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ABSTRACT
The motivation of the investigation is critical pressure loss

in cryogenic flexible hoses used for LNG transport in offshore
installations. Our main goal is to estimate the friction factor for
the turbulent flow in this type of pipes. For this purpose, two-
equation turbulence models (k− ε and k−ω) are used in the
computations.

First, fully developed turbulent flow in a conventional pipe
is considered. Simulations are performed to validate the cho-
sen models, boundary conditions and computational grids. Then
a new boundary condition is implemented based on the “com-
bined” law of the wall. It enables us to model the effects of
roughness (and maintain the right flow behavior for moderate
Reynolds numbers). The implemented boundary condition is val-
idated by comparison with experimental data.

Next, turbulent flow in periodically corrugated (flexible)
pipes is considered. New flow phenomena (such as flow separa-
tion) caused by the corrugation are pointed out and the essence
of periodically fully developed flow is explained. The friction
factor for different values of relative roughness of the fabric is
estimated by performing a set of simulations. Finally, the main
conclusion is presented: the friction factor in a flexible corru-

∗Address all correspondence to this author.

gated pipe is mostly determined by the shape and size of the steel
spiral, and not by the type of the fabric which is wrapped around
the spiral.
Keywords: flexible pipe, friction factor, roughness modeling, cor-
rugated pipe, modified law of the wall.

1 INTRODUCTION
Non-metallic flexible pipe products have found wide usage

in industry. Areas of application include heating, ventilation,
air-conditioning and, most importantly, connecting terminal or
delivery devices to main distribution ducts (such as transport of
Liquid Natural Gas from ships to the mainland distribution net-
work).

Flexible ducts are often comprised of fabric wrapped over a
spiral metal framework. Due to this construction, they respond
very well to bending, are cheaper and much easier to install than
metal pipes. Figure 1 shows a typical flexible pipe. It is con-
structed from a neoprene impregnated polyester fabric encapsu-
lating a helix spring of steel wire. This tube has an excellent
strength/weight ratio and is able to withstand severe flexing. The
steel spiral wire gives strength to the pipe, while the use of fab-
ric instead of a hard material (such as metal) allows for a high
degree of flexibility.
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Figure 1. Typical flexible pipe.

Because of the specific construction, the pipe walls are not
straight - they are corrugated. Moreover, the fabric which covers
the steel spiral is much rougher than the wall of a smooth metal
pipe. This requires more energy (higher pressure difference) to
drive the flow. Therefore, an important factor in flexible pipe de-
sign is to attain minimum pressure loss throughout the distribu-
tion line and thus minimize the transportation costs. The pressure
loss along a pipe is caused by the friction at the wall. In station-
ary flow, the friction is proportional to the pressure loss per unit
distance [1]. Therefore, in this investigation, we are interested in
estimating the friction factor for turbulent flow at Reynolds num-
bers around 106 in a flexible pipe with a specific configuration. In
particular, we study the influence of the roughness of the fabric
on the friction factor. The performance of different two-equation
turbulence models, boundary conditions and computational grids
is investigated.

2 MODELS AND BOUNDARY CONDITIONS FOR TUR-
BULENT FLOWS
There are basically three ways to simulate turbulent flow:

Direct Numerical Simulation (DNS), Large-Eddy Simulation
(LES) and Reynolds Averaged Navier-Stokes (RANS) models.
Due to their randomness, turbulent flows are difficult to simu-
late. The more details we want to obtain from a simulation, the
higher is the computational cost. DNS and LES offer a high de-
gree of details, but require prohibitively large times for the flow
simulations which are of interest to us. Given our purposes and
the available computational power, we will use RANS models
(specifically k− ε and, to a lesser extent, k−ω) for our simu-
lations. The RANS equations are time- or ensemble-averaged
equations of motion for fluid flow. The averaging process brings
new unknown terms into the Navier-Stokes equation. Therefore,
additional (closure) equations are needed to be able to solve the
system. These equations are derived by taking higher-order mo-
ments of the averaged Navier-Stokes equation and making addi-
tional assumptions based on the knowledge of the properties of

the turbulent flow. This process results in a modified set of equa-
tions that is computationally less expensive to solve. Below we
give the equations which define the k− ε model and the k−ω

model [2].

