratic error which is a new quantum version of the Cramer-Rao inequality. This 
new bound expresses in a succinct way how in the quantum case one can trade information about one 
parameter for information about another parameter. The bound holds for arbitrary measurements 
on pure states, but only for separable measurements on mixed states-a striking example of non­
locality without entanglement for mixed but not for pure states. Cramer-Rao bounds are generally 
derived under the assumption that the estimator is unbiased. We also prove that under additional 
regularity conditions our bound also holds for biased estimators. Finally we prove that when the 
unknown states belong to a 2 dimensional Hilbert space our quantum Cramer-Rao bound can always 
be attained and we provide an explicit measurement strategy that attains our bound. This therefore 
provides a complete solution to the problem of estimating as efficiently as possible the unknown state 
of a large ensemble of qubits in the same pure state. For qubits in the same mixed state, this also 
provides an optimal estimation strategy if one only considers separable measurements. 

I. INTRODUCTION 

One of the essential problems of quantum measurement theory is the estimation of an unknown quantum state of 
which one possesses a finite number N of copies. An often used approach to this problem is to specify a cost function 
that measures how much the estimation differs from the true state. One then tries to devise a measurement and 
estimation strategy which minimizes the mean cost. However optimal strategies have only been found in some simple 
highly symmetric cases (the covariant measurements of [1]). 

When the number of copies N becomes large the problem simplifies considerably and one can hope to find all the 
optimal strategies in this limit. The solution of this problem would not only be of interest theoretically but also 
experimentally. Indeed the problem of estimating the state of a quantum system of which one has a large number 
of copies (quantum tomography) is of growing experimental importance. In some situations the major experimental 
limitation may be limited statistics (finite but large N) and then these optimal strategies could be applied directly. 
On the other hand the noise of the measuring apparatus often cannot be neglected, and then the optimal strategies 
only provide an upper bound on the quality of the estimation. 

The reason why one can hope to solve the state estimation problem in the large N limit is that it ceases to be a 
"global" problem and becomes "local". Indeed for small N the estimated state will often be very different from the 
true state. Hence the optimal measurement strategy must take into account the behavior of the cost function for large 
estimation errors. On the other hand in the limit of an infinite number of copies any two states can be distinguished 
with certainty. So the relevant question to ask about the estimation strategy is at what rate it distinguishes neighboring 
states. That is we are only concerned with the behavior of the estimator and of the cost function very close to the 
true value. 

To formulate the problem with precision, let us suppose that the unknown state p«(}i) depends on some unknown 
parameters (}l, ... ,(}P. After carrying out a measurement on the N copies of p, one will guess what are the values of 
the parameters (}i. Call e~ the guessed values. For a good estimation strategy we expect the mean quadratic error 
(m.q.e.) to decrease as liN: 

(1) 
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where the rescaled covariance matrix W ij (0) does not depend on N. Ee denotes the mean taken over repetitions of 
the measurement with the value of 0 fixed . 

Consider now a smooth cost function f(O,O) that measures how much the estimated value 0 differs from the true 
value 0 of the parameter. f has a minimum at 0 = 0, hence it can be expanded as 

(2) 

where Gij is a positive matrix. Thus for a good estimation strategy the mean value of the cost function will decrease 
as 

" G ·((})Wij(O) 
Eo (f(B, 0)) = fo(O) + i...Jij tJ N + o(l/N) (3) 

since we expect the expectation value of higher order terms in {) - () to decrease faster then liN. Note how in the 
limit of large N the problem becomes local, since only the quadratic cost Cij(O) and the rescaled covariance Wij(B) 
at () intervene. The essential question about state estimation for large ensembles is therefore what conditions must 
the rescaled covariance matrices wij (0) satisfy? 

In the case when there is only one parameter 0 the problem of finding the minimum covariance has essentially been 
solved. Indeed a bound on the variance of (unbiased) estimators-the quantum Cramer-Rao bound- was given in 
[2] . (It is interesting to note that the minimum attainable rescaled variance wmin induces naturally a metric on the 
space of states [3] [4J). A strategy for attaining the bound was proposed in [5]. In the multiparameter case different 
bounds for W ij have been established, but in general they are not tight [2] [6] [1] . 

In this paper we present a new bound for W in the multiparameter case which is inspired by a discussion in [5}. 
This bound expresses in a natural way how one can trade information about one parameter for information about 
another. The interest of this new bound depends on the precise problem one is considering: 

• When p(O) = 1"p(0)) ("p(0)1 is a pure state belonging to a 2 dimensional Hilbert space, then our bound is the 
necessary and sufficient condition W must satisfy in order to be attainable by a measurement. Furthermore in 
this case the bound can be attained by carrying out separate measurements on each particle. This completely 
solves the problem of estimating the state of a large ensemble of spin 1/2 particles (qubits) in the same pure 
state. 

• When p(O) is a pure state belonging to a Hilbert space of dimension d larger then 2, our bound is a necessary 
condition W must satisfy, but is not sufficient. 

• When the unknown state is mixed and belongs to a 2 dimensional Hilbert space, and if one restricts oneself to 
measurements that act separately on each particle, then our bound is necessary and sufficient. 

• When the unknown state is mixed and belongs to a Hilbert space of dimension d > 2, and if one restricts oneself 
to measurements that act separately on each particle, then our bound on W is necessary but not sufficient. 

• If the unknown state is mixed and one allows collective measurements, then our bound is neither necessary nor 
sufficient . 

This last point is quite surprising and shows that there is a fundamental difference between measuring pure states 
and mixed states. Indeed it is known that carrying out measurements on several identical copies of the same pure 
state generally requires collective measurements on the different copies [7] [8]. This is known as "non-locality without 
entanglement" [9]. The first point shows that in the limit of large number of copies pure states of spin 1/2 do not 
exhibit non-locality without entanglement. On the other hand the last point shows that in the limit of large number 
of copies mixed states of spin 1/2 continue to exhibit non locality without entanglement. 

To describe our bound on W, we first consider for simplicity the case of a pure state of spin 1/2 particles. Suppose 
the unknown state is a spin 1/2 known to be in a pure state, and the state is known to be almost pointing in the +z 
direction: 

(4) 

where we have written an expression valid to first order in (}1, (}2 . Suppose we carry out a measurement of the 
operator ax. We obtain the outcome +x with probability P(+x) = (1 + (Jl)/2 and the outcome -x with probability 
P( -x) = (1 - 01 )/2. Thus the outcome of this measurement tells us about the value of (Jl. Similarly we can carry 

2 



out a measurement of u y. We obtain the outcome +y with probability P( +y) = (1 + (j2)/2 and the outcome -y with 
probability P( -y) = (1-(P)/2. The outcome of this measurement tells us about (j2. But the measurements U x and U y 

are incompatible, i.e., the operators do not commute, so they cannot be measured simultaneously. Thus if one obtains 
knowledge about ()l, it is at the expense of 02 • Indeed suppose one has N copies of the state 'if; and one measures Ux 

on N1 copies and uy on N2 = N - N1 copies. Our estimator for 01 is the fraction of +x outcomes minus the fraction 
of -x outcomes. The resulting uncertainty (at the point 01 = 02 = 0) about 01 is then EII«Ol _01)2) = ~t. Similarly 

we can estimate 02 and the corresponding uncertainty is Eo«02 - 02)2) = ~2. We can combine these two expressions 
in the following relation: 

(5) 

which expresses in a compact form how we can trade knowledge about 01 for knowledge about 02 . We shall show that 
in the limit of a large number N of copies of pure states of spin 1/2 particles it is impossible to do better than (5). 

To generalize (5), we rewrite it in a more abstract form as follows. We use polar coordinates to parameterize the 
unknown state of the spin 1/2 particle: I'if;} = cos ¥I j) + sin ¥eiCPI !}. We introduce the tensor 

F.,.,.,., = 1 F. ·2 
CPCP = sm 'TJ , F.,.,cp = 0 

which is simply the Euclidean metric on the sphere. Then the bound (5) can be reexpressed as 

tr V N - 1 F- 1 ~ N 

where V N is the covariance matrix defined in (1) and -1 denotes the inverse matrix. 

