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Abstract: We demonstrate high-performance nanowire superconducting
single photon detectors (SSPDs) on bN thin films grown at a temperature
compatible with monolithic integration. NbN films ranging from 150nm
to 3nm in thickness were deposited by dc magnetron sputtering on MgO
substrates at 400◦C. SSPDs were fabricated on high quality NbN films of
different thickness (7 to 3nm) deposited under optimal conditions. Electrical
and optical characterizations were performed on the SSPDs. The highest
QE value measured at 4.2K is 20% at 1300nm.
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1. Introduction

High counting-rate detectors capable of efficient single photon sensing in the infrared region are
needed for several applications in different fields, including high-bandwidth interplanetary op-
tical communications, test of high-speed semiconductor circuits, quantum optics and quantum
communications [1]. Nanowire superconducting single photon detectors (SSPDs) [2] are in-
teresting candidates for these requirements. So far, high-sensitivity ultrafast SSPDs have been
fabricated only on 4nm thick NbN films grown on sapphire substrates at high temperatures
(typically 900◦C) [3, 4]. This significantly limits the integration of SSPDs with advanced op-
tical structures (e.g. waveguides and microcavities) and read-out electronics, typically realized
on other substrates and not compatible with these deposition temperatures. For instance, high
reflectivity DBR realized on GaAs do not withstand such temperatures due to As outgassing
[5]. Very recently, fabrication of SSPDs on MgO at room temperature has been reported, but
their quantum efficiency (QE) is very low [6]. In an effort to develop an exportable technology,
we show that high performance NbN SSPDs can be implemented on different substrates (e.g.
MgO) and at lower deposition temperatures (∼ 400 ◦C), which opens the way to monolithic
integration.

2. Thin film deposition and device fabrication

NbN films ranging from 150nm to 3nm in thickness were deposited on epitaxial-quality sin-
gle crystal MgO < 100 > substrates by current controlled dc magnetron sputtering from a Nb
target (5cm diameter, 99.95% purity) in a mixture of Ar (99.9997% purity) and N 2 (99.999%
purity). The background pressure was in the low 10−7 torr range. The distance between target
and substrate was fixed at the maximum allowed by our system (85mm) to maximize film uni-
formity. In order to control the film thickness, the deposition rate R was kept in the few Å/s
range, which fixed the plasma current at I p = 250mA. Low total pressures Ptot (in the few mtorr
range) were used, resulting in power densities of the order of 10W/cm 2. The high sputtering
energy allowed to promote the growth of high quality NbN films at a substrate temperature as
low as TS = 400◦C. Following a well established procedure [7, 8], the superconducting proper-
ties of NbN films were optimized studying the effects of Ptot and composition of reactive gas on
film structural and electrical properties. For every Ptot the superconducting critical temperature
TC showed a maximum as a function of nitrogen partial pressure PN2 , which was varied within
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the limits determined by the requirement to produce the NbN superconducting δ phase [9].
Decreasing Ptot improved the quality of NbN films: an increase in the maximum of TC and a
decrease in the superconducting transition width ΔTC and Residual Resistivity Ratio (the ratio
between the resistivity at 300K and at 20K, RRR = ρ300K/ρ20K) were observed. Ptot=2.5 mtorr,
PN2/Ptot = 33%, were found to be the optimal deposition parameters, resulting in a TC=16.1K,
with a ΔTC=60mK and an RRR = 1 for a 150nm thick film, which indicates that no inter-
grain voids were present [10]. Decreasing the thickness of films led to a slight degradation of
their superconducting properties (Fig. 1), but the thinnest film (t=3nm) still exhibited TC=8.6
K, ΔTC=0.9 K and RRR = 0.6, proof of the excellent quality of our low-temperature deposi-
tion process. The crystallinity of the best films was characterized using X-ray diffraction: they
showed a fcc, NaCl-type crystal structure, with a lattice constant a0 =4.45Å, which agrees with
reported results [7, 8]. From cross-sectional transmission electron microscopy (TEM) investi-
gation it was determined that NbN grows on MgO substrates without any initial amorphous
layers.

