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Introduction

A structure can be classified as ”thin-walled” if its thickness is much
smaller than its other dimensions. In general, thin-walled structures

possess a very high in-plane stiffness while their out-of-plane stiffness is very
low. This property makes thin-walled structures very suitable for two purposes.
Firstly, if the structure is designed such that the loading assesses mainly
the in-plane stiffness, load-carrying constructions with very high stiffness-to-
mass ratios can be achieved. Due to this property, thin-walled structures
are used extensively in building and civil engineering constructions, aircraft,
aerospace, shipbuilding and other industries. Secondly, the out-of-plane
flexibility property of thin-walled structures allows to make mechanisms with
relative large displacements while staying in the elastic domain. Applications
can, for example, be encountered in suspension systems [138], deployable
structures [125] and in Micro-Electro-Mechanical-Systems [114; 115].

The design of thin-walled structures encompasses a number of challenges.
Firstly, thin-walled structures under compressive loading may become unstable,
that is they buckle. Buckling often occurs at stresses much lower than the yield
stress making the buckling strength one of the key design criteria. Secondly,
thin-walled structures may be sensitive to geometrical imperfections (small
deviations from the nominal shape) and loading imperfections. This can
result in significant reductions of the maximum load carrying capacity of
the imperfect structure with respect to the perfect one. Finally, out-of-plane
displacements can rapidly become very large (in comparison with the thickness
of the structure) resulting in the fact that geometrical nonlinearities can no
longer be neglected during the analysis.

Although there are still some open issues, the analysis of the (nonlinear)
response and buckling of thin-walled structured subjected to static loading (i.e.
the situation in which transient inertia and damping forces may be neglected)
is well established in engineering science [66]. However, in practise thin-walled
structures are often subjected not only to a static load but also to a dynamic
load. The resistance of structures liable to buckling, to withstand time-
dependent loading is addressed as the dynamic stability of these structures.
The term dynamic stability will be further elucidated in Section 2.2. Now, two
examples of dynamically loaded thin-walled structures will be discussed.
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Pay load

Fourth stage

Third stage

Second stage

First stage

Interstage

Figure 1.1: Vega launcher (courtesy ESA).

The first example comes from aerospace engineering and considers the case
where a thin-walled structure acts as a (light-weight) load-carrying construc-
tion. The Vega is an expendable launch vehicle (ELV), used to place satellites
into an orbit around the Earth, see Fig. 1.1. The satellite (the pay load) is
placed in the top of the ELV and in four steps the vehicle is brought into the
atmosphere. During each step, one stage of the ELV is ignited and after its fuel
is burned it is separated from the rest of the vehicle using pyrotechnic charges.
The first and second stage of the Vega are interconnected using a conical thin-
walled interstage, see Fig. 1.2. The interstage has a maximum diameter of
approximately 3 [m] and is constructed from curved aluminium panels with a
thickness of approximately 6 [mm] in combination with ring stiffeners for extra
stability [134]. A simplification of the mechanical loading of the interstage
during the launch is shown in Fig. 1.3, i.e. the structure carries a rigid top
mass (resembling the mass of the upper part of the launch vehicle) while being
subjected to a base acceleration (resembling the longitudinal acceleration of the
launch vehicle). During a typical launch, the longitudinal acceleration shows
various static levels (with peak values up to 5.5 · g, where g = 9.81 [m/s2]
denotes the gravitation constant) with on top significant dynamic fluctuations
(order 1 · g) and shocks [9; 137]. The combination of the base acceleration and
the top mass results in a (time-varying) compressive loading of the thin-walled
interstage. Consequently, dynamic buckling of the interstage, but obviously
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Figure 1.2: Vega interstage (courtesy Dutch Space BV).

Top mass

Thin-walled
structure

Base

non stationary
acceleration

Figure 1.3: Simplification of the mechanical loading of the interstage during
the launch.

also of other parts, is one of main issues during the design of such a launcher.

The next example illustrates how the (out-of-plane) flexibility property of thin-
walled structures can be exploited to realize a flexible mechanism for adaptive
optics on micro scale. In Fig. 1.4, a 3D self assembled microplate suspended in
two buckled beams is depicted [115]. The microplate has size 380 × 250 [µm]
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Figure 1.4: 3D self assembled microplate suspended in two buckled beams
(reproduced from [115] with permission).

and can be electrostatically actuated using electrodes buried underneath the
microplate. Before assembly, the structure is planar. Then, by using scratch
drive actuators (SDA), the beams are forced to buckle and locked using a
self locking mechanism to make the buckled state permanent. This forces
the microplate to lift out of the substrate plane, creating enough space for
large rotations of the microplate. The buckled beams do not only lift the
microplate but also act as elastic torsional hinges. In this manner, actuation
of the microplate can be achieved with rotations up to ±15 degrees, while
remaining in the elastic domain of the used material. During operation, the
microplate is controlled to follow high speed prescribed motions, resulting in
both torsional and transversal dynamic loading of thin buckled beams.

To obtain competitive designs for dynamically loaded thin-walled structures
such as discussed above, it is vital to be able to understand, predict, and
eventually optimize the dynamic stability behaviour of the structure. However,
design strategies and fast (pre-)design tools for thin-walled structures under
dynamic loading are still lacking. This can be partially explained by the
involved computational complexity of the dynamic stability analysis, especially
since in such analyses geometrical nonlinearities should be taken into account.
Furthermore, in general time-dependent loads are described by multiple
parameters (i.e. multi-parameter studies must be performed) and a wide
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variety in possible time-dependent loading types can be considered, like for
example shock/impact loading, step loading, periodic loading or stochastic
loading. Furthermore, although already many theoretical studies have been
performed regarding dynamically loaded thin-walled structures [15; 77; 121],
experimental validation of these results is scarce. Based on these observations,
the objectives of this thesis are formulated in the next subsection.

1.1 Objectives

The research objective of this thesis is to develop (fast) modelling and analysis
tools which give insight in the behaviour of dynamically loaded thin-walled
structures. To illustrate and to test the abilities of the developed tools, a
number of case studies are examined. The tools are developed for structures
with a relatively simple geometry. The geometric simplicity of the structures
allows to derive models with a relatively low number of degrees of freedom
which are, therefore, very suitable for extensive parameter studies (as essential
during the design process of a thin-walled structure). These models are
symbolically derived via an energy based approach, using analytical expressions
for the undeformed and deformed structural geometry. This approach has
been implemented in a generic manner in a symbolic manipulation software
package, such that model variations can be easily performed. For the analyses,
both nonlinear static and nonlinear dynamic responses will be computed
using numerical techniques in combination with the derived nonlinear models.
The combination of the symbolic derivation of the model and the numerical
techniques to obtain the solutions, is called a semi-analytical approach. Using
this semi-analytical approach, the buckling of four structures due to both quasi-
static loads and time-dependent loads (i.e. shock loading and harmonic loading)
are thoroughly studied. These studies will include investigation of the effect
of several parameter variations and the effect of small deviations from the
nominal geometry. For validation, the semi-analytical results will initially be
compared with results obtained from computationally much more demanding
FEM analyses. However, more important, for two cases the semi-analytical
results will also be compared with experimentally obtained results. For this
purpose, a dedicated experimental setup will be realized.

1.2 Outline of the thesis

The outline of this thesis is as follows. In the next chapter, firstly the semi-
analytical approach to study dynamic buckling of structures will be discussed.
Secondly, a brief overview of static and dynamic instability phenomena of
structures will be presented. In the rest of the thesis, case studies will be
performed to present the abilities of the adopted semi-analytical approach.
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More specific, in Chapter 3, dynamic buckling of shock loaded arches will be
considered. In Chapter 4, an initially buckled beam subjected to a harmonic
forcing in transversal direction will be discussed. Chapter 5 considers a base-
excited thin beam which caries a rigid top mass. For the latter case, semi-
analytical results will be confronted with experimentally obtained results in
Chapter 6. Chapter 7 will discuss a base-excited thin cylindrical shell which
caries a rigid top mass. For this case, semi-analytical results will be confronted
with experimentally obtained results in Chapter 8. Finally, in Chapter 9, the
conclusions of the thesis will be presented and recommendations will be given
for further research.
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Preliminaries

This chapter will present in a general manner the adopted semi-analytical
approach to study the dynamic buckling of structures (Section 2.1).

Secondly, a brief overview of static and dynamic instability phenomena
of structures will be presented in Section 2.2. Finally, in Section 2.3,
computational tools will be discussed.

2.1 Semi-analytical approach

The modelling of thin-walled structures like beams, plates and shells is a
continuum mechanics problem, i.e. the response of the structure is described
by Partial Differential Equations (PDEs) with continuous displacement fields
as unknown variables. The displacement fields themselves are functions
depending on the spatial coordinates and time. In general, PDEs are solved
using numerical techniques, especially when nonlinearities must be taken into
account. Hereto, the continuous variables of the PDEs are firstly discretized
and subsequently the problem is restated as a set of Ordinary Differential
Equations (ODEs) and solved. It should be noted that the solutions of the
discretized problems are approximations of the original continuous problems.
Probably the most generally used discretization technique used in structural
engineering is the Finite Element Method (FEM). Indeed, the usage of FEM
offers a very flexible way to deal with complex geometrical shapes and all kinds
of geometrical and material nonlinearities. However, a drawback of the use of
FEM is the fact that the resulting models possess in general many Degrees Of
Freedom (DOFs). Even with the computational power of modern computers,
solving a large set of coupled nonlinear equations of motion still remains a
computationally heavy task, making the use of FEM for large parameter studies
less feasible. Therefore, in this thesis a semi-analytical approach is adopted
for fast modelling and analysis of dynamically loaded thin-walled structures.
The approach is designated as semi-analytical, since analytical descriptions of
the structural geometry and displacement fields in combination with symbolic
manipulation tools are used for the derivation of the equations of motion while
numerical tools are used to obtain solutions of these equations of motion. Note
that for some specific cases, FEM will still be used for the numerical validation
of the responses obtained by the semi-analytical approach. In this section, the
derivation of the equations of motion will be discussed. As stated before, the
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numerical tools will be introduced in Section 2.3.

2.1.1 Modelling steps

The derivation of a model for a thin-walled structure via the semi-analytical
approach, involves a number of steps. These steps will be described in this
section.

Assumptions

In order to derive a set of relations between the displacements and rotations
and the strain measures (i.e. the strain-displacement relations) which can
capture the dominant nonlinearities, kinematic assumptions must be adopted.
Typically, for thin-walled beams, plates and shells these assumptions are the
Euler-Bernoulli/Kirchhoff assumptions (i.e. the effect of transverse shear is
neglected with respect to the effect of bending [17]) in combination with the
assumption that deformations are dominated by out-of-plane displacements.
Furthermore, depending on the problem, rotations can be considered to be
small. Next to kinematic assumptions also assumptions regarding the type of
material behaviour (i.e. linear or nonlinear and elastic or elasto-plastic) must
be made. In general, thin-walled structures are able to operate at large (out-of-
plane) displacements while staying in the linear elastic range of the material.
Therefore, in this thesis only linearly elastic material responses are considered.

Reduction of displacement fields

By adopting a set of strain-displacement relations, also the number of
independent displacement fields is determined. For example, the modelling
of a planar beam when neglecting the effect of transverse shear results in
two independent displacement fields (one out-of-plane displacement field and
one in-plane displacement field); the modelling of a three-dimensional plate or
shell again without the effect of transverse shear results in three independent
displacement fields (two in-plane displacement fields and one out-of-plane
displacement field). These displacement fields are, in general, mutually coupled
via the strain-displacement relations, especially if nonlinearities are taken into
account. One approach to solve the problem in terms of the individual fields, is
to discretize all fields independently (as usually is done in most FE packages).
However, since it is desired to derive accurate models with a minimum number
of DOFs, in the semi-analytical approach followed in this thesis, a reduction
of the number of independent displacement fields is performed. The result of
this reduction step is that only the most dominant displacement field needs to
be discretized. In this thesis, two methods of reduction will be distinguished.
In the first method (see Chapters 3 and 7), the effect of in-plane inertia will
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Figure 2.1: Global discretization.

be neglected with respect to the effect of out-of-plane inertia resulting in a
combination of static PDEs (i.e. PDEs including only spatial derivatives and no
time derivatives) and dynamic PDEs (i.e. PDEs including both time derivatives
and spatial derivatives). The next step is to discretize the out-of-plane field
and to solve analytically the static PDEs using the assumed expression for the
out-plane field in combination with the in-plane boundary conditions. In the
second method, which is only employed for beam structures (see Chapters 5
and 4), displacements are assumed to be completely determined by bending,
i.e. the structure is assumed to be inextensible. This approach kinematically
couples the axial displacement field to the transversal displacement field.

Discretization

As discussed above, the reduction step of displacement fields and the discretiza-
tion step are not decoupled, i.e. the actual computations involved for the
reduction can only be performed after discretization of the remaining unknown
fields. Nevertheless, due to its importance, the discretization is discussed
separately from the reduction step. In the semi-analytical approach adopted in
this thesis, only the out-of-plane displacement will be discretized. The in-plane
(or axial) fields follow from this discretization and the assumptions made in
the reduction step.

The discretization procedure used in most FE packages divides the structure
into a number of smaller elements, which are interconnected at the nodes.
The actual discretization is performed within the elements where the local
displacements and/or rotations are determined from the nodal DOFs using
interpolation functions. This approach is very suitable for analyses of localized
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effects (e.g. stress concentrations), since elements can be arbitrarily divided
over the structure. However, a drawback of the local discretization approach
is that it results in models with relatively many DOFs.

For responses which are more evenly spread out over the structure, such
as vibration and/or buckling modes (note that for some cases also buckling
modes may have a localized nature [52; 95]), discretizations with much less
DOFs can be obtained by adopting a global discretization approach. For the
global discretization approach, the actual deflections are approximated using a
linear combination of global shape functions with time varying amplitudes (i.e.
separation of variables). The approach is illustrated for the discretization of
the transversal deflection v(t, x) of a planar beam in Fig. 2.1 using two shape
functions, i.e.

v(t, x) = Q1(t)φ1(x) + Q2(t)φ2(x), (2.1)

where Qi(t) are the time dependent generalized DOFs and φi(x) are the shape
functions. Obviously, the number of modes used in the discretization is not
limited to two, but can be extended to more DOFs if higher accuracy is desired.
Furthermore, the approach can also be used for structures described by two
spatial variables (i.e. plates and shells) by employing 2D shape functions. The
global discretization approach in combination with an energy method to derive
the equations of motion in terms of the DOFs Qi(t) is better known as the
assumed-modes method [91; 131]. Note that the assumed-mode method is
closely related to the Rayleigh-Ritz method [91; 131] and is often referred to
as such. More comments on this matter will be discussed in the next step:
”Derivation of equations of motion”.

The key issue in the global discretization approach is the selection of the set of
shape functions to be used for the discretization. A set of shape functions is
admissible if

• the shape functions are linearly independent,

• each shape function is at least p times differentiable (with p the maximum
order of partial differentials as present in the energy integrals),

• each shape function satisfies the geometric boundary conditions.

If the problem has natural boundary conditions (e.g. if the structure is
connected to a discrete spring at one end), the use of admissible functions
may give poor convergence [5; 91; 131], i.e. many DOFs must be used before
accurate results are obtained. For such cases, it is better to select (if available)
the shape functions from the set of comparison functions [91; 131]. Comparison
functions are a subset of the admissible functions but satisfy, in addition, all the
boundary conditions and are at least 2p times differentiable (which corresponds
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to the order of the governing PDEs).

A set of shape functions φi(x) (i = 1, 2, ..) is said to be orthogonal in the
domain of the structure (D), if for any two distinct two functions φi(x) and
φj(x) [91], ∫

D

φi(x)φj(x)dx = 0, i 6= j. (2.2)

Orthogonality of the set of shape functions is a favourable property since
it simplifies the evaluation of the energy integrals in a later stage, but
orthogonality of the set of shape functions is not a necessity. The eigenfunctions
following from a linear vibrational and/or linear buckling eigenvalue problem
are by definition comparison functions and are also orthogonal (and thus
linearly independent [91]). Therefore, eigenfunctions are often utilized as shape
functions for the discretization procedure. Also the eigenfunctions obtained for
a simplification of the actual structure (e.g. obtained for a constant cross-
section while the actual structure has a varying cross-section) may serve very
well as shape functions [5; 91]. However, shape functions are not restricted to
be eigenfunctions. More important, to keep the computational effort during for
the derivation of the equations of motion to a minimum, the shape functions
should have simple analytical expressions and their mutual products should be
easy to evaluate by symbolic integration procedures. In this sense and based on
experience, it can be stated that it is advisable to select shape functions from
a single family of functions, e.g. use only polynomials or use only harmonic
functions.

As a final note, the number of DOFs to be used in the model should be select
with care. To minimize the computational time for the numerical analysis,
the number of DOFs should be kept to a minimum. However, the number of
DOFs should also not be selected too low, since this may result in a highly
overestimated stiffness of the structure. For a careful selection of the number
of DOFs to be used in the model, convergence studies (e.g. computations of
eigenfrequencies, buckling loads or fully non-linear responses for increasing
number DOFs) are essential.

Derivation of equations of motion

After the displacement fields are discretized, the equations of motion in terms
of the DOFs Qi(t) (i.e. a set of ODEs) can be derived by either starting from
energy expressions or from a set of PDEs. The first method is known as the
energy or Lagrangian approach, the second method is known as the Galerkin
approach.

For the energy approach, the discretized expressions for the displacement fields
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are substituted in the kinetic energy T , the strain energy U and the potential
energy of the conservative forces V and the virtual work expression of the
non-conservative external forces Wnc, respectively. Damping of thin-walled
structures is in general modelled as viscous damping. The non-conservative
forces due to the viscous damping can be taken into account by using a so-
called Rayleigh dissipation function R [91]. After the energy integrals and the
dissipation function are symbolically evaluated, the equations of motion are
derived using Lagrange’s equations

d

dt
T ,Q̇ −T ,Q +U ,Q +V ,Q = −R,Q̇ +Fex(t), (2.3)

where the column with non-conservative forces Fex(t) follows from [91]

δWnc = Fex(t)δQ, (2.4)

and Q = [Q1(t),Q2(t), ..,QN (t)]T with N the number of DOFs. As noted
before, the global discretization approach in combination with the energy
method to derive the final set of ODEs is known as the assumed-mode method.
The Rayleigh-Ritz method is closely related to the assumed-mode method, but
is strictly speaking concerned with the discretization of differential eigenvalue
problems instead of with the formulation of a set of (nonlinear) ODEs [91].

The Galerkin approach has as starting point a set of PDEs, for example derived
using first principles (Newton’s equations) or from energy expressions using
Hamilton’s variational principle [91]. Since the shape functions in general
do not satisfy the PDEs, a residual ψ (Q, t, x) remains, after the discretized
expressions for the displacement fields are substituted in the PDEs. To
minimize this residual in some sense, the residual is multiplied by the shape
functions (one by one) and the result, integrated over the domain of the
structure (D), is set to zero, i.e.

∫

D

ψ (Q, t, x)φi(x)dD = 0, i = 1, 2, .., N. (2.5)

Equation (2.5) constitutes a set of ODEs in terms of the DOFs Qi(t). It should
be noted that if the adopted shape functions are not comparison functions
(i.e. the shape functions only satisfy the geometrical boundary conditions), an
integral over the boundaries of domain should be added to Eq. (2.5) such that
deviations from the natural boundary conditions will be minimized as well [91].

When the PDEs used during the Galerkin approach are derived from the energy
and work expressions, the energy and Galerkin approach result in exactly
the same set of ODEs if the same set of shape functions is utilized. The
energy method does not require to derive the PDEs (if they are not ready
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available from literature), which may be an advantage for certain (complicated)
cases. Furthermore, using the energy method, attachments like discrete springs
and dash-pots can be included relatively simple by augmenting the energy
expressions of the continuous structure with the energy expressions of the
discrete elements. However, since in the end both methods result in the
same set of equations, which method is adopted may depend also on personal
preference and experience. In this thesis, the energy method is followed.

In a general form, the resulting set of N ODEs reads as follows

M (Q) Q̈ +G(Q, Q̇) + CQ̇ +K [P(t)]Q +H [Q,P(t)] = BP(t), (2.6)

where M (Q) denotes the (nonlinear) mass matrix, G(Q, Q̇) denotes Coriolis,
centrifugal and nonlinear damping loads, C denotes the linear viscous damping
matrix, K [P(t)] denotes the linear (possibly time dependent) stiffness matrix,
H [Q,P(t)] denotes nonlinear elastic loads, B is a load input matrix and P(t)
denotes a column with time dependent loads. Column H [Q,P(t)] in Eq.
(2.6) originates from the adopted nonlinear kinematic relations. The inertia
nonlinearities in Eq. (2.6) are for example present for the case where the
structure is considered inextensible and in-plane inertia effects are taken into
account via a nonlinear kinematic coupling with the out-of-plane displacements.
The time-dependent loads P(t) may be introduced either directly as a time-
dependent external force or indirectly via a prescribed motion (in terms of
displacement or rotation). As can be noted, the loading P(t) may appear both
on the right-hand-side of Eq. (2.6) and on the left-hand-side of Eq. (2.6). This
will be further discussed in Section 2.2.2.

2.2 Stability of structures

This section deals with the stability of structures. The stability problem will
be divided in two parts. The first part will consider the stability of structures
subjected to static conservative loads (i.e. loads which can be derived from an
energy potential [12]). The second part will discuss the stability of structures
subjected to time-varying loads.

2.2.1 Static buckling

The loss of stability of static equilibrium states of structures subjected to
conservative loads P, is in general known as static buckling of the structure. For
conservative systems, the stability analyses can be solely based on properties
of the sum of the strain energy U and the potential energy of the conservative
forces V

Π(Q,P) = U + V , (2.7)
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which is often denoted as total potential energy [44; 111]. The total potential
energy of the structure depends on the DOFs Qi. Furthermore, without loss
of generality, it will also be presumed to depend on a single scalar P which
determines the magnitude (or distribution) of the external conservative loads
P working on the structure.

Static equilibria, denoted by Q = Q∗ and P = P ∗, are extrema of the total
potential energy (2.7), i.e.

Π,Q |
Q=Q∗,P=P∗

= U ,Q |
Q=Q∗,P=P∗

+ V ,Q |
Q=Q∗,P=P∗

= 0. (2.8)

In general, Eq. (2.8) constitutes a set of N nonlinear algebraic equations with
the DOFs Qi as the unknowns and the load P as variable. By computing a
solution of Eq. (2.8) for a quasi-statically varying load P , a curve is obtained
in the N + 1 dimensional space spanned by Qi and P . This curve is called the
equilibrium path or the load-path.

In what follows, the total potential energy Eq. (2.7) evaluated at some
equilibrium state will be denoted by

Π∗ = Π(Q∗, P ∗) . (2.9)

The Hessian of Eq. (2.9) with respect to the DOFs Qi is denoted as the tangent
stiffness matrix K0 [111], i.e.

K0 = Π∗,QQ . (2.10)

The (local) stability of equilibrium states of conservative systems can be
assessed by looking at the eigenvalues of the tangent stiffness matrix K0, which
are all real, since K0 is a symmetric matrix. Let µi denote the ith eigenvalue
of K0. Based on theorems of Lagrange-Dirichlet and Lyapunov [12; 111], it
can be concluded that an equilibrium state is stable if all µi > 0, while an
equilibrium state Q∗ is unstable if one or more µi < 0. If along a load-path, at
some equilibrium state one or more µi = 0, this equilibrium state is denoted as
a critical state. Static buckling refers in general to case where, starting from
some stable state, a critical state is reached along the load-path. The critical
state and corresponding load are denoted by Qc and Pc, respectively. At a
critical state, it follows that

K0|Q=Qc,P=Pc
z = 0, (2.11)

where the column z denotes the buckling mode. In general, Eq. (2.11)
constitutes a nonlinear eigenvalue problem, since K0 (in general) depends in a
nonlinear fashion on the DOFs Qi, which in turn may depend in a nonlinear
fashion on the load P , as defined by the equilibrium equations Eq. (2.8).



2.2. Stability of structures 21

In general, Eq. (2.11) is solved by solving Eq. (2.8) for a varying load P
with for example some sort of numerical path-following routine [105], while
simultaneously tracking the eigenvalues of the tangent stiffness matrix Eq.
(2.10). Buckling occurs where the matrix K0 becomes singular.

For some structures, such as axially loaded beams and in-plane loaded plates,
the prebuckling response of the structure may be approximated using a
linear load-displacement relation [17]. Consider some known (non-critical)
equilibrium state Q∗

0 and P ∗
0 with the total potential energy denoted by

Π∗
0 = Π(Q∗

0, P
∗
0 ) and obeying

Π∗
0,Q = 0. (2.12)

Considering the first order Taylor series expansion of Eq. (2.12), i.e.

Π∗
0,Q (Q∗

0 + ∆Q, P0 + ∆P ) ≈ Π∗
0,Q +Π∗

0,QQ ∆Q + Π∗
0,QP ∆P = 0, (2.13)

results in the following linear approximation for the prebuckling response

∆Q = (Π∗
0,QQ )−1 Π∗

0,QP ∆P. (2.14)

Similarly, for small displacements, the tangent stiffness matrix may be
approximated using a first order expansion in terms of the increments ∆Q
and ∆P

K0 = Π∗
0,QQ +Π∗

0,QQQ ∆Q + Π∗
0,QQP ∆P, (2.15)

where (in index notation)

(Π∗
0,QQQ ∆Q)

i,j =

N∑

k=1

Π∗
0,QiQjQk

∆Qk. (2.16)

After substitution of Eq. (2.14) into Eq. (2.15), Eq. (2.11) may be rewritten to
the linear buckling eigenvalue problem

[Km + ∆PKg] z = 0, (2.17)

where Km = Π∗
0,QQ and Kg = Π∗

0,QQQ (Π∗
0,QQ )

−1
Π∗

0,QP +Π∗
0,QQP . The

matrix Kg is often designated as geometrical stiffness matrix and accounts
for changes in stiffness of the structure during deformation. The linearized
buckling analysis is available in many FE packages but should be used with
great care, i.e. the obtained buckling load from the linearized buckling analysis
may highly overestimate the actual buckling load [23].

At critical states, determined by either solving the nonlinear eigenvalue problem
Eq. (2.11), or the (approximating) linear eigenvalue problem Eq. (2.17), the
stability of the pre-buckling equilibrium state is lost and new stable and/or
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unstable equilibrium states may appear instead. In other words, at critical
states, the state-space of the underlying dynamical system of which the
static equilibrium states are studied during the buckling analysis changes
in a qualitative manner. In the theory of nonlinear dynamics of general
systems [128; 129], such qualitative changes due the variation of one or more
parameters are called bifurcations. The combination of states and parameters
at which bifurcations occur are called bifurcation points. It should be noted
that bifurcations of dynamical systems can occur both for static responses (as
the case for static buckling) and for dynamic responses (e.g. the response of
a dynamical system due to a time-varying force). Bifurcations of dynamic
responses will be discussed in Section 2.2.2.

With respect to bifurcations of static equilibria in the context of buckling,
two types of critical states can be distinguished, i.e. limit-points and distinct
bifurcation points [127]. First limit-points will be discussed. Subsequently,
distinct bifurcation points will be discussed.

A limit-point (also known as a saddle-node bifurcation [129]) corresponds to
the situation where the slope of the initial load-path varies and the load-path
reaches a maximum. This type of buckling is addressed as limit-point buckling.
When the load is increased to just above the limit-point there is no adjacent
equilibrium state anymore. Consequently, under an increasing load, at the
limit-point the structure must jump to another (far) point on the load-path,
a phenomenon known as snap-through buckling [127] or as collapse [23]. For
illustration, a single DOF snap-through structure is depicted in Fig. 2.2-a. This
structure consist of a vertical cart m (the mass of the cart is not of importance
since gravity is not considered) which is suspended by an inclined linear spring
k. The corresponding load-path in terms of the compressive load P and rotation
θ is depicted in Fig. 2.2-b. The part of the load-path which corresponds to
stable equilibrium states is plotted with a solid line, while the part of the load-
path which corresponds to unstable equilibrium states is plotted with a dashed
line. When the structure is loaded above the maximum in the load-path (i.e.
the limit-point Pc, see Fig. 2.2-b), the structure will jump towards a downward
equilibrium state.

A distinct bifurcation point (or branching point) corresponds to a critical state
where two or more load-paths coincide. This type of buckling is often addressed
as bifurcation buckling and the corresponding buckling load as bifurcation load.
To illustrate three types of distinct bifurcation points which are commonly
encountered during the static buckling analysis [111; 127], three elementary
discrete models with corresponding load-paths are depicted in Figs. 2.3 -
2.5, respectively. All models possess a single DOF θ and consists of a linear
(translational or torsional) spring k, a vertical rigid bar with length L and
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Figure 2.2: Single DOF snap-through structure (a) and corresponding static
load-path (b).

are loaded by a compressive vertical force P . The load-path for each model
is presented by plotting the load P against the rotation θ. In contrast to
limit-points, distinct bifurcation points may change in a qualitative manner
when small imperfections are introduced in the structure. In the load-paths
depicted Figs. 2.3 - 2.5, the effect of small deviations from the nominal (perfect)
geometry and/or the effect of loading eccentricities (in other words the effect of
geometric imperfections and/or load imperfections) on the associated ’perfect’
load-path is illustrated with the thin lines.

The first load-path (Fig. 2.3-b) corresponds to probably the best known
example of buckling in structures, i.e. buckling of an axially loaded elastic
beam. A similar type of buckling occurs for the structure depicted in Fig. 2.3-
a. The static equilibrium condition for this structure reads PL sin θ = kθ [111].
As can be noted, the trivial solution θ = 0 is always a static equilibrium state of
the structure. At the critical state P = Pc (Pc = k/L [111]), a secondary load-
path corresponding to stable equilibrium states intersects with the fundamental
equilibrium path θ = 0, see Fig. 2.3-b. As stated before, such an intersection
is called a distinct bifurcation point and more specifically for this case a stable
symmetric point of bifurcation (or super-critical pitchfork bifurcation [129]),
since the symmetric secondary path corresponds to stable equilibrium states.
Introducing small imperfections (for example by considering the rigid bar to
be initially not perfectly vertical), the response of the structure shifts from a
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Figure 2.3: Vertically loaded rigid bar supported by a torsional spring at the
bottom (a) and corresponding static load-path (b).

bifurcation type of load-path to a smooth nonlinear stable load-path without
a distinct buckling phenomenon, see Fig. 2.3-b.

The static equilibrium condition for the structure depicted in Fig. 2.4-a reads
L sin θ (kL cos θ − P ) = 0 [111]. Again, the trivial solution θ = 0 is always a
static equilibrium state of the structure. However, now at the critical state
P = Pc (Pc = kL [111]), a secondary (symmetric) load-path corresponding to
unstable equilibrium states intersects with the fundamental equilibrium path
θ = 0, see Fig. 2.4-b. Such a bifurcation point is called an unstable symmetric
point of bifurcation (or sub-critical pitchfork bifurcation [129]). For such a
bifurcation point, small imperfections change the bifurcation type of response to
a limit-point type of response, see Fig. 2.4-b. The critical load of the imperfect
structure (Plp) is lower than the critical load of the perfect structure (Pc) and
will decrease further if a larger imperfection is considered. Structures with a
critical load which decreases for an increasing level of imperfection are called
imperfection sensitive.

Next to symmetric post-buckling behaviour (i.e. the stable or unstable sec-
ondary load-paths are symmetric with respect to the equilibrium state at
which the bifurcation takes place), also asymmetrical post-buckling behaviour
is possible. For illustration, consider the structure depicted in Fig. 2.5-a.
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Figure 2.4: Vertically loaded rigid bar supported by a horizontal spring at the
top (a) and corresponding static load-path (b).

For small θ, the static equilibrium condition for this structure reads 2θP =
kLθ(1− 3θ/4) [111]. As can be noted, at the critical state P = Pc (Pc = kL/2
[111]), a secondary asymmetrical load-path insects the fundamental equilibrium
path θ = 0, see Fig. 2.5-b. Such a bifurcation point is called an asymmetric
bifurcation point (or transcritical bifurcation [129]), since the secondary load-
path is stable in one direction but unstable in the other direction. For this
case, the sign of the (dominant) imperfection will determine the qualitative
behaviour of the structure. For example, consider the rigid bar initially to
be not perfectly vertical. If the initial rotation of the bar is clockwise the
structure will collapse via a limit-point load of critical state (as indicated for
the imperfect case in Fig. 2.5-b). However, if the initial rotation of the bar is
counter clockwise, the response of the structure will shift to a smooth nonlinear
stable load-path without a distinct buckling phenomenon (not shown).