(6) 

(7) 

For mixed states belonging to a 2 dimensional Hilbert space, and upon restricting oneself to separable measurements, 
(7) can be generalized as follows. Let us suppose that the state p(O) depends on three unknown parameters. Then 
we can parameterize it by p(O) = !(I + Oiu;) where I is the identity matrix, Ui are the Pauli matrices and the 3 
parameters Oi obey 02 = Li Oi2 ~ 1. We now introduce the tensor 

OiOj 
F;j(O) = Oij + 1 _ 02 (8) 

which generalizes the tensor (6) to the case of mixed states. Then, upon restricting oneself to separable measurements, 
the rescaled covariance matrix W must satisfy 

(9) 

As an application of these results, the minimum of the cost function (3) in the case of spin 1/2 particles (and for 
mixed states upon restricting oneself to separable measurement) is 

tr JF-l/2CF-1/2 
( )

2 

min Eo(f(O, 0)) = fo(O) + N + o(I/N) (10) 

which is obtained simply by minimizing (3) subject to the constraints (7) or (9). 
As an application of (10), let us recall the covariant measurements on pure states of spin 1/2 particles analyzed 

in [1] [8]. In this problem one is given N spin 1/2 particles polarized along the direction O. The directions 0 are 
uniformly distributed on the sphere. One must devise a measurement and estimation strategy that minimize the mean 
value of the cost function cos2 w/2 (where w is the angle between the estimated direction n and the true direction D). 
Expanding the cost function to second order in w, and using the quantum van Trees inequality (30), one finds 

2 1 1 
En cos w /2 2: 1 - N + O( N2 ) (ll) 

which in the limit for large N coincides with the results (exact for all N) of [1] [8]. 
Equations (7) and (9) have a simple generalization in the case of particles belonging to higher dimensional Hilbert 

spaces. But in these cases these bounds are no longer sufficient. 
In order to understand the conceptual basis of the above results, we must first recall some results from classical 

statistical inference. 

3 



II. CLASSICAL CRAMER-RAO BOUND 

Consider a random variable X with probability density p(x, Bi). (The connection-discussed below-with the 
quantum problem is that we can view p(x, B) as the probability that a quantum measurement on the system yielded 
outcome x given that the state was p(B». We take a random sample of size N from the distribution and use it to 
estimate the value of the parameters Bi. Call B~ the estimated value. The following results about the variance of the 
estimator are known: 

1. Suppose that the estimator is unbiased, that is Eo(Bhr - Bi) = 0 (where Eo is the expectation value at fixed B, 
i.e., the integral J dxp(xIB». Then for any N, the following inequalities, known as the Cramer-Rao inequalities, 
hold [10] [2] 

E «Oi _ Bi)(Oj _ Bj» = v.N > Ii/(B) 
o N N tJ - N (12) 

and 

(13) 

Here -1 denotes the inverse matrix and the inequality means that the difference of the two sides is a nonnegative 
matrix. The Fisher information matrix I is given by 

(14) 

2. The hypothesis of unbiased estimators is very restrictive since most estimators will be biased. Happily it is 
possible to relax this condition. Here are just two of the many results available: 

(a) First of all if there is a known prior distribution >.(B) for the parameters B, then there is a Bayesian version 
of the Cramer-Rao inequality, the van Trees inequality [11] [12]. In the multivariate case, upon giving 
oneself a cost function Cij(B), one can derive the inequality 

(15) 

where Q is a positive number that depends on C(B), I(B), >.(B) but is independent of N. 

(b) The second approach is independent of any prior distribution for (), but only holds in the limit N tending to 
infinity and lays a mild restriction on the estimators considered. Specifically, if the probability distribution 
of /N({)~ - Oi) converges uniformly in () towards a limiting distribution, Zi, depending continuously on 
0, then the limiting mean quadratic error matrix obeys E(Zi zj) 2: IijI. 

3. Furthermore in the limit of arbitrarily large samples one can attain the Cramer-Rao bound. This is proven by 
explicitly constructing an estimator that attains the bound in the extended senses 2a) (apart from the 1/N2 
term) or 2b) just indicated: the maximum likelihood estimator (m.l.e.). 

Modern statistical theory contains many other results having the same flavor as point 2 above, namely that the 
Cramer-Rao bound holds in an approximate sense for large N, without the restriction to biased estimators. Result 2a) 
applies to a larger class of estimators than 2b), but only gives a result on the average behavior over different values of 
(). On the other hand result 2b) tells us that the maximum likelihood estimator is for large N an optimal estimator for 
each value of () separately; at least, if one restricts attention to estimators satisfying some quite reasonable regularity 
conditions. The reason why in 2b) additional regularity is demanded is because of the phenomenon of super-efficiency 
(see [13] for a recent discussion) whereby an estimator can have mean quadratic error of smaller order than l/N at 
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isolated points, or even at a collection of points of measure zerol . Modern statistical theory (see again [13] or [14J) 
has concentrated on the more difficult problem of obtaining non-Bayesian results (Le., pointwise rather than average) 
making much use of the technical tool of 'local asymptotic normality'. A major challenge in the quantum case is to 
obtain a result of type 2b) when this technique is definitely not available. 

III. QUANTUM CRAMER-RAO BOUND 

In this paper we show that similar results to 1,2a, 2b, 3 can be obtained when one must estimate the state of an 
unknown quantum system p(Oi ) of which one possesses N copies. This problem is most simply addressed, following 
[4], by decomposing it into a first (quantum) step in which one carries out a measurement on pN = P ® ... ® p and a 
second (classical) step in which one uses the result of the measurement to estimate the value of the parameters O. 

The most general way to describe the measurement is by a positive operator measurement (POVM) (taken for 
simplicity to be discrete) whose elements Ee satisfy Ee ~ 0, Le Ee = I. Quantum mechanics tells us the probability 
to obtain outcome { given state p(O): 

p(€IO) = tr pN (O)Ee . (16) 

From the outcome { of the measurement one can guess what are the values of the parameters Oi. Call 9iN the 
estimated values of the parameters. We would like to obtain bounds on the variance of the estimators OJ... To proceed 
we make for the time being-as in the classical case-the simplifying assumption that the estimators are unbiased: 

Ee (OJ.. - Oi) = O. Then we can apply the classical Cramer-Rao inequality to the probability distribution p({19) to 

obtain: 

(17) 

and 

N-l N V .. < [. . (Ee 0) 
t} _'} ~, 

(18) 

where the Fisher information is 

(19) 

with p1. = 8ei pN . 
The~e expressions suggest the following questions: 

1. is there a simple bound for the variance V N , or equivalently for the Fisher information IN (Ee, O)? 

2. is the bound also valid for sufficiently well behaved but possibly biased estimators-at least in the limit of large 
N? 

I It is actually quite easy to see how one can get super-efficiency at a single point. The idea (due to Hodges in 1951) is to start 
with some estimator having the usual liN behavior but to improve it at this special point. Simply use the estimator to carry 
out a statistical test of the hypothesis that (J = 90 . If the test accepts, replace the estimated value by the value (Jo, otherwise 
leave it unchanged. If one chooses the critical value of the test carefully one can ensure that for N -+ 00, if 0 = 00, the test 
accepts with probability converging very fast to one and the estimator is essentially the true value of the parameter, with mean 
square error much smaller than O(IIN). However if (J #- 00 the test rejects with probability converging very fast to one and 
the modified estimator has the same O(IIN) behavior as the original estimator. However for 0 closer and closer to (Jo as N 
increases, the new estimator has rather bad behavior. Hence its limiting distribution or limiting mean square error cannot be 
approached uniformly in (J. By imposing uniformity of convergence and continuity of the limit one rules out such estimation 
procedures in 2b). Alternatively, upon averaging over 9 in 2a) the isolated points where such pathological behavior can occur 
do not contribute. 
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3. can this bound be attained-at least in the limit of a large number of copies N? 

Most of the work on this subject has been devoted to answering the question 1). We now recall what is known 
about these questions. 

Suppose first that there is only one parameter B. The symmetric logarithmic derivative (s.l.d.) ).(J of p is defined 
implicitly by 

)..(JP + p)..(J 
P.e = 2 (20) 

In a basis where p is diagonal, p = L:k Pk Ik) {kl, this can be inverted to yield 

(21) 

Then we have the bound 

(22) 

Furthermore it was suggested in [5] how to adapt the classical m.l.e. so as to attain, in the limit of large N, the bound 
(22). 

In the multiparameter case the bound based on the s.l.d. can be generalized in a natural way. Define the s.l.d. along 
direction Bi by 

and the information matrix based on the s.l.d. 

F 
).i)..j+)..j)..i 

ij = tr P--"---"--'. 
2 

(23) 

(24) 

(This is the same matrix that was introduced for spin 1/2 particles for a particular choice of parameters in (6) and 
(8». Then one can prove the bound [2], 

(25) 

(This can be deduced directly from (22) as proven in [4]. Indeed since (22) holds for each path in parameter space, 
it implies the matrix equation (25». 