Mean flow equations.
Mass conservation:

∂U j

∂x j
= 0. (1)

Momentum conservation:

ρ

[
∂Ui

∂t
+U j

∂Ui

∂x j

]
=− ∂P

∂xi
+

∂

∂x j

[
(µ+µT )

(
∂Ui

∂x j
+

∂U j

∂xi

)]
. (2)

Transport equations for standard k− ε model.
Turbulence energy equation:

ρ
∂k
∂t

+ρU j
∂k
∂x j

= σi j
∂Ui

∂x j
−ρε+

∂

∂x j

[
(µ+

µT

σk
)

∂k
∂x j

]
. (3)

Turbulence dissipation equation:

ρ
∂ε

∂t
+ρU j

∂ε

∂x j
= Cε1

ε

k
σi j

∂Ui

∂x j
−Cε2ρ

ε2

k

+
∂

∂x j

[(
µ+

µT

σε

)
∂ε

∂x j

]
, (4)

with Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3
and turbulent viscosity µT = ρCµ

k2

ε
.

Transport equations for standard k−ω model.
Turbulence energy equation:

ρ
∂k
∂t

+ρU j
∂k
∂x j

= σi j
∂Ui

∂x j
−β

∗
ρkω+

∂

∂x j

[
(µ+σ

∗
ωµT )

∂k
∂x j

]
. (5)

Specific dissipation rate equation (the ω-equation):

ρ
∂ω

∂t
+ρU j

∂ω

∂x j
= α

ω

k
σi j

∂Ui

∂x j
−βρω

2

+
∂

∂x j

[
(µ+σωµT )

∂ω

∂x j

]
, (6)
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with α = 5
9 , β = 3

40 , β∗ = 9
100 , σω = 1

2 , σ∗ω = 1
2 and µT = ρ

k
ω

.
The following notation was used in the Equations (1)-(6):
Ui - components of the velocity vector,
xi - components of the position vector,
t - time,
ρ - fluid density,
P - pressure,
µ - viscosity,
µT - turbulent viscosity,
k - turbulence kinetic energy,
ε - turbulence dissipation,
ω - rate of dissipation per unit turbulence kinetic energy,
σi j - Reynolds stress tensor, σi j = µT

[
∂Ui
∂x j

+ ∂U j
∂xi

]
.

These models are given as defined by Wilcox in [2]. It is
worth noting here that an updated and improved k−ω model has
been presented in 2006 [3]. However, the earlier (standard) ver-
sion of the k−ω model was the only option in the used software
package.

The law of the wall. Because of the large velocity gradients aris-
ing in the region near the wall, this area requires special treat-
ment. Moreover, the flow in the near-wall region is no longer
turbulent (at least not everywhere) so that the assumptions made
while deriving the turbulence models are not valid.

Traditionally, there are two approaches to modeling the flow
in the near-wall region. In one approach, the turbulence mod-
els are modified to enable the viscosity-affected region to be re-
solved with a mesh all the way to the wall, including the viscous
sublayer. In another approach, the viscosity-affected inner re-
gion (viscous sublayer and buffer layer) is not resolved. Instead,
semi-empirical wall functions are used to bridge the viscosity-
affected region between the wall and the fully-turbulent region.
The use of wall functions obviates the need to modify the turbu-
lence models to account for the presence of the wall. These two
approaches are depicted schematically in Figure 2.

Figure 2. Schematic representation of the mesh for a wall function and
a near-wall model approach.

In most high-Reynolds-number flows, the wall function ap-
proach substantially saves computational resources, because the
viscosity-affected near-wall region, in which the solution vari-
ables change most rapidly, does not need to be resolved. The
wall function approach is popular because it is economical, ro-
bust, and reasonably accurate. It is a practical option for the
near-wall treatment in industrial flow simulations.