As shown, structures may exhibit various types of post-buckling behaviour and
imperfection sensitivities. A complete general theory of the initial (linearized)
post-buckling behaviour is derived by Koiter [66] (see also [20]). Koiter
generally proved that if the initial post-critical load path is stable (as in Fig.
2.3-b), the structure is imperfection insensitive, while if the secondary post-
critical load path is unstable (as in Fig. 2.4-b and Fig. 2.5-b) imperfections
cause a decrease of the load at which the structure becomes unstable. For the
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Figure 2.5: Vertically loaded rigid bar supported by an inclined spring at the
top (a) and corresponding static load-path (b).

case where several buckling modes coincide at a single critical state or occur
at very closely spaced critical states (e.g. occurring for axially compressed thin
cylindrical shells), the effect of initial imperfections is typically far more severe
than for the case of isolated critical states with an unique buckling mode [23].

2.2.2 Dynamic buckling

Structures subjected to an external load which varies in time (e.g. shock
loading, harmonic loading, step loading and/or stochastic loading) will not
be in static equilibrium but will experience some type of motion (transient or
steady-state motion). Such time varying loading is called dynamic loading.
In case the unloaded structure is in a stable equilibrium state (as defined in
Section 2.2.1) and by assuming the presence of some damping (in reality this is
always the case), a ’small’ dynamic loading will results in motions which also
will remain ’small’. However, there may exist regions in the dynamic loading
parameter space, where the induced motions no longer remain ’small’ and severe
deformations may appear instead. If such critical regions exist, ’small’ changes
in the dynamic loading may induce sudden large increases in the dynamic
responses (obviously the same can happen if the dynamic loading parameters
are kept constant and instead the design parameters of the structure are varied).
Such transitions are often addressed as dynamic buckling [15; 68; 121; 141]
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and more specifically for the case of pulse loading as dynamic pulse buckling
[77]. Furthermore, the resistance of structures liable to static buckling, to
withstand dynamic loading is often addressed as the dynamic stability of these
structures. It should be noted that dynamic stability of structures is a very
broad subject that includes not only dynamic buckling due the transient or
vibrational types of loading. It may also include problems like fluid/structure
interaction [103; 104] and aeroelastic flutter [35]. The latter two types of
problems are not considered in this thesis.

For the case of non-periodic dynamic loading of structures (e.g. due to shock
loading, step loading and stochastic loading), the dynamic buckling analysis
must deal with the transient response of the structure during loading and
(in the case of shock loading) a certain finite time interval after the actual
loading. For the case of shock loading and step loading, the dynamic stability
problem may be studied by considering certain aspects of the total potential
energy of the structure [53; 68; 121]. This energy based approach allows to
determine a lower bound for the dynamic buckling load without the need
to solve the nonlinear equations of motion. However, the established lower
bound for the dynamic buckling load by the energy approach can be very
conservative [63; 102]. Furthermore, the energy based approach does not allow
to include the effect of damping rigorously, whereas little damping, as present
in all real-life structures, can have a significant effect on the dynamic buckling
load [50; 62; 79]. Due to these drawbacks, the energy based approach is not
further considered in this thesis.

In general, for structural nonlinear dynamics analysis, one has to resort to
numerical means. For the numerical dynamic stability analyses of structures
subjected to non-periodic time-dependent loading, the most adopted dynamic
buckling criterion is defined by Budiansky-Roth [19; 21; 22]. To apply this
criterion, the equations of motion are (numerically) solved for various values of
the load. The load at which there exists a sudden large increase in the response
for small variation of the load parameter, is called the dynamic buckling load
(Pdyn). The use of the Budiansky-Roth criterion requires the specification of
two additional (problem specific) items. Firstly, one must select a time-span to
evaluate the response. The time-span should be selected not too short, since
the actual buckling event may take some time to occur. Secondly, one must
select a scalar measure (being a function of the DOFs present in the model) to
characterize the response. Typically, the adopted measure reflects a transversal
displacement for beam structures and an out-of-plane displacement for plate
or shell structures. Favourably, both are measured at a point where the largest
deflections are expected during buckling.

In Fig. 2.6, two examples of Budiansky-Roth criterion plots are depicted. From
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Figure 2.6: Two examples of Budiansky-Roth criterion plots (Pdyn denotes
the dynamic buckling load, Rmax denotes the maximum value during the
considered time interval in terms of the chosen response quantity).

Fig. 2.6-a, the dynamic buckling load can be clearly identified by the sudden
jump in the graph. Such sudden jumps are likely to occur for dynamically
loaded structures which exhibit a limit-point type of instability under static
loading (as in Fig. 2.2-b). In Fig. 2.6-b, an example of a Budiansky-Roth
criterion plot is shown which does not exhibit a clear jump but instead a
region where displacements rapidly start to increase. Such transitions occur for
example for dynamically loaded structures which exhibit under static loading a
stable post-buckling behaviour (as in Fig. 2.3-b). The Budiansky-Roth criterion
is not explicit in the definition of the dynamic buckling load for the case shown
in Fig. 2.6-b. For such cases, one should select (based on experience) a threshold
value for the response quantity to be able to determine the dynamic buckling
load. Obviously, in this manner the phenomenon of dynamic buckling is not
uniquely defined.

Next, dynamic buckling of structures subjected to periodic loading P (t) =
P (t+T ) (with T the period time of the excitation) will be discussed. Assuming
the presence of damping and assuming that the response remains bounded,
the response of such structures will undergo two stages. In the first transient
stage, the response will be irregular. After the transient response has damped
out, a regular response will be reached representing the so-called steady-state
behaviour. In contrast to the linear case, the nonlinear steady-state response of
periodically forced structures does not need to be unique and it does not have
to have the same period as the excitation force. It may even be not periodic
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at all. Instead it may be quasi-periodic or chaotic [129].

For the case of a periodic nonlinear steady-state response, the response may
computed directly by solving periodic solutions of Eq. (2.6) defined by the
two-point boundary value problem [40; 105; 120]

[
Q(t)

Q̇(t)

]
=

[
Q(t+ nTT )

Q̇(t+ nTT )

]
, (2.18)

where nT ≥ 1 denotes a positive integer. For the case nT = 1, the response is
called harmonic while for the case nT ≥ 2 the response is called subharmonic
of order 1/nT . Next to a subharmonic response, periodically forced nonlinear
systems may also exhibit superharmonic resonances. Superharmonic resonance
is the phenomenon, in which one or more higher harmonics cause resonance
in a (sub)harmonic response [40]. Various numerical algorithms exist to
solve periodic solutions defined by Eqs. (2.6) and (2.18). Examples are the
(multiple) shooting method [120], the finite difference method [40; 105] and the
orthogonal collocation method [33]. The evolution of a periodic solution for a
varying system parameter (e.g. the excitation frequency and/or the excitation
amplitude), may be effectively studied using a numerical periodic solution
solver combined with a numerical continuation (or path-following) routine
[40; 105; 120].

Considering a structure (being prone to static buckling) subjected to a periodic
forcing with a sufficiently small amplitude, the response of the structure may
be expected to be harmonic with small displacements. However, for certain
combinations of the excitation frequency and the excitation amplitude, the
harmonic response may become unstable and severe large amplitude vibrations
may appear instead. Such transitions may be studied using a transient analysis
and the Budiansky-Roth dynamic buckling criterion. However, if the structure
is slightly damped (as is common in practice), the equations of motion must
be integrated over a long period before the transient is damped out and the
steady-state behaviour is reached. Moreover, for every change of some system
parameter, these computationally expensive calculations have to repeated
before the steady-state behaviour is reached again. Consequently, one can
study the stability of periodically forced structures (much) more efficiently,
by computing the steady-state response of the structure using numerical
continuation of the periodic solutions defined by Eqs. (2.6) and (2.18).

During the numerical continuation of periodic solutions, the (local) stability
of a periodic solution can be determined using techniques which are based on
Floquet theory [120]. In a similar fashion as discussed for static equilibria
(see Section 2.2.1), the (local) stability of a periodic solution may change at
bifurcation points if one or more system parameters are varied [40; 120; 128]. To
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Figure 2.7: Typical bifurcation scenarios for periodic solutions (i.e. the cyclic
fold bifurcation CF , (supercritical) period doubling bifurcation PD and the
Neimark-Sacker bifurcation NS).

illustrate three types of bifurcations of periodic solutions which are commonly
encountered in this thesis, three bifurcation scenarios of period solutions
are depicted in Fig. 2.7. The parts of the branches which correspond to
stable periodic solutions are plotted with solid lines, while the parts of the
branches which correspond to unstable periodic solutions are plotted with
dashed lines. These three types of bifurcations of periodic solutions are so-
called co-dimension 1 bifurcations as they are generically met under variation
of one system parameter.

The first scenario (Fig. 2.7-a) illustrates the cyclic fold (or turning point)
bifurcation. At the cyclic fold bifurcation (indicated by CF ), the stable and
unstable periodic solution merge into each other. Just after the bifurcation
point, locally no periodic solution exists anymore. Consequently, for an
incrementally increasing parameter value, the steady-state response will jump
to another attractor which may differ much from the response just before the
cyclic fold bifurcation. The cyclic fold bifurcation of periodic solutions is in
analogy with the limit-point bifurcation of equilibria (see Section 2.2.1).

The next scenario (Fig. 2.7-b) illustrates the period doubling (or flip) bi-
furcation. In analogy with distinct bifurcation points of static equilibria
(see Section 2.2.1), at the period doubling bifurcation (indicated by PD) a
continuous branch of stable periodic solutions (with period nTT ) loses its
stability. In addition, at the period doubling bifurcation point, a new branch of
stable periodic solutions emanates which correspond to periodic solutions with
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period 2nTT (i.e. the period doubles). The period doubling bifurcation can be
supercritical (i.e. the bifurcating branch is stable, as shown here) or subcritical
(i.e. the bifurcating branch is unstable).

The last scenario (Fig. 2.7-c), illustrates the Neimark-Sacker (also known as
Neimark or secondary Hopf) bifurcation. At the Neimark-Sacker bifurcation
(indicated by NS), the stability of the period solutions is lost and a branch
of coexisting stable quasi-periodic solutions appears. Here the scenario is
sketched for a supercritical Neimark-Sacker bifurcation but, just as for the
period doubling bifurcation, there also exists a subcritical version of it. Quasi-
periodic solutions of Eq. (2.6) do not obey Eq. (2.18) and can, therefore, not be
studied with the numerical continuation tools used in this thesis (see Section
2.3). Continuation techniques for quasi-periodic responses are available (see
[117] and cited therein) but will not be considered in this thesis. Instead
standard numerical time integration will be used to study quasi-periodic (and
chaotic) responses.

A large part of the research regarding the dynamic buckling of periodically
forced structures deals with the phenomenon of parametric resonance [15; 97;
130]. Parametric resonance is a (dynamic instability) phenomenon in which a
motion is excited through an excitation mechanism which effectively depends
on both the external forcing and on one or more DOFs of the structure. For
such excitation, known as parametric excitation, the excitation force will appear
not at the right-hand-side of the equations of motion but as a parameter at
the left-hand-side. Parametric excitation may excite modes, which are not
forced in a direct manner, e.g. for a slender beam a periodic axial excitation
may parametrically excite transversal bending modes (see also Chapter 5). In
general, parametric resonance is possible for all structures which under static
loading are prone to bifurcation buckling (see Section 2.2.1), regardless of the
type of post-buckling behaviour (i.e. stable or unstable) [121].

For further illustration, consider again the vertical rigid bar depicted Fig. 2.3-
a. The static load P at its free end now is replaced with a periodic vertical
forcing P (t) = rd cos (ωt) with amplitude rd [N] and angular frequency ω
[rad/s]. Including viscous damping in the hinge and considering θ to be small,
the dynamics of the periodically forced rigid bar is described by a Mathieu
differential equation [97; 130]

Iθ̈ + bθ̇ + [k + rd/L cos (ωt)] θ = 0, (2.19)

where I denotes the mass-moment of inertia of the rigid bar with respect to
the hinge and b is the viscous damping of the hinge. The effective torque
at the hinge due to the external force P (t) = rd cos (ωt) does not only
depend on the external force itself, but also on the DOF θ. Consequently,
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the external excitation appears as a parameter at the left-hand-side of Eq.
(2.19). In the parameter space spanned by the excitation amplitude rd and
the excitation angular frequency ω regions exist where Eq. (2.19) exhibits
unbounded solutions. Outside these regions, the solutions of Eq. (2.19) decays
towards the trivial solution θ(t) = 0 and on the borders of these regions, Eq.
(2.19) exhibits periodic solutions [97; 130]. The unbounded solutions occur in
the regions where the excitation angular frequency (ω) equals

ω =
2ω0

n
, n = 1, 2, .., (2.20)

where ω0 ≈
√
k/m (for small viscous damping b) is the angular eigenfrequency.

For increasing damping, the regions where unbounded solutions occur are lifted
towards higher critical values for rd. Below this critical value no parametric
resonance occurs, whereas for values of rd above this value, parametric
resonance leads to an unbounded response. The critical value is determined
by the instability region near twice the eigenfrequency (ω = 2ω0), since (in
general) here the first instability occurs. It should be noted that for large
amplitude responses, nonlinearities may no longer be neglected in Eq. (2.19).
With additional damping and/or stiffness nonlinearities, responses of Eq. (2.19)
may no longer grow unbounded but instead will saturate at a large amplitude
(1/2 subharmonic) steady-state response [97].

Next to parametric resonance, also the dynamic stability of periodically forced
structures which exhibit multiple coexisting stable static equilibrium states
(e.g. shallow curved beams and shells) is an important topic. The total
potential energy function of such a structure contains multiple wells, peaks,
saddles and ridges. Each well corresponds to a stable static equilibrium state
while peaks and saddles correspond to unstable static equilibrium states. For
illustration, consider again the snap-through structure with single DOF θ as
depicted in Fig. 2.2-a. The shape of the potential energy of the structure is
depicted in Fig. 2.8. As can be noted, the potential energy function has a
so-called double potential well shape and shows two stable equilibrium states
(the upwards configuration q∗u and the downwards configuration q∗d) and one
unstable equilibrium state (q∗n). In order to introduce a dynamic loading, the
static force P (see Fig. 2.2-a) is replaced by a periodic external force P (t).
Starting at the stable equilibrium state q∗u with a sufficiently small periodic
forcing P (t), the response of the structure will remain bounded to the well
around q∗u. However, for certain combinations of the amplitude and frequency
of the periodic forcing P (t), the solution may jump into the other well around
q∗d or may exhibit large cross-well (or snap-through) motions [48; 122; 123].
Such an escape from an initial potential well, may occur for any structure with
multiple coexisting stable equilibrium states and may be initiated by a direct
excitation force but also by a parametric excitation mechanism.
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Figure 2.8: Potential energy of a single DOF snap-through structure.

The dynamic buckling concepts introduced in this section will be further
elaborated in this thesis by considering four case studies. More specifically,
in Chapter 3, the dynamic buckling of shock loaded shallow arches will be
examined using a dynamic transient analysis. The Budiansky-Roth criterion
will be used to define the dynamic buckling load. Next, in Chapter 4,
the dynamic stability of an initially buckled beam subjected to a harmonic
excitation in transversal direction will be investigated. The buckled beam
possesses two coexisting stable equilibrium states and may, therefore, exhibit
large amplitude snap-through motions. The regions where such snap-through
motions occur are examined using numerical continuation of periodic solutions.
In Chapter 5, a harmonically base-excited thin beam with top mass will be
considered. The combination of the base-excitation and the weight of the top
mass, results in a combination of static loading and harmonic excitation of
the thin beam in axial direction. The most severe type of vibrations of the
beam are due to parametric resonance. Using the semi-analytical approach
and an experimental approach, the occurrence of parametric resonance will
be examined in detail. In the last case study (Chapter 7), the dynamic
stability of a base-excited cylindrical shell with top mass will be examined.
Using numerical continuation of periodic solutions, standard numerical time
integration and experiments, instationary (i.e. chaotic and/or quasi-periodic)
types of responses with severe out-of-plane deformations are found.
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2.3 Computational tools

The purpose of this section is to give an overview of the computational tools
used for the adopted semi-analytical approach. As outlined in Section 2.1, the
developed Lagrangian approach is used to derive low dimensional models of
dynamically loaded thin-walled structures (i.e. equations of motion conform Eq.
(2.6)). The approach involves a number of symbolic computations. Especially,
the symbolic integration of energy expressions may require large computational
times and memory resources. The steps needed to derive the equations of
motion are implemented in the software package MAPLE [87] which is very
suitable for the symbolic manipulation of large analytical expressions. Within
MAPLE, dedicated routines are developed for the symbolic derivation of the
equations of motions. Subsequently, the resulting equations are exported to
MATLAB [89] code and Fortran code. The produced code is still in a symbolic
form and is, therefore, very suitable for parameter variation studies.

MATLAB is a very flexible tool for the numerical analysis of low dimensional
models. Using the symbolic code as derived in MAPLE, MATLAB routines are
written such that the following analyses can be performed in a straight-forward
manner

• Numerical path-following of static equilibrium points including the
detection and localization of critical points.

• Linearized buckling eigenvalue analysis (linear buckling loads and modes).

• Linearized vibrational eigenvalue analysis (with or without damping)
around any static equilibrium state, for example either in a pre-buckled
state or in a post-buckled state.

• Numerical integration of the equations of motion using standard ODE
solvers, for example used for a transient analysis, a steady-state analysis
including a transient prefatory phase or for computing an initial guess for
a periodic solution solver.

As outlined in Section 2.2.2, numerical continuation of periodic solutions can
be very effective for the study of the dynamic stability of periodically forced
structures. The continuation software package AUTO [33] is dedicated to these
continuation calculations and is extensively used in this thesis. The Fortran
model descriptions required by this package, can be generated automatically
with the previously described MAPLE routines. AUTO offers the following
analysis options
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• Discretization of ODE boundary value problems (by which periodic
solutions can be found) by the method of orthogonal collocation using
piecewise polynomials. The mesh automatically adapts to the solution to
equidistribute the local discretization error.

• One parameter continuation of periodic solutions with local stability
analysis based on Floquet theory, including the detection, localization
and classification of (local) bifurcation points. This option is frequently
applied to generate frequency-amplitude plots which may show frequency
ranges where (nonlinear, parametric) resonances occur or where snap-
through motions occur.

• Automatic branch switching at detected local bifurcation points.

• Two parameter continuation of bifurcation points. This option is for
example useful to study how the occurrence of certain bifurcations can
be influenced and (possibly) can be avoided by parameter changes.
Additionally, co-dimension 2 bifurcations can be detected.

For the standard numerical integration of initial value problems for models
with a relative large number of DOFs (e.g. more than 10 DOFs), also a
Fortran implementation of a Runge-Kutta integration scheme with adaptive
step-sizing (NAG routine D02PDF [96]) is used to minimize the computational
time for the numerical analysis. This commercially available integration routine
is implemented in such a manner that it can call the same Fortran model
descriptions as generated for the package AUTO.

As outlined in Section 2.1, the low dimensional models used in this thesis
are derived based on a number of assumptions. Since it is desirable to
examine the effects of these assumptions, the semi-analytical results must be
verified with results obtained using an approach which is not based on the
adopted assumptions. Favourably, experiments should be used for this purpose.
However, for the case where experimental results are not available or for an
initial numerical validation (i.e. to test the effect of only a specific subset of the
adopted assumptions), results obtained using a FE package may serve for this
purpose. In this thesis, the FE package MARC [94] will be used for the initial
numerical validation of the semi-analytical results. For two cases, experiments
will be performed and results will be compared with the semi-analytical results,
see Chapters 6 and 8.



36 Preliminaries



3

Dynamic buckling of a shallow arch

under shock loading

Shallowly curved thin-walled structures can for example be encountered
in aerospace applications [125], in membrane pumps [45] and in MEMS

structures [114]. If such structures are transversally loaded above some critical
value, the structure may buckle so that its curvature suddenly reverses. This
behaviour, also known as snap-through buckling (see Section 2.2.1), is often
undesirable. Such snap-trough responses may also be induced by shock (or
pulse) loading. In this case, the failure mode is often addressed as dynamic
pulse buckling [77].

In this chapter, dynamic pulse buckling of shallow arches is considered. More
specifically, the objective is to examine the influence of the initial curvature
of thin shallow arches on the dynamic pulse buckling load. The shock loading
of the arch is modelled by a prescribed transversal acceleration of the end
points of the arch. Using the semi-analytical approach (see Section 2.1), both
quasi-static and nonlinear transient dynamical analyses will be performed. The
influence of various parameters, such as the pulse duration, the damping and,
especially, the arch shape will be illustrated. Moreover, the semi-analytical
results will be compared with results obtained using FEA.

The dynamic stability of shallow arch structures can be studied by following
an energy based approach [51; 53; 121], a numerical approach [50; 62; 79] or
an experimental approach [26; 56; 80]. The energy based approach is capable
of determining a lower bound for the dynamic buckling load without the need
to solve the nonlinear equations of motion. However, the established lower
bound for the dynamic buckling load by the energy approach can be very
conservative [63; 102]. Furthermore, the energy based approach does not allow
to rigorously include the effect of damping, whereas little damping, as present
in all real-life structures, can have a significant effect on the dynamic buckling
load [50; 62; 79]. Therefore, in this chapter a numerical approach will be
followed. The Budiansky-Roth criterion will be used to define the dynamic
buckling load (see Section 2.2.2).

Parts of this chapter are also presented in [85] and [86].
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Dynamic buckling loads for arches with different shapes are earlier compared
in [54; 102]. In [102], dynamic pulse buckling loads of a circularly shaped arch
and a sinusoidally shaped arch are compared using an energy based approach
and no major differences were found. In [54], the dynamic stability criterion
based on energy considerations appeared to be sensitive to the amplitude of
the second harmonic in the arch shape and insensitive to the amplitude of the
third harmonic in the arch shape. In [112], it is found that for pinned-pinned
shallow arches, a circular arch shape is almost optimal with respect to static
buckling due to a transversally distributed load. The effects of shape variation
on the static buckling of arches subjected to a sinusoidally distributed load
are examined in [42] and for arches subjected to a concentrated point load at
the center in [11; 42]. In [26], [27] and [76], dynamic snap-through of arches
is considered due to an axial impact load, for a moving transversal point load
and due to a prescribed axial motion, respectively. Shock loaded doubly-curved
shells are considered in [149].

The outline for this chapter is as follows. The next section will deal with the
derivation of the equations of motion. In Section 3.2, buckling of the arch under
a quasi-static acceleration loading will be discussed. The influence of the arch
shape and initial imperfections will be illustrated and results will be compared
with FEM results. Dynamic buckling of the arch will be discussed in Section
3.3. The influence of the arch-shape, small geometric imperfections, the level
of damping and the shock-pulse duration on the critical shock magnitudes will
be examined. Furthermore, the sensitivities of the static buckling loads and
dynamic pulse buckling loads with respect to the arch shape will be compared.
Finally, in Section 3.4 conclusions will be presented.

3.1 Modelling of the arch

The steel arch (see Fig. 3.1-a) has a thickness d, a width z, an initial height h at
the center, a fixed span-width L and a rectangular cross-section with area A =
zd and an area moment of inertia I = zd3/12. The initial (undeformed) shape of
the arch is indicated by w0(x, t), the shape after (elastic) deformation by w(x, t)
and the axial displacement by v(x, t) (where x denotes the axial coordinate and
t denotes time). All geometrical and material properties are considered to be
constant over the arch length and are fixed to the values as shown in table 3.1.
These dimensions correspond to the circular arch as experimentally examined in
[30] (considering a concentrated load at the center). With respect to kinematic
assumptions, two basic types of arches can be distinguished, i.e. high arches and
shallow arches [12; 42]. High arches are those for which curvature changes are
large while the axial strain is negligible (i.e. the center line of the arch may be
considered as inextensible). For shallow (or flat) arches, the curvature changes
remain small while the induced axial strain (caused by the fact that both end-
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Figure 3.1: (a) : Arch geometry, (b) : pinned-pinned arch with prescribed
transversal end-point motion.

points of the arch remain fixed during deformation) plays an important role
in the elastic response. Here, a kinematic model based on the shallow arch
assumptions is utilized. The internal normal force N and moment M in the
arch are defined by N = EAε and M = EIκ, with

ε = v,x +
1

2

(
(w,x )2 − (w0,x )2

)
[-],

κ = − (w,xx −w0,xx ) [m−1].
(3.1)

As stated, the nonlinear kinematic model Eq. (3.1) is valid for slightly curved,
slender beams and moderate displacements [42]. In order to model the shock
loading via a prescribed transversal acceleration, the arch is considered to be
pinned-pinned to a movable frame (see Fig. 3.1-b). The boundary conditions
for this load-case read as

v(0, t) = v(L, t) = 0 [m],

M(0, t) = M(L, t) = 0 [Nm],

w(0, t) = w0(0, t) = yp(t) [m],

w(L, t) = w0(L, t) = yp(t) [m].

(3.2)

The prescribed transversal acceleration ÿp(t) results in a loading equivalent
to the uniformly distributed transversal loading as for example considered in
[42; 112]. Damping in the arch is considered as a uniformly distributed viscous
force in transversal direction only

Fd = −b (ẇ − ẇ0) [N/m]. (3.3)
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Table 3.1: Parameter values.

Property Value Unit
EI 0.232 [Nm2]
h 38.4 · 10−3 [m]
L 0.8315 [m]
d 0.803 · 10−3 [m]
A 2.056 · 10−5 [m2]
ρ 7850 [kg/m3]

Under the assumption that rotary and axial inertia terms are negligible with
respect to the transversal inertia, the kinetic energy of the arch equals

T =
1

2
ρA

∫ L

0

ẇ2dx. (3.4)

Since no axial inertia or axial damping forces are considered, it follows that
N,x = 0 [121]. Using this fact and v(0, t) = v(L, t), the potential energy may
be expressed in terms of w(x, t) solely [121]

V =
N2L

2EA
+

1

2

∫ L

0

(Mκ)dx, (3.5)

where

N =
EA

2L

∫ L

0

[
(w,x )2 − (w0,x )2

]
dx. (3.6)

Note that gravity forces are not taken into account (the arch moves in the
horizontal plane).

3.1.1 Initial shape

In order to be able to study the effect of shape-variations, the curvature of the
initial (symmetrical) arch shape is parameterized with a single shape parameter
a. Moreover, an imperfection in the form of a small asymmetry with amplitude
e is incorporated. In order to trigger a wide range of harmonic asymmetrical
modes with the single mode imperfection shape, a polynomial function is chosen
to describe the asymmetry. The parameterization of the arch shape, including
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Figure 3.2: (a) : initial shape (= [w0(x, t) − yp(t)] /h), (b) : imperfection
shape.

the (prescribed) transversal movement yp(t) of the end-points of the arch, reads

w0(x, t) = (h+ a) sin
(πx
L

)
+ a sin

(
3πx

L

)

︸ ︷︷ ︸
initial shape

+ e

[
36

L3
√

3
x(x − L/2)(x− L)

]

︸ ︷︷ ︸
imperfection shape

+yp(t). (3.7)

The shape parameter is restricted to a/h < 1/8, so the arch has maximum
height at x = L/2. This leads to a fair comparison, because the shape
parameterization leaves the initial height of the arch unchanged (w0(L/2, t) −
yp(t) = h). The initial shape and imperfection shape are illustrated in Fig. 3.2.
As a reference, the shape factor a resembling the circular arch shape used in
[30] the most (in a least squares sense), is computed to be a/h = 0.03649.

3.1.2 Discretization and equations of motion

In order to approximate the continuous problem with a discrete set of equations
of motion, the field w(x, t) is discretized as

w(x, t) = w0(x, t) +

n∑

i=1

Qi(t) sin

(
iπx

L

)
, (3.8)

satisfying the boundary conditions Eq. (3.2) a priori. The equations of motion
in terms of the generalized coordinates Q = [Q1(t),Q2(t), ..,Qn(t)]T are
derived by following the Lagrangian approach, see Section 2.1. Hereto, the
energy integrals Eq. (3.4) and Eq. (3.5) are evaluated after substitution of
Eq. (3.7) and Eq. (3.8). The non-conservative forces due to the viscous
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damping force Eq. (3.3) are taken into account by using the following Rayleigh
dissipation function [90]

R =
b

2

∫ L

0

(ẇ − ẇ0)
2
dx, (3.9)

which is evaluated after substitution of Eq. (3.7) and Eq. (3.8). Finally, the
equations of motion are determined with Lagrange’s equations

d

dt
T ,Q̇ −T ,Q +V ,Q = −R,Q̇ . (3.10)

The equations corresponding to the 6-DOF (n = 6 in Eq. (3.8)) approximation
are given by

MQ̈ + CQ̇ + K(Q) = −Bÿp(t), (3.11)

where M = ρAL
2

I, C = bL
2
I with I the identity matrix,

B =
2ρAL

π

[
1 0 1

3
0 1

5
0
]T
,

and

K(Q) =




π2

2LN(Q)(a+ h+ Q1) + EIπ4

2L3 Q1

2

LπN(Q)(18e
√

3 + π3Q2) + 8EIπ4

L3 Q2

9π2

2L N(Q)(Q3 + a) + 81EIπ4

2L3 Q3

2

LπN(Q)(9e
√

3 + 4π3Q4) + 128EIπ4

L3 Q4

25π2

2L N(Q)Q5 + 625EIπ4

2L3 Q5

6

πLN(Q)
(
2e
√

3 + 3π3Q6

)
+ 648EIπ4

L3 Q6




,

where

N(Q) =
EAπ2

4L2
[Q1(2a+ 2h+ Q1) + 18aQ3

+
144

√
3

π3
e(Q2 + 1

2
Q4 + 1

3
Q6)

+ 4Q2
2 + 9Q3

2 + 16Q4
2 + 25Q5

2 + 36Q6
2].

With the adopted discretization Eq. (3.8), Q = 0
¯

represents the (undeformed)
initial shape. As can be noted, coupling of the individual modes is only
attained via the non-linear stiffness terms. Moreover, the asymmetrical modes
Q2,Q4, ... are not excited directly by the loading and are only triggered if
e/d 6= 0 (assuming the initial conditions equal Q(0) = Q̇(0) = 0

¯
).
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3.2 Static Buckling

First static buckling of the arch under a constant (time-invariant) acceleration
ÿp(t) = P [m/s2] is investigated. In order to follow the static buckling analysis
presented in Section 2.2.1, the constant base-acceleration is included via the
potential energy, resulting in the following total potential energy expression for
the arch

Π = V + ρAÿp

∫ L

0

w dx, (3.12)

with V defined by Eq. (3.5). The static equilibrium equations follow from

Π,Q = K(Q) + BP = 0, (3.13)

Using a numerical path-following scheme, the evolution of static equilibrium
points (obeying Eq. (3.13)) is studied for a varying quasi-statical acceleration
P (i.e. the load-path is computed). All presented load-paths are characterized
by the following scalar measure

Wmid(t) =
w(L/2, t) − w0(L/2, t)

δh
, (3.14)

where δh is the distance between the unloaded upward stable equilibrium
position and the unloaded downward stable equilibrium position measured at
the mid-point (note that δh depends on a). The time dependency of Eq. (3.14)
is introduced since Eq. (3.14) will also be used for the dynamic analysis in the
next section. Stability of the equilibrium states is assessed by evaluating the
eigenvalues of the Hessian Π,QQ = K(Q),Q (see Section 2.2.1).

The load-path of the arch with a/h = e/d = 0, using the 6-DOF model
Eq. (3.11), is depicted in Fig. 3.3-a. Starting at the unloaded initial state
(Wmid = 0), the slope of the obtained load-path for the quasi-static increasing
load P varies and reaches a maximum at the limit-point [126] LP (the
corresponding load is denoted with PLP ). Due to the fact that all symmetric
modes are directly forced by the loading (see Eq. (3.11)), the (symmetric)
arch shape will change during loading, see Fig. 3.3-b. At a significantly lower
load than the limit-point load PLP , the initial load-path loses stability at the
distinct bifurcation point B (the corresponding load is denoted with PB). In
the secondary unstable load-path, which bifurcates from the initial load-path at
point B, the first harmonic asymmetric arch shape becomes dominant. Three
load-paths for the situation where e/d 6= 0, are depicted in Fig. 3.4-a. The
deformed arch shapes for e/d = 0.5 during loading are shown in Fig. 3.4-
b. Clearly, the geometric imperfection initiates asymmetric deformations and
introduces a new limit-point in the load-path. For e/d → 0, the location of
the limit-point for e/d 6= 0 tends to the location of the bifurcation point B as
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Figure 3.3: (Load-path for 6-DOF arch model with a/h = 0 and e/d = 0 (a),
Shape of deformed arch (exaggerated) at indicated dots (b).

Table 3.2: Convergence bifurcation load (PB) and limit-point load (PLP ) for
a/h = e/d = 0.

n (Eq. (3.8)): 2 3 6 12
PB [m/s2] 35.323 35.219 35.219 35.219
PLP [m/s2] 2.3·104 58.913 58.908 58.907

found for e/d = 0 (indicated in Fig. 3.4-a with the ∗). In applications the arch
will never be purely symmetric. Consequently, if in practise the arch would
be quasi-statically loaded, the arch will exhibit snap-through buckling to a
downward configuration (Wmid ≈ −1) at a load-level close to PB (depending
on the actual imperfection) and via an asymmetrical buckling mode.