However this bound is in general not achievable. Another bound has been proposed based on an asymmetric 
logarithmic derivative (a.l.d.) [6] which in some cases is better than (25). Finally Holevo [1] has proposed a bound 
that is stronger then both the s.l.d. and the a.l.d. bound, but this bound is not explicit: it requires a further 
minimization. As far as we know no general achievable bound is known in the multiparameter case. 

The difficulty in obtaining a simple bound in the multiparameter case is that there are many inequivalent ways in 
which one can minimize the variance V;f. That is, in order to build a good estimator one must make a choice of 
what one wants to estimate, and according to this choice the measurement strategy followed will be different. Hence 
a bound in the form of a matrix inequality like (25) can never be tight. 

IV. RESULTS 

In this paper we obtain answers to the three questions raised above in the multi parameter case. Our results are 
summarized in this section. 

We first discuss point 1), that is bounds on the quantum Fisher information. We shall show the following: 

Theorem I: When p(O) = 11/i(O») ('l/l(O) I is a pure state, then the Fisher information IN(E~,(}) defined in (19) must 
satisfy the following relation 

(26) 
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where F-l is the inverse of the s.l.d. information matrix defined in (24) and d is the dimension of the Hilbert space 
to which p(O) belongs. Note that this inequality (26) is invariant under change of parameterization () - O'«(}). 

This result immediately gives an inequality for the mean quadratic error matrix of unbiased estimators ON by 
invoking the classical Cramer-Rao inequality in order to replace IN (Ee, ()) by the inverse of the m.q.e. VN (B): 

(27) 

Theorem II: When p«(}) is a mixed state, and if the measurement Ee consists of separate measurements on each 
particle, then the Fisher information also satisfies (26). Hence for separable measurements on a mixed state, the 
m.q.e. matrix of an estimator satisfies (27). 

Theorem III (non additivity of quantum Fisher information): In the case of mixed states, it is in general 
possible to devise a collective measurement for which the Fisher information does not satisfy the inequality (26). 

The second part of the paper consists in proving that the constraint (27) also holds for biased estimators under 
suitable additional conditions. There are two forms of this generalized form of (27) corresponding to the two forms 
2a) and 2b) of the generalized classical Cramer-Rao inequality. 

Consider N copies of a state p«(}). If p is pure we can make either collective or separable measurements. If p is mixed 
we restrict ourselves to separable measurements (since Theorem III shows that in this case collective measurements 
can beat (26». Based on the outcome of the measurement we estimate the value of the parameters (}i. Call {)i the 

estimated values. Denote by V/j = Eo ( otv - (}i) (01v - Bj») the m.q.e. of the estimator. 

We shall prove the following generalization of result of type 2b) concerning the behavior of the mean quadratic 
error matrix as N tends to infinity: 

Theorem IV: Suppose that the m.q.e. V N has the limit NVN - W as N - 00 . To eliminate the possibility of 
superefficiency, we suppose that the convergence is uniform in B and that W is continuous at Bo. Furthermore we 
suppose that F is bounded in a neighbourhood of Bo. Then we shall prove in section VI that W must satisfy 

(28) 

This result gives a bound on the mean value of a quadratic cost function C as N tends to infinity. Indeed using a 
Lagrange multiplier to impose the condition (28), the minimum cost is readily found to be 

(29) 

In terms of a cost function, it is also possible to prove a Bayesian version of the Cramer-Rao inequality which is 
the analog of the classical result 2a): 

Theorem V: Suppose that one is given a cost function C(B) and a prior distribution A«(}) for the parameters 9. If C, 
A and F are sufficiently smooth functions of () (continuity of the first derivatives is sufficient), while A is zero outside 
a compact region with smooth boundary, then 

(30) 

where Q is a constant independent of N but which depends on C, A and F . 

The third part of this article is devoted to showing that in the case of spin 1/2 systems (d = 2) then (26) and the 
asymptotic version (28) are both necessary and sufficient. For mixed states we also require that the measurement be 
separable. We first show that at any point (}o we can attain equality in (26). 

Theorem VI: Suppose one has N spin 1/2 particles in an unknown (eventually impure) state p(B). Fix any point ()o. 

Give yourself a matrix G«(}o) satisfying tr F- 1 (Bo)G(Bo) ~ 1. We call G the target information matrix (more properly, 
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it is the target for limiting rescaled information). Then there exists a measurement (depending on ( 0 ) acting on each 
spin separately E~(Oo) such that IN(E~,Oo) = NG(Oo). This measurement is described in detail in section VIlA. 

Under mild regularity conditions we can also attain equality at all points 0 simultaneously. 

Theorem VII: 
Suppose one has N spin 1/2 particles in a completely unknown pure state 1'IjJ(O». By completely unknown we mean 

that there are 2 unknown parameters. 
Or suppose that one has N spin 1/2 particles in a completely unknown mixed state p(O). By completely unknown 

we mean in this case that there are 3 unknown parameters. In this case we also require that the state never be pure, 
Le. tr p( 0) < 1 for all O. 

Give yourself a smooth positive matrix G(O) satisfying tr F- 1 (O)G(O) ~ 1 for all O. Define the target mean quadratic 
error matrix W(9) = G(O)-I. Suppose that W(9) is non singular (Le. G(9) never has a zero eigenvalue). 

Then there exists a measurement acting on each spin separately E~, and a corresponding estimator 0, such that 

(31) 

for all values of 0 simultaneously. For this estimation strategy ..fFi(9 - 0) converges in distribution towards N(O, W), 
the normal distribution with mean zero and covariance W. The measurement Ee and estimation strategy is described 
in detail in section VII B. 

v. NEW QUANTUM CRAMER-RAO INEQUALITY 

In this section we prove Theorems I, II, III. That is we prove (26) for general measurements in the case of pure 
states and for separate measurements on each particle in the case of mixed states. 

A. Preliminary results 

The first step in proving (26) is to show that one can restrict oneself to POVM's whose elements are proportional 
to one dimensional projectors. Indeed any POVM can always be refined to yield a POVM whose elements are 
proportional to one dimensional projectors. We call such a measurement exhaustive. This yields a refined set of 
probability distributions p( E~, 0). It is well known that under such refining of the probability distributions, the Fisher 
information can only increase [15J.2 

The second step in proving (26) consists in increasing the number of parameters. Suppose that p(Oi) depends on p 
parameters Oi, i = 1, ... ,p. If p = 1'IjJ(O» ('IjJ(O) I is a pure state, then p ~ 2d - 2 (since 1'IjJ(9» is normalized and defined 
up to a phase). If p is a mixed state, then Hermiticity and the condition tr p = 1 impose that p ~ ~ -1. Suppose that 
p < M is less then the maximum number of possible parameters (M = 2d - 2 or M = ~ - 1 according to whether 
the state is pure or mixed). Then one can always increase the number of parameters up to the maximum. Indeed 
let us suppose that to the p parameters, one adds independent parameters 9i ', i' = p + 1, ... , M. We now introduce a 
s.l.d. information matrix for the completed set of parameters Pij , i,j = 1, ... , M. We shall show below that 

p M 

L Fiji (9)Ifj(Ee, 0) ~ L (P)";/(9)Ifj(E~,9). (32) 
i,j=1 i,j=1 

Therefore it will be sufficient to prove (26) in the case when there are M parameters. 

2This can be seen by expressing the distribution of the refined measurement in terms of the distribution of the unrefined 
together with the conditional distribution of the refined outcome given the unrefined. Then the Fisher information for the 
refined outcome turns out to be equal to the Fisher information for the unrefined plus the mean of the Fisher information for 
the conditional distribution of refined given unrefined. 
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To prove (32), fix a particular point 00 , At this point we have the derivative P,i and s.l.d. >'i of P for i = 1, .. , n. 
Introduce a set of Hermitian traceless matrices Ai', i' = P + 1, '" M such that 

«() ) >'i>'i' + >'i' >'i - 0 
tr P 0 2 -, i = 1, .. ,n , i' = n + 1, '" M. (33) 

This is always possible because we can view (33) as a scalar product between >'i and >'i' and a Gram-Schmidt 
orthogonalization procedure will then yield the matrices >'i', Now define the matrices P,i' by P,i' = P(90)Ai'~,\,p(9o). 
The additional parameters Oi' are defined by the fact that at 00 , GOi' P = P,i', The point of this construction is that 
because of (33), the s.l.d. information matrix F is block diagonal with the first block equal to F. Let ieEe> be the 
Fisher information matrix for the enlarged set of parameters (but the same measurement). Then tr F-l I(Ed = 
tr Fill III (E~) + tr F221 I22(E~) where the indices 11 and 22 denote the blocks of these matrices corresponding to 
the original and the new parameters. But both terms in this sum are non-negative since all matrices involved are 
nonnegative, and therefore we obtain (32) at 00 in this particular coordinate system. Since (32) is invariant under 
coordinate reparameterization, it is valid everyplace, in all coordinate systems. 