The boundary conditions derived from the wall functions
(law of the wall) are applied at a location y = yp in the log-law
region (y is the direction normal to the wall) . We use the sub-
script ’p’ to indicate quantities evaluated at yp, such as Up, kp,
εp, µT p. The law of the (smooth) wall is given by the relation

Up

u∗
=

1
κ

ln(
ρu∗yp

µ
)+B, (7)

n ·∇kp = 0, εp =
Cµk2

p

κu∗yp
, ωp =

kp

κu∗yp
, (8)

where Up is the tangential velocity, u∗ = C1/4
µ k1/2

p is the shear
velocity, κ = 0.41, B = 5.0...5.5 and n is the unit vector normal
to the wall. The value of yp is chosen such that y+

p = ρu∗yp/µ is
between 30 and 100. (i.e. in the range of the log-layer).

If the law of the wall would describe the velocity profile ex-
actly, then, assuming a perfect turbulence model, the choice of
y+

p (in the range between 30 and 100) would not influence the
solution. However, the law of the wall is a semi-empirical rela-
tion and the k−ε/k−ω models are based on assumptions which
do not always hold. Therefore, the solution does depend on the
thickness of the near-wall region. We hope though, that this de-
pendence is not too strong (again, for y+

p in the range between 30
and 100).

Simulations have been performed to observe the influence of
the thickness of the near-wall region on the solution. The value
y+

p spans from 6.25 up to 3200 in a geometric progression. To
measure the difference between solutions a certain norm could
be used. However, since we are ultimately interested in friction
factor estimation, we will use this as a physically relevant indi-
cator.

Figure 3 shows the dependence of the friction factor on
the thickness of the near-wall region at Reynolds number of or-
der 106. Although some preliminary simulations have shown a
strong dependence of f on y+

p [4], after individually adjusting the
mesh (by using an adaptive solver) for each value of y+

p , much
better results have been obtained, as now shown in the plot. The
friction factor is almost constant in the range of y+

p between 50
and 300 (between the red vertical lines in the plot), where the
variation of f is less than 1.5%. Thus, the range of validity of
the law of the wall in combination with the k− ε/k−ω model
proves to be in practice from 50 to 300 (instead of 30 to 100).

It must be mentioned that the logarithmic law of the wall
is not indisputable. After all, Prandtl’s assumption used in the
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Figure 3. Dependence of the friction factor f on the thickness y+
p of the

near-wall region at Reynolds numbers of order 106. Solid line - computed
values, dotted line - experimental values (from the Moody diagram). The
k− ε model is used.

derivation of the law is based only on dimensional grounds. The
scaling in the inertial sublayer (also referred to as overlap re-
gion) of turbulent wall-bounded flows has long been the source
of controversy. Barenblatt et al [5] developed theories showing
that power laws are more suitable for describing velocity profiles
in wall-bounded turbulent flows. Until recently this controversy
could not be addressed because measurements did not span a suf-
ficient range of Reynolds number. However, in 1997 new exper-
iments conducted by Zaragola et al [6] have shown that at suffi-
ciently high Reynolds numbers, the mean velocity profile in the
overlap region is found to be better represented by a log law than
a power law. These results suggest a theory of complete simi-
larity instead of incomplete similarity, contradicting the theories
developed by Barenblatt et al.

3 FLOW SIMULATIONS FOR SMOOTH AND ROUGH
NON-CORRUGATED PIPES
In this section we evaluate the performance of two-equation

RANS models as implemented in the Finite Element Package
Comsol Multiphysics [7] and validate the boundary conditions
based on the law of the wall which will be used later for more
complex flows. To do this, we will simulate the turbulent flow
in a pipe and assess the validity of the results by comparing the
friction factor computed from the simulation to the one given by
the Moody diagram. Models used in the simulations are k− ε

(Equations (1), (2), (3), (4)) and k−ω (Equations (1), (2), (5),
(6)) written in cylindrical coordinates.