The influence of the included number of DOFs in the semi-analytical model on
the bifurcation load PB and the limit-point load PLP is shown in table 3.2. The
results for the semi-analytical model do not change dramatically if more than
6 DOFs are used. As shown for the 6-DOF model in Fig. 3.3-b, the deformed
arch shape shows clearly the presence of the third harmonic. The 2-DOF model
does not include this mode, resulting in a highly overestimated PLP , see table
3.2.
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The semi-analytical model is based on a number of assumptions. It does
not include the effects of shear, axial and rotary inertia and some higher
order terms are neglected in Eq. (3.1) due to the shallowness assumptions
[42]. For validation of these assumptions, the results for the semi-analytical
model with 6-DOF are compared with results obtained using a FE model
which includes these effects, see Fig. 3.5. In this figure, the load-paths for
two arches are compared; one for the perfect arch (e/d = 0) to validate the
limit-point load for the perfect arch (LP in Fig. 3.3-a) and one for an arch
with a small geometric asymmetry (e/d = 0.1) to validate the limit-point load
for the imperfect arch (LPe/d=0.1 in Fig. 3.4-a). Both the FE model for the
perfect arch and the FE model for the imperfect arch consist of twenty 3-
node Timoshenko beam elements known as element type 45 [93]. In all FEM
analyses kinematic relations are used which are valid for large displacements
and moderate rotations.

The good agreement between the FEM results and the semi-analytical results
supports the assumptions made for the semi-analytical model. It is noted that
the negligible effect of shear also follows from the fact that FE analyses based on
the less sophisticated Euler/Bernoulli beam theory (which corresponds closer
to the adopted kinematics given by Eq. (3.1)), show practically the same results.
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Figure 3.5: Comparison load-path FE model and 6-DOF arch model
for a/h = 0.

As noted the bifurcation-buckling load PB for e/d = 0 dominates the static
stability behaviour. Unfortunately, the bifurcation load PB can hardly be
influenced by varying the arch shape, as illustrated in Fig. 3.6. The bifurcation
load can be increased by 6% (with respect to a/h = 0) by setting the shape-
factor to a/h = 0.097. For comparison with the results for dynamic pulse
buckling in the next section, also the sensitivity of the secondary buckling load
PLP for e/d = 0 with respect to the arch shape parameter a is examined. The
limit-point load PLP shows a distinct maximum at which the corresponding
snap-through mode switches between the w -shape and the m -shape. With
respect to the arch with a/h = 0, PLP can be increased by 40% by setting
the shape-factor to a/h = 0.0384 (a shape very close to the circular arch, see
Section 3.1.1). However, observing the results of the quasi-static analysis, this
secondary buckling load has no practical relevance.
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Figure 3.6: Influence of the arch shape on PB and PLP for e/d = 0.

3.3 Dynamic Pulse Buckling

In this section, dynamic buckling of the arch under shock loading is examined.
First the loading and the approach used to analyze the dynamic buckling of
the arch are discussed. Next the dynamic buckling of both the perfect arch
and the imperfect arch are examined for various parameter variations. Finally,
for generalization of the results, some arches with different dimensions are
considered.

3.3.1 Approach

The shock loading of the arch is modelled by a half-sine acceleration pulse,
characterized by the pulse duration Tp and the maximum acceleration P

ÿp(t) =

{
P sin

(
πt
Tp

)
if 0 ≤ t ≤ Tp

0 if t > Tp

. (3.15)

After the arch is briefly loaded by the shock-load pulse, the arch is no longer
subjected to external forces. Assuming that during the short interval 0 ≤ t ≤ Tp

no deformations occur (Q(t) = 0) and the effect of damping may be neglected,
the only forces acting on the arch during this interval are the inertia forces
due to the prescribed acceleration ÿp(t). Considering Q̇ (0) = 0

¯
, the velocities

just after the shock-pulse can be determined by using the impulse-momentum

theorem, i.e. Q̇ (Tp) = M−1
∫ Tp

0
Bÿp(t)dt = M−1B 2

πλ with only a single load
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parameter
λ = PTp [m/s]. (3.16)

Under the considered assumptions, the shock is imparted instantaneously into
the structure as kinetic energy only. Relating this amount of kinetic energy to
the level of potential energy at some saddle equilibrium point and neglecting
the effect of damping, a lower bound for the dynamic pulse buckling load can
be derived, see for example [53; 69; 121; 142]. However, application of the
energy approach is not trivial for multi-DOF systems (such as considered in
this chapter) and the established lower bound for the dynamic buckling load
by the energy approach can be very conservative [63; 102]. Therefore, here the
critical shock loads are determined by solving (numerically) the equations of
motion for various values of the load. The Budiansky-Roth criterion [19; 21]
will be used to define the dynamic buckling load, i.e. the load at which there
exist a sudden jump in the response for small variation of the load parameter.
In order to evaluate the time response, some scalar measure must be chosen.
Here, the following measure is adopted

W̃mid = max
0≤t≤T

|Wmid(t)|, (3.17)

with Wmid(t) defined by Eq. (3.14) and T the total time-span considered. The
parameter P is selected as load parameter to be varied. However, various
(fixed) pulse durations Tp will be considered. The dynamic pulse buckling load
is denoted with Pp. For the numerical integration of Eq. (3.11) in combination
with Eq. (3.15), an integration routine based on an 8th order Runge-Kutta
scheme with automatic step-size control [133] appeared to be very efficient. To
absolutely assure that the shock-pulse energy is imparted correctly to the arch,
the maximum step-size while 0 ≤ t ≤ Tp is set to Tp/50. For all results a
relative tolerance of TOL = 1 · 10−8 is used.

Given the fact that little damping is taken into account, the energy in the
structure imparted by the shock pulse decays for increasing time. Since a
certain amount of energy is required for escape from the initial well, the time-
span for dynamic buckling to occur is limited. Similar as in [63] and for the
considered levels of damping, numerical simulations show that the occurrence
of dynamic buckling of the pulse loaded arch (practically) always takes place
in the time-span 0 ≤ t ≤ 3T1, where T1 is the period corresponding to the
lowest eigenfrequency f1. This time-span is, therefore, used for the numerical
integration in all results, unless stated otherwise. Note that the time-span
for dynamic buckling may become longer for lower levels of damping and that
it can become considerably longer for step-loaded structures (also with small
damping) [67; 70; 80].

The eigenfrequencies are determined by linearizing Eq. (3.11) around the
unloaded upward configuration (Q = 0

¯
) and are in good correspondence with
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Table 3.3: First two eigenfrequencies and modes for a/h = 0 and e/d = 0.

mode shape
f1,2 6-DOF [Hz] 10.88 24.51
f1,2 FEM [Hz] 10.71 24.21

Table 3.4: Damping ratios of eigenmodes as listed in Table 3.3, for several
values of b.

b [Ns/m2] 1 2 4
[Hz] ξ [-] ξ [-] ξ [-]

f1 =10.88 0.0453 0.0905 0.1810
f2 =24.51 0.0201 0.0402 0.0805

FEM results, see table 3.3. For the arch under consideration, the period
corresponding to the lowest eigenfrequency for a/h = 0 and e/d = 0 appears
to be T1 ≈ 0.1 [s], see table 3.3. Note that the first eigenfrequency of the arch
remains nearly constant for the considered range of the shape-factor a, see also
[101; 112].

The damping ratios of the first two linear vibrational eigenmodes (see table
3.3) for the considered values of the viscous damping parameter b, are listed in
table 3.4.

3.3.2 Perfect arch (e = 0)

As a reference first the results for perfect arches (e/d = 0) are discussed.
For this case, the asymmetrical modes (Q2,Q4,Q6) are not triggered (see
Section 3.1.2) and are therefore removed from Eq. (3.11). First the influence of
damping is discussed for a pulse duration of Tp = 10 [ms] and a/h = 0.04. As
illustrated in Fig. 3.7, increasing the amount of damping results in an increasing
dynamic pulse buckling load [50; 62; 79]. The dynamic pulse buckling loads
(Pp) can clearly be distinguished by the sudden jumps in the graphs. However,
for the case with the lowest level of damping (b = 1 [Ns/m2]), the boundary
between the region where no dynamic buckling occurs and the region where
dynamic buckling does occur, is not indicated by a single sudden jump in
the response measure, but by a small transition region. In this region the
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Figure 3.7: Influence of damping for Tp = 10 [ms], e/d = 0, a/h = 0.04.

occurrence of dynamic buckling is extremely sensitive to small variations in
the load parameter as illustrated in Fig. 3.8. Note that the total time-span in
Fig. 3.8 is extended from T = 0.3(≈ 3T1) [s] to T = 2.0 [s] and the sensitivity
is thus not due to a too short integration time. Furthermore, the complex
transitions are also found using a model with 3 additional symmetrical modes
(Q7 sin (7πx/L), Q9 sin (9πx/L) and Q11 sin (11πx/L)), see Fig. 3.9. Indeed,
the sudden jumps do not occur exactly at the same values of PTp. However,
the differences between the load values where the sudden jumps occur do not
differ more than 3% and qualitatively the transitions are similar. It is noted
that the complex transition only occurs in the region around a/h ≈ 0.05 (which
will appear to be approximately the optimal shape of the arch with respect to
dynamic pulse buckling) and only for a low level of damping (see also Fig.
3.7). Similar load-parameter sensitivities in transient analyses are reported in
[59; 67; 128].

The influence of the arch shape on the dynamic buckling load is illustrated in
Fig. 3.10 for various pulse durations and b = 2 [Ns/m2]. Clearly, the shape
of the arch has a distinct influence on the dynamic pulse buckling load for
the perfect arch (the dynamic buckling load increases approximately 50% by
changing the arch shape from a/h = 0 to a/h = 0.04). The arch shape during
dynamic buckling is illustrated in Fig. 3.11. Similar as for the secondary static
buckling mode (see PLP in Fig. 3.6), the arch buckles for a/h = 0 via a w -
shape and for a/h = 0.08 via a m -shape. Furthermore, in Fig. 3.10 the dynamic
buckling loads are presented in terms of the product PTp = λ (see Eq. (3.16))
allowing to examine the mutual relation between P and Tp with respect to
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Figure 3.8: Load-parameter sensitivity of the occurrence of dynamic buckling
for b = 1 [Ns/m2], Tp = 10 [ms], e/d = 0, a/h = 0.04.

the dynamic pulse buckling load. As can be noted, the stability boundaries
for the various pulse durations do not coincide perfectly and, therefore, if the
parameters P and Tp are varied independently, the dynamic pulse buckling load
does not scale exactly with the parameter λ. Still, the results for the various
pulse durations match qualitatively, that is for each value of Tp the dynamic
buckling load shows a comparable sensitivity to variations in the arch shape.

The optimal arch shape with respect to the secondary static buckling load PLP

(a/h ≈ 0.04, see Fig. 3.6) and the optimal arch shape with respect to dynamic
pulse buckling load Pp (a/h ≈ 0.05, see Fig. 3.10) do not exactly match.
Nevertheless, there seems to be a correspondence between the sensitivities of
these two critical loads with respect to the arch shape parameter a. Although
the (symmetric) buckling mode corresponding to the secondary static buckling
PLP and the (symmetric) deformations occurring during the dynamic pulse
buckling for e/d = 0 show similarities, the correspondence in sensitivity of
these two critical loads with respect to a is not trivial. After all, in the case
of dynamic pulse buckling, transient inertia and damping forces are taken into
account which are absent in the quasi-static buckling case.
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3.3.3 Imperfect arch (e 6= 0)

Next, dynamic buckling of imperfect arches will be examined. For this
analysis, the complete 6-DOF model Eq. (3.11) will be used, since asymmetrical
deformations will occur for e/d 6= 0. In Fig. 3.12, the influence of a small
imperfection on the dynamic buckling load is illustrated. The dynamic pulse
buckling load shows a mild sensitivity to small geometric imperfections. The
arch shape during dynamic buckling for P just exceeding Pp is illustrated in
Fig. 3.13. Clearly, for e/d 6= 0 the arch shape shows asymmetric deformations
during dynamic buckling.

The influence of the arch shape on the dynamic pulse buckling load for e/d = 0
and e/d = 1 is compared in Fig. 3.14. For the depicted range of the shape-
factor a, the dynamic buckling load decreases only with maximally 10% for the
moderate imperfection of e/d = 1 (compared to the case e/d = 0). The distinct
maximum in the dynamic buckling load as found around a/h ≈ 0.05 seems to
be insensitive to the geometric imperfection. Similar stability boundaries, also
with a maximum close to a/h ≈ 0.05, are found at the lower level of damping
b = 1 [Ns/m2]. Consequently, also for the practical situation where e/d 6= 0, the
arch shape has a distinct influence on the dynamic buckling load. Furthermore,
since the dynamic stability boundaries do not change dramatically due the
presence of imperfections they show again a clear qualitative correspondence
with the secondary static buckling load for the perfect arch PLP (see Fig. 3.6).
For the imperfect arch this correspondence is even less expected as for the
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Figure 3.12: Influence of imperfections for a/h = 0.04, b = 2
[Ns/m2], Tp = 10 [ms].
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Figure 3.13: Arch-shape during dynamic buckling for Tp = 10 [ms], b = 2
[Ns/m2], a/h = 0.04.

perfect case, since now the arch buckles dynamically via an asymmetric mode
whereas the secondary static buckling corresponds to a symmetrical buckling
mode. This correspondence, however, could be very useful for shape parameter
sensitivity studies based on quasi-static analyses. After all, compared to
the nonlinear transient dynamic buckling analysis, the quasi-static analysis
is computationally significantly less expensive. However, more research on the
found correspondence will be necessary before it can be generalized.

For validation, dynamic pulse buckling results computed with the 6-DOF semi-
analytical model (Eq. (3.11)) are compared with FEM results. For the nonlinear
dynamical transient FE analyses, the same FE models are used as discussed in
Section 3.2. However, now obviously also inertial and damping forces are taken
into account. In the FE model, viscous damping is introduced via Rayleigh
damping, i.e. the damping matrix is composed as C = αK + βM , where K
and M are the (linear) stiffness and consistent mass matrix of the FE model,
respectively. Obviously, the Rayleigh damping model is different from the
damping model (Eq. (3.3)) as incorporated in 6-DOF model (Eq. (3.11)). In
order to obtain a comparable level of damping in the FE model, α and β
are tuned [29] so that ξ1,2 (the damping ratios of the first two vibrational
eigenmodes) of the FE model are equal to ξ1,2 of the 6-DOF model for b = 1
[Ns/m2] (see table 3.4) resulting in α = 9.85 · 10−7 [s] and β = 6.092 [s−1].
Both models predict a slight increase in the dynamic pulse buckling load if
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Table 3.5: Dynamic buckling loads Pp as computed for 6-DOF model and FE
model for a/h = 0, b = 1 [Ns/m2] and Tp = 20 [ms].

e/d [-] 0 0.1
6-DOF Pp [m/s2] 211.4 212.9
FEM Pp [m/s2] 206.9 208.8

a small imperfection (e/d = 0.1) is incorporated in the arch shape, see table
3.5. Time histories or values of P near the dynamic pulse buckling load for
e/d = 0.1 are compared in Fig. 3.15. Note that in the FE model, next to shear
also rotary and axial inertia are included which are not included in the 6-DOF
model. Given the good agreement between the semi-analytical results and the
FEM results, it is shown that these effects are indeed negligible.

3.3.4 Other arches

As a first step towards generalization of the results found so far, the influence
of the arch shape on the dynamic pulse buckling load is examined for a number
of variations in the arch dimensions. Only the initial height h and the thickness
d will be varied while leaving the other parameters unchanged to the values
as listed in table 3.1. For comparison, the height and thickness are scaled as
h̄ = h/h∗ and d̄ = d/d∗, where h∗ and d∗ are the height and thickness of the
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original arch (see table 3.1) respectively. Furthermore, only one pulse duration
is considered (Tp = 10 [ms]) and the relative damping ratios ξi are set to the
values for the original arch for b = 1 [Ns/m2] (see table 3.4).

Considering e/d = 0, the sensitivities of the bifurcation buckling load PB and
the secondary limit-point load PLP with respect to the arch shape parameter a,
are compared in Fig. 3.16-a for the arch with double height (h̄ = 2, d̄ = 1), for
the arch with double thickness (h̄ = 1, d̄ = 2) and for the original arch (h̄ = 1,
d̄ = 1). The sensitivities of PB and PLP with respect to the shape parameter a
are qualitatively similar. Quantitatively, for a double initial height, the critical
loads (approximately) double, whereas for a double thickness, the critical loads
(approximately) quadruplicate. Doubling the height of the arch does hardly
affect the first two eigenfrequencies, whereas doubling the thickness of the
arch doubles the first two eigenfrequencies. For both cases the corresponding
eigenmodes are not affected. The dynamic stability boundaries for the three
arches under consideration are compared in Fig. 3.16-b for e/d = 0.5. From
these comparisons, the following observations can be made: 1) for all three
(imperfect) arches, the arch shape has a distinct influence on the dynamic
buckling load with a maximum around a/h = 0.05 and 2) the dynamic pulse
buckling loads for the arches with h̄ = 2, d̄ = 1 and h̄ = 1, d̄ = 2 are
approximately the same, whereas their static buckling loads show a factor two
in difference. This last observation may be explained by the fact that for the
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Figure 3.16: Influence of the arch shape on PB and PLP for e/d = 0 (a) and
on Pp for e/d = 0.5 (b).

arch with h̄ = 2, d̄ = 1, the relative pulse duration Tp/T1 (with T1 the period
of the lowest eigenfrequency) is not altered (with respect to the original arch),
whereas for the arch with h̄ = 1, d̄ = 2 this ratio doubles. As shown, the
dynamic pulse buckling load approximately scales with the parameter λ (Eq.
(3.16)), meaning that doubling the pulse duration, approximately halves the
dynamic pulse buckling load Pp.

Snap-through buckling of perfect sinusoidal arches (a/h = 0) due to shock
loading is only possible for h/r > 4 (where r2 = I/A = d2/12) [51; 121].
After all, for heights h/d < 4/

√
12 ≈ 1.15, there is only one unloaded stable

equilibrium state, making a sudden jump to the secondary stable equilibrium
state at Wmid = −1 impossible. By introducing an imperfection, the minimum
height for which the second stable equilibrium state of the arch exists increases.
For example, for e/d = 0.5 and a/h = 0, the secondary stable equilibrium state
of the unloaded arch ceases to exist at h/d = 3.6 (h̄ ≈ 0.075). In Fig. 3.17,
PB and PLP for e/d = 0 and the dynamic stability boundaries for e/d = 0.5
are compared for arches with thickness d̄ = 1 and nine heights equidistantly
distributed in the range 0.08 ≤ h̄ ≤ 0.38. In this figure, the maxima for PB ,
PLP and Pp are indicated with ♦, × and ◦, respectively. In the considered
region of heights, the first two eigenfrequencies and eigenmodes remain nearly
the same as for the original arch. As can be noted, for decreasing h̄, the
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optimal arch shape with respect to dynamic pulse buckling shifts from the
optimal arch shape with respect to the secondary static buckling load PLP

towards the optimal arch shape with respect to the first static buckling load
PB. Consequently, for the considered dimensions and level of imperfection, the
correspondence between the secondary static buckling load and the dynamic
pulse buckling load seems to be restricted to arches with h/d > 20 (h̄ > 0.4).
However, for generalization of this result more research is required.

3.4 Conclusions

The objective of this chapter is to study the influence of the arch shape on the
dynamic pulse buckling load for thin shallow arches under shock loading and to
compare parameter sensitivities of static and dynamic buckling loads. Based on
an approximate nonlinear kinematic model, a multi-DOF model of the arch is
derived. The model includes a shape-factor by which the arch shape (the initial
curvature) can be varied while keeping the initial height of the arch unchanged
and an imperfection parameter which controls the amplitude of an asymmetry
in the arch shape. By comparing quasi-static responses, modal analysis results
and nonlinear dynamical transient analysis results of this model with FEA
results based on Timoshenko beam theory, the model is validated.
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First static snap-through buckling of the arch under a quasi-static varying
acceleration is considered. The primary static buckling load of the arch for this
load-case corresponds to an asymmetrical buckling mode and can hardly be
influenced by varying the arch shape. The arch shape has significant influence
on the secondary buckling load corresponding to a limit-point in the load-path
of the perfect arch.

The dynamic response of the arches under shock loading is studied by
numerically solving the equations of motion. The dynamic buckling load is
determined for various levels of damping, shock pulse durations, imperfection
amplitudes, and a wide range of arch shapes. The shape of the arch (with
or without an imperfection) has a significant influence of the dynamic pulse
buckling load. Furthermore, the sensitivity of the dynamic buckling load with
respect to the arch shape shows a clear maximum. Depending on the level of
damping, the imperfection amplitude and the arch shape, the occurrence of
dynamic buckling can be extremely sensitive to small variations in the load
parameter. Small geometric imperfections have only a mild effect on the
dynamic pulse buckling load and do not significantly change the sensitivity
of the dynamic pulse buckling load with respect to the arch shape parameter.

Although the optimal arch shape with respect to the secondary static buckling
load and the optimal arch shape with respect to dynamic pulse buckling load
do not match exactly, there exists a quantitative correspondence between the
arch shape sensitivities of these two critical loads. This correspondence is not
trivial but could be very useful for shape parameter sensitivity studies of the
dynamic pulse buckling load using quasi-static analyses. After all, compared
to the nonlinear transient dynamic buckling analysis, the quasi-static analysis
is computationally significantly less expensive. The correspondence between
the secondary static load and the dynamic pulse buckling load is also found for
arches with other dimensions. However, as shown, more research on the found
correspondence will be necessary before it can be generalized.



4

Periodic Excitation of a Buckled Beam

Buckled beam structures are frequently encountered in engineering prac-
tice, e.g. in MEMS [18; 25; 115] (see also Fig. 1.4), in vibration isolators

[139] and in motion amplifiers [61]. Buckled beam structures may posses
multiple coexisting stable equilibrium states. Consequently, when subjected to
a periodic transversal excitation, buckled beam structures may exhibit severe
vibrations which encircle two or more equilibrium states, i.e. snap-through
motions.

In this chapter, the steady-state behaviour of a transversally excited, pinned-
pinned buckled beam will be investigated using a semi-analytic approach.
Compared to papers with similar research interest [36; 37; 60; 72; 73], this
research will be focused on higher order approximations of the exact kinematics
of the inextensible beam. Both single-mode as well as multi-mode models will
be considered. Furthermore, not only phase space plots will be analyzed, but
also frequency-amplitude plots and the effect of parameter variations will be
investigated. Moreover, semi-analytic results are compared with results from
FEM analyses.

The outline for this chapter is as follows. In the next section, the consid-
ered beam structure will be introduced, the equations of motion for three
discretization cases will be derived and a FE model of the beam structure
will be introduced. In Section 4.2, the convergence of the static postbuckling
response and the lowest eigenfrequencies of the several discretized and higher
order models will be investigated and results will be compared with FEM
results. The steady-state nonlinear dynamical behaviour of the buckled beam
structure will be investigated in Section 4.3. Frequency-amplitude plots will be
calculated with a numerical continuation technique. Dynamically interesting
areas (bifurcation points, routes to chaos, snap-through regions) will be
analyzed using phase space plots and Poincaré plots. Also the influence of some
parameters on the frequency-amplitude plots will be investigated. In Section
4.4, nonlinear dynamic responses obtained with the semi-analytic approach,
will be compared with FEM results. Finally, in Section 4.5 conclusions will be
given.

Parts of this chapter are also presented in [99] and [100].
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Figure 4.1: Transversally excited pinned-pinned prestressed beam.

4.1 Modelling of the beam structure

The axially pre-stressed pinned-pinned beam which is harmonically excited in
transversal direction is depicted in Fig. 4.1. The beam has length L, cross-
section A, modulus of elasticity E, area moment of inertia I and density ρ.
The 2D in-plane case is considered. Gravity forces are neglected (vibrations
are in the horizontal plane) and the supporting body is considered to be rigid.
Since the beam is considered to be thin (h ≪ L), the effect of shear is neglected.
Furthermore, since the end point of the beam at x = L is allowed to move freely
in axial direction, the axial strain will be small and the displacements of the
beam will be dominated by changes in curvature. These considerations allow to
assume the beam to be inextensible. In this analysis no imperfections are taken
into account, i.e. the beam is considered to be initially perfectly straight. In
the next chapter (Section 5.1), more details will be given on how imperfections
can be taken into account in the model of the inextensible beam. The beam is
statically loaded by an axial force P at the right end, which is chosen to exceed
the Euler buckling load

Pe =
π2EI

L2
, (4.1)

of the beam. Furthermore, the beam is harmonically excited in transversal
direction by a prescribed acceleration v̈b(t) = W sin(2πft), where W [m/s2] is
the amplitude and f [Hz] the excitation frequency. Finally, a linear dashpot
with damping constant cd in [Ns/m] is connected between the middle of the
beam and the rigid body.

The axial displacement field of the beam is indicated by u(t, x) and the
transversal displacement field (measured relatively with respect to vb(t))
is indicated by v(t, x). Due to the inextensibility assumption, the axial
displacement field is coupled to the transversal displacement field by the
following nonlinear relation [66]

u,x =

√
1 − (v,x )2 − 1. (4.2)
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The exact curvature of the inextensible beam is defined by [66]

κ = − v,xx√
1 − (v,x)

2
. (4.3)

Equations (4.2) and (4.3) can not be symbolically integrated. Therefore, these
expressions are approximated by their Taylor series expansions in v,x up to
nth order. For example, the 3rd order expansions of Eq. (4.2) and Eq. (4.3)
yield

u,x ≈ −1

2
(v,x)

2
, (4.4)

κ ≈ −v,xx

(
1 +

1

2
(v,x)2

)
. (4.5)

The boundary conditions for the transversal displacement field of the pinned-
pinned beam (see Fig. 4.1) are: v(t, 0) = v(t, L) = 0 and v(t, 0), xx =
v(t, L), xx = 0 (reaction moments are zero). Each of the following modes

vi(x) = sin
iπx

L
, i = 1, 2, .., (4.6)

obeys a priori these conditions. The modes vi(x) are the linear buckling
modes of the pinned-pinned beam [66]. Based on Eq. (4.6), the transversal
displacement field is discretized as

v(t, x) =

N∑

i=1

Qi(t) · vi(x). (4.7)

The DOFs Qi [m] are collected in Q = [Q1, ..,QN]T . Taking into account
the boundary condition u(t, 0) = 0, the axial displacement field u(t, x),
corresponding to Eq. (4.7), can be computed by integrating the nth order
approximation of Eq. (4.2). Utilizing the resulting expression for u and the
nth order approximations of u,x and κ, the kinetic energy T and the potential
energy V are determined by

T (Q, Q̇) = 1

2
ρA

∫ L

0

[
αu̇2 + (v̇ + v̇b)

2
]
dx, (4.8)

V(Q) =

∫ L

0

[
1

2
EIκ2 + Pu,x

]
dx. (4.9)

Note that by setting α = 0 in Eq. (4.8), the effect of axial inertia is neglected
whereas for α = 1, the effect of axial inertia is included. Inclusion of the axial
inertia leads to inertia nonlinearities in the final equations of motion. The
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effect of including axial inertia on the dynamic steady-state response will be
discussed in Section 4.4. The effect of rotatory inertia is neglected in the semi-
analytical model.

The damping forces due to the discrete viscous dash-pot with damping constant
cd [Ns/m] are derived using the Rayleigh dissipation function [90]

R(Q, Q̇) = 1

2
cd (v̇(t, L/2))

2
. (4.10)

The equations of motion are derived via Lagrange’s equations

d

dt
T ,Q̇ −T ,Q +V ,Q = −R,Q̇i

. (4.11)

For consistency, all terms in Qi higher than nth order in Eq. (4.11) are omitted.

In general, the (set of) equation(s) of motion corresponding to an nth order
approximation of Eq. (4.2) and Eq. (4.3) are derived by the following steps

1. Discretize v(t, x) as in Eq. (4.7) with one or more modes.

2. Approximate u,x and κ (Eq. (4.2) and Eq. (4.3)) with Taylor expansions
including terms up to nth order in v,x.

3. Solve u(t, x) from the nth order approximation of u,x by symbolic
integration (this step is only necessary if axial inertia is included, i.e.
α = 1 in Eq. (4.8)).

4. Compute the energy expressions Eq. (4.8) and Eq. (4.9) by symbolic
integration and evaluate Rayleigh dissipation function Eq. (4.10).

5. Derive the equations of motion using Lagrange equations Eq. (4.11) and
omit all terms in Qi higher than nth order.

4.1.1 Three discretization cases

During the static and dynamical analyses, three discretization cases will be
considered and compared. To illustrate some key features of the equation(s) of
motion they will be shown for the case of third order expansions of u,x and κ
(see Eq. (4.4) and Eq. (4.5)) and no axial inertia (α = 0 in Eq. (4.8)).

In Case I only the first buckling mode will be considered (i.e. N = 1 in Eq.
(4.7)). This results in the following equation of motion

MQ̈1 + CQ̇1 +K1,1Q1 +K1,3 (Q1)
3

= −B sin (2πft) . (4.12)
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Table 4.1: Coefficients of discrete equations of motion.

K1,1 = π2

2L (Pe − P ) K2,1 = 2π2

L (4Pe − P ) K3,1 = 9π2

2L (9Pe − P )

K1,3 = π4

4L3Pe K2,3 = 16π4

L3 Pe K3,3 = 729π4

4L3 Pe

M = 1

2
ρAL K12,12 = 5π4

L3 Pe K13,12 = 45π4

2L3 Pe

C = cd K12,21 = 5π4

L3 Pe K13,21 = 9π4

4L3Pe

B = 2ρAW L
π

The coefficients in Eq. (4.12) are defined in Table 4.1. Note that the linear
stiffness parameter K1,1, depends on the axial load P . Equation (4.12) is also
known as the damped forced Duffing equation [123; 128].

Case II will also take the second mode into account (i.e. N = 2 in Eq. (4.7)).
In Section 4.3, it will be shown that the influence of the second buckling mode
is negligible. Therefore, in Case III the second buckling mode will be neglected
and the first and third buckling mode will be considered (i.e. N = 3 in Eq.
(4.7) and setting Q2 = 0). For the two-DOF Cases II and III, the equations
of motion may be written in a more general form

MQ̈ + CQ̇ + KQ + Knl (Q) = B sin (2πft) , (4.13)

where M is the mass matrix, C the damping matrix, K the linear stiffness
matrix, Knl the column with nonlinear restoring forces and B sin (2πft) the
external forces column. For these two cases, the following expressions hold:

Case II (Q = [Q1 , Q2]T ) :

M =

[
M 0
0 M

]
, C =

[
C 0
0 0

]
, K =

[
K1,1 0

0 K2,1

]
,

Knl =

[
K1,3 (Q1)

3
+K12,12Q1 (Q2)

2

K2,3 (Q2)
3
+K12,21 (Q1)

2
Q2

]
, B =

[
−B
0

]
,

(4.14)

Case III (Q = [Q1 , Q3]
T
) :

M =

[
M 0
0 M

]
, C =

[
C −C
1

3
C − 1

3
C

]
, K =

[
K1,1 0

0 K3,1

]
,

Knl =

[
K1,3 (Q1)

3
+K13,12Q1 (Q3)

2
+K13,21 (Q1)

2
Q3

3K1,3 (Q1)
3

+K3,3 (Q3)
3

+K13,12Q3 (Q1)
2

]
,

B =

[
−B
− 1

3
B

]
,

(4.15)

with coefficients as defined in Table 4.1. The main differences between both
models are obvious. The two ODEs for Case II are only coupled by the
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Table 4.2: Simulation parameters (* only used the FE model).
Parameter Value Unit

ρ 7850 [kg/m3]
E 2.1 · 1011 [N/m2]
ν∗ 0.3 [−]
L 1 [m]
A 4 · 10−4 [m2]
I 1.3 · 10−8 [m4]
cd 8.3 [Ns/m]

nonlinear restoring forces Knl and only the first ODE is driven. The two
ODEs for Case III are coupled by both the viscous damping terms BQ̇ and
Knl, and both ODEs are driven.

4.1.2 Finite element model

The numerical results for the analytic models will be compared with FEA
carried out with MSC.Marc. The FE-model used consists of one-hundred,
three-node linear elastic Timoshenko beam elements (element type 45, see [93]),
which allow transverse shear as well as axial straining in addition to bending.
During each analysis, an updated Lagrange procedure is used and kinematic
relations are used which are valid for large displacements and large rotations.
A discrete dashpot is added to the model, connected between the middle of the
beam and the rigid body. The viscous damping constant of this dashpot is cd
[Ns/m].