B. One pure state 

To proceed we shall consider a POVM whose elements are proportional to one dimensional projectors and calculate 
explicitly the left hand side (l.h.s.) of (26) in the case where the number of parameters is the maximum p = 2d - 2 in 
a basis where F is diagonal. 

We first consider the case where there is only one copy of the system (N = 1) and we fix a point 00 . A this point 
we chose a basis such that 

p«()o) = II}(II . 

Consider the 2d - 2 Hermitian operators 

P,k+ = II} (kl + Ik) (11 

P,k- = ill) (kl- ilk) (11 

I<k~d, 

I<k~d. 

(34) 

(35) 

We choose a parameterisation such that in the vicinity of ()o, it has the form P = p«()o) + Ek,±«()k± - ()~±)P,k±' One 
then calculates the s.l.d. of P and the information matrix based on the s.l.d. One verifies that in this basis Fsld is 
diagonal: 

Consider any POVM whose elements are proportional to one dimensional projectors 

E~ = 11jJ~) (1jJ~ I , 
l.,p~) = I: a~k Ik} 

k 

The completeness condition E~ Ee == I takes the form 

La~k,a~k = Okk', 

~ 

Putting all together the l.h.s. of (26) can now be written as 

9 

(36) 

(37) 

(38) 



""l~ 2 2 = ~-Ia 12 ~Ia~llla{ki 
{ el k=2 
d 

= LLla~kl2 
k=2 e 

=d-l (39) 

where in passing to the last equality we have used the completeness relation. This proves that equality holds in (26) 
for arbitrary exhaustive measurements in the case of one pure state. 

C. N pure states 

The generalization to N pure states proceeds as follows. Fix a point 00 . At this point 

pN = 11)(11 ® .. . ® 11)(11 . 

Using the same parameterization as before, the derivatives of pN are 

p~± = P,H ® p ... ® P + ... + p ® ... 0 P,H . 

The elements of the POVM can be written as 

d d 

l'ljJe) = L ... L aek1 ... kN Ik1 ... kN ) 

kl=l kN=l 

with the completeness relation 

L a{kl ... kN a{k~ ... k',; = 6klk~ ... 6kN k',; 
e 

To proceed we need the following formulae: 

and 

N 

tr p((Jo) ,k+Ee = L(a{l...l aO .. kp=k .. l + a{l..kp=k .. l ao .. . d 
p=l 

and similarly for tr P((Jo),k-Ee. Thus we obtain 

N 

(tr p(00),k+Ee)2 + (tr p(00),k_ Ee>2 = L 4Iael...112Iao .. kp=k .. 112 . 
p=l 

Putting everything together yields 

d 

tr F-1 J(Ee) = L (~ )E ~ E L(tr p(00) ,k+ Ee)2 + (tr p(00),k_ Ee)2 
e tr Poe k=2 ± 

d N 

= L E L lael..kp=k .. 112 
k=2 p=l e 

= N(d - 1) 

which proves (26) for an arbitrary number of pure states. 
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(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 



D. One mixed state 

The case of one mixed state is similar but more complicated then the case of one pure state. We first diagonalize p 
at a point 00 : p(Oo) = L~=l Pk Ik) (kl. We now introduce the following complete set of Hermitian traceless matrices: 

where the coefficients Crnk obey 

P,kl+ = Ik) (ll + Il) (kl , k < I , 
P,kl- = ilk) (II - ill) (kl k < I , 

d 

P,rn = L Cmk Ik) (kl , m = 1, ... , d - 1 
k=l 

LCmk =0, 
k 

Let us denote the matrices P,kl± and P,rn collectively as P,i' (They constitute a set of generators of su(d)). 

(48) 

(49) 

We choose a parameterization such that in the vicinity of 00 , it has the form P = p(Oo) + Li(Oi - 0b)p,i. One then 
calculates the s.l.d. of p and the information matrix based on the s.l.d. One verifies that in this basis Fi~~~ is diagonal: 

4 
Fkl±,k'l'±' = --bkk,b/I'b±±, , 

Pk +Pl 
Fkl±,rn = 0, 

Frn,m' = bm'm . 

Consider any POVM whose elements are proportional to one dimensional projectors 

E{ = l'I/1d ('I/I{ I , 

1'I/1€) = L a{k Ik) 
k 

The Lh.s. of (26) can now be written as 

Using the following expressions 

('I/1€IP,ml'l/l{) = L la€kl2crnk , 
k 

('I/I€\p,kI+I'I/I{)2 + ('I/I€lp,kl_I'I/I{)2 = 4Ia{kI2Ia{tl 2 

one obtains 

tr F-
1 
/(E{) = L ('1/1 111'1/1 ) (L(Pk + Pl)la{k\2Ia{tl

2 + L(L la{kI2crnk)2) 
{ {p € k<1 rn k 

= L ('1/1 1
1

1'1/1) (LPkl a€kI
2

Ia{tl
2

+ LLla€kI2Ia{d2LCmkcml)' 
{ € P € k#l kim 

We now use the following relation 

L CmkCml = DklPk - PkPI 
171 
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(50) 

(51) 

(52) 

(53) 

(54) 

(55) 



which is derived from (49) as follows: define Vrnk = Cmk/,jPk (m = I, .. ,d-I) and Vdk =,jPk. Then (49) can be 
rewritten as Lk VrnkVm' k = ornm'. The vectors Vrnk therefore are a complete orthonormal basis of Rd

, hence they 
obey Lm VmkVrnk' = Okk'. Reexpressing in terms of Cmk yields (55). Inserting it in (54) we obtain 

as announced. 

t, F-' I(E,) ~ ~ (";,1:1";,) (~~ P.(1- p')la"I'la,<I') 

= 2)1- Pk) L la€kl2 = Ltr(I - p)E( 
k € € 

=d-I (56) 

Note that this has demonstrated that equality holds in (26) whenever N = 1, P = d2 
- 1, and the POVM is 

exhaustive. It follows from the classical properties of the Fisher information that equality also holds for arbitrary 
N whenever the POVM can be considered as a sequence of N separate exhaustive measurements on each copy of 
the system. It also holds if the n'th measurement is chosen at random depending on the outcomes of the previous 
measurements. 

E. Separable measurements on N mixed states 

We shall now prove that if we possess N identical mixed states of spin 1/2 particles, and carry out separable 
measurements, then 

(57) 

We recall that a separable measurement is one that can be carried out on each particle separately, although the 
measurement on the different particles can be refined depending on the outcomes of partial measurements on the 
other particles, see [7] for a discussion. It is therefore more general than the case considered at the end of the previous 
subsection where the measurement on the nth particle could only depend on the measurements carried out on the n-1 
previous particles. 

A necessary condition for a POVM to be a separable measurement is that the POVM elements E€ can be decomposed 
into a sum of terms proportional to projectors onto unentangled states 

E( = L 1?/J(i)('¢I(i I , 

I?/J€i) = l'¢Iii) ® ... ® I?/J~) . 

That this is not a sufficient condition was shown in [9]. 

(58) 

Thus by refining the separable measurement (which increases the Fisher information) one can restrict oneself to 
measurements whose POVM elements are proportional to projectors onto product states 

(59) 

We now evaluate the l.h.s. of (57) for measurements of the form (59). First recall that the N unknown states have 
the form 

d d 

pN =p® ... ®p= L ... L Pkl···PkNlk1 ... kN)(k1 ... kNI (60) 
k}=l kN=l 

and the derivative of pN have the form 

N 

p1 = P,i ® p ... ® P + ... + P ® ... ® P,i = L P ® ···P,i··· ® P (61) 
p=l 

where in the second rewriting it is understood that P,i is at the p'th position in the product. 
Using the product form of measurement (59), one finds that 
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(1jJ{ IpN 11jJ() = (1jJ~ Ipl1jJi )···(1jJf Ipl1/Jf) 
N 

(1jJ{lpJI1jJd = I:(1jJilpl1jJi)···(1jJflp,il1jJp···(1jJflpl1jJf) (62) 
p=l 

Inserting these expressions into the Fisher information matrix one finds 

(63) 

Where we have used the fact that the first term in the second equality vanishes. Indeed it is equal to 

I: I: (1jJ~lp···p,i···P,j···pl1jJd (64) 
~ pi-p' 

The sum over { can be carried out in (64) to yield the identity matrix and the resulting trace vanishes because 
tr P ... P,i ... P,j"'P = O. 