Fig. 1. Resistance vs temperature dependence of NbN films for four thicknesses: 7nm (cir-
cles), 5.5nm (stars), 4nm (squares) and 3nm (triangles). The deposition conditions were:
TS = 400◦C, Ip = 250mA, Ptot=2.5mtorr, 33% N2, R=3Å/s. Inset: TC and ΔTC vs. thickness
(t). TC vary from 13.7K (ΔTC=0.4K) for t=7nm to 8.6K (ΔTC=0.9K) for t=3nm.

SSPDs were fabricated on NbN thin films deposited under optimal conditions on MgO by
a two mask process using electron beam lithography (EBL) and reactive ion etching [11]. De-
tectors are 5x5μm2 in size, and composed of nanowires ranging from 60nm to 100nm in width
(w), folded in a meander pattern with fill factors (f ) ranging from 40% to 60%. The meanders
are contacted through 70nm thick Au-Ti pads, patterned as a 50Ω coplanar transmission line.
The same structures were fabricated on films of four different thicknesses (t): 7nm, 5.5nm, 4nm
and 3nm (standard deviation:± 1nm). The thickness was determined by an atomic force micro-
scope (AFM) scan over a 1um wide NbN stripe defined on the films by photolithography and
etched in a CHF3 + O2 plasma. TC and ΔTC of the patterned SSPD were found to be the same
as those of the original NbN films, which confirms that the fabrication process does not affect
their superconducting properties.
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3. Measurements

The uniformity in width of the nanowires was verified by extensive scanning electron mi-
croscopy (SEM). To prevent charging effects, the devices were coated by a 10nm thick layer
of OsO4. This conductive coating, whose grain size is less than 1nm, allowed ultra-high reso-
lution SEM imaging on the meanders. Figure 2 shows an SEM image of a w=100nm, f =40%
meander. Note that the contact pads on the two sides of the meander were also patterned with
a low fill factor to reduce proximity effects during the EBL writing step. It was then possible
to estimate the mean width variation as Δw ∼ 10nm, which agrees with the results of electrical
characterization on test structures [11].

Fig. 2. Scanning electron microscope (SEM) image of an SSPD. The nanowire width is
w=100nm, the fill factor is f =40%. The inset shows an ultra-high resolution image of two
stripes. The mean width variation was estimated to be Δw ∼10nm.

Electrical and optical characterizations have been performed on the SSPDs. In total, 320
devices were tested, 80 for each of the four different film thicknesses of interest. For each
chip, the best devices were first selected measuring their current-voltage (I-V) curves inside
a cryogenic probe station (Janis). Electrical contact was realized by a cooled 50Ω microwave
probe attached to a micromanipulator, and connected by a coaxial line to the room-temperature
circuitry. The samples were DC biased using a low noise voltage source in series with a bias
resistor RB.

I-V curves of our devices (Fig. 3) are typical for a superconducting one-dimensional bridge
much longer than the thermal healing length (η ∼ 100nm), at a temperature far from TC and
agree well with the Skocpol-Beasley-Tinkham (SBT) hotspot model [12]. After the current
through the device exceeds the superconducting critical current IC, circuit-controlled relaxation
oscillations are observed until, with increasing voltage, the circuit switches along the load line
to the hotspot plateau. Finally, at high voltages, the extension of the hotspot approaches the
total length of the nanowire and does not grow any further, so ohmic behavior is observed.
The critical current density JC was estimated from the measured value of IC and the entire
geometrical cross-section of the meander. JC at 4.2K varied in the 2-4 MA/cm2 range, which is
a state of the art value.