Summarizing, if the FE model is compared with the semi-analytical model,
next to the obvious differences in discretization, the following differences can
be noted: the FE model includes the effects of axial deformation, axial inertia,
rotatory inertia, and transverse shear, whereas these effects are absent in the
semi-analytical model. However, as stated before, in Section 4.4 also results
will be presented for the semi-analytical model including axial inertia.

4.2 Static and modal analysis

In this section, the convergence of the stable static initial postbuckling
equilibrium points and the eigenfrequencies of the (linearized) discretized
equations using approximations of Eq. (4.2) and Eq. (4.3) up to 11th order
will be discussed. In all calculations the parameter values of Table 4.2 are
used.
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Figure 4.2: Load-paths for the single and two mode discretized models for 3rd,
5th, and 7th order Taylor expansions of κ and u,x and FEM result.

4.2.1 Static Equilibrium

The static initial post-buckling equilibrium points of the one and two mode
discretizations for increasing axial load P are obtained using a path-following
routine while setting fex and the time derivatives of Qi equal to zero. The load-
paths are presented in terms of the dimensionless transversal displacement of
the middle of the beam

vmid = v(t, L/2)/L, (4.16)

and the axial load P (normalized on the Euler buckling load Eq. (4.1)). The
positive post-buckling paths of the discrete models up to 7th order and the
FE-model are shown in Fig. 4.2. Due to symmetry the negative post-buckling
paths can be found by reflecting the positive ones around vmid = 0. Figure
4.2 shows that a higher order approximation results in a less stiff post-buckling
path approaching the FEM post-buckling path. In Table 4.3 it is shown that
the value of the equilibrium points for P = 1.01Pe has converged to a constant
value for the 7th order models and higher. Furthermore, it is also clear that
addition of the third buckling mode further improves the accuracy of the static
post-buckling path. For small excursions beyond the Euler load (P ≤ 1.01Pe),
the error of the seventh order approximation for the one mode discretization
with respect to the FEA result is very small (order of 1 %). For the 7th order
model with two mode discretization (Case III) the error is even smaller (order
of 0.1 %).
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Table 4.3: Stable static equilibrium points (in terms of vmid, see Eq. (4.16)) of
discrete models and FE-model for P = 1.01Pe.

Order 3 5 7 9 11
Case I, II 0.045 0.083 0.087 0.087 0.087
Case III 0.045 0.084 0.089 0.089 0.089
FEM 0.089

4.2.2 Modal Analysis

The undamped eigenfrequencies of the discretized models are calculated by
eigenvalue analysis of the system linearized about the stable static equilibrium
point for P = 1.01Pe. For this, again the parameters of Table 4.2 are used.
The resulting eigenfrequencies are shown in Table 4.4. The eigenfrequencies of
the discretized equations for the 7th-order approximation are within 1 % of the
converged value of the 11th-order model. The first three undamped vibrational
eigenmodes of the preloaded beam (P = 1.01Pe) found by FEM analysis are
depicted in Fig. 4.3 together with the buckled shape for P = 1.01Pe. Note,
that with respect to the scaling of the eigenmodes, the same scale factor is used
for the axial and transversal direction. This scale factor is chosen so, that the
eigenmodes have the same maximum transversal displacement as the buckled
equilibrium shape. It can be seen that the first eigenmode shows a distinct
axial component. The inertia corresponding to these axial displacements is
not taken into account in the semi-analytical model. The second and third
vibrational eigenmodes show a much smaller axial component (relative to the
transversal component). The first eigenfrequency fairly resembles the FEM
result (7 % difference). The difference is most likely caused by the absence of
the axial inertia in combination with the relatively large axial component of the
first eigenmode of the FE-model. Another reason may be found in the small
differences in static equilibrium states at P = 1.01Pe (see Table 4.3), resulting

Table 4.4: Vibrational eigenfrequencies of discrete models and FE-model for
P = 1.01Pe.

Order 3 5 7 9 11
f1 [Hz] Case I/II 6.634 7.188 6.970 6.936 6.933

Case III 6.621 7.110 6.866 6.827 6.824
FEM 6.512

f2 [Hz] Case II 1.63 · 102 1.66 · 102 1.66 · 102 1.66 · 102 1.66 · 102

FEM 1.59 · 102

f3 [Hz] Case III 4.00 · 102 4.06 · 102 4.06 · 102 4.07 · 102 4.07 · 102

FEM 3.93 · 102
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in different linearized stiffness terms. The second and third eigenfrequencies
are reasonably close to the FEM eigenfrequencies (4 % difference).

It may be concluded that the static equilibrium points and the linearized
undamped eigenfrequencies of the 7th-order approximation are more or less
converged to a constant value. The prediction of the converged eigenfrequencies
with respect to the FEM results is reasonably accurate. Therefore, unless stated
otherwise, 7th-order approximations of Eq. (4.2) and Eq. (4.3) are used for the
dynamic analyses in the remainder of this chapter.

xxx

y

Eigenmode
Buckled

Mode 1 Mode 2 Mode 3

Figure 4.3: The lowest vibrational eigenmodes obtained by FEA.

4.3 Nonlinear Dynamic Analysis

In this section, the nonlinear steady-state behaviour for the three semi-analytic
cases is evaluated by using numerical continuation of periodic solutions for
varying excitation frequency [33]. The local stability of the periodic solutions is
determined using Floquet theory [120]. Unless stated otherwise, the parameters
of Table 4.2, P = 1.01Pe [N] and W = 15 [m/s2] are used during simulations.
This results in damping ratios of ξ1 = 6.2 [%], ξ2 = 0.0 [%] (undamped)
and ξ3 = 0.1 [%] with respect to the first, second and third eigenfrequency of
the linearized system for P = 1.01Pe, respectively. As stated before, 7th-
order approximations of Eq. (4.3) and Eq. (4.2) are used for the dynamic
analyses. It should be noted, that the order of expansion which should be
used to obtain accurate dynamic responses, depends next to the preload P
also on the harmonic excitation amplitude W . The accuracy of the dynamic
responses based on the 7th order model for the considered values of P and W
is illustrated at the end of Section 4.3.1. The axial inertia is not taken into
account. The effect of including axial inertia on the results will be discussed in
Section 4.4.
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4.3.1 Steady-State Behaviour

In all presented phase diagrams the two stable static equilibrium points of (4.12)
(|vmid| = 0.087, see Table 4.3) are denoted by +, and the unstable equilibrium
point vmid = 0 by ∗. The iterates of the Poincaré mappings are shown by
�. In some regions solutions are found which encircle both the negative and
the positive stable equilibrium point. The latter phenomenon is called a snap-
through motion [36].

Case I

The frequency-amplitude plot for Case I is shown in Fig. 4.4. Note that the
steady-state solutions are characterized by the following dimensionless measure

vper = max
T

vmid − min
T
vmid, (4.17)

with vmid defined by Eq. (4.16) and T the period of the periodic solution.
Figure 4.4 shows a harmonic resonance at about 6.4 [Hz]. Note that the
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harmonic solutions are unstable near the resonance peak. Because the
resonance peak bends to the left, there exist coexisting periodic solutions.

Next, the frequency-amplitude plot of Eq. (4.12) shown in Fig. 4.4 will be
discussed by following the periodic solutions branches in the direction of
increasing frequency. At low frequencies the amplitude of the periodic solutions
is very small; for f = 0.1 [Hz] a harmonic solution exists that vibrates around
the positive static equilibrium point. Such a harmonic solution is also present
around the negative static equilibrium point (Fig. 4.5 a). The system is skew-
symmetric since Knl (−Q) = −Knl (Q): the negative solution thus can be
obtained by reflecting the positive solution over the origin. Note, that the
skew-symmetry in the system would be lost if geometric imperfections would
be present (see Chapter 5). In fact, in all presented phase plots skew-symmetric
solutions pairs are present but only one solution will be shown.

Between f = 0.9 [Hz] and f = 4.2 [Hz], two separate islands of branches
containing snap-through solutions are present (see enlargement A). The
local stability of the snap-through solutions changes after period doubling
bifurcations (some of the period doubling bifurcations are indicated by p6,
p7 and p8). The period doubling sequences are more clearly visualized in
Fig. 4.6. These bifurcation diagrams are obtained by performing numerically
a decreasing stepped frequency sweep (starting at the stable snap-through
solution). For each value of f , many times the Poincaré mapping of the steady-
state value of vper is plotted. Just after the period doubling sequences, first
small regions are found where the responses seem to be chaotic. Subsequently,
the response jumps back to the stable small-amplitude solution. For increasing
frequencies, the stable snap-through solutions disappear again by cyclic fold
bifurcations at points p5 and p9. An example of the chaotic response just after
the period doubling sequence (f = 1.56 [Hz]) is shown in Fig. 4.5 b (also one
coexisting stable low-amplitude harmonic solution is shown). In Fig. 4.5 c
an example of a stable snap-through solution (solid curve, large amplitude) is
shown at f = 3.2 [Hz]. In addition for f = 3.2 [Hz], Fig. 4.5 c also shows a stable
second super-harmonic resonance solution (solid curve, small amplitude) and
three unstable periodic solutions. One of these solutions shows snap-through
motion.

Next, just above 5.02 [Hz], a cyclic fold bifurcation point is reached indicated by
point p4. The two stable harmonic solutions vanish and a chaotic snap-through
motion appears. Figure 4.7 a shows that at 5.02 [Hz] a small difference in initial
conditions results in completely different transient behaviour until the periodic
solution is reached. Furthermore, nearly periodic windows can be recognized
during the transient behaviour at 5.02 [Hz]. This indicates that the transients
settling to the periodic solution are of a chaotic nature. According to [123; 128]
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Figure 4.5: Periodic solutions in the phase plane and iterates of their Poincaré
mapping (�) (+ stable static equilibrium point, ∗ unstable static equilibrium
point).
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Figure 4.6: Bifurcation diagrams for varying excitation frequency.

this means that the periodic solutions are destroyed by a catastrophic local
cyclic fold bifurcation. The local fold bifurcation by itself does not guarantee
a transition to chaos; but if the global structure of phase space is such that
transients settling to the periodic solution were chaotic, then a chaotic attractor
can be expected after the periodic solution vanishes. This phenomenon is called
an intermittency transition to chaos by a cyclic fold catastrophe. At f = 5.03
[Hz] (Fig. 4.7 b) the solution indeed seems to be chaotic. The phase plots
of the foregoing transition are illustrated in Fig. 4.5 d and e (e only showing
the Poincaré mapping). Figure 4.5 d also contains the two coexisting unstable
harmonic solutions.

In the frequency region that follows a great variety of chaotic behaviour is
present. The chaotic regions and transitions to these regions are more clearly
visualized in Fig. 4.8. This bifurcation diagram is obtained by performing
numerically an increasing stepped frequency sweep, starting at the stable
harmonic solution at f = 4.7. From this diagram it can be concluded that
the chaotic snap-through solutions end at approximately 6 [Hz] (close to the
period-doubling bifurcation p3, see enlargement C in Fig. 4.4). Furthermore,
Fig. 4.8 shows that the snap-through response locks to non-chaotic response in
small regions.

At point p3 (6.0 [Hz]), see inset C, a period doubling bifurcation occurs. After
this point, one stable 1/4 subharmonic solution, an unstable 1/2 subharmonic
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Figure 4.7: Transient behaviour near intermittency transition to chaos.
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Figure 4.8: Bifurcation diagram for varying excitation frequency.

solution (not visible) and one unstable harmonic solution are present (Fig.
4.5 f). Next, at point p2, again a period doubling is found, which transforms
the stable 1/4 subharmonic resonance into a stable 1/2 subharmonic resonance
as shown in figure 4.5 g. Finally, at point p1 at about 6.18 [Hz] another
period doubling bifurcation changes the 1/2 subharmonic solution into a stable
harmonic periodic solution which persists over a wide frequency range (see for
example Fig. 4.5 h).

The accuracy of the dynamic responses based on the 7th order model for the
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Figure 4.9: Snap-through solutions at f = 3.2 [Hz] for 3rd, 5th, 7th and 9th

order Taylor expansions of κ and u,x.

considered value of W is illustrated for the (stable) snap-through response at
f = 3.2 [Hz] (see Fig. 4.9). It can be noted that expansions higher than 7th

order do not significantly improve the accuracy of the (stable) snap-through
response at f = 3.2 [Hz], which has a relatively large amplitude. Similar
observations are made for the dynamic responses with lower amplitudes.

Case II

The frequency-response of the linearly undamped one-degree-of-freedom system
mẍ+kx = 0 contains only one non-zero solution; the resonance peak to infinity
at f =

√
k/m/(2π). Addition of the slightest amount of damping to such a

system without excitation immediately results in the disappearance of this
resonance peak. The second ODE of Case II (see Eq. (4.14)) behaves in a
similar manner. The second mode, which is skew-symmetric with respect to the
midpoint of the beam, is not excited since the excitation is symmetric. Because
the second ODE is undamped, since the second mode has zero transversal
displacement at the position of the damper, the resonance peak near the second
harmonic resonance frequency of 166 [Hz] in principle exists. However, the
slightest amount of damping would have the same effect as for the linear system:
the second resonance peak ceases to exist. From this it can be concluded
that the second generalized coordinate will have no effect on the steady-state
behaviour of the system. So the frequency-amplitude plot for Case II is equal
to that of Fig. 4.4 for Case I.
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Figure 4.10: Frequency-amplitude plot for Case III compared to Case I.

Case III

In the set of ODEs of Case III the two coupled equations of motion Eq. (4.15)
both have a driving term on the right-hand side in contrast to Case II (Eq.
(4.14)). Figure 4.10 shows that, due to the lower first vibrational eigenfrequency
of Case III (6.87 [Hz]) with respect to Case I (6.97 [Hz]), the first harmonic
resonance peak for Case III has shifted a little to lower frequencies compared
to Case I. Hence, also all bifurcation points lie at a lower frequency and,
therefore, now chaotic solutions are present from approximately 4.95 [Hz] to
5.95 [Hz]. Also, the extra DOF instigates an extra harmonic resonance peak
at 406 [Hz]. This peak bends to the left, which makes it possible that in a very
small frequency range two stable solutions and one unstable solution coexist.
Furthermore, an anti-resonance peak is introduced at about f = 500 [Hz].

4.3.2 Influence of Parameters

In this subsection the influence of some parameter changes on the frequency-
amplitude plots is investigated. Simulations are solely performed for Case
I-7th order model. Only harmonic solutions are plotted in the frequency-
amplitude plots. First, the influence of the damping cd is examined. Then the
axial preload P is varied and finally the influence of the excitation amplitude W
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is considered. Only one parameter is varied at a time, the remaining parameter
values are defined according to Table 4.2.
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Figure 4.11: Frequency-amplitude plots for 13% damping (cd = 17 [Ns/m]),
6% damping (cd = 8.3 [Ns/m]), and 1% damping (cd = 1.7 [Ns/m])).

Figure 4.11 shows the frequency-amplitude plots for three values of the damping
parameter. It is obvious that if the damping is decreased the ’height’ of the
(super) harmonic resonance peaks increases. Consequently, the peaks bend
over to larger frequency ranges. Moreover, for 1 % damping, even parts of the
second and third superharmonic resonances have become unstable.
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Figure 4.12: Frequency-amplitude plots for different axial preloads.
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Figure 4.13: Frequency-amplitude plots for different excitation amplitudes.

It is clear, that if the axial preload P is increased, the linearized stiffness about
the stable static equilibrium point (i.e. in this case the tangent of the load-
path depicted in Fig. 4.2 for Case I-7th order model) increases. Figure 4.12
shows that increasing the preload and, thus, increasing stiffness leads to steeper
and lower peaks and higher resonance frequencies. The unstable regions
become smaller and eventually, if the preload is large enough, snap-through
is made impossible for this level of W . Finally, the excitation amplitude W is
considered. Increasing this parameter results in higher values for

vper

L as shown
in Fig. 4.13. The harmonic and super-harmonic resonance peaks become higher
and regions of instability become larger.

4.4 Comparison with Transient FEA

In Section 4.3, frequency-amplitude plots for several semi-analytic models
of the buckled beam structure have been presented. The construction of
such plots using FEA is very elaborate (practically impossible) and time-
consuming. In order to compare some results of Subsection 4.3.1 with FEM
results, transient FEM analyses are performed for several excitation frequencies
using the parameter values of Table 4.2. In each analysis, the integration time
was taken long enough to reach the steady-state solution.

Figure 4.14 compares some steady-state results of FEM analyses with the
steady-state solutions of the semi-analytic approach of Case I (7th order
approximation). All steady-state results are obtained with the static buckled
beam configuration for P = 1.01Pe [N ] as initial condition. The Poincaré
section of the FEM results is denoted by �, whereas the Poincaré sections of
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the semi-analytic results are still denoted by the �. Symbols � and � may be
separated due to a phase difference in the excitation term. The stable static
equilibrium points for the FEM results are denoted by × and for the semi-
analytic approach by +.

At an excitation frequency of 0.1 [Hz] (Fig. 4.14 a) both periodic solutions
are period one and vibrate around their respective equilibrium points. The
amplitude of the Case I-solution (vper = 0.0215) is approximately the same as
for the FEA solution (vper = 0.0227).

At 3.2 [Hz] (Fig. 4.14 b) the FEM analysis results is qualitatively comparable
to the Case I result. Both phase diagrams show an extra loop, which indicates
that a second superharmonic resonance is present (see also Fig. 4.5 c). However,
the amplitude of the FEA solution vper = 0.045 is clearly smaller than the
amplitude of the semi-analytic solution of Case I: vper = 0.057. On the other
hand, later on in Fig. 4.15 it will be shown that the amplitude is very sensitive
for small excitation frequency changes in this frequency range.

The FEA results indicate that between f = 4.6 [Hz] (Fig. 4.14 c) and
f = 4.7 [Hz] (Fig. 4.14 d) a transition from the harmonic solution to a solution
of a chaotic nature is present. In the semi-analytic case, this transition appears
between f = 5.02 [Hz] and f = 5.03 [Hz] (see Section 4.3.1). The amplitudes of
the solutions before and after the transition are vper = 0.050 and vper = 0.258
for FEM and vper = 0.053 and vper = 0.252 for the semi-analytic approach. In
conclusion, the transition frequency differs somewhat, but the amplitudes and
(Poincaré) shapes are comparable.

The next transition from a chaotic solution to a harmonic solution is found
near f = 5.8 [Hz] (Fig. 4.14 e) in the FEA, whereas this is found near f =
6 [Hz] by the semi-analytic approach. Again, a small difference between the
transition frequency is detected. However, the amplitudes (

vper,F EM

L = 0.092
versus

vper,semi

L = 0.084) and shapes of the solutions after the transition are
comparable.

From the foregoing, it is clear that the chaotic region of the FE-model starts
and ends at a slightly lower frequency than it does for Case I (and Case III).
This is in correspondence with a lower first eigenfrequency for the FE-model
compared to Case I, see Table 4.4.

At f = 25 [Hz] (Fig. 4.14 f) both solutions are period-one solutions and vibrate
around their respective equilibrium points. The amplitude of the FEA solution
is slightly smaller (vper = 0.0016) compared to the amplitude of the semi-
analytic solution (vper = 0.0017).
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approach.
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Figure 4.15: FEM solutions ( ∗ ) in the frequency-amplitude plot of Case I
without axial inertia (thin lines) and of Case I with axial inertia (thick lines).

Figure 4.15 summarizes the foregoing by plotting the FEM solutions in the
frequency-amplitude plot of Fig. 4.4. In terms of amplitude it may be concluded
that a reasonably good match exists between the semi-analytic results without
axial inertia and the FEM results.

Clearly, the semi-analytic approach offers more insight in the global nonlinear
dynamic behaviour (e.g. detection of bifurcation points) than the FEM
approach. Moreover, the semi-analytic method is much less time-consuming
than the FEM approach. For example, the calculation of the harmonic solutions
branch of Fig. 4.15 and the calculation of the corresponding Floquet multipliers
takes about half the time of the calculation of only one FEM solution (including
static preloading).

Several reasons may be given to explain the small differences between the semi-
analytic and FEM results. The load-paths of Subsection 4.2.1 already show
that due to slight differences in stiffness between the semi-analytic and FEM
results, the static equilibrium points differ a little. Therefore, the difference
in stiffness may explain that the periodic solutions encircle slightly different
static equilibrium points. This, together with the fact that in the semi-analytic
approach the axial inertia is neglected with respect to the transversal inertia,
may explain the differences in the vibrational eigenfrequencies (see Table 4.4)



82 Periodic Excitation of a Buckled Beam

and in the amplitudes of the periodic solutions.

In order to investigate if the results will improve, axial inertia is taken into
account in the 7th order model as used in Case I (i.e. by setting α = 1 in
4.8). Indeed, inclusion of the axial inertia decreases the difference between the
first eigenfrequency of the semi-analytical model (without axial inertia: f1 =
6.97 [Hz], with axial inertia: f1 = 6.60 [Hz]) and the first eigenfrequency of the
FE model (f1 = 6.51 [Hz]). Furthermore, as illustrated in Fig. 4.15, also the
periodic solutions and the bifurcation points shift towards the FEM solutions.
Therefore, it is recommended to take the axial inertia of the beam into account.
Summarizing, the differences between the semi-analytical results and the FEM
results become very small by considering higher order approximations for κ
and u,x and by including axial inertia. Apparently, the remaining differences
between the FE model and the semi-analytical model (i.e. rotatory inertia,
axial strain and transverse shear) are not important for dynamic responses of
the system considered. Therefore, the semi-analytical model enables a detailed
analysis of the global nonlinear dynamic behaviour of the buckled beam in a
much more efficient manner than by using FEA.

4.5 Conclusions

In this chapter, the steady-state nonlinear dynamics of a transversally excited,
buckled beam have been discussed. Based on Taylor series expansions of the
inextensibility constraint and the exact curvature of the beam, and by using
one or more basis functions, a semi-analytical modelling approach is presented.

Three sets of ODEs have been considered, in which the transversal displacement
field has been approximated by one and two-mode discretizations based on
the linear buckling modes of the simply supported beam. A conclusion from
the static analyses is that a higher order approximation of the inextensibility
constraint and the exact curvature of the beam using a single mode model leads
to a more accurate initial post-buckling path than a lower order approximation
using a two-mode model. The influence of 9th-order terms and higher on the
initial post-buckling equilibrium points and eigenfrequencies of the discretized
equations is limited. Therefore, in the steady-state dynamic analyses, a 7th

order approximation of the inextensibility constraint and the exact curvature
of the beam has been used. It has been shown that this 7th order approximation
also is capable to accurately predict high amplitude snap-through solutions.

Frequency-amplitude plots have been created, using continuation of periodic
solutions for varying excitation frequency. Periodic, chaotic and snap-through
behaviour has been found. For the two-mode discretization approaches
considered, inclusion of the second (skew-symmetric) linear buckling mode
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appeared to have no effect whereas inclusion of the third linear buckling mode
only affected the response significantly near the harmonic resonance at 406
[Hz]. Therefore, for the buckled beam considered in this chapter, the model
based on the single mode discretization appeared to be sufficiently accurate to
predict the nonlinear responses (including softening, transitions to chaos and
snap-through solutions) for a wide frequency band around the first harmonic
resonance (near 6.4 [Hz]).

It is concluded that the difference in the dynamic response of the FE model
and the semi-analytical model with higher order approximations for the
inextensibility constraint and the exact curvature of the beam and by including
axial inertia becomes very small. The verification of results obtained from a
semi-analytic approach with FEM results is a first step in obtaining insight
in the accuracy of the semi-analytic models. However, for a full validation
semi-analytical results should be compared with experimental results. This
will be done (although for an initially unbuckled beam and for a different type
of dynamic loading) in Chapter 6.

Finally, it can be concluded that using a semi-analytic approach in combination
with modern nonlinear dynamics tools, the steady-state behaviour of the
transversally excited buckled beam has been investigated and understood to a
large extent in a very efficient way.
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5

Dynamic stability of a base-excited

thin beam with top mass

Thin-walled structures are often employed as support for components
with a relatively large weight and stiffness. In this case, the supported

component may be considered as a rigid top mass. The inertia of this top mass
may introduce severe dynamic loads on the structure if the base on which the
structure is resting exhibits shocks or vibrations (e.g. due to earthquakes in
civil engineering structures and due to propulsion systems in aerospace launch
vehicles). Furthermore, as will be shown, the inertia of the top mass may also
have significant influence on the qualitative nonlinear dynamics of the structure.

In this chapter, the dynamic stability problem of a base-excited thin beam with
top mass is considered, see Fig. 5.1. The vertical beam will be subjected to a
static pre-load due to the presence of gravity plus a dynamic load due to a base
motion. The beam is considered to be thin, inextensible, without shear and
initially not perfectly straight. By employing one or more basis functions, the
continuous problem of the beam is approximated by a discrete set of equations
of motion. In this approach, the inertia of the top mass is taken into account via
the inextensibility constraint. The resulting equations of motion contain both
nonlinear stiffness terms and nonlinear inertia terms. The forcing terms appear
both in a parametric manner and in a direct manner (due to the imperfection of
the beam). For the theoretical case where the beam is initially perfectly straight
and when all nonlinearities are neglected, the dynamic stability problem of the
beam is described by a Mathieu differential equation (see Eq. (2.19)).

Inclusion of axial inertia, for example of the beam itself or of an additional
discrete mass added to the (top of the) beam results in nonlinear inertia
terms, due to the nonlinear inextensibility constraint. Depending on the mode
considered and/or the relative weight of the added discrete mass, these inertia
nonlinearities can change the response of the beam from a hardening type
of response to a softening type of response [7; 10; 144]. With respect to the
damping of thin beams, addition of quadratic damping improves the agreement
between theoretical and experimental results in many studies [7; 144; 145].

Parts of this chapter are also presented in [81].



86 Dynamic stability of a base-excited thin beam with top mass

ca

u(t, y)

mt
Ut(t)

v0(y) v(t, y)

x

y

g

h

Ub(t)

Figure 5.1: Base-excited thin beam with top mass.

The work presented in this chapter is different from other studies concerning
parametrically excited beams with a top mass [144; 148], since here the top
mass is considered to be transversally and rotationally restrained (instead
of completely free). Furthermore, the effect of an imperfection is included
and parameter studies and convergence studies are performed using advanced
numerical tools. In addition, the results obtained using the semi-analytical
approach will be confronted with FEM results.

The outline for the chapter is as follows. In the next section the beam structure
will be introduced and the equations of motion will be derived. In Section
5.2, a quasi-static analysis and a modal analysis will be performed. The
results of these analyses will be compared with results obtained from FEM
analyses. In Section 5.3, the steady-state response of the base-excited beam
will be considered using numerical continuation of both periodic solutions and
bifurcations. In Section 5.4, the validity of the third-order single-mode semi-
analytical model will be studied by performing a convergence study. Finally,
conclusions will be drawn in Section 5.5.
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5.1 Equation(s) of motion

In this section, the equation(s) of motion for the base-excited thin beam with
top mass (see Fig. 5.1) will be derived. The initial shape of the thin beam with
length L, thickness h and width b is denoted by v0(y). The axial displacement
field relative to Ub(t) is indicated by u(t, y) and the transversal displacement
field relative to v0(y) by v(t, y). Since the beam is considered to be thin (h ≪
L), the displacements of the beam will be dominated by changes in curvature
allowing to assume the beam to be inextensible. The length of an infinitesimally
small piece of the beam in the initial state satisfies [92]

ds2 = dy2 + (v0,y dy)
2. (5.1)

Due to the inextensibility assumption, the length of ds stays constant. In the
deformed state this length satisfies [92]

ds2 = (dy + u,y dy)
2 + ([v0,y +v,y ] dy)2. (5.2)

Setting Eq. (5.1) equal to Eq. (5.2) results in the following inextensibility
constraint

u,y =
√

1 − 2v0,y v,y −v,2y − 1. (5.3)

In the adopted Cartesian coordinate system [x, y], the centerline of the
deformed imperfect beam is described by the curve [X(t, y), Y (t, y)], where
X(t, y) = v0(y)+ v(t, y) and Y (t, y) = y+Ub(t)+u(t, y). The exact curvature
of this curve follows from [43]

κ =
X(t, y),y Y (t, y),yy −X(t, y),yy Y (t, y),y

(X(t, y),y +Y (t, y),y )
3

2

, (5.4)

and can be evaluated in terms of v0(y) and v(t, y) solely, after substitution of
Eq. (5.3). Note that for the perfect beam (v0(y) = 0 [m]), Eq. (5.3) and Eq.
(5.4) are exactly equivalent to the inextensibility constraint and the curvature
expression used in the previous chapter (see Eqs. (4.4) and (4.5)). Depending
on the maximum deflection, the constraint Eq. (5.3) and the curvature Eq.
(5.4) may be approximated by their Taylor series expansions in v,y and v0,y up
to nth order. For example the 3rd order expansions of Eq. (5.3) and Eq. (5.4)
yield

u,y = −v0,y v,y − 1

2
v,2y , (5.5)

κ = κ0 + v,yy + 1

2
(v0,yy +v,yy )v,2y +v,yy v0,y v,y − 1

2
v,yy v0,

2
y , (5.6)

where κ0 = v0,yy − 3

2
v0,yy v0,

2
y is (in this case) the 3rd order approximation of

the initial curvature. Higher order approximations include higher order terms
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in v,y and v0,y.

The boundary conditions for the transversal displacement field of the clamped-
clamped beam (see Fig. 5.1) are

v(t, 0) = v(t, L) = 0 and v(t, 0), y = v(t, L), y = 0. (5.7)

Each of the following modes a priori obeys these conditions

vi(y) = cos [(i− 1)πy/L]− cos [(i+ 1)πy/L] , i = 1, 2, .. (5.8)

Using these modes, the transversal displacement field is discretized as

v(t, y) =
N∑

i=1

Qi(t) · vi(y). (5.9)

where Qi [m] are generalized degrees of freedom. In a similar fashion, the initial
shape of the beam (i.e. the imperfection) is discretized as

v0(y) =

Ne∑

i=1

1

2
ei · h · vi(y), (5.10)

where ei are dimensionless imperfection parameters and Ne ≤ N . After
discretization of v0(y) and v(t, y), the corresponding axial displacement field
u(t, y) can be computed by integrating an nth order expansion of Eq. (5.3).
Subsequently, the absolute displacement of the top mass (see Fig. 5.1) follows
to be

Ut = Ub + u(t, L). (5.11)

Note that (in general) Ut depends in a nonlinear fashion on the DOF Qi.

The kinetic energy T and the potential energy V are determined by

T = 1

2
ρA

∫ L

0

v̇2dy + 1

2
mtU̇

2
t , (5.12)

V = 1

2
EI

∫ L

0

(κ− κ0)
2 dy +mtgUt, (5.13)

where A = b · h and I = b · h3/12. Note that the axial and rotatory inertia
of the beam are neglected, i.e. the case mbeam ≪ mt and h/L ≪ 1 (as stated
before) is considered. Damping of the thin beam is modelled by including for
each DOF Qi, a linear and a quadratic viscous damping term of the form Fd =
−ciQ̇i − cq,i|Q̇i|Q̇i and by modelling a discrete viscous dash-pot ca (see Fig.
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5.1). The generalized damping forces are derived using the Rayleigh dissipation
function

R = 1

2
caU̇

2
t +

N∑

i=1

(
1

2
ciQ̇

2
i + 1

3
cq,isign

(
Q̇i

)
Q̇3

i

)
. (5.14)

The equations of motion are derived via Lagrange’s equations

d

dt
T ,Q̇ −T ,Q +V ,Q = Qnc, (5.15)

where
Q = [Q1, ..,QN]T and Qnc = −R,Q̇ . (5.16)

To illustrate some of the key features of the model, the equation of motion of
the thin beam structure for single-mode expansions of v(t, y) and v0(y) (N =
Ne = 1 in Eqs. (5.9)-(5.10)) and the third-order approximation is given. This
results in a single equation of motion of the form

M(Q1)Q̈1 +G(Q1, Q̇1) + C(Q1, Q̇1)+

p1

(
1 − r0 − p2e

2
1 − Üb

)
Q1 +K(Q1) = p3e1

(
r0 + Üb

)
,

(5.17)

where
r0 =

mtg

Pc
, (5.18)

is the ratio between the static load due the weight of the top mass and the first
static buckling load of the beam (Pc = 4π2EI/L2). Furthermore, Üb is the
base-acceleration which will be directly prescribed (as a harmonic function in
time).

In Eq. (5.17), the following abbreviations are used

p1 =
8π4EI

L3
, p2 =

π2h2

4L2
, p3 =

h

2
p1,

M(Q1) =

[
3

2
ρAL+

mtπ
4

L2

(
h2e21 + 4he1Q1 + 4Q1

2
)]
,

C(Q1, Q̇1) = c1Q̇1 + cq,1|Q̇1|Q̇1 +
caπ

4

L2
Q̇1 (e1h+ 2Q1)

2
,

G(Q1, Q̇1) =
2mtπ

4

L2
Q̇2

1 (he1 + 2Q1) ,

K(Q1) =
2π6EI

L5

(
8Q1

3 + 9he1Q1
2
)
.