We now insert (63) into tr F- 1 I(Ed. All the operations from (52) to (56) can be carried out exactly as in the 
previous subsection, and one arrives at the expression 

tr F-1 I(E~) = I: I:(1jJ~lp 0 ... ® (I - p) 0 ... 0 pl1jJ~) 
p ~ 

= N(d -1) (65) 

which is the sought for relation. 

F. Inequality for more then one mixed state 

We now provide a counterexample showing that if one carnes out a collective measurement on N > 1 mixed states 
one can violate (26). We take N = 2, and suppose the unknown states belong to a 2 dimensional Hilbert space. 
p(O) = 4 + ~JJiO'i' We take as reference point (Ji = 0 corresponding to P = ~. At this point Fij(Oi = 0) = Oij' 

We consider as measurement on the two copies the following POVM 

{ tlTxTx)(TxTxl , 
tlTzTz)(TzTzl , 

tl !x!x)(lx!x I , tl hh)(Tyh 1 , tl !y1y)(ly!y 1 , 

tl !.1.)(1.1. 1 , tITz1.-1.Tz)(Tz1.-1.Tzl }. (66) 

This POVM cannot be realized by separate measurements on each particle because of the last term that projects onto 
an entangled state. 

For this POVM one calculates that Iij (E~, Oi = 0) = Oij. Hence the left hand side of (26) evaluates to ~ij Fi-/ (0; = 
O)Iij(E~, Oi = 0) = 3 > N(d - 1) = 2. 

This proves that the quantum Fisher information is non additive. 

G . Comparison with other Quantum Cramer-Rao bounds 

An important question raised by the bound (26) raises how it compares to other quantum Cramer-Rao bounds 
obtained in the literature. 
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Our most important result is that (26) is both a necessary and sufficient condition that I(E(, B) must satisfy when 
the dimensionality of the system d equals 2 and the state is pure. This will be proven and discussed in detail in 
section VII. 

When d > 2 (26) is not a sufficient condition that I(E(, B) must satisfy. To see this let us compare (26) with the 
bound derived by Helstrom based on the s.l.d. This bound is the matrix inequality IN (E(, B) ~ N F(B), see (25). 

The comparison is most easily carried out by defining the matrix H = j.F-t IN F-t = Lf=l lihi ® hi where Ii 
are the eigenvalues of H and hi its eigenvectors. Helstrom's bound can be reexpressed as Ii ~ 1 whereas the bound 
(26) states that Li Ii ~ d - 1. From these expressions it results that the bound (26) is always better then Helstrom's 
bound for d = 2. For d > 2 and p ~ d -1 Helstrom's bound is better then (26) as is seen by summing the inequalities 
Ii ~ 1 to obtain Li Ii ~ p. For p > d - 1, Helstrom's bound and the bound (26) are inequivalent. 

Yuen and Lax have proposed another matrix bound for F based on an asymmetric logarithmic derivative (a.l.d.). 
The bound based on the a.l.d. is known to be worse then the bound based on the s.l.d. in the case of one parameter, 
but it can be better, for some loss functions, in the case of two or more parameters. We have however not been able 
to make a detailed comparison between the bound based on the a.l.d. and (26). 

Although when d > 2, the bound (26) is not a sufficient condition it can be complemented by additional constraints 
based on partial traces of F-l IN (E(, B) which we now exhibit. 

Consider a subset i = 1, .. ,p' (p' < p) of the parameters. Let P,i' be the corresponding derivatives of p(Bi). Let us 
define the effective dimension d' of the space in which these parameters act at the point Bo as follows. Let II be a 
projector that commutes with p(Bo) ([II,p(Bo)] = 0) and such that P,i', i' = 1, ... ,p' acts only within the eigenspace 
of II (that is IIp,i,II = p,i')' Then d' is the smallest dimension of the eigenspace of such a projector II (d' = tr II). 
To be more explicit, let us reexpress the definition of d' in coordinates. First we diagonalize p(Bo) = Lk Pklk)(kl· 
If some Pk are equal this can be done in many ways. The projector II projects onto some of the eigenvectors of p: 

II = L:~llk)(kl. Next we write the operators P,i' in this basis: P,i' = L~:I=l(P,i'hllk)(11 where the fact that the 
indices k, I go from one to d' expresses the fact that P,i' acts only within the eigenspace of II. Finally we choose the 
smallest such d'. 

We will show that 

p' 

I: Fi-:-}I[!j,(E(,Bo) ~ N(d' -1) . (67) 
if ,j'=l 

Before proving this result let us illustrate it by an example. Consider an unknown pure state in d dimensions. In 
the neighborhood of a particular point we can parameterize the state by 

(68) 

where the unknown parameters are Bi and r/, i = 2, .. , d. There are thus 2d - 2 parameters. At the point B = "I = 0, 
F is diagonal in this parameterization: FOiOj = Oij, F"'1/j = Oij, FOi 1/} = O. Hence (26) takes the form 

(69) 

But using (67) we also find the constraints 

I/;f9,(E(,B = "I = 0) + I~"i(E(,B = "I = 0) ~ N , i = 2, .. ,d (70) 

which are stronger then (69) since they must hold separately, but by summing them one obtains (69). 
The proof of equation (67) proceeds as in section V. First we can restrict ourselves to POVM's whose elements are 

proportional to one dimensional projectors. Second we can restrict ourselves to the subspace II in evaluating (67). 
This follows from the inequality 

I(E ), "' = I: tr (p,i' E( )tr (P,i' E() 
( 'J ( tr (pE{ ) 

I: tr(p,i,TIE{I1)tr(p,j'IIE(II) 
- ( tr (pIIE(II) + tr (p(1 - II)E~(1 - II» 
< I: tr (p,i,TIE(II)tr(p,i,TIE{I1). 
- { tr (pIIE{ II) 

(71) 
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Note that equality in (71) holds when the measurement consists of one dimensional projectors and when the POVM 
decomposes into the sum of two POVM's acting on the subspaces spanned by II and 1-IT separately (Le., the POVM 
elements Ee = I'l/Je) ('l/Jel must commute with II and 1 - II). Third we can increase the number of parameters from p' 
to d'2 -1. We then introduce exactly as in (48) a parameterization in which the P,i are particularly simple, but in in 
place of (55) we use 

"" Pk'PI' ~ Cm'k'Cm'I' = Ok'I'Pk' - ---. 
l$m'$d' tr(IIp) 

(72) 

After these preliminary steps the l.h.s. of (67) is calculated exactly as in subsections V B, V C, V D. 

VI. DROPPING THE CONDITION OF UNBIASED ESTIMATORS 

A. Quantum van Trees inequality 

In the previous section we proved a bound on the variance of unbiased estimators ON of N copies of the quantum 
system p(O) (with the additional condition that if p is mixed the measurement should be separable). In this section 
we shall prove Theorems IV and V that state that under additional conditions it is possible to drop the hypothesis 
that the estimator is unbiased. 

The starting point for the results in this section is a Bayesian form of the Cramer-Rao inequality, the van Trees 
inequality [11], and in particular the multivariate form of the van Trees inequality proven in [12]. Adapted to the 
problem of estimating a quantum state, this inequality takes the following form . Let ON be an arbitrary estimator 
of the parameter 0 based on a measurement Ee of the system pN (0). Suppose it has mean quadratic error matrix 
VN(O), and Fisher information matrix IN(Ee,£}). Let >'(0) be a smooth density supported on a compact region (with 
smooth boundary) of the parameter space, and suppose>. vanishes on the boundary. By EA we denote expectation 
over a random parameter value 0 with the probability density >'(0). Let C(O) and D(O) be two P x P matrix valued 
functions of 0, the former being symmetric and positive definite. Then the multivariate van Trees inequality reads 

(73) 

where 

(74) 

As a first application of this inequality we shall bound the minimum value averaged over 0 of a quadratic cost 
function. Let C(O) be the quadratic cost function. Consider the matrix Woptun that minimizes for each value of 0 
the cost tr C(O)W(O) under the condition that tr F(O)-l W(O)-l :::; d - 1. One easily finds that 

tr .../F-l/2CF-l/2 
W = F-1/ 2. / Fl/2C-l Fl/2 F-1/ 2 

opt d- 1 \f 

tr .../Cl/2 F-lCl/2 ,------
= C- 1/ 2 V Cl/2 F-lCl/2C-1/ 2 

d-1 

and that 

(tr../ F-l/2CF-l/2) 2 (tr ../Cl/2 F-IClj2) 2 
tr CWopt = = --'-----,---------'--

d-l d-l 

We choose in (73) D(O) = C(O)Wopt(O). Thus tr D(O) = tr C(O)WoPt(O) is given by (77). Note that 

D(O)TC(O)-lD(O) = Wopt(O)C(O)Wopt(O) = trC(O)Wopt(O) F(O)-l. 
d-l 

Thus 

15 

(75) 

(76) 

(77) 

(78) 



tr D(O) T C(O)-l D(O)[N (E{, 0) = tr C(~)~t (O\r F(O)-l [N (E{, 0) 

:::; NtrC(O)Wopt(O) . 