Computational domain geometry. The fully devel-
oped and time-averaged turbulent flow in a smooth pipe is one-
dimensional and axisymmetric in its nature, the only dimension
being taken in the radial direction. In the following computa-
tions, a 2D axisymmetric model with periodic boundary condi-
tions coupling inflow and outflow will be used. See Figure 4.

Boundary conditions. The Axial Symmetry boundary
condition is prescribed at the centerline of the pipe. The other
boundary parallel to the flow coincides with the wall of the pipe.
Along this boundary, the law of the wall (7) is used to prescribe
the axial velocity at a certain distance from the wall.

An effective method of simulating fully developed flow on a
small computational domain is the use of periodic boundary con-
ditions. Their use is explained by the fact that the fully developed
flow has a constant velocity profile, which means that:

U1(r,0) = U1(r,L),
U2(r,0) = U2(r,L),

k(r,0) = k(r,L), (9)
ε(r,0) = ε(r,L),
ω(r,0) = ω(r,L).

where L is the length of the computational domain in the axial
direction (set as L = 0.02 m).

At inflow and outflow boundaries we will prescribe constant
pressures P(r,0) = Pin and P(r,L) = Pout , where Pout is taken to
be zero. We are entitled to do this because in a fully developed
flow through a duct with constant shape cross-section the trans-
verse velocity components vanish and it can be easily proven
from the momentum conservation equation (2) that

∂P
∂r

= 0 ⇒ P(r) = constant. (10)

Meshing and solution procedure. Although our
computational domain is very regular, which encourages the use
of structured meshes, it was decided to use unstructured grids
(based on Delaunay triangulation) for the discretization step be-
cause we want to use similar grids for both corrugated and non-
corrugated pipes, and only unstructured grids can be used for the
latter. The solution procedure consists of three steps:

• Solve the model on a coarse mesh.
• Refine the mesh by subdivision to obtain the one shown in

Figure 4.
• Solve the model on the refined mesh, using the coarse mesh

solution as an initial guess.
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inflow

outflow

centerline wall

Figure 4. Computational domain and the fine mesh used for the last step
of the computations.

This strategy proved to be faster than immediately solving the
model on the refined mesh. After the solution was obtained it
was additionally checked by uniformly refining the mesh once
again and comparing the new solution to the previous one. The
difference between them was in all cases less than 2%.

3.1 Smooth Wall Validation
To validate the simulation of turbulent flow in pipes with

smooth walls, a postprocessing procedure is performed at the
end of each simulation. Average velocity Vavg, Reynolds num-
ber Re and the Darcy-Weisbach friction factor f are computed as
follows:

Vavg =
Z R

0

U12πr
πR2 dr, Re =

2RρVavg

µ
, f =

2R∆P
0.5ρV 2

avgL
, (11)

where ∆P is the prescribed difference in pressure between in- and
outflow, R is the radius of the pipe and L is the length of the pipe
section included in the computational domain.

It is worth mentioning here that, because of the way the law
of the wall is used as a boundary condition in Comsol Multi-
physics, the computational domain does not include the whole
physical domain. Specifically, it does not include the thin layer
near the wall where the velocity profile is given by the law of the
wall (the shaded area in Figure 2). Therefore, in Equation (11),
the radius R should be understood as R = R′ + yp, where R′ is
the radius of the pipe in the simulations. In the computations the
following values have been used: R′ = 0.2 m, L = 0.02 m.

Simulations have been performed for a wide range of
Reynolds numbers (from 104 up to 108), using the two turbu-
lence models (k−ω and k− ε). For each model, two different
values of B (5.5. and 5.0) were used in the boundary condition
given by Equation (7).

Thus, for each Reynolds number, we end up with four com-
puted friction factors plus the friction factor taken from the
Moody diagram. These are shown in Figure 5. As can be seen
from the plot, in the range of (relatively) low Reynolds numbers
(104 to 105) the computed values are far from the measured fric-
tion factor. The k−ε model seems to perform better in this range
of Re. For higher Reynolds numbers, that is fully developed tur-
bulence, the computed values follow closely the measured value;
for Re > 5× 105 the relative error is less than 0.04. Now the

Figure 5. Computed and measured friction factors for smooth pipes
(e/D = 0).