(5.19)
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As can be noted, Eq. (5.17) contains inertia nonlinearities due to the top
mass (mt), and stiffness nonlinearities due to the adopted nonlinear kinematic
relation Eq. (5.6). For e1 = 0, the inertia nonlinearities are of the softening
type (mass increases for increasing |Q1|), whereas the stiffness nonlinearities
are of the hardening type (stiffness increases for increasing |Q1|). Furthermore,
Q1 is excited by Üb in a parametric manner and for e1 6= 0 also in a direct
manner. The dash-pot ca results in a position dependent viscous damping
force, see expression C(Q1, Q̇1) Eq. (5.19).

In general, the (set of) equation(s) of motion corresponding to an nth order
approximation of Eq. (5.5) and Eq. (5.6) are derived by the following steps

1. Discretize v(t, y) as in Eq. (5.9).

2. Approximate κ and u,y (Eq. (5.3) and Eq. (5.4)) with Taylor series
expansions including terms up to nth order in v,y and v0,y.

3. Solve u(t, y) from the nth order approximation of u,y by symbolic
integration.

4. Compute the energy and work expressions Eq. (5.12), Eq. (5.13) and Eq.
(5.14) by symbolic integration.

5. Derive the equations of motion using Lagrange equations Eq. (5.15) and
omit all terms in Q higher than nth order.

This procedure is implemented in Maple routines [87], allowing to derive the
equations of motions in an automatic manner. Higher order approximations
of Eq. (5.5) and Eq. (5.6) result in higher order terms in Qi in the resulting
equation(s) of motion.

5.2 Static and modal analysis

In this section, the static response of the beam is examined for various orders
of expansion of Eq. (5.3) and Eq. (5.4). Subsequently, a modal analysis
is performed on the linearized equations of motion in order to study the
eigenfrequencies of the initially pre-stressed beam. The results are numerically
validated via a comparison with results obtained using FEM analyses.

For the static analysis, all the time-derivatives in the equation(s) of motion
are set to zero and the case Üb = 0 [m/s2] is considered. By solving the
resulting algebraic equation(s) for this case for a varying r0 [-] (the only present
load-parameter for this case), static buckling of the thin beam is examined.
Note that a numerical continuation scheme is used for this purpose. In all
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Table 5.1: Parameter values.

E 2.1 · 1011 [N/m2]
ρ 7850 [kg/m3]
L 0.2 [m]
b 15 · 10−3 [m]
h 0.5 · 10−3 [m]
g 9.81 [m/s2]

computations, the parameter values are used as listed in Table 5.1.

The static responses of the beam, using single-mode expansions of v(t, y) and
v0(y) (N = Ne = 1 in Eqs. (5.9)-(5.10)) and various orders of expansion of
Eq. (5.3) and Eq. (5.4), are depicted in Fig. 5.2. Note that the responses are
characterized by plotting both the scaled transversal deflection of the middle
of the beam (v(L/2)/h) and the scaled axial deflection of the top of the beam
(u(L)/L) (for the quasi-static analysis the dependency on t of v(t, y) and u(t, y)
is omitted). In the graphs also results from FE analysis are shown. The FE
model of the beam consists of fifty 3-node Timoshenko beam elements known
as element type 45, see [93]. In all FEM analyses kinematic relations are used
which are valid for large displacements and large rotations and an updated
Lagrange formulation is used. Note that the Timoshenko beam theory includes
the effect of axial strain and transversal shear which are absent in the semi-
analytical model derived in the previous section.

Since the beam is considered to be initially not perfectly straight (e1 = 1), the
beam does not show a distinct buckling at r0 = 1 but a transition near r0 ≈ 0.95
where the displacements rapidly increase. For low load levels (see enlargement
A in Fig. 5.2), the FE model is axially less stiff than the semi-analytical model,
irrespective of the order used for the expansions of Eq. (5.3) and Eq. (5.4). A
plausible cause for this difference is the effect of axial strain which is present in
the FE model and absent in the semi-analytical model. In the region r0 ≥ 0.9,
the order of expansion of Eq. (5.4) and Eq. (5.3) has significant influence on
the response. Note that in this region, higher order expansions converge to the
FEM results. For the depicted range of displacements and orders of expansion,
inclusion of the second mode and third mode (N = 3 in Eq. (5.9), not shown)
appeared to have no significant influence.

Next, the undamped eigenfrequencies of the beam with top mass are deter-
mined. Hereto, first the static equilibrium state for a given top mass r0 and
imperfection e1 is determined. Subsequently, the equation(s) of motion are
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Figure 5.2: Static response (1-mode, e1 = 1).

linearized around this equilibrium state to determine the eigenfrequencies.
The results are shown in Table 5.2 for various discretization approaches
in combination with the third order expansions (Eq. (5.5) and Eq. (5.6)).
Inclusion of the second mode and third mode in the discretization (N = 3
in Eq. (5.9)) decreases the first eigenfrequency slightly. Especially for the first
two eigenfrequencies, the semi-analytical results are in good agreement with
the FEM results. For the considered values of r0, higher order expansions of
Eq. (5.3) and Eq. (5.4) do not show significant improvements.

Table 5.2: First three eigenfrequencies (fi) for e1 = 1.

r0 model f1 [Hz] f2 [Hz] f3 [Hz]
0.05 1-DOF 65.78 - -
0.05 3-DOF 64.90 185.4 365.0
0.05 FEM 64.65 181.0 355.4
0.5 1-DOF 43.21 - -
0.5 3-DOF 42.98 163.2 318.9
0.5 FEM 42.95 159.8 283.0

mode shape
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5.3 Steady-state analysis

In this section, the nonlinear dynamic response of the base-excited beam with
top mass is considered for the case of a prescribed base acceleration of the form

Üb = rdg sin (2πft) . (5.20)

The prescribed base-acceleration (Eq. (5.20)) has two parameters, i.e. the
amplitude rd [-] and the excitation frequency f [Hz] (g denotes the gravitation
constant). Numerical continuation [33] of periodic solutions with the excitation
frequency as continuation parameter is adopted to study the steady-state
behaviour of the beam. Furthermore, also loci of bifurcations of the computed
periodic solutions in a two parameter space are computed using two parameter
numerical continuation [33]. The goal of the performed parameter study is
to find out which instabilities (i.e. harmonic resonances and/or parametric
resonances) are most severe and how they depend on the various parameters
of the structure and/or the loading. Special attention is paid to the influence
of the damping parameters, since it is known that the (nonlinear) damping
characteristics are of great importance for the agreement between simulation
results and experiments [7; 144; 145].

All results in this section are based on a model using the 3rd order expansions
(Eq. (5.5) and Eq. (5.6)) and single-mode expansions of v(t, y) and v0(y)
(N = Ne = 1 in Eqs. (5.9)-(5.10)). The validity of this model will be illustrated
in the next section. Note that in all presented graphs, the periodic solutions are
characterized by plotting the maximum dimensionless transversal displacement
of the middle of the beam (max [v(t, L/2)/h]). The local stability of the periodic
solutions is determined using Floquet theory [120]. Stable periodic solutions
are plotted with solid lines whereas unstable periodic solutions are plotted with
dashed lines.

First the response of the beam with a relatively small top mass (r0 = 0.05,
mt/mbeam = 14) is considered. The frequency-amplitude plot for this case with
a base excitation amplitude of rd = 1.55 and an initial imperfection of e1 = 1
is shown in Fig. 5.3. The linear viscous damping parameter c1 is set such that
the linear vibration mode has a relative damping ratio of ξ = 0.02. The other
damping parameter values are given by cq,1 = 0 [kg/m] and ca = 0.1 [kg/s].
The response shows a 2nd superharmonic resonance at f ≈ f1/2 (with f1 the
undamped eigenfrequency, see Table 5.2), a harmonic resonance at f ≈ f1 and
a very strong 1/2 subharmonic resonance (period 2T with T = 1/f). The latter
resonance is initiated at two period doubling bifurcations (PD, indicated by ’⋄’)
near f ≈ 2f1 and ending at a cyclic fold bifurcation (CF , indicated by ’o’) at
f ≈ 17 [Hz]. The (small) harmonic resonance is due to direct excitation which
only is present for e1 6= 0. The harmonic solutions decay in amplitude for |e| →
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Figure 5.3: Frequency-amplitude plot (3rd -order, 1-mode, e1 = 1.0, r0 = 0.05,
rd = 1.55, ca = 0.1 [kg/s], cq,1 = 0 [kg/m]).

0 and transform into the static equilibrium point Q(t) = 0 for the limit case
e1 = 0. The 1/2 subharmonic resonance is caused by the parametric excitation
and shows softening behaviour. For e1 = 0 (not shown), the 1/2 subharmonic
resonance also show softening. The inertia nonlinearities, therefore, clearly
outweigh the stiffness nonlinearities in this case.

First the influence of the damping parameters cq,1 and ca is examined. The
influence of quadratic damping is studied first. In Fig. 5.4 the frequency-
amplitude plot for cq,1 = 0.02 (model and other parameters similar as used for
Fig. 5.3) is shown. As can be noted, the additional quadratic damping force
splits up the 1/2 subharmonic resonance peak into a smaller peak and a separate
peak (island). For a higher quadratic damping constant (cq,1 = 0.05, see
Fig. 5.5), the separate branch has disappeared and the small 1/2 subharmonic
peak initiated around f ≈ 2f1 no longer exhibits cyclic fold bifurcations. The
harmonic response branches, depicted in the Figs. 5.3, 5.4 and 5.5, are hardly
influenced by the quadratic damping (for the parameter values considered).

The evolution of the 1/2 subharmonic resonance peak for a varying quadratic
damping parameter is further examined by computing the loci of the cyclic
fold bifurcation(s) CF and the two period doubling bifurcations PD in the
parameter space spanned by cq,1 and f , see Fig. 5.6. For clarification,
the locations of the cyclic fold bifurcations CFi as indicated in Fig. 5.4 for
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Figure 5.4: Frequency-amplitude plot (3rd -order, 1-mode, e1 = 1.0, r0 = 0.05,
rd = 1.55, ca = 0.1 [kg/s], cq,1 = 0.02 [kg/m]).

cq,1 = 0.02 and the two period doubling bifurcations PDi as indicated in Fig.
5.5 for cq,1 = 0.05 are shown in Fig. 5.6. In the region 0.017 ≤ cq,1 ≤ 0.034
[kg/m], multiple cyclic fold bifurcations exist for one value of cq,1. This
indicates the existence of a separate branch (as shown in Fig. 5.4). For
cq,1 ≥ 0.032 [kg/m], the small 1/2 subharmonic branch near f ≈ 2f1 no longer
exhibits cyclic fold bifurcations (see enlargement A), and for cq,1 ≥ 0.034
[kg/m] the separate branch between CFa and CFb has disappeared. At
cq,1 ≈ 0.385 (see enlargement B), the two period doubling bifurcations merge
and cease to exist, meaning that the harmonic response no longer exhibits a
small region of instability around f ≈ 2f1. In general, this does not guarantee
that the subharmonic response has disappeared. However, the two parameter
bifurcation diagram (Fig. 5.6) gives a strong indication that this is the case here.

Using the same two parameter continuation approach, but now with continua-
tion parameters ca and f , the influence of the discrete dash-pot ca is studied
for cq,1 = 0 [kg/m], see Fig. 5.7. For an increasing value of ca, the locus of
CF approaches the locus of PD in a monotonically increasing manner, meaning
that the 1/2 subharmonic branch does not break up (no separate island(s)). At
ca ≈ 4.34 [kg/s], the locus of CF merges with the locus of PD in a codimension
2 bifurcation point (see enlargement A) and at ca ≈ 4.45 [kg/s], the two period
doubling bifurcations merge and cease to exist. Between these two parameter
values, a small 1/2 subharmonic branch exists, see e.g. Fig. 5.8. The harmonic



96 Dynamic stability of a base-excited thin beam with top mass

0 20 40 60 80 100 120 140 160
10

−2

10
−1

10
0

131 131.5 132
0

0.1

0.2

f [Hz]

m
a
x

[v
(t
,L
/
2
)/
h
]

PDa PDb

Figure 5.5: Frequency-amplitude plot (3rd -order, 1-mode, e1 = 1.0, r0 = 0.05,
rd = 1.55, ca = 0.1 [kg/s], cq,1 = 0.05 [kg/m]).

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

 

130.5 131 131.5 132
0

0.02

0.04

0.06

131 131.5 132

0.34

0.36

0.38

f [Hz]

B A

CFa
CFb

CFc

CFd

PDa PDb

c q
,1

[k
g
/
m

]

CF
PD

Figure 5.6: Two parameter continuation results (3rd -order, 1-mode, e1 = 1.0,
r0 = 0.05, rd = 1.55, ca = 0.1 [kg/s]).



5.3. Steady-state analysis 97

20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

 

131.2 131.4 131.6 131.8
3.5

4

4.5

f [Hz]

c a
[k

g
/
s]

CF
PD

A

Figure 5.7: Two parameter continuation results (3rd -order, 1-mode, e1 = 1.0,
r0 = 0.05, rd = 1.55, cq,1 = 0.0 [kg/m]).

branches, depicted in Figs. 5.3 and 5.8, are hardly influenced by the damping
due to the discrete dash-pot (for the considered values of ca).

Depending on the values of the damping parameters, the 1/2 subharmonic
resonance due to the parametric excitation can be very severe. Using again
the two-parameter continuation approach of the cyclic fold bifurcation(s) and
the period doubling bifurcations, now with continuation parameters rd and f ,
a threshold value for rd is determined with respect to the existence of this 1/2
subharmonic resonance. For the case considered in Fig. 5.9 (ca = 0.1 [kg/s] and
cq,1 = 0 [kg/m]), the small region of instability around f ≈ 2f1 in the harmonic
response branch disappears at rd ≈ 1.53 for e1 = 1 and at rd ≈ 1.52 for e1 = 0
(see enlargement A). However, for lower values of rd, the 1/2 subharmonic
resonance still exists as a separate branch (island). This island shrinks for
decreasing values of rd and disappears at rd ≈ 1.02 (see Fig. 5.9). Inclusion
of quadratic damping can significantly change the scenario, see Fig. 5.10. For
cq,1 = 0.02 [kg/m], the scenario is still similar as shown in Fig. 5.9, i.e. for
a decreasing rd the 1/2 subharmonic resonance branch becomes first detached
from the harmonic resonance branch, shrinks further and finally disappears
(now at rd ≈ 1.35). However, for cq,1 = 0.05 [kg/m], the threshold for rd
corresponds to the event where the two period doubling bifurcations merge at
rd ≈ 1.53. So, only in the latter case, the existence of the 1/2 subharmonic
resonance branch may be determined by considering the stability of harmonic
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responses in the neighbourhood of f ≈ 2f1.

Until now the linear damping parameter c1 is set such that the linear vibration
mode has a relative damping ratio of ξ = 0.02. The frequency-amplitude plot
for a much lower linear damping ratio (ξ = 0.001, model and other parameters
similar as used for Fig. 5.3) is depicted in Fig. 5.11. As can be noted, for
the lower value of ξ, also the harmonic resonance at f ≈ f1 and the 2nd super
harmonic resonance at f ≈ f1/2 show softening behaviour. Nevertheless, the
parametric resonance remains the most severe type of resonance. The influence
of the linear damping ratio ξ on the determined threshold value for rd with
respect to the existence of this 1/2 subharmonic resonance is depicted in Fig.
5.12 for the same nonlinear damping parameters as depicted in Fig. 5.9 and e1 =
1. As can be noted, the value of ξ has a significant influence on the threshold
value for rd. Furthermore, for ξ = 0.001, the threshold for rd corresponds to
the event where the two period doubling bifurcations merge at f ≈ 2f1, while
for the higher values of ξ the threshold for rd corresponds to the minimum in
loci of cyclic fold bifurcations.
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Next, the steady-state response of the same beam is considered for a ten times
larger top mass (r0 = 0.5 so the static load is half the static buckling load
and mt/mbeam = 140). The frequency-amplitude plot for this case with a
base excitation amplitude of rd = 0.12, an initial imperfection of e1 = 1 and
damping parameters ξ = 0.02, cq,1 = 0 [kg/m] and ca = 0.5 [kg/s] is shown in
Fig. 5.13. Apart from the fact that for the larger top mass also the harmonic
resonance at f ≈ f1 (for f1, see Tab. 5.2) shows softening, the global picture
is similar as found for the small top mass, see Fig. 5.3.

In a similar manner as shown in Figs. 5.6 and 5.7 for r0 = 0.05, the influence
of the damping parameters ca and cq,1 on the 1/2 subharmonic response is
shown in Fig. 5.14 for rd = 0.5. Figure 5.14 (top) shows the influence of ca for
cq,1 = 0 [kg/m] and Fig. 5.14 (bottom) shows the influence of cq,1 for ca = 0.5
[kg/s]. The two-parameter bifurcation diagram for ca and f shows in the region
4.0 ≤ ca ≤ 9.5 [kg/s], multiple coexisting cyclic fold bifurcations, whereas
at ca ≈ 4.25 [kg/s] the two period doubling bifurcations merge and cease to
exist. This means that in the region 4.25 ≤ ca ≤ 9.5 [kg/s], a separate 1/2
subharmonic branch exists while the harmonic branch does not exhibit a small
region of instability near f ≈ 2f1. The two-parameter bifurcation diagram
for cq,1 and f for r0 = 0.5 and ca = 0.5, depicted in Fig. 5.14 (bottom), is
qualitatively similar as found for r0 = 0.05 and ca = 0.1, see Fig. 5.6.

Similar as for the case r0 = 0.05 and ca = 0.1 (see Fig. 5.10), also for the
case r0 = 0.5 and ca = 0.5 a threshold value for the existence of the 1/2
subharmonic response can be determined for rd, see Fig. 5.15. The diagram is
qualitatively similar to the diagram found for r0 = 0.05 and ca = 0.1 (see Fig.
5.10). However, for the larger top mass, the two period doubling bifurcations
merge for e1 = 0 at a (relatively) much lower value for rd than for the case
e1 = 1. Therefore, it seems that the considered geometric imperfection tends to
increase the threshold for instability of the harmonic response at f ≈ 2f1. Note
that the imperfect beam is forced in both a direct manner and in a parametric
manner. The amplitude of the direct forcing depends on the initial imperfection
and on the initial static deflection and apparently has a stabilizing effect on
the harmonic response around f/f1 = 2, as was also reported in [132].

Based on the results computed using the third-order single-mode model, it can
be concluded that for both cases considered (r0 = 0.05 and r0 = 0.5), the 1/2
subharmonic responses show a strong dependence on the damping parameters.
For example, without knowledge of the damping parameters, the question
whether or not (for the considered level of imperfection) the 1/2 subharmonic
resonance is more severe than the harmonic resonance (compare for example
the cases depicted in Fig. 5.3 and Fig. 5.5) can not be answered. Experimental
identification of the damping characteristics is, therefore, essential before any
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Figure 5.13: Frequency-amplitude plot (3rd -order, 1-mode, e1 = 1.0, r0 = 0.5,
rd = 0.12, ca = 0.5 [kg/s], cq,1 = 0.0 [kg/m]).

conclusions can be drawn on the dynamic stability limits of the base-excited
beam with top mass. Experimental results will be discussed in Chapter 6.
In the next section, first the influence of the order of the expansions of Eq.
(5.3) and Eq. (5.4) and the influence of the number of modes used in the
discretization of the transversal displacement field will be discussed.
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5.4 Convergence of steady-state results

In the previous section, large amplitude vibrations are predicted with the third-
order single-mode approach. The accuracy of the results predicted by the
third-order single-mode model is studied in this section. First, the influence
of higher-order expansions of Eq. (5.3) and Eq. (5.4) for the single-mode
model is illustrated in Fig. 5.16 by considering the stable 1/2 subharmonic
response, which was already shown in Fig. 5.3 for the third-order single-mode
model. Clearly, the order of expansion has some influence on the response with
deflections max [v(t, L/2)/h] > 20. The response, however, does not change
qualitatively.

The difference in the harmonic response of the beam, modelled using one
mode (N = 1 in Eq. (5.9)) or using three modes (N = 3 in Eq. (5.9)) is
shown in Fig. 5.17 (both models are based on 3rd order expansions of Eq. (5.3)
and Eq. (5.4)). For both models, the linear viscous damping parameter(s) ci
are set so that the linear vibration mode(s) have the same relative damping
coefficient(s): for the single-mode model ξ1 = 0.02, for the three mode model
ξ1 = ξ2 = ξ3 = 0.02. The small shift in frequency (see enlargement A in Fig.
5.17) of the first harmonic resonance is in agreement with the difference between
the first eigenfrequency of the single-mode model and the first eigenfrequency of
the three-mode model (see Table 5.2). Also, the third mode instigates an extra
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(1-mode, e1 = 1.0, r0 = 0.05, rd = 1.55, ca = 0.1 [kg/s], cq,1 = 0.0 [kg/m]).
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0.05, ca = 0.1 [kg/s], cq,1 = cq,2 = cq,3 = 0 [kg/m]).

harmonic resonance peak around the third eigenfrequency (f ≈ 365 [Hz]). Since
the considered geometric imperfection is symmetric with respect to y/L = 1/2
and the second mode is skew symmetric, the second generalized coordinate Q2

is not directly excited. Therefore, no harmonic resonance peak appears around
f ≈ f2. Note, however, that the second mode can be parametrically excited
near f ≈ 2f2. However, this is only possible for significantly higher values of rd.

The influence of the extra modes on the 1/2 subharmonic response, initiated at
the two period doubling bifurcations near f ≈ 2f1 (see Fig. 5.17, enlargement
B), is shown in Fig. 5.18. In the stable 1/2 subharmonic response branch of the
3-mode model, six regions of instability appear. One of such regions is shown
in enlargement A in Fig. 5.18. At the borders of these small regions, centered
around f = 18.44, f = 18.86, f = 19.85, f = 44.62, f = 53.03 and f = 66.41
[Hz], quasi-periodic responses are initiated via secondary Hopf bifurcations
(indicated by ’△’). Furthermore, the 1/2 subharmonic response of the single-
mode model ends at a slightly lower frequency than the 1/2 subharmonic branch
of the three-mode model, see enlargement B in Fig. 5.18.

The loci of the cyclic fold bifurcations and the two period doubling bifurcations
corresponding to the 1/2 subharmonic branches of the 1-mode and the 3-mode
model in the space spanned by f and rd, are compared in Fig. 5.19. The
locus of the cyclic fold for the three-mode model is clearly less smooth than
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the locus of the cyclic fold for the single-mode model. This indicates that
for 1.10 ≤ rd ≤ 1.51, the 1/2 subharmonic branch of the three-mode model
splits into a number of small separate branches. Furthermore, an important
observation is that the threshold value for rd for parametric resonance to occur
appears to be somewhat higher for the three-mode model (rd = 1.10) than
for the single-mode model (rd = 1.02). Although more research is required
before this result can be generalized, this observation may be beneficial since
it allows to compute a lower bound for the threshold value for rd using the
(computationally less expensive) single-mode model.

5.5 Conclusions

In this chapter, the steady-state nonlinear dynamics of a base-excited clamped-
clamped thin beam with top mass has been discussed. Based on Taylor series
expansions of the inextensibility constraint and the exact curvature, and by
using one or more basis functions, a semi-analytical model has been derived.
The semi-analytical model has been numerically validated by a comparison
with quasi-static and modal analysis results obtained from FEM analyses.
The steady-state response of the base-excited beam has been investigated for
varying excitation frequency using numerical continuation of periodic solutions.
Furthermore, also loci of bifurcations are computed in a two parameter space.
The validity of steady-state results, computed using the third-order single-
mode model is shown. Hereto, the influence of higher-order expansions of
the inextensibility constraint and the exact curvature and the influence of the
number of modes used in the discretization is examined.

Since the beam is considered to be not perfectly straight, the beam is excited
both in a direct manner and in a parametric manner. The response of the beam,
therefore, shows both harmonic and 1/2 subharmonic resonances. Depending
on the values of the damping parameters, the 1/2 subharmonic resonance due
to the parametric excitation can be very severe and must be avoided.

The 1/2 subharmonic resonance may appear as a resonance peak emerging
from the harmonic response branch, as a separate branch (island) or as a
combination of both. Despite this complicated appearance of the parametric
resonance, the threshold value of the dynamic excitation parameter for the
existence of parametric resonance can still be determined in a straightforward
manner using the two-parameter continuation approach. The results indicate
a strong dependence of the 1/2 subharmonic response on the damping
parameters. Experimental identification of the damping characteristics is,
therefore, essential before any conclusions can be drawn on the dynamic
stability limits of the base-excited thin beam with top mass. For this purpose,
in the next chapter experiments will be performed and experimental results
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will be confronted with semi-analytical results.



6

Experiments with a base-excited thin

beam with top mass

In the previous chapter, the dynamic stability of a base-excited thin beam
with top mass is examined using a semi-analytical approach. In this study,

it is shown that the third-order single-mode semi-analytical model is able to
capture to a large extent, the first harmonic resonance and the first (large
amplitude) 1/2 subharmonic resonance of the base-excited (initially unbuckled)
thin beam. Furthermore, it is shown that nonlinear damping effects can
strongly affect the 1/2 subharmonic resonance. The objective of this chapter is
to validate the (nonlinear) semi-analytical model and to identify experimentally
the damping characteristics and geometric imperfections of the thin beam.

In the numerical analysis as presented in Chapter 5, a base-excitation in the
form of a prescribed harmonic base-acceleration is considered. However, at
the experimental setup the base-excitation is realized by supplying a harmonic
input voltage to an electrodynamic shaker system. For the latter case, the
resulting base acceleration will not be purely harmonic, will not have a constant
amplitude but will be determined by the dynamics of the shaker system carrying
the thin beam with top mass. Results for voltage excitation can thus not
directly be compared with results for a prescribed harmonic base-acceleration
as considered in Chapter 5. To be able to compare the experimental results
with the semi-analytical results, the equations of motion for the base-excited
thin beam with top mass (as derived in Chapter 5) will be coupled with a model
of the shaker.

The outline for this chapter is as follows. In the next section, the experimental
setup of the base-excited thin beam with top mass will be introduced.
In Section 6.2, the semi-analytical coupled shaker-structure model will be
discussed. The steady-state dynamical responses predicted by the semi-
analytical approach and obtained experimentally will be compared in Section
6.3. Finally, in Section 6.4 conclusions will be presented.

Preliminary results for this chapter are presented in [83].
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E(t)E0(t)

Ub(t)

Figure 6.1: Picture and schematic overview of the experimental setup (a:
top linear sledge (top mass) based on air bearings, b: thin beam, c: laser
vibrometer, d: bottom elastic support mechanism, e: electrodynamic shaker).
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6.1 Experimental setup

A picture and a schematic overview of the experimental setup are depicted
in Fig. 6.1. The base excitation of the thin beam is realized by using an
electrodynamic shaker system. The thin beam is clamped between two linear
sledges with very low friction in axial direction. The linear sledge at the top
side is based on air bearings and at the bottom side the linear sledge is realized
by an elastic support mechanism based on folded leaf springs. The bottom
linear sledge is mounted rigidly on top of the shaker. Note that the elastic
support mechanism at the bottom side of the beam is included since the shaker
armature suspension has a very low rotational stiffness. The upper linear sledge
with clamping block also acts as the rigid top mass (mt). The top mass can
be increased by mounting additional masses on top of the upper linear sledge.
The moving mass of the lower linear sledge, including the mass of the bottom
clamping block and the mass of the shaker armature, equals mo = 3.2 [kg].
The beam used for the experiments is made from spring steel. The material
and geometric properties of the beam are listed in Table 6.1. Here it is noted
that the value for the Young’s modulus E later will be used as a parameter
to be identified to account for, for example, (small) errors in the discretization
of the displacement field and (small) errors in the assumed (clamped-clamped)
boundary conditions for the beam. The identified Young’s modulus should not
differ too much from its well-known value given in Table 6.1.

Table 6.1: Geometrical properties of the thin beam (∗ this parameter will
be further refined during the identification procedure with the experimental
results).

E∗ 2.0·1011 [N/m2]
ρ 7850 [kg/m3]
L 180 [mm]
b 15 [mm]
h 0.5 [mm]

At the experimental setup, the base-excitation is introduced by supplying a
harmonically varying input voltage

E0(t) = vd sin (2πft) [V], (6.1)

to the power amplifier which output voltage (E(t), see Fig. 6.1) is supplied
to the shaker. Due to this voltage, a current will run through the shaker coil
generating a force in axial direction of the assembly on top of the shaker. The
amplifier works in a voltage mode of operation (i.e. the output voltage of the
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amplifier is kept proportional to its input voltage) and no active feedback is
used to control the acceleration of the shaker armature (Üb). Consequently,
the resulting acceleration of the shaker (and thus the effective axial force on the
thin beam with top mass) will not be proportional to the input voltage E0(t)
as given by Eq. (6.1), but will be determined by the dynamics of the shaker
system carrying the thin beam with top mass. More details about the shaker
are provided in Appendix A.

A laser vibrometer (Ono Sokki LV 1500) is used to measure the transversal
velocity (v̇) at one point of the beam. In the static equilibrium state obtained
for zero input voltage (E0 = 0 [V]), the vibrometer is located at beam height
y = L/4 (see Fig. 5.1). Note that y is measured with respect to the base
motion Ub (see Chapter 5) and Ub itself is measured with respect to its static
equilibrium state. The vibrometer thus measures the transversal velocity of
the beam at absolute height L/4−Ub (note that in general Ub ≪ L/4). The
signal of the laser vibrometer is numerically integrated to obtain measurements
in terms of transversal displacements v. To avoid drift during the numerical
integration, the measurement signal is filtered using the high pass filter

Hhp(s) =
s2

s2 + 14.14s+ 100
, (6.2)

where s = jω (with j2 = −1). The filter (Eq. (6.2)) has a cut-off frequency
of f = 1.6 [Hz]. The data-acquisition and input signal generation is performed
using a Laptop with Matlab/Simulink in combination with a TUeDACS AQI
[55] (sample frequency 4 [kHz]).

6.2 Semi-analytical model

In the numerical analysis as presented in Chapter 5, the axial forcing of the
thin beam with top mass is realized by prescribing a harmonically varying
base-acceleration with constant amplitude. However, as noted before, at
the experimental setup the axial forcing of the thin beam is realized by
supplying a harmonic input voltage with constant amplitude to the shaker
system. Dynamic response results for this type of excitation can not directly
be compared with results for a prescribed harmonic base-acceleration.

To be able to compare the experimental results with the semi-analytical
results, the equations of motion for the base-excited thin beam structure as
derived in Chapter 5, must be coupled with a model of the electrodynamic
shaker. The dynamics of the shaker are captured by two coupled linear ODEs
(one describing the mechanical part of the shaker and one describing the
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electrical part of the shaker). The derivation of the shaker model and the
approach to obtain the total set of equations of motion describing the coupled
shaker/structure dynamics is outlined in Section A.1 of Appendix A.

For the comparison with the experimental results, a semi-analytical model
based on a single mode discretization of v and v0 (N = Ne = 1, see Eq. (5.9)
and Eq. (5.10)) and a semi-analytical model based on a two mode discretization
of v and v0 (N = Ne = 2, see Eq. (5.9) and Eq. (5.10)), will be considered.
These models are designated as the 1-MODE model (with the shaker model
the model has total 3-DOF) and the 2-MODE model (coupled model has 4
DOF), respectively. All models considered in this chapter are based on third-
order Taylor series expansions of the inextensibility constraint Eq. (5.3) and
the curvature Eq. (5.4). Note that the equations of motion for the 1-MODE
model are illustrated in Appendix A.

The semi-analytical models have a number of parameters, i.e. imperfection and
damping parameters, which must be identified to be able to make a comparison
with the experimental results. As stated before, to be able to cope with small
model mismatches, the Young’s modulus E is also considered as a parameter
to be identified. The effect of the discrete dash-pot with damping constant
ca (see Chapter 5) is not taken here. Consequently, the 1-MODE model has
four unknown parameters (i.e. e1, c1, cq,1 and E) and the 2-MODE model has
seven unknown parameters (i.e. e1, c1, cq,1, e2, c2, cq,2 and E). The numerical
values for these parameters are identified by fitting experimental steady-state
responses to periodic solutions of the semi-analytical model using a weighted
least squares method. For the weighted least squares fitting procedure only
harmonic responses are used, obtained for eight excitation frequencies equally
distributed over the frequency range of interest. Further details on the applied
weighted least squares procedure can be found in [71].

6.3 Results

In this section, experimental results for the base-excited thin beam will be
compared with semi-analytical results obtained for the 1-MODE model and
the 2-MODE model (see Section 6.2). The experimental steady-state results
are obtained for a varying excitation frequency using the stepped sine frequency
sweep procedure as outlined in Appendix B. For each case, a sweep-up
(the excitation frequency is incrementally increased) and a sweep-down (the
excitation frequency is incrementally decreased) is performed using a step size
of ∆f = 0.5 [Hz]. For the frequency sweep analysis, the parameters Ne = 100
[-] and Nt = 50 [-] are used, see Appendix B.