Inserting these expressions into (73) one obtains 

E).,trC(0)VN (8) > (E).,trC(8)WoPt(8»~ 
- NE).,tr C(8)WoPt(8) + I(A) 

> E).,trC(8)WoPt (8)2 a 
- N - N2 

where 

(79) 

(80) 

(81) 

is independent of N. This proves that upon averaging over 0 it is impossible (for large N) to improve over the 
minimum cost (29). 

B. Asymptotic version of the Cramer-Rao inequality 

We now prove an asymptotic version (27) of our main inequality which does not make the assumption of unbiased 
estimators. We must however slightly restrict the class of competing estimators since otherwise by the phenomenon 
of super-efficiency we can beat a given estimator at any specific value of the parameter, though we pay for this by 
bad behavior closer and closer to the chosen value as N becomes larger. 

The restriction on the class of estimators is that N times their mean quadratic error matrix must converge uniformly 
in a neighborhood of the true value 00 of 0 to a limit W(O). continuous at 00 , We assume that both W(Oo) and F(Oo) 
are nonsingular. Furthermore we shall require some mild smoothness conditions on F(O) in a neighborhood of 00 : it 
must be continuous at 00 with bounded partial derivatives with respect to the parameter in a neighborhood of 90 , 

Suppose that as N -+ 00: 

NVN (0) -+ W(O) 

uniformly in 0 in a neighborhood of 00 , with W continuous at 60 ; write Wo = W(Oo). Now in (73) let us make the 
following choices for the matrix functions C and D: 

D(O) = WO-
1 F-1(O). 

Then (73) (multiplied throughout by N) and (74) become 

E trw:- 1F-1 (8)W.- 1 NVN(0) > (E).,trWo-
1
F-

1
(8»2 _ 

)., 0 0 - -k E )..trF-l[N(E{,0)+-kI (>') 

(E)., tr W
O
- 1 F- 1(0»2 > ~~~~~~~-

(d - 1) + -ki(>.) 
(82) 

and 

(83) 

where we have used our central inequality (26) to pass to (82). Now suppose that the quantity (83) is finite (we will 
give conditions for that in a moment). By the assumed uniform convergence of NVN to W, letting N -+ 00 (82) 
becomes 
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E t w:- l F-I(0)w:-IW(0) > (E>.trWo-
1 
F-I(0))2 

>. roo - (d _ 1) (84) 

Now suppose the density>. in this equation (the probability density of 8) is replaced by an element >.7n in a sequence 
of densities, concentrating on smaller and smaller neighborhoods of 00 as m -+ 00. Assume that F(O) is continuous 
at 00 • Recall our earlier assumption that W(O) is also continuous at 00 , with Wo = W(Oo). Then taking the limit as 
m -+ 00 of (84) yields 

or the required limiting form of (26), 

It remains to discuss whether it was reasonable to assume that i(>.m) is finite (for each m separately). Note that 
this quantity only depends on the prior density>. and on F(O), where>. is one of a sequence of densities supported by 
smaller and smaller neighborhoods of 00 • We already assumed that F(O) was continuous at 00 • It is certainly possible 
to specify prior densities NT> concentrating on the ball of radius l/m, say, satisfying the smoothness assumptions in 
[12] and with, for each m, finite Fisher information matrix 

Consideration of (83) then shows that it suffices further just to assume that aSk {Fikl (O)} is, for each i, k, bounded in 
a neighborhood of 00 • 

In conclusion we have shown that under mild smoothness conditions on F(O), the limiting mean quadratic error 
matrix W of a sufficiently regular but otherwise arbitrary sequence of estimators must satisfy the asymptotic version 
of our central inequality tr F- I W- 1 :::; d - 1. The existence of conditions on F is very natural. Indeed they imply 
that () are smooth parameters in Hilbert space. 

VII. ATTAINING THE CRAMER-RAO BOUND IN 2 DIMENSIONS 

We shall now show that the bounds (26), (28) are sharp in the case of pure states of spin 1/2 systems and of 
separable measurements in the case of mixed states of spin 1/2 systems. In particular, in the limit of a large number 
of copies N any target mean quadratic error matrix W that satisfies tr F- I W- 1 :::; 1 can be attained (provided W 
is non singular). We shall show this by explicitly constructing a measurement strategy that attains the bound. In 
section VI we have already shown that if tr F-l W- 1 > 1, then it cannot be attained. 

A. Attaining the bound at a fixed point ()o 

The first step in the proof is to consider the case of one copy of the unknown state (N = 1) and fix a particular 
point (}o. Then we show that for any target information matrix G«(}o) that satisfies tr F-l«(}O)G«(}o) :::; 1, we can build 
a measurement E(. = E:o, in general depending on (}o, such that I(E:o,Oo) = G«(}o). In the next sections we shall 
show how to use this intermediate result to build a measurement and estimation strategy whose asymptotic mean 
quadratic error is equal to W(O) = G«(})-1 for all (). 

Let us first consider the case of pure states. At (}o, the state is 17/10). We introduce a parameterization (}1,82 such 
that in the vicinity of 17/10), the unknown state is 

(85) 

Thus in this parameterization, the point (}o corresponds to (jI = (}2 = O. In this parameterization, F is proportional 
to the identity at (}1 = 11 = 0: FSlSI(O) = FS21i2(0) = 1, FlilIi2(0) = O. 

We now diagonalize the matrix G. Thus there exist new parameters (}/I = cos >.(}1 + sin >.(}2 , 0,2 = - sin >.(JI + cos MJ2 
such that GIi'IIi'I(O) = gl > 0, G/J'2/J/2(0) = 92> 0, G/J/lli'2(0) = O. 

In terms of the parameters (}Il, 0'2, the unknown state is written 
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(86) 

where 1'ifJ{} = eiA I'ifJ6"-}' . 
The POVM E%o consists of measuring the observable l'ifJo}('ifJ{I-I'ifJ{)('if;6"-1 with probability 91, of measuring the 

observable i(I'ifJo}('ifJ{I- 1'ifJ{}('ifJ6"-i) with probability 92, and of measuring nothing (or measuring the identity) with 
probability 1- 91 - 92. It is straightforward to verify that the Fisher information obtained by carrying out the POVM 
E%o is equal to G(Oo). . 

Let us now turn to the case of impure states. We suppose that there are three unknown parameters. We use a 
parameterization in which p(O) = (1/2)(1 + 0 . a), with 116111 . < 1. Without loss of generality we can suppose that 
eo = (0,0, n), so that p(Oo) = (1/2+n/2) II} (11 + (1/2 - n/2) 12} (21 = ~(I +nO'z ). The tangent space at p is spanned 
by the Pauli matrices P,x = O'x(= P.~2+), P,y = a y(= P.~2-), P,z = O'z(= P,l~) where in parenthesis we have 
given the relation to the basis used in section V D. In this coordinate system F(Oo) is diagonal with eigenvalues 1, 1, 
1/(1 - n 2 ). 

Take any symmetric positive matrix Gij satisfying tr GF-1(00) ~ 1. Define the matrix H = P-!GF-t = 
L-i fihi ® hi, where fi and hi are the eigenvalues and eigenvectors of H. The condition tr GF- 1 (00 ) ~ 1 can then be 

rewritten L-i 'Yi ~ 1. If we define 9i = Ft hi, then we can write G = L-i fi9i ® 9i' Denote mi = 9d1l9dl· 
Consider the measurement of the spin along the direction mi. This is the POVM consisting of the two projectors 

P+m • = ~(I + mi.O' ) and p-m • = ~(1 - mi.O'). The information matrix for this measurement is 

(87) 

Therefore this information matrix is proportional to 9i ® 9i. One verifies that it obeys tr p-1 I(P±m.) = 1, as it must 
by our findings in section V since the measurement is exhaustive, N = 1, and p = tfl - 1. Therefore 

(88) 

We now combine such POVM's to obtain the POVM whose elements are 

(89) 

The information matrix for this measurement is just the sum I(Ee) = 'Y1I(P±ml) + 'Y2I(P±m2) + 'Y3I(P±m3) = 
L:i fi9i ® 9i = G. Thus the POVM Ee we have constructed attains the target information G at the point (Jo. 