The ten devices which showed the highest JC in each chip were mounted on a cryogenic
dipstick and optically tested in an liquid He bath at 4.2K. This selection criterion relies on
the fact that the most constricted segment of a nanowire determines its IC. Devices with a
constriction (which show a low IC) are biased well below JC in most of the meander length,
and thus they have a lower quantum efficiency (QE). Bias current was supplied through the
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Fig. 3. I-V curve at 4.2K of a 100nm wide, 7nm thick meander (solid line) measured with
RB = 10Ω. For RB = 10Ω, the DC load line (dashed) never intersects the I-V both in the
superconducting and hotspot plateau regions, which is not the case for higher values of RB

(dotted line, for RB = 100Ω). The voltage offset is due to thermoelectric effects (electrical
contact from room temperature to the device is realized through junctions between different
metals at different temperatures, so a voltage is created due to the Seebeck effect). The inset
shows the I-V curve in a wider voltage range.

DC port of a 10MHz-4GHz bandwidth bias-T connected to the voltage bias circuit already
described, avoiding the latching effects associated with the current bias. The value for the bias
resistor (RB = 10Ω) was chosen to attain the highest value for the bias current IB with respect
to critical current IC (dashed line in Fig. 3). Increasing RB, the noise on IB due to the voltage
source is reduced, but the DC load line (dotted line) become less steep. Consequently, for a
given bias current I∗B < IC it may intersect the I-V at two points, in the superconducting region
and in the hotspot plateau, so that the device permanently switches from the superconducting to
the dissipative state. The AC port of the bias-T was connected through a 4dB attenuator to the
series of two 18bB gain, 20MHz-3GHz bandwidth, low-noise amplifiers. The amplified signal
was then fed to either a 1GHz bandwidth fast oscilloscope for time resolved measurements or
a 300MHz counter for statistical analysis. The devices were optically probed using 50ps wide,
25MHz repetition rate pulses at 1.3μm wavelength from a fiber-pigtailed, gain-switched laser
diode. The photons were fed to the SSPDs through a single-mode optical fiber coupled with a
3mm focal length aspheric lens, which was placed 7cm from the plane of the chip in order to
insure uniform illumination of the devices. The average number of incident photons per optical
pulse was estimated to be ∼ 0.5 with an error of 5%.

The dependence of the number of detector counts per second on the average number of
photons per pulse was investigated. As expected [13], the dependence was linear for the photon
fluxes used in QE measurements, proof that true single photon detection was observed. Dark
counts rate DK was determined as the number of counts registered in one second when the
SSPD optical input was blocked. QE at a certain bias current IB was calculated as: QE =
(Nc −DK)/Nph, where Nc is the number of detection events registered by the counter in one
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Fig. 4. QE (open squares) and DK (open triangles) as a function of the normalized bias
current for the single photon detection regime of an optimum 5x5μm SSPD: w=100nm,
f =40% t=4nm. The incident photon wavelength was 1.3μm. Temperature was 4.2K

second, Nph is the number of photons incident on the device area in the same time and DK is
the dark counts rate at IB. The best performance was exhibited by a w=100nm, f =40%, t=4nm
meander, which reaches QE=20% for 1.3μm wavelength light (Fig. 4) before saturation. Using
QE and DK from Fig. 4, noise equivalent power (NEP, [14]) was estimated to be of the order
of 10−16W/Hz1/2, which is a state of the art value at the temperature of the experiment. We
note that a higher QE and a much lower DK may be obtained by cooling the device down to 2K
[3]. The time resolved response pulse of our best SSPD showed a full width at half maximum
(FWHM) as low as 1.6ns (inset Fig. 4). No degradation in the performance was observed during
the measurement period of about one month.

4. Conclusions

The low-temperature fabrication process has been performed also on NbN thin films deposited
on GaAs. The electrical and optical measurements, which will be reported elsewhere, are very
encouraging for the further developments of the technology on GaAs, allowing for instance
monolithic integration with microcavities and waveguides. In conclusion, these results show
that high performance NbN SSPDs can be realized on a different substrate and deposited at
lower temperature than previously reported, which opens the way to integration with advanced
optical structures.
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