The dynamic steady-state response of the beam is characterized using the laser
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Table 6.2: Identified parameter values based on experimental results obtained
for vd = 0.03 [V] and mt = 0.51 [kg].

Parameters beam 1, 1-MODE beam 2, 1-MODE beam 2, 2-MODE
e1 [-] 1.24 1.36 1.36
c1 [Ns/m] 0.04 0.0 0.0
cq,1 [kg/m] 0.20 0.20 0.2
e2 [-] - - 0.04
c2 [Ns/m] - - 0.04
cq,2 [kg/m] - - 0.0
E [N/m2] 1.92·1011 1.95·1011 1.95·1011

vibrometer measurement signal m1(t) = v̇(t, L/4 − Ub) and its filtered and
numerically integrated version m2(t) = v(t, L/4 − Ub). Based on these two
signals, response measures are determined using the averaging procedure as

explained in Appendix B. The measures obtained are denoted by M̃1 = ˜̇VL/4

[m/s] and M̃2 = ṼL/4 [m]. Experimental results will be presented for two
different beams (designated as beam 1 and beam 2) which have the same
dimensions and material properties (see Table 6.1) but have slightly different
geometric imperfections and damping behaviour as will be illustrated. The
semi-analytical results presented in this section are obtained using numerical
continuation of periodic solutions [33]. Stable periodic solutions are plotted
with solid lines whereas unstable periodic solutions are plotted with dashed
lines. Furthermore, cyclic fold bifurcation are indicated by ’o’ and period
doubling bifurcations are indicated by ’⋄’.

In Fig. 6.2, the experimentally obtained frequency-amplitude plot (both in

terms of dimensionless displacement ṼL/4/h [-] and velocity ˜̇VL/4 [m/s]) is
depicted for beam 1 with vd = 0.03 [V] and mt = 0.51 [kg]. In this figure
also semi-analytical results are depicted based on the 1-MODE model. The
identified parameter values for this case are listed in Table 6.2 (in this table
also results are included for beam 2, these will be discussed at a later stage).
As can be noted, the Young’s modulus E is identified to be a little bit lower
than the theoretical value. The semi-analytical 1-MODE model thus slightly
overestimates the stiffness of the actual beam structure. This may be due to
a combination of the following facts: 1) in the 1-MODE model axial inertia
and axial strain of the beam are not included, 2) for the discretization of v
(see Eq. (5.9)), not the exact the vibrational eigenmodes are used. As shown
in Table 5.2, this may result in a small overestimation of the eigenfrequencies
(in comparison with the eigenfrequencies predicted using FEA). Furthermore,



6.3. Results 115

Table 6.3: Eigenfrequencies fi and damping ratios ξi of linearized models with
parameters according to Table 6.2 and mt = 0.51 [kg].

beam 1, 1-MODE beam 2, 1-MODE beam 2, 2-MODE
f1 [Hz] 18.1 18.1 18.1
ξ1 [-] 0.489 0.489 0.489
f2 [Hz] 72.7 73.1 73.1
ξ2 [-] 0.0034 0.001 0.001
f3 [Hz] - - 215.8
ξ3 [-] - - 0.007

in the setup, the clamped-clamped boundary conditions will not be as ideal as
considered in the model, which may also result in a small overestimation of the
stiffness of the semi-analytical model.

The eigenfrequencies and damping ratios of the linearized version of the
resulting 1-MODE model are listed in Table 6.3 (in this table also results are
included for beam 2, these will be discussed at a later stage). The lowest
eigenfrequency of the model (f1) corresponds to a suspension type of vibration
mode of the shaker (i.e. the mode shape is dominated by Ub) and is highly
damped. The second eigenfrequency of the model (f2) corresponds to the first
bending mode of the beam (i.e. the mode shape is dominated by Q1) and has
very little damping.

Next the obtained dynamical steady-state response as depicted in Fig. 6.2 is
discussed in more detail. The responses computed with the semi-analytical
model show a second superharmonic resonance at f ≈ f2/2, a harmonic
resonance at f ≈ f2 and a 1/2 subharmonic resonance (period 2T ) initiated
at two period doubling bifurcations at f ≈ 2f2 (indicated by ’⋄’). All three
resonances show a softening type of behaviour due to the inertia nonlinearities
and are qualitatively similar as found for the case of a prescribed base-
acceleration, see Chapter 5. However, at the experimental setup, the harmonic
resonance is not significantly smaller than the subharmonic resonance. This
may be due to the fact that at the setup, the amplitude of the base-acceleration
does not remain constant if the excitation frequency is varied. Especially
around the suspension type of resonance (f = f1), the base-acceleration will
show an increase in amplitude. Furthermore, the identified quadratic damping
parameter (cq,1 see Table 6.2) is relative large with respect to the parameter
values considered in Chapter 5. During the fit procedure it is found that
inclusion of quadratic damping appeared to be essential to get good fit results,
especially around the harmonic resonance and the subharmonic resonance.
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Figure 6.2: Frequency-amplitude plot in terms of displacement ṼL/4/h (top)

and in terms of velocity ˜̇VL/4 (bottom) for beam 1 with vd = 0.03 [V] and
mt = 0.51 [kg] (experiments versus semi-analytical results based on 1-MODE
model).
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The importance of the quadratic damping on the quality of the fit between
numerical results and experimental results is also observed in [7; 144] and for
cubic damping in [147].

In general, the experimental results are in good correspondence with the semi-
analytical results. However, some discrepancies can be noted. First of all,
the experimental results show a somewhat larger amplitude, especially in the

peaks of the harmonic and the subharmonic resonance (both in terms of ˜̇VL/4

[m/s] and ṼL/4/h [-]). Furthermore, the experimentally obtained frequency-
amplitude plot shows at a number of frequency regions, small peaks and/or
jumps which are not present in the semi-analytical results. These peaks can be

most clearly observed in the frequency-amplitude plot in terms of ˜̇VL/4 [m/s]
(see Fig. 6.2-top), for example near the top of the harmonic resonance (f ≈ 60
[Hz]) and along the subharmonic resonance branch near f = 120 [Hz]. More
comments about these peaks will be given at the end of this section. From now

on, the frequency-amplitude plots will only be presented in terms of ˜̇VL/4 [m/s]
since from these plots the most details can be distinguished.

The imperfection and damping parameters of the 1-MODE model for beam
1 are identified using the experimental response obtained for vd = 0.03 [V]
and mt = 0.51 [kg]. For further validation, the response predicted by this
model is compared with experimental results for a higher excitation amplitude
(i.e. vd = 0.04 [V], see Fig. 6.3-top) and a larger top mass (i.e. mt = 1.01
[kg], see Fig. 6.3-bottom). Except for the fact that for vd = 0.04 [V], the
1/2 subharmonic branch of the semi-analytical model continues to a lower
excitation frequency, the semi-analytical results are in this case again in good
correspondence with the experimental results. For mt = 1.01 [kg] (i.e. the top
mass is twice as large as in Fig. 6.2), both the 1/2 subharmonic resonance
and the harmonic resonance of the semi-analytical model continue to lower
excitation frequencies than observed in the experimental results. Furthermore,
the second eigenfrequency (f2) is slightly overestimated (approximately 3%) by
the semi-analytical 1-MODE model. The larger overhang of the semi-analytical
results is mainly influenced with the damping parameters. In this sense, the
identified nonlinear damping characteristics based for one load case, show not
to be able to predict exactly the damping characteristics for another load case.
Nevertheless, for both cases shown in Fig. 6.3 the semi-analytical results based
on the 1-MODE model are in satisfactory correspondence with the experimental
results.
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Figure 6.3: Frequency-amplitude plot for beam 1 (experiments versus semi-
analytical results based on 1-MODE model).
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Figure 6.4: Frequency-amplitude plot for beam 2 with vd = 0.03 [V] and
mt = 0.51 [kg] (experiments versus semi-analytical results based on 1-MODE
model).
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Next, results for the second beam (beam 2) will be discussed. For this
beam, experimental results will be compared with results for both the 1-
MODE model and the 2-MODE model (see Section 6.2). In Fig. 6.4, the
experimentally obtained frequency-amplitude plot and the corresponding 1-
MODE fit is depicted for beam 2 for the same loading conditions as considered
in for beam 1 in Fig. 6.2 (vd = 0.03 [V] and mt = 0.51 [kg]). The identified
parameter values for this case are listed in Table 6.2 and the eigenfrequencies
and damping ratios of the linearized version of the resulting 1-MODE model
are listed in Table 6.3. The identified parameter values are for the largest part
comparable to those obtained for beam 1. However, now the linear damping
coefficient c1 is identified zero. Note that this does not result in a zero damping
ratio for the first beam mode f2 (see Table 6.3), since this mode has some
(linear) coupling with the heavily damped suspension mode of the shaker.
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ṼL/4 [m]ṼL/4 [m]

f = 58 [Hz] f = 60 [Hz]

f = 117 [Hz] f = 119 [Hz]

Figure 6.5: Phase-plane projections and Poincaré mappings for four
experimentally obtained responses for beam 2 with vd = 0.03 [V] and
mt = 0.51 [kg].
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Similar to Fig. 6.2, also in Fig. 6.4 the semi-analytical results based on the
1-MODE model are in good correspondence with the experimental results.
Furthermore, also in this frequency-amplitude plot small peaks and/or jumps
can be noted. Again a very clear jump occurs near the top of the harmonic
resonance (f ≈ 60 [Hz]) and another one along the subharmonic resonance
branch near f = 120 [Hz], see enlargements A and B in Fig. 6.4. Projections
of the experimental response on the phase plane spanned by VL/4 and V̇L/4

and the corresponding Poincaré mappings (i.e. period T sampled values of
VL/4 plotted against period T sampled values of V̇L/4) close to these two jumps
are depicted in Fig. 6.5. For f = 58 [Hz] (just before the jump, see enlargement
A in Fig. 6.4), the Poincaré map shows a single dot indicating that here the
response is harmonic. However, for f = 60 [Hz] (just after the jump, see
enlargement A in Fig. 6.4), the Poincaré map shows two dots indicating that
now the response is 1/2 subharmonic. Similarly for the scenario depicted in
enlargement B in Fig. 6.4, for f = 117 [Hz] the response is 1/2 subharmonic
and for f = 119 [Hz] the response has become 1/4 subharmonic.

These additional small branches with subharmonic responses are not captured
by the 1-MODE model. In Section 5.4 of Chapter 5 it is shown using a multi-
mode model, that higher beam modes may start to interact with the first beam
mode in the large amplitude 1/2 subharmonic resonance. To examine if the
experimentally observed period doubling behaviour is due to the interaction
with the second beam mode, this mode is included in the semi-analytical model
(i.e. the 2-MODE model is derived, see Section 6.2). In Fig. 6.6, the steady-
state response predicted by the 2-MODE model is compared with experimental
results obtained for beam 2 and vd = 0.03 [V] and mt = 0.51 [kg] (similar
as in Fig. 6.4). Also for this case, the identified parameter values are listed in
Table 6.2 and the eigenfrequencies and damping ratios of the linearized version
of the resulting 2-MODE model are listed in Table 6.3. As can be noted, a
very small value for of the second bending mode is identified in the geometric
imperfection of the beam (i.e. e2 = 0.04, see Table 6.2). In the parameter
identification for the second mode no quadratic damping is taken into account,
i.e. cq,2 = 0 [kg/m].

As can be noted in Fig. 6.6, inclusion of the second beam mode in the model
instigates a second harmonic resonance with softening around f = 215 [Hz].
This second harmonic resonance is observed at a slightly lower frequency in
the experimental results (see Fig. 6.6). Furthermore and in correspondence
with the experimental results shown in Fig. 6.4, in the semi-analytical results
for the 2-MODE model at the 1/2 subharmonic branch near f = 123 [Hz] two
period doubling bifurcations to 1/4 subharmonic response are observed (see
enlargement B in Fig. 6.6). Note that for clarity no experimental results are
shown in the enlargements. The 1/4 subharmonic branch itself exhibits three
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cyclic fold bifurcations resulting in two stable parts of the branch. Due to
its complexity, this branch can not be easily compared with the experimental
results in this region (see the experimental results depicted in enlargement B
of Fig. 6.4, here only results for a downwards frequency sweep are shown).
Nevertheless, it can be noted that for the semi-analytical results, the 1/4
subharmonic response continues to a lower excitation frequency as observed
experimentally. This larger overhang is possibly due to the fact that in the
semi-analytical model for the second mode no quadratic damping is taken into
account.

A similar phenomenon occurs in the top of the first harmonic resonance.
Again in correspondence with the experimental results, near f = 61 [Hz] two
period doubling bifurcations occur (very close to each other) from which (now)
a complex 1/2 subharmonic branch bifurcates. Furthermore, in the semi-
analytical results near f = 72 [Hz] (see enlargement A in Fig. 6.6) a small
3rd superharmonic resonance can be distinguished related to the second beam
mode (f3). This superharmonic resonance can not be seen in the experimental
results but the corresponding frequency interval is so small that is possibly
missed in the frequency sweep due to a too coarse frequency step. Finally, a
very small 2nd superharmonic resonance related to the second beam mode (f3)
can be observed near f = 108 [Hz] both in the semi-analytical response and in
the experimental response.

For further validation, power spectral densities (PSDs) of the experimentally
and semi-analytically obtained velocity v̇(t, L/4−Ub) are compared for f = 58
[Hz] and f = 60 [Hz] in Fig. 6.7 and for f = 117 [Hz] and f = 119 [Hz] in Fig.
6.8. In these PSD plots, the frequency axis of the PSD F is normalized by the
excitation frequency f and for the semi-analytical results (which are based on
the 2-MODE model) the locations of the eigenfrequencies corresponding to the
first two beam bending modes (i.e. f2 and f3, see Table 6.3) are indicated.

First consider the PSD of the harmonic response at f = 58 [Hz] and the 1/2
subharmonic response at f = 60 [Hz] (see also Fig. 6.5). As can be noted, for
the 1/2 subharmonic response obtained for f = 60 [Hz] in both the PSD of
the semi-analytical response and the PSD of the experimental response a large
peak occurs at F/f = 7/2. This peak occurs very close to the eigenfrequency
of the second bending mode (f3) and is not present for f = 58 [Hz]. In a
similar fashion, for the 1/4 subharmonic response obtained for f = 119 [Hz]
again a large peak occurs at the eigenfrequency of the second bending mode
(now occurring at F/f = 7/4) which is not present for the 1/2 subharmonic
response obtained at f = 117 [Hz] (see Fig. 6.8). Consequently, it may be
concluded that at f = 60 [Hz], the second beam bending mode (f3) is excited
due to a two-to-seven internal resonance with the first beam bending mode (f2)
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and at f = 119 [Hz] f3 is excited due to a four-to-seven internal resonance with
f2. As illustrated, these interactions are also predicted by the semi-analytical
2-MODE model. It is of interest to note that a two-to-seven internal resonance
between the first two beam bending modes is also observed experimentally in
[116].

In conclusion, with the 2-MODE model the small extra peaks and associated
jumps and the period doubling behaviour at the top of the first harmonic
resonance and on the subharmonic branch as observed in the experiments can
qualitatively be explained. For a better quantitative match of these details, the
parameters of the model must be further refined and, possibly, also more modes
must be included in the model. A detailed study of complex phenomena on
such a small scale (experimentally or numerically with a multi-mode model) is
very elaborating and out of the scope of this chapter. Nevertheless, it has been
illustrated that with the semi-analytical approach even such small response
details can be studied.



124 Experiments with a base-excited thin beam with top mass

55 60 65 70
 

 

50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

10
1

 

 

90 100 110 120 130

A B

beam 2

˜̇ V
L

/
4

[m
/
s]

f [Hz]

Stable

Unstable

Experiment
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mt = 0.51 [kg] (experiments versus semi-analytical results based on 2-MODE
model).
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Figure 6.7: Power Spectral Density of the response (semi-analytical results
based on 2-MODE model versus experiments) obtained for beam 2 with vd =
0.03 [V], mt = 0.51 [kg], f = 58 [Hz] (top) and f = 60 [Hz] (bottom).
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Figure 6.8: Power Spectral Density of the response (semi-analytical results
based on 2-MODE model versus experiments) obtained for beam 2 with vd =
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6.4 Conclusions

The objective of this chapter is to experimentally validate the semi-analytical
model of the base-excited thin beam with top mass as derived in Chapter
5. At the experimental setup, base excitation is realized via a harmonic input
voltage which is offered to an electrodynamic shaker. For this case, the resulting
acceleration of the base is determined by the interactions between the dynamics
of the electromechanical shaker system and the dynamics of the thin beam
with top mass which is placed on top of the shaker. To be able to compare
the experimental steady-state responses with the semi-analytical steady-state
responses, a coupled shaker/structure model is derived. By the way, the
responses obtained for the coupled shaker-beam system are qualitatively similar
to the responses found for the case of a prescribed base-acceleration which has
been considered in Chapter 5.

At the experimental setup, the steady-state response is examined using stepped
sine frequency sweeps. The experimental results are compared with results
obtained using the semi-analytical approach based on single mode and two
mode discretizations of the transversal displacement field of the beam. The
unknown geometric imperfection and damping parameters of these models are
identified based on experimental steady-state results.

The semi-analytical steady-state responses based on the single (beam) mode
model are globally in good correspondence with the experimental results.
However, the experimental results show additional period doubling behaviour
on the harmonic resonance peak of the first beam mode and its corresponding
1/2 subharmonic resonance. These phenomena are not present in the steady-
state response predicted by the single mode model. It is shown that these
discrepancies can be explained by considering a two mode model. Indeed, due
to nonlinear interactions between the first and the second bending mode of
the beam, the two mode model shows qualitatively similar period doubling
behaviour as observed experimentally.

In conclusion, the semi-analytical results are in good correspondence with
experimental results. Consequently, the semi-analytical approach turns out
to be very suitable for fast and accurate prediction of the dynamic response of
the beam structure with top mass.
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7

Dynamic stability of a base-excited

thin cylindrical shell with top mass

Dynamically loaded thin cylindrical shells can be encountered in a wide
variety of applications, for example in civil engineering structures [136]

and in aerospace structures [1]. Thin cylindrical shells subjected to static
compressive loading are very susceptible for buckling. The classical static
buckling analyses of axially compressed perfect cylindrical shells (based on
linearized small deflection theory, see [17; 146]) predict many closely spaced
buckling loads with buckling modes being sinusoidal both in axial direction
and in circumferential direction. Experiments on the static buckling of axially
compressed cylindrical shells reveal a large scatter in the obtained buckling
loads and notorious discrepancies with the results obtained from the classical
static buckling analyses [8; 17]. Both the inevitable small deviations from
the nominal cylindrical shape (geometric imperfections) and the boundary
conditions have been widely accepted as contributing to the poor correlation
between the experimental results and the classical static buckling results.

In this chapter, dynamic buckling of thin cylindrical shells is considered. The
dynamic loading is introduced in a similar fashion as considered for the thin
beam structure discussed in Chapter 5, i.e. the structure is placed on a vibrating
base while it is supporting a rigid top mass, see Fig. 7.1. This is a load case
with great practical relevance, since cylindrical shells are often employed as
support construction for relatively heavy components. Nevertheless, the effect
of the top mass on the dynamic stability limits of cylindrical shell structures is
not yet considered in previous numerical studies.

Due to the harmonic base-excitation and the weight of the top mass, the cylin-
drical shell under consideration is loaded in axial direction by a combination
of a static load and a time dependent load. Indeed, already in many papers
the dynamic stability of harmonic axially loaded thin cylindrical shells has
been considered [24; 38; 46; 59; 108; 109]. However, these studies consider
parametric instabilities of cylindrical shells without a top mass, i.e. axi-
asymmetrical vibration modes are excited through a Mathieu type of instability
around excitation frequencies equal to two times the eigenfrequency of an axi-

Parts of this chapter are also presented in [82] and [84].
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mt

Ub(t)
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g

Figure 7.1: Base-excited cylindrical shell with top mass.

asymmetrical vibration mode. Due to the top mass, a relatively low frequent
resonance corresponding to axi-symmetrical vibrations is introduced (far below
the parametric instability regions). In this chapter, the dynamic stability of
the shell around this resonance is studied using a semi-analytical approach.

The derived semi-analytical model of the shell is based on Donnell’s nonlinear
shell theory [34]. The effect of in-plane inertia is neglected, resulting in two
static equilibrium equations for the in-plane fields and one dynamic equilibrium
equation for the out-of-plane field. For the case of in-plane boundary conditions
in terms of membrane forces, the equilibrium equations are usually written in
terms of an in-plane stress function and the out-of-plane displacement field
[24; 38; 46; 59; 108]. By solving the stress-function analytically for an assumed
expression of the out-of-plane displacement field, the number of independent
displacement fields is reduced from three to one, resulting in a model with a low
number of DOF (i.e. a static condensation is performed). The stress-function
approach is, however, less straightforward for the case when the boundary
conditions involve the in-plane displacements (as considered here). Another
approach which allows to include the effect of in-plane inertia and satisfying
exactly the in-plane boundary conditions, is to discretize all three displacement
fields using global shape functions [2; 3; 107; 109] or to use a FEA approach
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[13; 14; 32; 140]. A drawback of these approaches, however, is that the resulting
models have relatively many DOFs.

Since the in-plane boundary conditions have a significant influence on the thin
shell behaviour [3; 65; 78; 146], an alternative static reduction approach will
be developed in this chapter, which solves directly the in-plane displacement
fields in terms of the out-of-plane displacement field. The obtained expressions
for the in-plane displacement fields satisfy exactly the in-plane boundary
conditions for the cylindrical shell with rigid end-disks. Note that a comparable
approach, however only for one specific three mode expansion of the out-of-
plane displacement field, is followed in [124]. The resulting nonlinear model
is numerically validated through a comparison with static and modal analysis
results obtained using FEA. The steady-state nonlinear dynamics of the base-
excited cylindrical shell with top mass will be examined using numerical
continuation of periodic solutions for a varying excitation frequency and by
using standard numerical integration.

In the analysis, the influence of geometrical imperfections is taken into
account. For the case of parametrically induced instabilities it is known
that geometrical imperfections have a very mild influence on the dynamic
critical loads [24; 81; 109]. Base-excited cylindrical shells carrying a top mass
are previously studied for the case of shock loading in [124]. Experimental
results considering a base-excited cylindrical shell with a free top mass (i.e.
the top mass is only supported by the cylindrical shell), are presented in [106].
Around the resonance of the first axial symmetric vibration mode, a very severe
unstationary response is found. The obtained results, however, could not be
explained using numerical simulations (see also [110]). An extensive review of
the research performed on the nonlinear vibrations of cylindrical shells until
2003 can be found in [6].

Summarizing, the contributions of this chapter are the derived static condensa-
tion approach of the in-plane fields and the dynamic stability results, including
an imperfection sensitivity analysis, obtained for the (relatively) low frequent
dynamic loading conditions. In addition, results obtained using the semi-
analytical approach will be confronted with FEA results. Note that in the
next chapter, semi-analytical results for a base-excited thin cylindrical shell
with top mass will be confronted with experimental results.

The outline for this chapter is as follows. The next section will deal with
the derivation of the equations of motion. In Section 7.2, buckling of the
cylindrical shell under a static loading will be discussed and a modal analysis
will be performed. The influence of initial imperfections will be illustrated and
results will be compared with FEA results. Dynamic stability of the base-
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Figure 7.2: Cylindrical shell geometry.

excited cylindrical shell with top mass will be discussed in Section 7.3. Finally,
in Section 7.4 conclusions will be presented.

7.1 Modelling approach

In this section, the equations of motion are derived for the thin cylindrical shell
which carries a rigid top mass mt and is loaded in axial direction by a base
motion Ub(t) and by gravity g, see Fig. 7.1. To be able to accurately capture
the mechanical properties of the cylindrical shell which will be used in the
experimental approach in the next chapter, orthotropic material behaviour (i.e.
the directional dependent material properties are specified along two mutually
orthogonal directions) is included during the derivation of the equations of
motion. When appropriate, simplifications for isotropic material behaviour
(i.e. the material properties are not directional dependent) are addressed.

The dimensions of the cylindrical shell are defined by the radius of the
neutral plane R, thickness h and length L. Considering the cylindrical
coordinate system [r = R, x, θ] (see Fig. 7.2), the axial in-plane displacement
field is denoted by u(t, x, θ), the circumferential in-plane displacement field
by v(t, x, θ), the radial out-of-plane displacement field by w(t, x, θ) and the
radial imperfection shape by w0(x, θ). For readability, the notations for the
displacement fields and radial imperfection shape will be abbreviated to u, v,
w and w0, respectively. The axial coordinate x and axial displacement field u
are measured relative with respect to the base-motion Ub(t). Donnell’s shallow
shell theory is adopted [34; 146] as kinematic model for the thin cylindrical shell.
Note that using Donnell’s theory, good agreement between simulation results
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and experimental results is obtained for static (post) buckling in [146] and for
(nonlinear) large amplitude vibrations of thin cylindrical shells in [4].

According to Donnell’s assumptions, the nonlinear strain-displacement rela-
tions read [17; 34]

εx = u,x + 1

2
w,2x +w,x w0,x , κx =−w,xx ,

εθ = 1

R (v,θ +w) + 1

2R2w,
2
θ + 1

R2w,θ w0,θ , κθ =− 1

R2w,θθ ,
γxθ = 1

Ru,θ +v,x + 1

R (w,x w,θ +w,x w0,θ +w0,xw,θ ) , κxθ =− 1

Rw,xθ ,
(7.1)

where ,x means ∂
∂x and ,θ means ∂

∂θ . Note that in Eq. (7.1), the radial
displacement field w and the radial imperfection shape w0 are measured
positively inwards.

Considering orthotropic material properties for the cylindrical shell with
principle axes which coincide with the cylindrical coordinate axes, the stress
resultants and stress couples per unit length are defined by [74; 75]
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where

C11 =
Ex

1 − νxνθ
, C22 =

Eθ

1 − νxνθ
, C33 = Gxθ,

C12 = C21 = νθ
Ex

1 − νxνθ
= νx

Eθ

1 − νxνθ
.

(7.4)

Since it holds that νθEx = νxEθ, the orthotropic shell material is described
by four parameters, i.e. the Young’s moduli in x and θ direction (Ex and Eθ),
the shear modulus Gxθ and one Poisson ratio (either νx or νθ). Note that
for isotropic material Ex = Eθ = E, νx = νθ = ν and Gxθ = E/(2(1 + ν)),
resulting in two independent material parameters.

The following boundary conditions for the cylindrical shell with rigid end-disks
are considered (’-’ means not prescribed)

u u,θ v w Mx

x = 0 0 0 0 0 0
x = L − 0 0 0 0

. (7.5)
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Note that the base-motion does not appear in the boundary conditions, since
u and x are measured relatively with respect to Ub(t). Indeed, for a thin
cylindrical shell mounted between two rigid end-disks, the clamping condition
(in practice) is probably closer to the case w,x = 0 (instead of Mx = 0).
Nevertheless, the clamping condition is assumed to be Mx = 0 since this allows
for a simple expansion of w. This assumption is supported by the fact that
previous studies show that the rotational restraint (Mx = 0 vs. w,x = 0) has
only a mild influence on the static buckling load [146], eigenfrequencies [65; 78],
parametric instabilities [98] and nonlinear vibrations [3; 78]. Furthermore, the
boundary condition in terms of the membrane force Nx at x = L due to the
inertia force of the top mass is not included. This force will be included via
the kinetic energy.

The strain energy of the structure, corresponding to Donnell’s assumptions,
reads as

Us =
1

2

∫ 2π

0

∫ L

0

(Nxεx +Nθεθ +Nxθγxθ) dxRdθ

+
1

2

∫ 2π

0

∫ L

0

(Mxκx +Mθκθ +Mxθκxθ) dxRdθ.

(7.6)

The case mt ≫ mshell, where mt is the top mass and mshell the mass of the
shell, is considered. Therefore, the effect of the mass of the shell is neglected
in the potential energy of the structure

Ug = mtg (Ub(t) + u(t, L, θ)) . (7.7)

Furthermore, the influence of in-plane inertia of the shell is also neglected in
the kinetic energy

T = 1

2
ρh

∫ 2π

0

∫ L

0

ẇ2 dxRdθ + 1

2
mtu̇

2
t , (7.8)

where u̇t = U̇b(t) + u̇(t, L, θ) (note that u,θ = 0 for x = L). Previous studies
concerning nonlinear vibrations of cylindrical shells show that neglecting the in-
plane inertia results in a moderately overestimated softening behaviour [2] and
a moderately overestimated dynamic critical load (with respect to parametric
instabilities) [59; 109]. These studies, however, consider cylindrical shells
without a top mass.

Using Hamilton’s variation principle on the basis of the sum of Eqs. (7.6), (7.7)
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and (7.8), the resulting nonlinear equilibrium equations are

RNx,x +Nxθ = 0, (7.9)

RNxθ +Nθ,θ = 0, (7.10)

Mx,xx +
2

R
Mxθ,xθ +

1

R2
Mθ,θθ +

1

R
Nθ +Nx (w,xx +w0,xx )+

2

R
Nxθ (w,xθ +w0,xθ ) +

1

R2
Nθ (w,θθ +w0,θθ ) = ρhẅ, (7.11)

Note that for isotropic cylindrical shells, Eq. (7.11) can be expressed in a more
compact form:

−D∇4w +
1

R
Nθ +Nx (w,xx +w0,xx )+

2

R
Nxθ (w,xθ +w0,xθ ) +

1

R2
Nθ (w,θθ +w0,θθ ) = ρhẅ, (7.12)

where D = Eh3/(12(1 − ν2)) and the biharmonic operator ∇4 is defined by

∇4w = w,xxxx +
2

R2
w,xxθθ +

1

R4
w,θθθθ . (7.13)

Since the effects of in-plane inertia are neglected, Eqs. (7.9)-(7.11) constitute
a set of two static (in-plane) equilibrium equations (Eqs. (7.9)-(7.10)) and one
dynamic (out-of-plane) equilibrium equation (Eq. (7.11)).

The out-of-plane displacement field is expanded as

w(t, x, θ) =

N∑

i=1

M∑

j=0

[
Qs

ij(t) sin (jnθ) + Qc
ij(t) cos (jnθ)

]
sin (λix) , (7.14)

where λi = iπ/L, i is the number of axial half-waves, n is the number
of circumferential waves and Qs,c

ij (t) are N(2M + 1) generalized degrees of
freedom (DOF). Note that Eq. (7.14) satisfies exactly the boundary conditions
for w, see Eq. (7.5). The N DOF Qc

i0(t) correspond to axi-symmetrical
radial displacements and the 2NM DOF Qs,c

ij (t) (j 6= 0) to axi-asymmetrical
displacement fields. The presence of pairs of modes (with DOF Qs

ij and Qc
ij

for j 6= 0) with the same shape but with a different angular orientation is
due to axi-symmetry of the (perfect) shell. Considering, for example, a radial
imperfection with shape sin(jnθ) sin(λix), the mode Qs

ij will be excited directly
by the axial loading [24]. However, depending on the amplitude and frequency
of the axial excitation, also the companion mode Qc

ij can appear in the response
with a certain difference in phase with respect to the driven mode Qs

ij. The
latter phenomenon may result in a travelling-wave vibration in circumferential
direction [6; 58; 108].
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As a final note regarding the discretization of w, the axi-asymmetrical
deformations of the shell are assumed to be periodic in circumferential direction
(similar as for the linear buckling modes and vibrational eigenmodes of perfect
cylindrical shells). This assumption is also adopted by [2; 3; 24; 38; 46; 59; 107–
109] and allows to use a relatively simple expansion of w. However, other studies
show that the buckling of axially compressed cylindrical shells may (initially)
occur via a circumferentially non-periodic deformation pattern [52; 119; 140].
Such deformations are not considered here since it would require a discretization
of w with many DOFs.

The following (axi-asymmetrical) expansion of the radial imperfection w0 is
considered

w0(x, θ) = h

Ne∑

i=1

ei sin (nθ) sin

(
iπx

L

)
, (7.15)

where Ne ≤ N and ei are dimensionless imperfection amplitudes. Note that
preliminary simulations showed that axi-symmetrical imperfections are of less
importance for the obtained results and are, therefore, not considered.

Using the above expressions for w and w0, the in-plane equilibrium equations
(Eqs. (7.9)-(7.10)) now consist of a set of linear inhomogeneous static partial
differential equations in terms of only u and v. In order to perform a reduction
of the three independent displacement fields to one independent displacement
field w, these two PDEs are solved symbolically. The solution procedure for
this purpose is outlined in Appendix C and results in expressions for u and v
satisfying exactly the in-plane equilibrium equations (Eqs. (7.9)-(7.10))) and
the in-plane boundary conditions (Eq. (7.5)). During this step, an extra DOF
Ut(t) is introduced which corresponds to the unknown axial displacement of
the top mass.