Figure 6. Computed and measured friction factors for smooth pipes
(e/D = 0) zoomed around Re ∼ 106.

k−ε and k−ω models perform equally well and the choice of B
in the boundary condition becomes important. As seen from Fig-
ure 6 (showing the plot from Figure 5 zoomed around Re = 106),
for Re≤ 7×105 simulations with B = 5.0 give closer agreement
with the measured friction factor, while for Re > 7×105 the fric-
tion factor is better predicted by the simulations with B = 5.5.
This could be the reason why different authors give slightly dif-
ferent values for B in the law of the wall; its choice depends on
the Reynolds number characteristic to the flow.
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3.2 Rough Wall Modeling and Validation
The asperities on the pipe wall become important when

their size is comparable to the thickness of the laminar sublayer.
Roughness effects can be accounted for by using a law of the
wall modified for roughness. If e is the equivalent height of the
asperities, the law of the (rough) wall is given by the relation (see
e.g. [2]):

U
u∗

=
1
κ

ln
(yp

e

)
+8.5. (12)

Figure 7 shows the friction factors computed using the law
above. We observe that this law provides a good prediction of
the friction factor only for Reynolds numbers higher than 106

and is totally wrong for Reynolds numbers lower than 105. To
get a good approximation for the whole spectrum of Reynolds
numbers, we need to combine the law for smooth walls with the
law for rough walls.

Figure 7. Computed (dotted lines) and measured (solid lines) friction
factors for flow in pipes with rough walls. The k− ε model is used.

Experiments in roughened pipes and channels indicate that
the mean velocity distribution near rough walls, when plotted in
the usual semi-logarithmic scale, has the same slope (1/κ) but a
different intercept (additive constant B in the log-law). Thus, the
law-of-the-wall for mean velocity modified for roughness has the
form [8]

U
u∗

=
1
κ

ln(
ρu∗yp

µ
)+B∗, (13)

where B∗ is a roughness function that quantifies the shift of the
intercept due to roughness effects.

For sand-grain roughness and similar types of uniform
roughness elements, B∗ has been found to be well-correlated with
the nondimensional roughness height, e+ = ρeu∗/µ. Analysis of
experimental data for uniform roughness shows that the rough-
ness function, B∗, is not a single function of e+, but takes differ-
ent forms depending on the e+ value. It has been observed that
there are three distinct regimes:

• Hydrodynamically smooth ( e+ < e+
1 )

• Transitional ( e+
1 < e+ < e+

2 )
• Fully rough ( e+ > e+

2 )

where e+
1 ∼ 3...5 and e+

2 ∼ 70...90.
According to the data, roughness effects are negligible in

the hydrodynamically smooth regime, but become increasingly
important in the transitional regime, and take full effect in the
fully rough regime. The formulas proposed by Ioselevich and
Pilipenko in [8] are adopted to compute the roughness function,
B∗, for each regime.

B∗ = B+θ(8.5−B− 1
κ

lne+), with B = 5.5. (14)

The case of hydrodynamic smoothness corresponds to θ = 0
(e+ < e+

1 ), whereas the case of full roughness corresponds to
θ = 1 (e+ > e+

2 ). The function θ = θ(e+) for e+
1 < e+ < e+

2 is
obtained in [8] from the analysis of experimental data. The fol-
lowing approximation is proposed for θ:

θ = sin
(

π

2
ln(e+/e+

1 )
ln(e+

2 /e+
1 )

)
. (15)

The values for e+
1 and e+

2 recommended by Ioselevich and
Pilipenko are 2.25 (although outside of the prescribed interval,
in practice this value gives optimal results) and 90, respectively.
These values were used in the present investigation. Thus we
have:

θ =

 0, e+ < 2.25
sin [0.4258(lne+−0.811)] , e+ ∈ [2.25,90]
1, e+ > 90

(16)