B. Attaining the bound for every () and arbitrary N by separable measurements 

We now prove Theorem VII that states that we can attain the bound (28) for every O. Give yourself a continuous 
matrix W(e), the target mean quadratic error matrix, satisfying (28) for every O. Define G(e) = W(O)-l, the target 
information matrix, which satisfies therefore (26). We will show that there exists a separable measurement and an 
estimation strategy on N copies of the state p(O) such that the mean quadratic error matrix of the estimator satisfies 

(90) 

for all e. In fact this holds uniformly in 61 in a sufficiently small neighborhood of any given point. This is proven by 
constructing explicitly a measurement and estimation strategy that satisfies (90), following the lines of [5]. 

The measurement and estimation strategy we propose is the following: first take a fraction No = O(Na) of the 
states, for some fixed 0 < a < 1, and on 1/3 of them measure a:z;, on one third O'y and on one third a z • One obtains 
from each measurement of ax the outcome ±l with probabilities ~(1 ± Ox), and similarly for O'y, a z • Using this data 
we make a first estimate of 61, call it 0, for instance by equating the observed relative frequencies of ±1 in the three 
kinds of measurement to their theoretical values. If the state is pure this determines a first estimate of the direction 
of polarization. If the state is mixed it is possible that the initial estimate suggests that the Bloch vector lies outside 
the unit sphere. This only occurs with exponentially small probability (in No) and if this is the case the measurement 
is discarded. As discussed below this only affects the mean quadratic error by 0(1/ N). 

On the remaining N' = N - No states we carry out the measurement Ee = Et such that I(Ee, 9) = G(O) which we 

have just shown how to construct. Note that I(E{,O) = G(O) only when the true value of 0 is precisely equal to O. 
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Write I(Ee, 0; 0) for the Fisher information about 0, based on the measurement Be = Et optimal at 0, while the true 
value of the parameter is actually O. Given 0, each of the N' second stage measurements represents one draw from 
the probability distribution p({IO; 0) = tr E[ p(O). We use the classical m.l.e. based on this data only (with 0 fixed at 

its observed value) to estimate what is the value of O. Call this estimated value B. 
Let t: > 0 be fixed, arbitrarily small. Let 00 denote the true value of O. For given 6> 0 let B(00,6) denote the ball 

of radius 6 about 00 . Fix a convenient matrix norm II . II. We have the exponential bound 

(91) 

for some positive numbers G and D (depending on 6). The reason we take No proportional to NO. for some 0 < a < 1 
is that this ensures that 1 - Ge- DNo = o(I/N). 

Modern results [14] on the m.l.e. 0 state that, under certain regularity conditions, conditional on B the mean 
quadratic error matrix mqeti (0; O);j = Eo ( (Oi - (Ji)( oj - oj) I 0) satisfies 

(92) 

uniformly in 00 , We need however for the next step in our argument that this same result is true uniformly in 0 for 
given 00 , This could be verified by careful reworking of the proof in [14]. Rather than doing that, we will explicitly 
calculate in subsection VII C the mean quadratic error matrix of our estimator and show that conditional on 0 it 
satisfies (92) uniformly in 0 in a small enough neighborhood B(Oo, c) of 00 , The 'little 0' in (92) refers to the chosen 
matrix norm. 

We will also need that I(Ee, 00 ; 0)-1 is continuous in 0 at 0 = 00 , at which point it equals by our construction the 
target mean quadratic error W(Oo). This is also established in subsection VII C. Therefore, replacing if necessary 0 
by a smaller value, we can guarantee that I(Ee, OoJJ)-1 is within t: of I(Ee, 00 ; ( 0 )-1 = W(Oo) for all jj E B(Oo, 6). 

If 0 is outside the domain B(Oo,6), then the norm of mqeo(O; 0) is bounded by a constant A since 9 belongs to a 
compact domain. 

Putting everything together we find that 

IIN'mqeti(Oo) - W(Oo)11 = II! (N'mqeo(Oo; 0) - W(Oo)) dP(O)1I 

~ r IIN'mqeo(Oo; 0) - W(Oo)lldP(O) + AN'G'e- DNo 

J 8(00,6) 

= r III(Ee,Oo; 0)-1 + 0(1) - W(Oo)lIdP(O) + 0(1) 
J 8(00,6) 

~ t: + 0(1) + 0(1). 

It follows since N' / N -+ 1 as N -+ 00 that 

lim sup IINmqeti(fJo) - W(Oo)1I ~ e. 
N-oo 

Since e was arbitrary, we obtain (90). 

c. Analysis of the conditional mean quadratic error 

We first consider the case of impure states, with the parameterization 

(93) 

where we have imposed that the state is never be pure. This case turns out to allow the most explicit and straightfor­
ward analysis because the relation between the frequency of the outcomes and the parameters 0 is linear. For other 
cases the analysis is more delicate and is discussed in the next subsection. In general, smoothness assumptions will 
have to be made on the parameterization p = p(O). 
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We suppose that W(O) is non-singular and continuous in O. Consequently the Ii (defined in section VIlA) depend 
continuously on 0 and are all strictly positive at the true value 00 of O. 

Given the initial estimate, the second stage measurement can be implemented as follows: for each of the N' = N - No 
observations, independently of one another, with probability Ii measure the projectors P±m" in other words, measure 
the spin observable m i .17. With probability 1- E,i do nothing. 

We emphasize that the Ii and mi all depend on the initial estimate 0 through W(O) and P(O). In the following, all 
probability calculations are conditional on a given value of O. 

For simplicity we will modify the procedure in the following two ways: firstly, rather than taking a random number 
of each of the three types of measurement, we will take the fixed (expected) numbers biN' J (and neglect the difference 
between biN'J and liN'). Secondly, we will ignore the constraint E(Oi)2 ~ 1. These two modifications make the 
maximum likelihood estimator easier to analyze, but do not change its asymptotic mean quadratic error. Later we 
will sketch how to extend the calculations to the original constrained maximum likelihood estimator based on random 
numbers of measurements of each observable. 

Now measuring mi.17 produces the values ±l with probabilities P±i = HI ± O.mi ). Since our data consists of 
three binomially distributed counts and we have three parameters 01 ,02 , B3 the maximum likelihood estimator can 
be described, using the invariance of maximum likelihood estimators under 1-1 reparameterization, as follows: set 
the theoretical values P±i equal to their empirical counterparts (relative frequencies of ±1 in the liN' observations of 
the i'th spin) and solve the resulting three equations in three unknowns. Define "Ii = 2p+i - 1 = B.mi and let iii be 
its empirical counterpart . Recall that mi = gi /ligill, gi = pl/2hi , where the hi are the orthonormal eigenvectors of 
p-1/ 2GP-l/2, and where P and G are P(O), G(O), and 0 is the preliminary estimate of B. 

Then we can rewrite 

from which we obtain 

and hence 

The same relation holds between 0 and iJ. The iJi are independent with variance 4P+m.P-mJ(TiN') = (1 -
(0.mi)2)/biN'). Thus the mean quadratic error matrix of 0, conditional on the preliminary estimate 0, is 

There is no o(l/N') term here so we do not have to check uniform convergence: the limiting value is attained exactly. 
Actually we cheated by replacing biN'J by ,iN'. This does introduce a o(l/N') error into (94) uniformly in a 
neighborhood of 00 in which the 1i, which depend on 0, are bounded away from zero, and P and its inverse are 
bounded. 

One may verify that (94) reduces to W(Oo)/N' at 0 = 00 (indeed at Bo = 0, (0.Pl/2hi? = ~~::: and IIP1/2h i 1l 2 = 
2 2.2 

I-n1 +,:j h, ). But this computation is really superfluous since at this point, we are computing the mean quadratic 
error of the maximum likelihood estimator based on a measurement with, by our construction, Fisher information 
equal to the inverse of W(eo). (The modifications to our procedure will not alter the Fisher information). The two 
quantities must be equal by the classical large sample results for the maximum likelihood estimator. 