7.1.1 Equations of motion

Now the displacement fields are known, the equations of motion in terms of
the DOFs

Q(t) =
[
Qc

ij(t),Q
s
ik(t),Ut(t)

]T
, i = 1, .., N, j = 0, ..,M, k = 1, ..,M, (7.16)

are determined. Hereto, first the energy expressions (Eqs. (7.6)-(7.8)) are
evaluated symbolically. Linear viscous damping in the structure is included via
the following Rayleigh dissipation function

R = 1

2

N∑

i=1

M∑

j=0

cij

(
Q̇c

ij

)2

+ 1

2

N∑

i=1

M∑

k=1

cik

(
Q̇s

ik

)2

+ 1

2
ctU̇

2
t , (7.17)
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where cij , cik and ct are positive constants. Subsequently, the equations of
motion are determined using Lagrange’s equation

d

dt
T ,Q̇ −T ,Q +V ,Q = Qnc, (7.18)

where V = Us + Ug and
Qnc = −R,Q̇ . (7.19)

In summary, the equations of motion are derived by the following steps

1. Discretize the out-of-plane displacement field w as in Eq. (7.14) and the
radial imperfection shape w0 as in Eq. (7.15).

2. Solve the corresponding in-plane fields u and v. During this step, an
extra DOF Ut(t) is introduced which corresponds to the unknown axial
displacement of the top mass (see appendix C).

3. Substitute the resulting expressions for w, w0, u and v in the energy and
work expressions Eqs. (7.6)-(7.8), and evaluate the integrals symbolically.

4. Derive the equations of motion using Lagrange’s equation Eq. (7.18) and
add to each equation of motion a linear viscous damping term in the form
cijQ̇

s,c
ij or ctU̇t, respectively.

This procedure is implemented in Maple routines [87], allowing to derive the
equations of motions in an automatic manner after the expressions for w and
w0 have been supplied. The equations of motions are exported from Maple [87]
to both Fortran code and Matlab code [89] for further analysis.

To illustrate some key features of the model, the equations of motion of the
perfect shell (w0 = 0 [m]) using an expansion of w with N = M = 1 (see Eq.
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(7.14)) are given

m1Q̈
c
10 + c10Q̇

c
10 +

[
k1 + k3Ut + k2 (Qs

11)2 + k2 (Qc
11)2 +

k4 (Qc
10)

2
]
Qc

10 − k5 (Qc
10)

2 − k6 (Qc
11)

2 − k6 (Qs
11)

2 − k7Ut = 0

m2Q̈
s
11 + c11Q̇

s
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c
10 + k16 (Qc

11)
2
+

k17 (Qc
10)

2
+ k18 (Qs

11)
2

= −mt

(
Üb + g

)
,

where ki and mi are positive constants. The DOF Ut, which has both a linear
coupling and a nonlinear coupling with the axi-symmetrical mode Qc

10 (the
linear coupling is due to the Poisson effect), is directly excited by the prescribed
base-acceleration Üb, see Eq. (7.20). The coupling with the axi-asymmetrical
modes Qs,c

11 is only attained via the non-linear stiffness terms (since in this case
w0 = 0 [m]).

7.2 Static and modal analysis

In this section, first the static response of the cylindrical shell with top mass is
examined. Subsequently, a modal analysis is performed for linearized models
of the cylindrical shell with top mass. The goal of these two studies is to
analyze the static buckling behaviour and the linear eigenfrequencies of the
cylindrical shell including the influence of geometric imperfections and to
test the convergence of the results for various expansions of the out-of-plane
displacement field w. The results are numerically validated via a comparison
with results obtained using the FEM package MSC.Marc. As a test case,
a cylindrical shell is considered of which the static buckling behaviour due to
compressive loading is experimentally studied in [146]. The material properties
of the cylinder, which is made out of isotropic polyester film, are defined in
Table 7.1.

During the experimental axial compression test of this shell [146], the shell
buckles from the axi-symmetrical pre-buckling state to an axi-asymmetrical
post-buckled state which is dominated by one full sine-wave in axial direction
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Table 7.1: Material properties isotropic cylindrical shell.

E 5.56 [GPa]
ν 0.3 [-]
ρ 1370 [kg/m3]
R 100 [mm]
L 160.9 [mm]
h 0.247 [mm] (R/h = 405)

(i.e. i = 2, see Eq. (7.14)) and a circumferential wave number of n = 11.
Therefore, detailed results will be presented for n = 11. In Subsection 7.3.4,
the influence of the specific choice of the value for n on the obtained results
will be further discussed.

7.2.1 FE model

Since a deformation pattern in circumferential direction with n periods is
assumed, only one 1/nth segment is modelled in the FE package MSC.Marc.
The resulting FE model consists of 3500 four-node thin shell elements (100
elements in axial direction and 35 elements in circumferential direction of type
139 [93], see Fig. 7.3. The (nonlinear) kinematic relations used in the FE model
are based on the Kirchhoff assumptions and are valid for large displacements
and moderate rotations. Furthermore, an updated Lagrange procedure is
used. Note that Donnell’s kinematic relations which are used for the semi-
analytical model, are also based on the Kirchhoff assumptions [17]. However, in
Donnell’s theory, further approximations are introduced by assuming that the
deformations are dominated by radial displacements and that the displacement
components are rapidly varying functions of the circumferential coordinate, i.e
n > 4, see [17] and [34]. The latter approximations are not used in the FE
model.

For the FE model, the same boundary conditions are considered as for the
semi-analytical model (see Eq. (7.5)). To enforce periodicity in circumferential
direction, the displacements and rotations of the nodes along the side edges of
the FE model are linked and the displacements in circumferential direction are
suppressed. The top mass is modelled as a point mass of mt/n [kg], attached to
a node placed at the top center. The axial displacement of this node is linked
with the axial displacements of the nodes along the top edge of the FE model
(enforcing the boundary condition u,θ = 0 at x = L). In the FE model, the
initial imperfection is included by positioning the nodes radially according to
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mt/n

Figure 7.3: FE model of a 1/nth segment of the cylindrical shell with top mass
(n = 11).

the considered imperfection shape w0.

7.2.2 Static analysis

For the static analysis, all time-derivatives in the equations of motion are set
to zero and the case Ub(t) = 0 is considered. In the static case, the only force
exerted on the cylindrical shell is due to the weight of the top mass

∫ 2π

0

Nx(x = L)Rdθ = −mtg = −P · Pc [N], (7.21)

where P is a newly introduced dimensionless load-parameter and

Pc = 2πEh2/
√

3(1 − ν2) [N], (7.22)

is the classical static buckling load of the axially compressed cylindrical shell
[17] (Pc = 1289 [N] for the parameters according to Table 7.1). By solving
the resulting algebraic equations for a varying static load P (which can, for
example, be considered as a variation in mt), using the continuation package
AUTO [33], the static (post) buckling behaviour of the cylindrical shell is
examined.

The considered expansion of the imperfection w0 (see Eq. (7.15)) will trigger
the modes with DOFs Qs

i1. Consequently, for a discretization of w (see Eq.
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(7.14)) with M = 2, only the modes with DOFs Qc
i0, Qs

i1 and due to internal
couplings the modes with DOFs Qc

i2 will appear in the static response. The
modes with DOFs Qc

i1 and Qs
i2 do not contribute to the static response and

are, therefore, removed from the model.

In Fig. 7.4, the static response of the axially loaded imperfect shell (e1 =
e2 = 0.284, other ei = 0), based on a 31-DOF model (N = 10,M = 2 with
Qc

i1 = Qs
i2 = 0 [m]) is depicted. The accuracy of this model will be discussed

later on. Note that the load-path is presented in terms of the dimensionless
load P (Eq. (7.21)) and the dimensionless axial displacement

uL = u(t, L, θ)/L. (7.23)

Note that uL = Ut(t)/L, see Eq. (C.12). Furthermore, uL < 0 corresponds
to axial shortening of the cylindrical shell, see Fig. 7.2. Starting at the initial
unloaded state (P = 0), buckling of the shell occurs at the limit-point at
approximately P = Pb = 0.77, see enlargement A in Fig. 7.4. The post-critical
behaviour shows many coexisting stable and unstable post-buckled states. The
deformed shapes for six (stable) states (indicated in Fig. 7.4 with a-f) are shown
in Fig. 7.5. As can be noted, along the complex load-path depicted in Fig. 7.4,
successively the stability is lost and reattained again, resulting in a so-called
’cellular’ buckling sequence [57].

The post-critical load-path exhibits a minimum at point f (P = 0.230). This
minimum is of practical importance since above this load, it is possible that due
to some external disturbance, the shell may jump from the initial unbuckled
state to a stable buckled state. At the local minimum at point c in Fig. 7.4
(P = 0.245, uL = −1.17 · 10−3), the buckled shape is dominated by one full
sine-wave in axial direction, see Fig. 7.5-c. In experiments performed with the
same shell but with slightly different boundary conditions (w,x = 0 instead of
Mx = 0), a comparable (local) minimum post-buckling load with corresponding
axial shortening and buckled shape is obtained (P ≈ 0.24 and uL ≈ −1.3 ·10−3,
see Fig. 3.52 in [146]). Obviously, also the initial imperfection considered in
the semi-analytical model and the imperfection in the actual shell in [146] will
differ. Small imperfections have, however, only a mild influence on such (far)
post-critical responses [24; 109; 146].

The post-buckled state dominated by three axial half sine-waves (see Fig. 7.5-
f) is not found in the experiments of [146]. Instead, a buckling event to a
state with another circumferential distribution (n = 10) is found for further
increasing axial shortening. This buckling event can, obviously, not be captured
with the current semi-analytical model, since during the computations the
circumferential wave number remains fixed to n = 11.
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In Fig. 7.6, the first part of the load-path depicted in Fig. 7.4 (computed using
the 31-DOF semi-analytical model) is compared with results obtained using the
FE model. Note that no stability information for the FE results is included,
since this information is not provided by the FE package. Although the semi-
analytical results do not exactly match the FEM results, there is a good
qualitative correspondence. Compared with the FE results, the semi-analytical
model predicts a 7.4 % higher primary buckling load (FEM : Pb = 0.714,
31-DOF : Pb = 0.767) but a very well corresponding (local) minimum post-
buckling load with corresponding axial shortening, see enlargement A in Fig.
7.4. Note that at two points, also the maximum out-of-plane displacement wm

is compared.

Primary static buckling loads (Pb) for other imperfection shapes, all with only
one nonzero ei and max |w0|/h = 0.5, are compared in Table 7.2. Note that
the buckling loads are obtained in a similar fashion as in Fig. 7.4, i.e. by
determining the limit-point in the initial load-path. Next to results obtained
using the 31-DOF model and the FE model, also results for other discretizations
of w (Eq. (7.14)) are included. As can be noted, the imperfection shapes
with the higher number of axial half wave numbers give the largest decrease
in buckling load. For comparison of the semi-analytical results (for various
discretizations of w) with the FEA results, their mean relative differences ∆
are included in Table 7.2, ∆ being defined by

∆ =
1

6

6∑

i=1

(
P i

b − P i,FEM

b

P i,FEM

b

)
, (7.24)

where P i
b and P i,FEM

b denote the primary static buckling load for ei 6= 0,
computed using the semi-analytical model (for a given discretization of w) and
the FE model, respectively. For the models considered, the 31-DOF model
shows the best overall correspondence with the FE results. The necessity to
include the modes with a double harmonic in circumferential direction (Qc

i2)
is illustrated in Table 7.2 for N = 10, i.e. using M = 2 (31-DOF) instead
of M = 1 (21-DOF) in Eq. (7.14) results in a large decrease in the primary
buckling loads. Due to computational limitations, extension of the 31-DOF
model with even more modes was not possible.

7.2.3 Modal Analysis

Next, the undamped eigenfrequencies of the perfect cylindrical shell with top
mass are determined. Hereto, first the static equilibrium state for a given static
preload is determined. Subsequently, the equations of motion are linearized
around this equilibrium state and a modal analysis is performed. The top
mass is fixed at mt = 10 [kg] and two levels of pre-load are considered, i.e.
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Figure 7.6: Static load-path of imperfect (e1 = e2 = 0.284) cylindrical shell,
FEM vs. 31-DOF semi-analytical model (wm = max |w|/h).

Table 7.2: Primary static buckling loads of the imperfect cylindrical shell (∆
defined by Eq. (7.24))).

Model Pb [-]
N M DOF e1 = 0.5 e2 = 0.5 e3 = 0.5 e4 = 0.5 e5 = 0.5 e6 = 0.5 ∆
6 2 19 0.937 0.659 0.644 0.649 0.618 0.614 27.5%
8 2 25 0.868 0.655 0.531 0.546 0.557 0.526 13.0 %
10 1 21 0.930 0.718 0.596 0.597 0.656 0.621 27.2 %
10 2 31 0.861 0.669 0.541 0.495 0.519 0.463 7.8 %
FEM 0.800 0.642 0.512 0.482 0.456 0.412 -

g = 0 [m/s2] (P = 0) and g = 9.81 [m/s2] (P = 0.076). The results are shown
in Table 7.3, using the same models as used for the static analysis.
The lowest vibration mode is an axi-symmetrical suspension type of mode
and the higher vibration modes correspond to axi-asymmetrical modes, see
also Fig. 7.7. The pre-load (g = 9.81 [m/s2]) results in a small decrease
(2-3%) of the eigenfrequencies corresponding to axi-asymmetrical vibrational
eigenmodes. The results are in good agreement with the FEM results, i.e. the
maximum difference between the semi-analytical results and the FEM results
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Figure 7.7: First three vibrational eigenmodes cylindrical shell (n = 11, top
mass not shown).

is approximately 0.6%. All models predict approximately the same values for
the first three eigenfrequencies. Apparently, for accurate calculation of the
first three vibration modes, less modes are required than for an accurate static
buckling analysis (see Table 7.2).
Including the same geometrical imperfections as considered in Table 7.2, the
eigenfrequencies f1, f2 and f3 of the pre-loaded shell decrease maximally 1.4%,
2.9% and 4.5% (compared to the pre-loaded perfect case), respectively. Similar
as for the buckling loads (see Table 7.2), the largest decreases occur for the
imperfection with the largest number of axial half waves (e6). In conclusion,
the imperfections have more influence on the primary static buckling loads than
on the linearized eigenfrequencies.

Table 7.3: First three eigenfrequencies perfect cylindrical shell with top mass
(n = 11, mt = 10 [kg]).

g = 0 [m/s2] g = 9.81 [m/s2]
N M DOF f1 [Hz] f2 [Hz] f3 [Hz] f1 [Hz] f2 [Hz] f3 [Hz]
6 2 19 116.9 357.6 567.9 116.9 350.6 551.5
8 2 25 116.8 357.5 567.9 116.8 350.5 551.2
10 1 21 116.8 357.5 567.9 116.7 350.5 551.2
10 2 31 116.8 357.5 567.9 116.7 350.5 551.2
FEM 116.6 355.7 568.9 116.6 348.5 552.0
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7.3 Dynamic analysis

In this section, the nonlinear dynamic steady-state response of the cylindrical
shell subjected to the combination of a static load (due to the weight of the
top mass) and a harmonic prescribed base-acceleration

Üb(t) = rdg sin (2πft) , (7.25)

will be studied. The top mass is fixed at mt = 10 [kg] and only the preloaded
case g = 9.81 [m/s2] is considered. Note that for this level of preload
(P = 0.076, see Eq. (7.21)), the unbuckled configuration is still a unique stable
equilibrium state of the cylindrical shell (see Fig. 7.4). For small amplitudes of
the base-acceleration rd [-] the response is expected to be harmonic with small
(out-of-plane) displacements. However, for increasing values of rd the harmonic
response may become unstable and/or severe large (out-of-plane) amplitude
vibrations may appear. The goal of the dynamic analysis is to determine
where such instabilities will occur (i.e. for which combinations of frequency and
amplitude of the base-acceleration) and how these results depend on possible
geometric imperfections in the cylindrical shell. Special attention will be paid
to the behaviour near the first resonance peak at about 117 [Hz], since here the
first instabilities are found. In all simulations, a little amount of damping is
taken into account by setting the linear viscous damping parameters cij and ct
such, that all the linear vibration modes have the same relative damping ratio,
namely ξ = 0.01.

Numerical continuation of periodic solutions [33] with the excitation frequency
f [Hz] as continuation parameter is adopted to study the steady-state behaviour
of the cylindrical shell. The local stability of the periodic solutions is
determined using Floquet theory [120]. Furthermore, for excitation frequencies
where no stable periodic solutions are found, standard numerical integration of
the equations of motion is performed using a Runge-Kutta integration scheme
with adaptive step-sizing (NAG routine D02PDF [96]).

Among the semi-analytical models considered in the static and modal analyses
(see Section 7.2), the 31-DOF model (expanding w with N = 10, M = 2,
see Eq. (7.14), excluding companion modes) showed to be the most accurate
(especially for determining the primary static buckling load, see Table 7.2).
This model will, therefore, also be used in the dynamic analysis. However,
prior to the analysis based on this 31-DOF semi-analytical model, first analyses
will be performed using two models with less DOF. These models are obtained
by setting all DOF in the expansion of w with N = 10 and M = 2, which
correspond to axial-asymmetrical radial displacements (an example of an axial-
asymmetrical deformed shell can be seen in the right plot of Fig. 7.7), to zero.
This results in a 26-DOF model if companion modes are included (see also
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Subsection 7.2.2) and in a 16-DOF model if companion modes are excluded.
Note that the exclusion of the axial-asymmetrical modes may be justified by
the fact that the lowest two vibrational eigenmodes are also axial-symmetrical,
see Fig. 7.7. The models which will be considered for the dynamic analysis are
summarized in Table 7.4.

Table 7.4: Models derived from the full expansion of w with N = 10 and
M = 2, see Eq. (7.14).

16-DOF 26-DOF 31-DOF
axial asymmetrical modes

excluded excluded included
(with DOFs Qs,c

ij with i = 2, 4, ..)

companion modes (with DOFs Qs
i2 and Qc

i1) excluded included excluded

First the nonlinear dynamic steady-state results obtained with the three models
will be discussed for one fixed value of n (n = 11) in Subsections 7.3.1, 7.3.2,
and 7.3.3, respectively. By comparing the results obtained for the three models,
the effect of including the companion modes or the axial-symmetrical modes
will be examined. Hereafter, in Section 7.3.4 the influence of the specific choice
of the value for n on the obtained results will be examined.

7.3.1 Model without companion modes and without
axially asymmetrical modes (16-DOF)

In this subsection, dynamic buckling of the cylindrical shell with top mass due
to the prescribed harmonic base-acceleration Eq. (7.25) is studied in detail
using the most simple model (i.e. the 16-DOF model, see Table 7.4). The
accuracy of this model will be illustrated in the next two subsections. First the
response of the perfect cylindrical shell is considered. Hereafter, the influence of
geometrical imperfections on the found dynamic buckling results is examined.
To obtain more insight in the found dynamic buckling response, the subsection
concludes with an analysis of the exerted axial force on the cylindrical shell
during the dynamic buckling.

The steady-state response of the perfect case (w0 = 0 [m]) for a varying
excitation frequency f is depicted in Fig. 7.8 for rd = 0.27. Note that the
steady-state response is plotted in terms of the following measure

Um = max
T

uL − min
T
uL ≥ 0, (7.26)

where uL denotes the dimensionless axial displacement (see Eq. (7.23)) and
T = 1/f . The response shows a harmonic resonance around the first linear



148 Dynamic stability of a base-excited thin cylindrical shell with top mass

50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2 rd = 0.27

f [Hz]

lo
g
U

m
[-
]

Figure 7.8: Frequency-amplitude plot of the perfect shell for rd = 0.27.

eigenfrequency (f1 = 116.7, see Table 7.3) and does not exhibit any regions of
instability. However, for rd > 0.279, a small region of instability appears in
the top of the harmonic resonance, see Fig. 7.9. Note that the stability of the
harmonic response is lost due the appearance of period doubling bifurcations
at frequencies indicated in Fig. 7.9 with ’�’. The response in the region of
instability is further examined using numerical integration of the equations of
motion. As initial condition, very small perturbations are given to the DOFs
(Qs,c

ij /h = 1 · 10−3) to initiate (possible) instabilities. Transient effects are
excluded by only considering the response after t/T = 2000 (T = 1/f). Results
of this approach for three values of rd and f = f1 are depicted in Fig. 7.10 and
Fig. 7.11. Note that the responses are depicted in terms of two measures, i.e.
the dimensionless axial displacement uL (see Eq. (7.23)) and the dimensionless
out-of-plane displacement

wL/2 = w (t, L/2, π/(2n))/h. (7.27)

Note that wL/2 is scaled using the shell thickness h while uL is scaled using
the shell length L.

For rd = 0.27, i.e. just below the loss of stability of the harmonic response
at f = f1 (see Fig. 7.9), the out-of-plane response is in phase with the axial
shortening and only small out-of-plane displacements are initiated due to the
Poisson effect, see Fig. 7.10.

For rd = 0.3 the harmonic solution is no longer stable at f = f1 and instead a
1/2 subharmonic response is found (period 2T ), see Fig. 7.10 (this response is
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Figure 7.9: Frequency-amplitude plot of the perfect shell for four increasing
values of rd and f close to f1 (f1 = 116.7 [Hz]).

most clearly visible in the time response in terms of wL/2 for rd = 0.30). The
Power Spectral Density (PSD) of this 1/2 subharmonic response in terms of
the measure wL/2 and the normalized frequency F/f1 (the excitation frequency
equals f = f1) is depicted in Fig. 7.12. The 1/2 subharmonic behaviour is
clearly indicated by a peak at F = 1

2
f1. Note that the PSD is determined

from a data set obtained by sampling the response (obtained using numerical
integration) with a fixed time step of ∆t = 1/16000 [s]. Furthermore, as a
reference, the locations of the 16 damped linear eigenfrequencies of the 16-
DOF model are also indicated in Fig. 7.12 (note that f12, f13 and f14 nearly
coincide).

By increasing the amplitude of the base-excitation further to rd = 0.33, a very
severe beating response is found, see Fig. 7.11. This type of response exhibits
short time intervals in which energy is transferred back and forward from the
suspension mode at f = f1 (see Fig. 7.7), to severe axi-asymmetrical out-of-
plane vibrations. The PSD of this beating response is depicted in Fig. 7.13
(in a similar fashion as in Fig. 7.12). The PSD of the beating response is
broad-banded, suggesting that the beating response has a chaotic nature. The
spikes in the PSD at f = 3f1 = f2 and at f = 10f1 = f4 indicate internal
resonances with the modes present at these two frequencies (at f = 3f1 the
second mode with 〈n,m〉 = 〈11, 1〉 occurs and at f = 10f1 the fourth mode
with 〈n,m〉 = 〈22, 1〉 occurs, where m denotes the number of half sine waves
in axial direction). For other values of n, these ratios becomes less favourable
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Figure 7.10: Harmonic (left) and 1/2 subharmonic response (right) (w0 = 0
[m], f = f1).

for internal resonance, but still similar beating types of response are found
(see Section 7.3.4). For further illustration, an enlargement of wL/2 during the
time interval A in Fig. 7.11 is shown in Fig. 7.14. The deformed shapes at six
time instances during this interval of time are shown in Fig. 7.15. As can be
observed from Fig. 7.15, also modes with a relatively short wave-length (i.e.
n = 22 and m > 1) participate in the beating response.

As shown for the perfect cylindrical shell under consideration, there exists a
threshold value rc

d for the base-acceleration rd [-] such that for rd < rc
d the

harmonic solution is always stable and for rd > rc
d there exists a small region

of instability in the top of the harmonic resonance. In this region the response
is first subharmonic and for further increasing rd, a response with short time
intervals of very severe out-of-plane vibrations is obtained.

Next the influence of geometrical imperfections of the cylindrical shell on
the dynamic buckling results is examined. The steady-state response of the
imperfect (e1 = 0.5) cylindrical shell with top mass for a varying excitation
frequency f is depicted in Fig. 7.16. Note that for ei 6= 0, see Eq. (7.15), a direct
coupling is present between the axi-symmetrical modes with DOF Qc

i0 and the
axi-asymmetrical modes with DOF Qs

i1. Similar as for the perfect case, the
stability of the harmonic response is firstly lost at period doubling bifurcations
(indicated in Fig. 7.16 with ’�’) in the top of the harmonic resonance around
f = f1 for increasing values of rd. Compared to the perfect case (rc

d = 0.279,
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Figure 7.11: Beating response (w0 = 0 [m], f = f1).
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Figure 7.12: Power Spectral Density of 1/2 subharmonic response depicted in
Fig. 7.10 (right: f = f1, rd = 0.30).

see Fig. 7.9), the value of rc
d is (slightly) lower for e1 = 0.5 (rc

d = 0.252).
The response for f = f1 and rd = 0.25 (i.e. just below rc

d), obtained using the
numerical integration approach, is depicted in Fig. 7.17 and in a similar fashion
for rd = 0.255 (just above rc

d) in Fig. 7.18. In contrast to the perfect case, for
the imperfect case (e1 = 0.5) the response for values of rd just above rc

d is
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Figure 7.13: Power Spectral Density of beating response depicted in Fig. 7.11
(f = f1, rd = 0.33).
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Figure 7.14: Enlargement of wL/2 during time interval A in Fig. 7.11.

directly the beating response (instead of first a subharmonic response, see Fig.
7.10). The sudden transition between the harmonic response and the beating
response is more clearly visualized in Fig. 7.19. This bifurcation diagram is
obtained by plotting 1000 times the T -sampled steady-state value of wL/2 for
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each value of rd (∆rd = 0.001).

In the dynamic case, a time-varying axial loading is exerted on the cylindrical
shell with a magnitude of

∫ 2π

0

Nx(x = L)Rdθ = −mt

(
Üt + Üb + g

)
− ctU̇t = −Pd(t) · Pc [N], (7.28)

where Pd(t) is a newly introduced dimensionless dynamic loading parameter
and Pc is the classical static buckling load of the axially compressed cylindrical
shell, see Eq. (7.22). For the imperfection under consideration (e1 = 0.5), the
primary static buckling load of the cylindrical shell equals Pb = 0.8607 (see
Table 7.2). Obviously, the primary static buckling load Pb and the dynamic
load Pd(t) can not be compared in a straightforward manner since for the
dynamic case the load is varying in time and out-of-plane inertia and (small)
damping effects of the shell are taken into account which are absent in the static
case. Nevertheless, it is of interest to examine the level of the dynamic loading
and to compare it with the static buckling load as a reference. In Fig. 7.20, the
dynamic loading Pd(t) is shown for (parts of) the responses depicted in Fig.
7.17 and Fig. 7.18. For the case rd = 0.25 the dynamic loading moderately
exceeds the static buckling load (i.e. max (Pd(t)) /Pb = 1.175). Nevertheless,
the response remains harmonic for this value of rd (see Fig. 7.17). For the
slightly higher value of the prescribed base-acceleration (rd = 0.255), initially
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Figure 7.17: Harmonic response (e1 = 0.5 and f = f1).

the dynamic loading slowly increases to a maximum of max (Pd(t)) /Pb = 1.193,
see enlargement A in Fig. 7.20). From this point, the large out-of-plane
displacements occur for a short time interval (see also Fig. 7.18), in which the
dynamic load drops to a level far below Pb (likely due to the fact that the axial
rigidity of the cylindrical shell is lost for large out-of-plane displacements).
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Figure 7.18: Beating response (e1 = 0.5 and f = f1).
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Figure 7.19: Bifurcation diagram (e1 = 0.5, f = f1).

After the severe out-of-plane displacements have disappeared, the dynamic
loading starts to recover and after some time again a maximum is reached.
Consequently, the beating response seems to be a cycle of 1. dynamic loading
slowly building up, 2. a dynamic buckling event in which large out-of-plane
vibrations occur, 3. a large drop in magnitude of the dynamic loading causing



156 Dynamic stability of a base-excited thin cylindrical shell with top mass

2000 2005 2010
−1

−0.5

0

0.5

1

1.5

2
rd = 0.25

t/T [-]

Pb

P
d
(t

)
[-
]

2000 2020 2040 2060 2080 2100
−1

−0.5

0

0.5

1

1.5

2

2020 2030

1.0255

1.0265

rd = 0.255

A

t/T [-]

Pb

P
d
(t

)
[-
]

Figure 7.20: Dynamically exerted load for two values of rd and e1 = 0.5, f = f1.

the large out-of-plane vibrations to disappear after which the dynamic loading
can be again slowly build up.

7.3.2 Model with companion modes but without axially
asymmetrical modes (26-DOF)

Next, the effect of extending the semi-analytical model with the companion
modes, on the obtained dynamic buckling results for the imperfect cylindrical
shell is examined (i.e. the 26-DOF is used, see Table 7.4). Similarly as found
in [109] for the onset to parametric instabilities of an imperfect cylindrical
shell without a top mass, it appeared that inclusion of the companion modes
does not affect the value of rc

d. Furthermore, for values of rd just above rc
d, the

companion modes also do not contribute to the beating response. Consequently,
for determining the dynamic critical loads of the imperfect cylindrical shell with
top mass (considering imperfections according to Eq. (7.15)), the companion
modes do not have to be included in the semi-analytical model.

7.3.3 Model with axially asymmetrical modes but with-
out companion modes (31-DOF)

Finally, the effect of including the axially asymmetrical modes is examined, i.e.
the now 31-DOF model is used (see Table 7.4). Considering the response of the
perfect shell obtained with this model, stability of the harmonic solution for
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f = f1 is lost at rc
d = 0.274 which is slightly lower than obtained for the model

without the axially asymmetrical modes (16-DOF model : rc
d = 0.279, see also

Fig. 7.9). The transition from the harmonic solution to the beating type of
solution via an intermediate subharmonic solution is not changed by including
the axial-asymmetrical modes. However, now also axially asymmetrical modes
participate in the response obtained for rd > rc

d.

The values of rc
d obtained using the 31-DOF model for imperfection shapes with

only one nonzero ei and max |w0|/h = 0.5 (similar as considered in Table 7.2),
are shown in Table 7.5. For the axial symmetrical imperfections shapes (e1, e3
and e5), also the values of rc

d obtained using the 16-DOF model are included.
As can be noted, the values for rc

d obtained using the 31-DOF model and the
16-DOF are the same or differ very little. Although for the 31-DOF model also
axially asymmetrical modes participate in the response obtained for rd > rc

d,
the post-critical responses obtained with the 31-DOF model are qualitatively
similar to those obtained using the 16-DOF model, see for example Fig. 7.21.
Similar as for the primary static buckling loads (Pb, see Table 7.5), the shape
of the imperfection has a large influence on rc

d. Consequently, for the load-case
and cylindrical shell under consideration, the dynamic critical load exhibits a
similar severe imperfection sensitivity as found for the primary static buckling
load.

Table 7.5: Dynamic critical loads rc
d of the imperfect cylindrical shell.

rc
d [-]

Model e1 = 0.5 e2 = 0.5 e3 = 0.5 e4 = 0.5 e5 = 0.5 e6 = 0.5
16-DOF model 0.2518 - 0.1633 - 0.1347 -
31-DOF model 0.2518 0.16157 0.1633 0.12285 0.1318 0.11468

7.3.4 Influence circumferential wave number n

In the static, modal and dynamic analyses performed until now, only one
circumferential wave number has been considered (n = 11). The selection
of this circumferential wave number is based on experimental static buckling
results [146], where the shell under consideration (initially) buckles to a post-
buckling state dominated by n = 11. Obviously, this does not guarantee that
for the dynamic case n = 11 will also prevail with respect to other values of
n. It is, therefore, of interest to examine the influence of n on the obtained
results. Note that for this analysis, the 16-DOF model will be used (see Table
7.4). Similar as in Subsections 7.3.1, 7.3.2, and 7.3.3, the top mass is fixed at
mt = 10 [kg] and all damping ratios are set to ξ = 0.01.
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Figure 7.21: Beating response (e5 = 0.5, f = f1, rd = 0.14) computed using
the 16-DOF model and the 31-DOF model (see Table 7.4).

In Fig. 7.22, the influence of n on the second eigenfrequency f2 (the first axi-
asymmetrical vibration mode, see Fig. 7.7), the primary static buckling load
Pb and the value of rc

d is depicted. For f2 only the preloaded perfect case is
considered, whereas for Pb and rc

d three imperfection shapes are considered (all
with only one nonzero ei and max |w0|/h = 0.5). Note that the lowest value for
f2 is obtained for n = 10, the lowest value for Pb for n = 14 and e5 = 0.5 and
the lowest value for rc

d for n = 13 and e5 = 0.5. For Pb the lowest values are
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always obtained for the imperfection shape with the highest number of axial
half waves (e5 = 0.5). This is not the case for rc

d.