Given the roughness parameter, the roughness function
B∗(e+) is evaluated using (14) and the corresponding formula
for θ (Equation (16)). The modified law of the wall in Equation
(13) is then used to evaluate the velocity at the wall.
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Figure 8 shows the results of the computations. They were
obtained by varying two parameters of the flow: pressure differ-
ence, ∆P = {0.1,1,10,100,1000,10000} Pa and relative rough-
ness, e

2R = {0.0005,0.001,0.005,0.01,0.05}. The pressure vari-
ation determines the variation of the Reynolds number, while the
change of relative roughness generates a set of distinct curves
on the diagram. Dotted lines indicate the computed friction fac-

Figure 8. Computed (dotted lines) and measured (solid lines) friction fac-
tors for flow with rough walls using a “combined” law of the wall, Equations
(13), (14), (16). The k− ε model is used.

tor, while solid lines correspond to the friction factor obtained
from the Moody diagram. There is an excellent agreement of
measured and computed values for Re > 106. In the transitional
regime (104 < Re < 105), however, the friction factor seems to be
underpredicted by our model. It is noticed that our computations
resemble the measurements of Nikuradse [9]. Nikuradse’s dia-
gram is in essence identical to the Moody diagram, with a small
difference in the transitional regime. This difference is caused
by the fact that the transition from hydraulically smooth condi-
tions at small Reynolds numbers to complete roughness at large
Reynolds numbers occurs much more gradually in commercial
rough pipes (used by Moody) than in artificially roughened pipes
(used by Nikuradse).

Our computations resemble the data from Nikuradse, be-
cause the latter was used by Ioselevich and Pilipenko [8] to fit
the ”combined“ law of the wall (Equations (13), (14) and (16)).

4 FLOW SIMULATIONS FOR CORRUGATED PIPES
As it was explained in the Introduction, flexible ducts have

a specific structure. To enable simulation of the flow in 2D, the

steel spiral is modeled as an annular corrugation and not as a
helical one. Helical corrugation requires more demanding 3D
simulations and is studied in [10].

The flow inside corrugated pipes has some important prop-
erties which are not characteristic to flows in conventional pipes.
One of the expected effects of corrugation is that the transition
from laminar to turbulent flow will occur at lower Reynolds num-
bers (so, at Re < 2000). Nishimura et al [11], Russ and Beer [12],
and Yang [13] investigated the transitional flow characteristics
in corrugated ducts. Indeed, they reported the laminar-turbulent
transition to occur at very low Reynolds numbers compared with
conventional ducts. Another important characteristic of flow in
corrugated pipes is the possible presence of local adverse pres-
sure gradients and, as a result, the appearance of flow separa-
tions.

The objective in this section is to set up a model in Comsol
Multiphysics which will allow us to perform a set of simulations
and compute the friction factor depending on parameters such as
roughness of the hose wall. Before we perform the simulations, a
proper turbulence model has to be chosen (k− ε, k−ω, or both).
Because of the curved surfaces present in the geometry, we ex-
pect to encounter separated flow. Prediction of separated flows
is an ”Achilles heel” for many turbulence models [14], therefore
simulations of turbulent flow over a backward facing step (a stan-
dard test problem for separated flow) have been performed using
k−ε and k−ω turbulence models. Results, presented in [4], have
shown that although both models underpredict the reattachment
length, the values given by the k− ε model are closer to experi-
mental data. Therefore, we have chosen the k− ε model, given
by Equations (1 - 4), for our computations.

Computational domain geometry. In general, fully
developed turbulent flow in a helically corrugated pipe is of
three-dimensional nature. For the annular corrugation consid-
ered, it can be reduced to 2D because of axial symmetry. In
other words, characteristics of the flow only depend on the dis-
tance from the pipe’s centerline, r, and the position along the
pipe, x, within a single period.

Figure 9 shows the computational domain for the simulated
pipe. It includes one period of the corrugated pipe. At the left
and at the right it is bounded by the wall and by the symmetry
axis, respectively, while the inflow/outflow boundaries are the
ones located at the top and bottom of the domain. The radius of
the spiral is 1 cm.