We finally need to show the continuity in 0 at 0 = Bo of N' times the quantity in (94). This is evident if the Ii are 
all different at Bo. Both the eigenvalues and the eigenvectors of p-tGP-! are then continuous functions of {} at Bo. 
There is a potential difficulty however if some Ii are equal to one another at {} = Bo. In this case, the eigenvectors 
hi are not continuous functions of 0 at this point, and not even uniquely defined there. We argue as follows that 
this does not destroy continuity of the mean quadratic error. Consider a sequence of points On approaching Bo. This 
generates a sequence of eigenvectors h~ and eigenvalues lin' The eigenvalues converge to the "{i but the eigenvectors 
need not converge at all. However by compactness of the set of unit vectors in R3 , there is a subsequence along 
which the eigenvectors h~ converge; and they must converge to a possible choice of eigenvectors at 00 , Thus along 
this subsequence the mean quadratic error (94) does converge to a limit given by the same formula evaluated at 
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the limiting hi etc. But this limit is equal by construction to the inverse of the target information matrix G(e). A 
standard argument now shows that the limiting mean quadratic error is continuous at 0 = Bo. 

The mean quadratic error of () given 1J (times N') therefore converges uniformly in a sufficiently small neighborhood 
of 00 to a limit continuous at that point and equal to W(Oo) there. 

In our derivation of (90) we required the parameter and its estimator to be bounded. By dropping the constraint 
on the length of B we have inadvertently lost this property. Suppose we replace our modified estimator iJ by the actual 
maximum likelihood estimator respecting the constraint. The two only differ when the unconstrained estimator lies 
outside the unit sphere; but this event only occurs with an exponentially small probability, uniformly in 9, provided 
the 'Yi are uniformly bounded away from a in the given neighborhood of Bo. From this it can be shown that the mean 
quadratic error is altered by an amount o(l/N') uniformly in O. 

If we had worked with random numbers of measurements of each spin variable, when computing the mean quadratic 
error we would first have copied the computation above conditional on the numbers of measurements, say Xi, of each 
spin mi. These numbers are binomially distributed with parameter N' and 'Yi. The conditional mean quadratic error 
would be the same as the expression above but with l/{;iN') replaced by 1/ Xi (and special provision taken for the 
possible outcome Xi = 0). So to complete the argument we must show that E(l/Xi) = l/{;iN') +o(l/N') uniformly 
in 9. This can also be shown to be true, using the fact that Xii N' only differs from its mean by more than a fixed 
amount with exponentially small probability as N' -+ 00 and we restrict attention to 9 in a neighborhood of 00 where 
the 'Yi are bounded away from zero. 

Inspection of our argument shows that the convergence of the mean quadratic error is uniform in 00 as long as we 
keep away from the boundary of the parameter space. 

By the convergence of the normalized binomial distribution to the normal distribution, the representation of the 
estimator we gave above also shows that it is asymptotically normally distributed with asymptotic covariance matrix 
equal to the target covariance matrix W. Moreover, if X has the binomial(n,p) distribution, then nt(X/n - p) 
converges in distribution to the normal with mean zero and variance p(l - p), uniformly in p. Thus the convergence 
in distribution is also uniform in 00 as long as we keep away from the boundary of the parameter space. 

D. Conditional mean quadratic error for other models 

The preceding subsection gave a complete analysis of the mean quadratic error, given the preliminary estimate 0 
for the 3 unknown parameters Bj of the parameterization (93). We shall first analyze the mean quadratic error when 
the unknown parameters are functions qi(Oj) of the parameters oj. We shall then consider the important case when 
the state is pure and depends on two unknown parameters, and finally the case when the state is pure or mixed and 
depends on one unknown parameter, or is mixed and depends on two unknown parameters. 

Our first result is that if the change of parameters qi(Oj) is locally C1 , then the m.q.e. matrix of the t/Ji is obtained 
from the m.q.e. of the oj by the Jacobian Ot/Ji / 80j except eventually at isolated points. This follows from the fact that 
under a smooth (locally Cl) parameterization, the delta method (first order Taylor expansion) allows us to conclude 
uniform convergence of the probability distribution of VR(¢N - t/J) to a normal limit with the target mean quadratic 
error. If the t/Ji and their derivatives 8t/Ji /80j are bounded then this proves our claim. If there are points where the 
t/Ji or their derivatives 8t/Ji /oBj are infinite, then convergence in distribution does not necessarily imply convergence 
of moments. However a truncation device allows one to modify the estimate '¢, replacing it by 0 if any component 
is larger than cNa for given c and a (use the method of [14], Lemma 11.8.2 together with the exponential inequality 
(91) for the multinomial distribution). With this minor modification one can show (uniform in t/J in a neighborhood 
of t/Jo) convergence of the moments of the corresponding VFl('¢ - t/J) to the moments of its limiting distribution, hence 
achievement of the bound in the sense of Theorem IV. In particular if the parameter t/J is bounded then the truncation 
is superfluous. 

Now turn to the pure state analog of model (93). Obtain a preliminary estimate of the location of p on the surface 
of the Poincare sphere using the same method as in the mixed case, but always projecting onto the surface of the 
sphere. Next, after rotation to transform the preliminary estimate into 'spin up', reparameterize to p = !(l + t/J. u) 
where the parameters to be estimated are (t/Jl, t/J2) = (Ot!, B,2) of the parameterization (86) while t/J3 = .;(1- t/J~ - ~). 
The preliminary estimate is at t/Jl = t/J2 = O. The optimal measurement at this point according to Section VII A 
consists of measurements of the spins 0"1 and 0"2 on specified proportions of the remaining copies. The resulting 
estimator of the parameter (t/Jl, t/J2) is a linear function of binomial counts and hence its mean quadratic error can 
be studied exactly as in section VII C. Then we must transfer back to the originally specified parameterization, for 
instance polar coordinates. This is done as in the preceeding paragraph. If the transformation is locally C1 then 
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uniform convergence in distribution to the normal law also transfers back; convergence of mean quadratic error too if 
the original parameter space is bounded. Otherwise a truncation might be necessary. In any case, we can exhibit a 
procedure optimal in the sense of Theorem IV. 

It remains to consider one- and two-dimensional sub-models of the full mixed model, and one-dimensional sub­
models of the full pure model. We suppose that the model specifies a smooth curve or surface in the interior of the 
Poincare sphere, or a smooth curve on its surface; smoothly parameterized by a one- or two-dimensional parameter as 
appropriate. The first stage of the procedure is just as before, finishing in projection of an estimated density matrix 
into the model. Then we reparameterize locally, augmenting the dimension of the parameter to convert the model into 
a full mixed or pure model respectively. The target information for the extra parameters is zero. Compute as before 
the optimal measurement at this point. Because of the zero values in the target information matrix, there will be zero 
eigenvalues Ii in the computation of section VII A. Thus the optimal measurement will involve specified fractions 
of measurement of spin in the same number of directions as the dimension of the model. Compute the maximum 
likelihood estimator of the original parameters based on this data. If the parameterization is smooth enough the 
estimator will yet again achieve the bound of Theorem IV. 

VIII. CONCLUSIONS AND OPEN QUESTIONS 

In this paper we have solved some of the problems that arise when trying to estimate the state of a quantum 
system of which one possesses a large number of copies. This constitutes a preliminary step towards solving the 
question with which Helstrom concluded his book [2]: "( ... ) mathematical statisticians are often concerned with 
asymptotic properties of decision strategies and estimators. ( ... ) When the parameters of a quantum density operator 
are estimated on the basis of many observations, how does the accuracy of the estimates depend on the number 
of observations as that number grows very large? Under what conditions have the estimates asymptotic normal 
distributions? Problems such as these, and still others that doubtless will occur to physicists and mathematicians, 
remain to be solved within the framework of the quantum-mechanical theory.' 

In the case of pure states of spin 1/2 particles the problem has been completely solved. In the limit of large N the 
variance of the estimate is bounded by (27), and the bound can be attained by separate Von Neumann measurements 
on each particle. 

In the case of mixed states of spin 1/2 particles the state estimation problem for large N has been solved if one 
restricts oneself to separable measurements. However if one considers non separable measurements, then one can 
improve the quality of the estimate, which shows that the Fisher information, which in classical statistics is additive, 
is no longer so for quantum state estimation. 

For the case of mixed states of spin 1/2 particles, or for higher spins we do not know what the "outer" boundary 
of the set of (rescaled) achievable Fisher information matrices based on arbitrary (non separable) measurements of 
N systems looks like. We have some indications about the shape of this set (see section V G) and we know that it is 
convex and compact. 
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