Boundary conditions. As can be seen from Figure 9,
our computational domain has five distinct boundaries at which
boundary conditions have to be prescribed. Axial Symmetry is
prescribed at the centerline of the pipe. The other boundary par-
allel to the flow coincides with the wall of the pipe, which con-
sists of two different materials: a flexible hose made of fabric and
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a steel spiral. The spiral, made of steel, is considered a smooth
surface. Therefore, the standard law of the wall (7) is used there.
The part made of fabric, on the other hand, is considered to be
rough, so the ”combined“ law of the wall modified for roughness
(13) is used.

The boundaries normal (perpendicular) to the flow repre-
sent inflow and outflow boundaries. Far from the duct entrance,
the flow will be periodically fully developed [15] because of the
equidistant positioning of the corrugations. In a periodic fully
developed flow, the velocity repeats itself at corresponding axial
locations in successive cycles. Now it becomes clear why it is
enough to confine the computational domain to a single period
(cycle) of the corrugation and use again the periodic boundary
conditions defined by Equations (9).

Now remains the question of the conditions for the pressure
at the inflow/outflow boundaries. In the periodic fully developed
regime, the pressure at periodically corresponding locations de-
creases linearly in the downstream direction [16]. Thus, the pres-
sure P can be expressed as

P(x,r) =−βx+ p′(x,r), (17)

where β is the mean pressure gradient and p′(x,r) is the peri-
odic component of the pressure. The term −βx represents the
nonperiodic pressure drop that takes place in the flow direction.
Keeping in mind that p′(xin,r) = p′(xout ,r), we have

P(xin,r)−P(xout ,r) = β(xout − xin) = βL. (18)

Because β is the mean pressure gradient, we have that βL = ∆P,
with ∆P being the pressure difference between the inflow and
outflow boundaries. Thus, we obtain the desired periodic bound-
ary condition for P:

P(xin,r) = P(xout ,r)+∆P. (19)

with ∆P given.

Meshing and solution procedure. We expect large
gradients around the corrugation, which require refined meshes.
As the exact position of high activity regions depends on the pa-
rameters of the flow, adaptive mesh generation is used. It is char-
acterized by the fact that the construction of the mesh and the
calculation of the corresponding solution are performed simulta-
neously. This technique identifies the high-activity regions that

inflow

outflow

rough
wall

rough
wall

centerline spiral

Figure 9. Computational domain with the adapted mesh (generated from
an initial mesh by an adaptive solver). Distances are in meters.

Figure 10. Numerical error vs. total iteration number. Each curve cor-
responds to a mesh and has its local origin at the end of the previous
curve.

require a high resolution (by estimating the errors) and produces
an appropriate mesh.

To perform the simulations an adaptive solver was used. A
coarse mesh was used as a starting point. It was adaptively re-
fined by the solver to finally arrive at the mesh shown in Figure
9. We notice that the regions around the corrugation and near the
wall require much higher resolution than the area near the center
of the pipe.

Figure 10 shows the convergence of the solution when us-
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ing the adaptive solver. First, the model is solved on the coarse
mesh. Then the errors are estimated and the mesh is refined at
the locations with the larger errors. The model is solved again on
the new mesh.The process continues until the errors are smaller
than a certain threshold and the maximum number of mesh re-
finements is reached (this number is 2 in our case).

Discussion of solution. A typical solution for the case
of periodically fully developed turbulent flow in a corrugated
pipe (at Re≈ 106) is displayed in Figure 11. The colored surface
corresponds to the value of pressure, arrows indicate the direc-
tion and the magnitude of the velocity field, while the green lines
near the wall are the streamlines of the flow. As expected, there
is a region of higher pressure upstream the bump (corrugation),
followed by a region of lower pressure downstream. By doing
several computations for different Reynolds numbers it became
clear that the low-pressure region is located behind the bump in
flows at low Reynolds number, and it moves towards the top of
the bump as the Reynolds number becomes larger. There is an
adverse pressure gradient on the top of the bump. However, due
to the large enough velocity, the flow has sufficient momentum to
overcome it and keep flowing in the mainstream direction. The
situation is not the same for the flow immediately behind the
bump. A continuous retardation of flow brings the velocity (as
well as its gradient and the wall shear stress) near a certain point
on the wall to zero. From this point onwards the flow reverses
and a region of recirculating flow develops. The shear stress
becomes negative. We see that the flow no longer follows the
contour of the wall. The flow has separated. The point where
the shear stress is zero is the point of separation. Further down-
stream the recirculating flow terminates and the flow becomes
reattached to the wall. Thus, a separation of the flow occurs and
a recirculation zone (a vortex) is formed.

The cross-sectional pressure profile is shown in Figure 12. It
is no longer constant as it was the case for a non-corrugated pipe.
The pressure is almost constant near the centerline and strongly
increases towards the corrugated wall, where higher resistance is
encountered.

Influence of fabric roughness on the friction fac-
tor. One of the goals of this investigation was to answer the
question whether the type of the fabric (which is wrapped around
the steel spiral) has a strong influence on the friction factor for
the resulting pipe. In order to do this, simulations were per-
formed for a set of values for relative roughness of the fabric,
e/D = {0,0.0125,0.025,0.05}. The computed friction factors
(see Equation (11)) are shown in Table 1.

Two observations can be made here: (a) the friction factor
increases as the relative roughness increases (this is what we ex-
pect) and (b) the increase is small.

The difference between the two limiting cases e/D = 0 and

Figure 11. A typical solution. Colored surface - pressure, arrows - ve-
locity field, green lines - streamlines. This computation was performed for
∆P = 3 ·104 Pa, ρ = 500 kg/m3, η = 0.01 Pa·s.

Figure 12. Pressure profile along the radial direction at x = 0.

e/D = 0.05 is less than 10%. This entitles us to state that the
roughness of the fabric has a negligible influence on the fric-
tion factor. There is no point in looking for new materials
which would keep the properties of the older ones (such as non-
inflammable, resistive to high pressures, resistive to extreme tem-
peratures, etc.) but would have a lower roughness, because the
decrease in the friction factor is predicted to be too small to be of
practical value.
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e/2R 0 0.0125 0.025 0.05

f 0.140 0.146 0.148 0.152

Table 1. Friction factor vs. fabric roughness.

5 CONCLUSIONS
The performance of two-equation turbulence models

(RANS) was assessed. Two popular representatives of this class
were investigated: the k− ε and the k−ω models. They have
been tested for smooth and rough pipe flow. The pipe flow
simulations have shown that both models perform reasonably
well, with a small advantage of the k− ε model over the k−ω

model at low Reynolds numbers (104 < Re < 105). Also, it
has been shown that the experimental results are closer repro-
duced if the constant B in the law of the wall has a value of
5.0 for Re ≤ 7× 105 and 5.5 for Re > 7× 105. Tests with
flow over a backward-facing step have confirmed the tendency of
two-equation models to underpredict the reattachment length [4].
However, the results obtained from the k− ε model were closer
to the measurements. For this reason, the k−ε model was chosen
for the simulation of fully developed turbulent flow in corrugated
pipes, where flow separation is encountered in between the cor-
rugations.

The effects of wall roughness have been modeled by imple-
menting a new boundary condition based on a combined law of
the wall. The flow in a non-corrugated (conventional) pipe with
rough walls, for which experimental data exists, was used as a
test problem. The results of the test reproduce approximately the
Moody diagram (except for a small range of Re around 105) and
are in close agreement with Nikuradse’s experimental data.

Trusting our models and boundary conditions, the question
whether the type of the fabric used in the corrugated pipe has
a strong influence on the friction factor was investigated. The
performed computations have shown that for this specific geom-
etry the roughness of the fabric has a small influence on the fric-
tion factor. This in turn means that no considerable advantage is
gained by replacing a rough fabric by a smooth one. The bumps
created by the steel spiral cause most resistance and considerable
drag reduction can only be obtained by optimizing their shape.
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