The dynamic responses for values of rd just below rc
d and just above rc

d for the
considered imperfection shapes in Fig. 7.22, are shown for n = 12 in Fig. 7.23
and for n = 13 in Fig. 7.24. For the case rd > rc

d, also Poincaré maps (i.e.
T sampled values of uL plotted against T sampled values of wL/2) are shown.
Similar as in Fig. 7.12 and Fig. 7.13, the locations of the 16 damped linear
eigenfrequencies of the 16-DOF model (for the considered value of n) are again
indicated.

Starting with n = 12 and e1 = 0.5 (see Fig. 7.23), the response for rd just above
rc
d (rc

d = 0.194) is the familiar beating response with very large out-of-plane
displacements. The Poincaré map of this response (see Fig. 7.23 for e1 = 0.5
and rd = 0.2) is a bounded cloud of points, suggesting that the response has
a chaotic nature [129]. Considering the same value of n but now for e3 = 0.5,
the Poincaré map of the response for rd just above rc

d (rc
d = 0.108) becomes

a closed curve, suggesting that the response now has a quasi-periodic nature
[129]. For n = 12 and e5 = 0.5, the Poincaré plot of the response for rd just
above rc

d (rc
d = 0.118) shows only a single dot indicating a harmonic post-

critical response.

For n = 13 the responses for rd just above rc
d seem to be chaotic for the cases

e1 = 0.5 and e3 = 0.5 and for e5 = 0.5, a 1/2 subharmonic post-critical response
is obtained (see Fig. 7.24). It should be noted that exact classification of the
post-critical responses (for example by computing Lyapunov exponents [129])
is out of the scope of this chapter.

More important, for each value of n, the first instabilities are always found
close to the resonance peak corresponding to the low frequent suspension type of
vibration mode, see e.g. Fig. 7.7. Furthermore, for each value of n, the obtained
post-critical responses show large increases in out-of-plane deflections which
are undesirable in practice. Which type of post-critical response and which
value of n will be critical in practice will depend on the actual imperfection
in the shell. In addition to this observation, it should be noted that for the
considered values of n, the lowest obtained values for rc

d are closely grouped
together. This may suggest that if one would include additional DOFs to the
model corresponding to modes with different circumferential wave numbers (or
perform an experiment on a real cylindrical shell), multiple modes with different
values of n may start to interact for rd > rc

d leading to even more complicated
dynamics as observed in this section. For the onset to parametric instabilities
of a cylindrical shell without a top mass, this is for example observed in [47].
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Figure 7.22: Influence of n on the second eigenfrequency f2, the primary static
buckling load Pb and the dynamic critical load rc

d.

The results presented above suggest that the dynamic stability analysis of base-
excited cylindrical shells structures with top mass and thus with a relatively low
frequent axi-symmetrical vibration mode (Fig. 7.7-a) should be concentrated
around the corresponding low frequent resonance peak. This observations is
supported by the experimental results presented in [106] for a base-excited
cylindrical shell with a free top mass (i.e. the top mass is only supported by
the cylindrical shell). Indeed, in these experiments around the resonance of
the first axial symmetric vibration mode, a very severe unstationary response
is found. The obtained results of [106], however, could not be explained using
numerical simulations.
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Figure 7.23: Responses for rd < rc
d and rd > rc

d for various imperfection shapes
(f = f1, n = 12).
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Figure 7.24: Responses for rd < rc
d and rd > rc

d for various imperfection shapes
(f = f1, n = 13).
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7.4 Conclusions

The objective of this chapter is to determine the dynamic stability limits of
a base-excited thin cylindrical shell with top mass and how these results are
affected by possible geometrical imperfections.

First a semi-analytical model is derived which satisfies exactly the in-plane
boundary conditions. For this purpose, a static condensation procedure is
derived in which the in-plane fields are directly solved in terms of the assumed
expressions for the radial displacement field and the radial imperfection shape.
The resulting model is numerically validated through a comparison with static
buckling and modal analysis results obtained using FEA. Static buckling loads
appear to be very sensitive for imperfections. The sensitivity of modal analysis
results with respect to imperfections is much less. Although there are still
some discrepancies, generally a good correspondence is obtained between the
semi-analytical results and the FEA results.

The dynamic stability of the base-excited cylindrical shell is studied using
numerical continuation of periodic solutions with the excitation frequency
as continuation parameter. Due to the top mass, a relatively low frequent
resonance is introduced, corresponding to an axi-symmetrical vibration mode.
It is shown that for increasing excitation amplitude, the harmonic response
may become unstable in the peak of this resonance and a beating response
with severe out-of-plane deformations may appear instead. Depending on
the considered imperfection and circumferential wave number, several types
(periodic, quasi-periodic and chaotic) of (severe) post-critical behaviour are
observed. Similar to the static buckling case, the critical value for the amplitude
of the prescribed harmonic base-acceleration for which the harmonic response
changes to the severe post-critical response, highly depends on the initial
imperfections present in the shell. The semi-analytical models considered in
this thesis include only modes with a single circumferentially wave number.
By considering the dynamic stability limits of a base-excited thin cylindrical
shell with top mass for several different circumferential wave numbers and
for several imperfections, closely grouped critical values for the amplitude of
the base-acceleration are obtained. Not only the presence but also the shape
of an imperfection may strongly affects the critical values for the amplitude
of the base-acceleration. This may suggested that there exists a worst-case
imperfection shape, i.e. for this shape the lowest critical value for the amplitude
of the base-acceleration occurs. Determination of the worst-case imperfection
shape(s) is a topic for future research.

The presented semi-analytical results suggest that the dynamic stability
analysis of base-excited cylindrical shells structures with substantial top mass
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(and thus with a low frequent axi-symmetrical vibration mode) should be
concentrated on the corresponding low frequent resonance peak. In practise,
cylindrical shells are often employed as support construction of relatively heavy
components. Thus in many cases, the cylindrical shell will exhibit such a low
frequent axi-symmetrical vibration mode.

The dynamic stability results obtained for the (relatively) low frequent dynamic
loaded cylindrical shell with top mass as presented in this chapter are not
observed in previous numerical studies of dynamically axially loaded cylindrical
shells, since these studies did not include the effect of a top mass. As a
next important step towards validation of these results, in the next chapter
experiments will be performed on a base-excited cylindrical shell with top mass
and experimental results will be confronted with semi-analytical results.



8

Experiments with a base-excited thin

cylindrical shell with top mass

In the previous chapter, a cylindrical shell with top mass being subjected
a prescribed harmonic base acceleration is examined. It is shown that

due to the top mass, the cylindrical shell exhibits a relatively low frequent
resonance corresponding to an axi-symmetric vibration mode dominated by
axial displacements. Furthermore, it is shown that by increasing the amplitude
of the prescribed base-acceleration, the harmonic response may become
unstable in the peak of this resonance and a beating type of response with
severe (undesired) out-of-plane deformations may appear instead.

In this chapter, experimental results for a base-excited thin cylindrical shell
with top mass will be presented and a comparison with semi-analytical results
will be made. For this purpose, the same experimental setup will be used as
considered for the experimental analysis of the base-excited thin beam with
top mass (see Chapter 6). However, now the thin beam is replaced with a thin
cylindrical shell. Recall that at the experimental setup, the base-excitation
is realized by supplying a harmonic input voltage to an electrodynamic shaker
system. As stated before, for this case the resulting base acceleration will not be
purely harmonic, will not have a constant amplitude but will be determined by
the dynamics of the shaker system carrying (in this case) the thin cylindrical
shell with top mass. Results for voltage excitation can thus not directly be
compared with results for a prescribed harmonic base-acceleration as considered
in Chapter 7. In analogy with Chapter 6 and to be able to compare the
experimental results with the semi-analytical results, the equations of motion
for the base-excited cylindrical shell with top mass (as derived in Chapter 7)
will be coupled with a model of the shaker.

At the experimental setup, the cylindrical shell with top mass is supported
by the shaker which has a relatively low support stiffness in axial direction.
Nevertheless, also for this case a low frequent resonance dominated by axi-
symmetrical shell vibrations occurs (i.e. far below the parametric instability
regions, similar as in Chapter 7). In analogy with the results presented in
Chapter 7, in the top of this peak the stability of the harmonic response may
be lost and (possibly) severe responses may appear instead if the excitation
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amplitude is increased above some threshold. This will be confirmed in a
preliminary numerical dynamic steady-state analysis based on the derived semi-
analytical coupled shaker/structure model.

Next a brief literature survey regarding experiments conducted on dynamically
loaded cylindrical shells is presented. Experimental results regarding paramet-
ric instabilities of an axial excited cylindrical shell with a free top edge (ı.e. no
top mass) are reported in [16]. Cylindrical shells loaded in transversal direction
by a point load are studied experimentally in [49] and [4]. Thin cylindrical
shells immersed in a fluid and subjected to a horizontal base excitation are
experimentally investigated in [41] and the effect of an internal fluid flow on
the dynamic stability of a cylindrical shell is examined experimentally in [64].
Experimental results considering a base-excited cylindrical shell with a free
top mass (i.e. the top mass is only supported by the cylindrical shell), are
presented in [106]. Around the resonance of the first axi-symmetric vibration
mode, a very severe unstationary response is found. In this region, the
base-acceleration due to the shaker could not be controlled to remain purely
harmonic. Furthermore, the obtained results could not be explained using
numerical simulations. Consequently, a combined numerical and experimental
analysis of a base-excited cylindrical shell carrying a top mass, as will be
presented in this chapter, is not previously presented.

The outline for this chapter is as follows. In the next section, the experimental
setup of the cylindrical shell with top mass will be introduced and the material
properties of the cylindrical shell will be determined. In Section 8.2, the coupled
shaker-structure model will be discussed. In Section 8.3, a modal analysis
and static buckling analysis will be performed and results with compared
with FEA results. The theoretical modal analysis results will be compared
with experimental results. Dynamic stability of the cylindrical shell with
top mass excited by the shaker will be studied numerically in Section 8.4
and experimentally in Section 8.5. Finally, in Section 8.6 conclusions will be
presented.
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Figure 8.1: Cylindrical shell from PET beverage bottle.

8.1 Experimental setup

The (seamless) cylindrical shells which are used for the experiments are cut out
from unused beverage bottles made of Poly Ethylene Terephthalate (PET), see
Fig. 8.1. The obtained cylindrical shells have radius R = 44 [mm] and (average)
thickness h = 0.23 [mm] (the shell thickness varies in axial direction by
approximately 2%). The PET bottles are produced by using a blow moulding
technique. During this process, the material is first stretched in the axial
direction of the bottle and subsequently in the circumferential direction of the
bottle. Since this biaxial stretching is performed with different stretch ratios in
the two (perpendicular) directions, a directional dependency of the elasticity
properties is introduced [28]. In [150], it is found that the elasticity properties
of a biaxially stretched thin PET film may fairly well be approximated using
an orthotropic symmetric material description with principle directions aligned
with the two stretch directions. This approximation is also used to characterize
the elasticity properties of the PET cylindrical shell. More specifically, the shell
is assumed to be made of orthotropic material with principle directions e1 and
e2 coinciding with respectively the axial coordinate x and the circumferential
coordinate θ (i.e. the two stretch directions), see Fig. 8.1.
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cylindrical shell
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Figure 8.2: Exploded view of one clamping ring for cylindrical shell.

The elastic properties of orthotropic shells are described by four parameters, see
Eq. (7.2)-Eq. (7.4). For an orthotropic material, the in-plane Young’s modulus
at an angle φ with respect to the principle axis e1 (i.e. in this case the x-axis)
is determined by [39]

1

Eφ
=

cos4 φ

Ex
+

sin4 φ

Eθ
+

1

4

[
1

Gxθ
− 2νx

Ex

]
sin2 2φ. (8.1)

By performing tensile tests on samples which are cut-out from the shell in the
axial direction (φ = 0) and the circumferential direction (φ = π/2), the Young’s
moduli Ex and Eθ are estimated. The Poisson ratios are estimated based on
values from literature [39; 150]. Additional tensile tests are performed using
samples which are cut-out from the PET bottle under an angle φ = π/4. Based
on the estimated Young’s modulus for these samples (Eπ/4) and the estimated
values for Ex, Eθ and νx, the shear modulus Gxθ can be obtained from Eq.
(8.1). The mass density ρ is determined by weighting a number of test samples.
The resulting shell parameters are listed in Table 8.1.

An exploded view of the construction used to clamp the bottom edge and the
top edge of the cylindrical shell is depicted in Fig. 8.2. The thin cylindrical
shell edge is fixed between an inner ring which fits exactly to the inner diameter
of the shell and a conical ring, see Fig. 8.2. The outer diameter of the conical
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Table 8.1: Material and geometrical properties of the orthotropic cylindrical
shell.

Ex 3.85 [GPa]
Eθ 6.00 [GPa]
Gxθ 1.94 [GPa]
νx 0.25 [-] (νθ = 0.39)
ρ 1350 [kg/m3]
R 44 [mm]
L 85 [mm]
h 0.23 [mm] (R/h = 191)

ring has a conical shape. The outer ring, which has internally also a conical
shape, is screwed over the conical ring on the inner ring. In this manner, the
conical ring is compressed radially on the cylindrical shell surface resulting in
a stiff circle line contact between the clamping rings and the thin shell.

A picture and a schematic overview of the experimental setup are depicted
in Fig. 8.3. The thin cylindrical shell, on its top and bottom fixed between
clamping rings, is mounted between two linear sledges with very low friction
in axial direction, see Fig. 8.3. At the top side, the linear sledge is based
on air bearings and at the bottom side the linear sledge is realized as a
elastic mechanism based on folded leaf springs. The purpose of these support
mechanisms is to minimize transversal movements and rotations of the bottom
and top edges of the cylindrical shell (corresponding to the boundary conditions
of the semi-analytical model, see Eq. (7.5)). The upper linear sledge and upper
clamping ring (total mass = 4.7 [kg]) also act as the rigid top mass (i.e.mt = 4.7
[kg]). The moving mass of the lower linear sledge, including the mass of the
bottom clamping ring and the mass of the shaker armature, equals mo = 4.1
[kg].

The axial excitation of the cylindrical shell is realized using an electrodynamic
shaker system, see Fig. 8.3. A periodic excitation is introduced by supplying a
harmonically varying input voltage

E0(t) = vd sin (2πft) [V], (8.2)

to the power amplifier which output voltage is supplied to the shaker. Due this
voltage, a current will run through the shaker coil generating a force in axial
direction on the assembly on top of the shaker. The amplifier works in a voltage
mode of operation (e.g. the output voltage of the amplifier is kept proportional
to its input voltage) and no active feedback is used to control the acceleration
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Power amplifierE0(t)

Figure 8.3: Picture and schematic overview of the experimental setup (a: top
linear sledge based on air bearings, b: LVDT, c: cylindrical shell, d: laser
vibrometer, e: bottom elastic support mechanism, f: electrodynamic shaker).
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of the shaker armature (Üb). Consequently, the resulting acceleration of the
shaker (and thus the effective axial force on the cylindrical shell with top mass)
will not be proportional to Eq. (8.2), but will be determined by the dynamics
of the electro/mechanical shaker system with on top the cylindrical shell with
top mass. More details about the shaker are provided in Appendix A.

For measuring the deformation of the shell, two sensors are used. Firstly, the
relative axial displacement of the top mass (Ut(t), see Fig. 8.3) is measured
using an LVDT (Shaevitz 100 MHR). Furthermore, a laser vibrometer (Ono
Sokki LV 1500) is used to measure the transversal velocity (ẇ) at one point of
the cylindrical shell. The signal of the laser vibrometer is numerically integrated
to obtain measurements in terms of transversal displacements w. To avoid drift
during the numerical integration, the measurement signal is filtered using a
high pass filter with a cutoff frequency of f = 1.6 [Hz] (see Eq. (6.2)). The
data-acquisition and input signal generation is performed using a Laptop with
Matlab/Simulink in combination with a TUeDACS AQI [55] (sample frequency
4 [kHz]).

8.2 Semi-analytical model

In the numerical analysis as presented in Section 7.3, the axial forcing of
the cylindrical shell is realized by prescribing a harmonically varying base-
acceleration. However, as noted before, at the experimental setup the axial
forcing of the cylindrical shell is realized by supplying a harmonic input voltage
to the shaker system. For this case, the resulting acceleration of the shaker is
determined by the dynamics of the electro/mechanical shaker system with on
top the cylindrical shell with top mass. Results for this type of excitation can
thus not be compared with results for a directly prescribed harmonic base-
acceleration (as considered in Chapter 7).

To be able to compare the experimental results with the semi-analytical results,
the equations of motion for the base-excited cylindrical shell must be coupled
with a model of the electrodynamic shaker. The dynamics of the shaker are
captured using a set of two coupled linear ODEs (one describing the mechanical
part of the shaker and one describing the electrical part of the shaker). The
derivation of the shaker model and the approach to obtain the total set
of equations of motion describing the coupled shaker/structure dynamics is
outlined in Section A.1 of Appendix A.

All semi-analytical results presented in this section are based on the same
16-DOF expansion of w as considered in Section 7.3 of Chapter 7 (i.e. axial
asymmetric modes and companion modes are not included) in combination
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with the geometrical and (orthotropic) material properties as listed in Table
8.1. This expansion of w showed to be sufficient for predicting the onset to the
severe beating response as found for the case of prescribed base-acceleration.
Coupled with the model for the shaker (see Appendix A), the resulting semi-
analytical model possesses in total 18-DOF. Similar to the approach in Section
7.3 of Chapter 7, wherever the influence of imperfections is addressed, only
single mode imperfection shapes (i.e. only one ei 6= 0) will be considered.

8.3 Modal and buckling analysis

To obtain insight in the eigenfrequencies and damping ratios of the experi-
mental setup, experimental modal analyses are performed. Results will be
compared with semi-analytical results (using the 18-DOF model with w0 = 0
[m], see Section 8.2) and for some cases also with FEM results. For the FEA,
the same type of elements and kinematic relations are used as discussed in
Subsection 7.2.1. However, now orthotropic material parameters are used and
the full cylindrical shell is modelled (using 100 elements in axial direction and
300 elements in circumferential direction).

First, the eigenfrequencies corresponding to axial symmetric modes (see also
Fig. 7.7) are determined. For this purpose, FRFs are measured by exciting the
system with a randomly varying input voltage E0 while measuring the relative
axial displacement of the top mass Ut (with the LVDT, see Fig. 8.3). The
resulting FRF (see Fig. 8.4) shows a heavily damped (ξ1 = 0.30) resonance at
f = f1 ≈ 12 [Hz] and moderately damped (ξ2 = 0.05) resonance at f = f2 ≈
182 [Hz]. The first resonance corresponds to a suspension type of vibration
mode of the shaker (dominated by Ub). The second resonance corresponds to
a vibration mode dominated by Ut. Based on the experimentally determined
damping ratios, the damping parameter of semi-analytical model ct (cij are
kept zero, see Eq. (7.17)) is tuned to fit these ratios. In Fig. 8.4, also the
FRF obtained using the 18-DOF semi-analytical model is depicted. As can
be noted, until f = 300 [Hz] the semi-analytical results are in very good
agreement with the experimental results. The measured FRF shows small
resonances around f = 350 [Hz] which are not present in the semi-analytical
results. These resonances are likely due to the finite stiffness of the shaker
support construction.

The eigenfrequencies and damping ratios of the lowest axi-asymmetric vibra-
tional eigenmodes of the cylindrical shell (which are also axial-symmetric, see
Fig. 7.7) are determined while the cylindrical shell with the clamping rings
was not mounted between the two linear sledges. Instead, the cylindrical
shell with clamping rings and top mass is attached at the bottom side to a
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Figure 8.4: FRF from input voltage E0(t) to relative axial top mass
displacement Ut(t).

heavy rotatable table. The top mass was left unsupported for this case. Next,
FRFs are determined by exciting the cylindrical shell at the top mass using an
impulse hammer while measuring the out-of-plane velocity at 40 equidistantly
distributed points along the circumference of the shell at height x = L/2 (using
the same laser vibrometer applied at the setup, see Fig. 8.3). Based on these
FRFs, the eigenfrequencies with corresponding eigenmodes and damping ratios
are determined, see [31] for more details. The experimental results are shown
in Table 8.2. For n = 7 no results are included since for this value of n,
experimentally no mode could be identified. In Table 8.2, also undamped
eigenfrequencies of the perfect cylindrical shell structure, determined using the
semi-analytical approach (using the 18-DOF model) and the FEA, are shown.
As can be noted, the semi-analytical results are in good correspondence with the
FEA results (maximum difference 2% for n = 4). The semi-analytical results
show an average difference of 8% with the experimental results. Differences may
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Table 8.2: Eigenfrequencies of lowest axi-asymmetric modes (18-DOF and
FE model consider the undamped case for w0 = 0 [m], ξn1 denotes the
experimentally estimated damping ratio).

n 18-DOF [Hz] FEM [Hz] Experiment [Hz] ξn1 [-]
4 1415 1387 1293 0.005
5 1070 1063 1030 0.007
6 896 896 886 0.010
7 858 858 - -
8 929 926 997 0.020
9 1076 1070 1165 0.010
10 1276 1268 1496 0.007
11 1514 1506 1683 0.020

be due to various reasons, e.g. due to imperfections (which are not accounted
for in the semi-analytical and FE model), due to inaccuracies in the identified
material properties and/or measurement inaccuracies.

For the orthotropic cylindrical shell subjected to a static axial compressive
force, an analytical expression is not available for the theoretical static buckling
load (i.e. similar to Eq. (7.22) for isotropic cylindrical shells). Therefore, as a
reference, the static buckling of the orthotropic (perfect) shell is determined
using a linearized buckling eigenvalue analysis based on the 18-DOF semi-
analytical model and by using FEA (using the same model as used for the
modal analysis). The 18-DOF semi-analytical model predicts the first buckling
of the perfect cylindrical shell to be Pc = 990 [N] while the FEA predicts
Pc = 975 [N] (2% lower). Based on the buckling load predicted by the FEA,
the weight of the top mass as considered during the experiments equals 5% of
the static buckling load, i.e. mt · g/Pc = 0.05.

8.4 Numerical steady-state analysis

In this section, a numerical steady-state analysis will be performed for the
cylindrical shell with top mass excited by the shaker. All results obtained
are based on the 18-DOF semi-analytical model as discussed in Section 8.2.
Similar to Section 7.3 of Chapter 7, the objective of the dynamic analysis is
here to determine where instabilities will occur (i.e. for which combinations of
excitation frequency f and amplitude vd of the input voltage, see Eq. (8.2)) and
how these results depend on possible geometric imperfections in the cylindrical
shell. The amount of damping taken into account during the simulations is
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Figure 8.5: Frequency-amplitude plot of the imperfect shell (e1 = 0.5).

based on the modal analysis results as discussed in the previous section, i.e.
the damping ratios of the first two (axi-symmetric) modes are set to ξ1 = 0.3
and ξ2 = 0.05 (related to ct). To all other vibration modes (related to cij),
ξ = 0.01 is assigned which corresponds (more or less) to the average of the
experimentally determined damping ratios of the lowest axi-asymmetric modes
(see Table 8.2).

For the analysis, numerical continuation of periodic solutions [33] will be used
to determine the region(s) where the stability of the harmonic response is
lost. In the frequency regions where the harmonic response is no longer stable,
the response is further examined using standard numerical integration and a
numerical implementation of a stepped frequency sweep procedure. Detailed
results are presented for a circumferential wave number n = 9 and various
imperfection shapes while considering three (single mode) imperfection shapes,
i.e. e1 = 0.5, e3 = 0.5 and e5 = 0.5. The influence of the selected value for n
will be addressed at the end of this section.

Using numerical continuation of periodic solutions with the frequency f [Hz]
of the input voltage as continuation parameter (see Eq. (8.2)), it is found
that for sufficient large excitation amplitude vd, the harmonic response looses
stability firstly in the top of the resonance peak around f2 = 182 [Hz]. Recall
that the resonance around f = f2, corresponds to vibrations dominated by
axial displacements of the shell (i.e. by Ut). Similar to the case of prescribed
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Figure 8.6: Response for vd = 0.26 [V], f = f2 and e1 = 0.5 [-].

base-acceleration, responses with large out-of-plane deflections appear, when
the stability of the harmonic solution is lost. The value of vd for which the
harmonic solution looses stability for f = f2 is called vc

d.

For the perfect cylindrical shell (w0 = 0 [m]), the harmonic solution looses
stability in the peak of the resonance near f = f2 for vd = vc

d = 0.298 [V].
By introducing an imperfection of the form e1 = 0.5 (see Eq. (7.15)), this
critical value decreases 15% to vc

d = 0.253 [V]. For this case, the frequency-
amplitude plots around f = f2 for vd just below and just above vc

d are depicted
in Fig. 8.5. Note that in this section the same response measures are used as in
Section 7.3, see Eq. (7.26) and Eq. (7.27). As can be noted, for vd > vc

d, a very
complicated branch of unstable periodic solutions appears in the resonance
peak around f = f2. Using the same procedure as outlined in Section 7.3,
the response in this region of instability is further examined using standard
numerical integration of the equations of motion, see Fig. 8.6. Similar to the
case of a prescribed base-acceleration, a very severe beating response appears
in the region of instability. The PSD of this beating response is broad-banded
(see Fig. 8.7), suggesting that this response has a chaotic nature.

During the experiments, the response of the cylindrical shell with top mass
excited by the shaker will be examined using the stepped sine frequency sweep
procedure as outlined in Appendix B. The obtained frequency-amplitude
plots from these frequency sweep experiments can not fully be compared
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Figure 8.7: Power Spectral Density of time history of wL/2 depicted in the
upper plot of Fig. 8.6.

with the frequency-amplitude plots computed using the continuation approach
since the latter ones do not include nonstationary responses (as obtained
numerically for vd > vc

d). Therefore, the numerical response is also examined
using an implementation of the stepped sine procedure based on numerical
integration of the equations of motion. During the stepped sine frequency
sweep, the excitation frequency is incrementally increased (in case of sweep-
up) or decreased (in case of sweep-down) using a step size ∆f = 0.5 [Hz]. For
each discrete value of f , the measurement signals are saved during Ne = 150
excitation periods. Response measures are determined based on m1(t) = uL(t)
(see Eq. (7.23)) and m2(t) = wL/2 (see Eq. (7.27)) using the averaging
procedure explained in Appendix B. Here, the measurement data during the
first Nt = 50 periods is not used, to minimize transient effects. The measures
obtained are denoted by M̃1 = Ũm and M̃2 = W̃m.

Results for the numerical frequency sweep for e1 = 0.5 and vd = 0.26 > vc
d are

shown in Fig. 8.8. As can be noted, very severe responses (note that W̃m is
plotted on a logarithmic scale) are found in the region where no stable harmonic
solutions are found with the continuation approach (i.e. 182 ≤ f ≤ 185, see
Fig. 8.5. Furthermore, the transitions between the low amplitude (harmonic)
responses and the high amplitude (nonstationary) responses occur suddenly
(i.e. the response in terms of W̃m shows large jumps at the borders of the
frequency region where the high amplitude responses are found).
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Figure 8.8: Frequency-amplitude plot based on frequency sweep analysis for
e1 = 0.5 and vd = 0.26 [V] (simulation).

Next, an imperfection of the form e3 = 0.5 is considered. Using continuation
of periodic solutions for this case, a somewhat different scenario is found in the
top of the resonance around f = f2, see Fig. 8.9. First of all, the harmonic
response looses stability for a much lower value of vd (i.e. vc

d = 0.145 [V]).
Furthermore, for vd > vc

d two regions of instability appear. Between these two
regions, a small branch with stable harmonic solutions is found (see enlargement
A, Fig. 8.9). An example of the response in the right region of instability at
f = 183 [Hz] is depicted in Fig. 8.10. The PSD of this response (see Fig.
8.11.) shows many discrete peaks at frequencies F being incommensurate with
the excitation frequency (i.e. components for which F/f is irrational number)
suggesting that this beating response has a quasi-periodic nature. In the left
region of instability a different response occurs at f = 179 [Hz], see Fig. 8.12.
The PSD of this response (see Fig. 8.13) is broad-banded suggesting that the
response now has a chaotic nature. A numerical frequency sweep analysis for
vd = 0.15 > vc

d [V] reveals that in both regions where no stable harmonic
solutions are obtained, again severe responses appear instead, see Fig. 8.14.
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Figure 8.9: Frequency-amplitude plot of the imperfect shell (e3 = 0.5).
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Figure 8.11: Power Spectral Density of the time history of wL/2 depicted in
the upper plot of Fig. 8.10.
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Figure 8.12: Response for vd = 0.15 [V], e3 = 0.5 and f = 179 [Hz].
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Figure 8.13: Power Spectral Density of the time history of wL/2 depicted in
the upper plot of Fig. 8.12.

170 175 180 185 190 195
2

2.5

3

3.5

4

x 10
−3

 

 

170 175 180 185 190 195
0

1

2

3

4

 

 

f [Hz]

Ũ
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Figure 8.14: Frequency-amplitude plot based on frequency sweep analysis for
e3 = 0.5 and vd = 0.15 [V] (simulation).
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Next the frequency-amplitude plot for an imperfection of the form e5 = 0.5
is discussed, see Fig. 8.15. For this case, the critical amplitude for the input
voltage is even lower, i.e. vc

d = 0.135 [V]. For vd > vc
d, a region appears at the

left from f = f2 where two stable harmonic solutions coexist. The frequency
sweep analysis results for this case in terms of W̃m (see Fig. 8.16), shows that
here a softening response appears. Near f = 183 [Hz] also a sudden jump can be
seen in the stepped sine results in terms of W̃m. This jump occurs in the small
frequency region where no stable harmonic solutions exist (see enlargement A
in Fig. 8.16). In this small region, beating responses are found comparable to
the response as shown in Fig. 8.12.

Finally, the influence of the considered circumferential wave number n on the
critical amplitude of the input voltage (vc

d) is examined. In Fig. 8.17, the
influence of n on the value of vc

d is depicted for three imperfection shapes.
For the considered range of n, the lowest value of vc

d is obtained for n = 9 and
e5 = 0.5, while vc

d is more than a factor two higher for n = 5 and e1 = 0.5. This
indicates that, similar to the case of prescribed base-acceleration (see Fig. 7.22
in Chapter 7), the obtained critical value highly depends on the imperfection
shape. Furthermore, also in analogy with the results obtained for the case
of prescribed base-acceleration, the lowest obtained critical amplitudes of the
input voltage are closely grouped together. As stated before, this may suggest
that if one would include additional DOFs to the model corresponding to modes
with different circumferential wave numbers (or perform an experiment on a
real cylindrical shell), multiple modes may start to interact for vd > vc

d, leading
to even more complicated dynamics than observed in this section.
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Figure 8.15: Frequency-amplitude plot of the imperfect shell (e5 = 0.5).
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8.5 Experimental steady-state analysis

In this section, experimental results obtained for the shaker excited cylindrical
shell with top mass will be discussed. The experimental steady-state results
are obtained for a varying excitation frequency and a varying excitation
amplitude using the stepped sine procedure as outlined in Appendix B. For the
experimental stepped sine analysis, the same parameters (Ne = 150, Nt = 50,
see Appendix B) and response measures (Ũm and W̃m) are used as discussed
for the numerical stepped sine analysis, see Subsection 8.4. Note that for
the experimental analysis, the angular location for measuring the transversal
velocity of the shell with the laser vibrometer is chosen by testing initially a
number of angular positions along the circumference of the cylindrical shell
at height x = L/2, see Fig. 8.3. The location where the largest velocities are
measured is used during the actual experiments. As stated before, the obtained
velocity measurements are numerically integrated to obtain measurements in
terms of transversal displacement wL/2 (from which eventually the measure W̃m

is determined). The measure Ũm is computed using the LVDT measurements,
see Fig. 8.3.

In Fig. 8.18, stepped frequency sweep results for various values of vd and
∆f = 0.5 [Hz] are depicted. As can be noted, for the smallest considered
amplitude of the input voltage (vd = 0.02 [V]), a single resonance peak appears
near f = 177 [Hz] (close to f = f2 = 182 [Hz]). However, by increasing
the value of vd, additional peaks appear close to this peak. Furthermore,
by increasing the value of vd, the largest resonance peak shifts a little to
the left. Time histories of the steady-state response for f = 170 [Hz] in
terms of wL/2 and their PSDs are depicted in Fig. 8.19 and Fig. 8.20. To
minimize the effect of measurement noise, each PSD is averaged over 8 sets
of 2048 data points, measured using a sample frequency of 4 [kHz] and an
anti-aliasing filter. For vd = 0.06 [V] (see Fig. 8.19), the PSD is dominated
by peaks at integer multiples of the excitation frequency (F/f = 1, 2, 3..)
indicating a harmonic response. However, for a slightly higher value of vd

(i.e. vd = 0.08 [V], see Fig. 8.20), additional peaks appear in the PSD at
frequencies being incommensurate with the excitation frequency (i.e. there are
components F/f which have an irrational value) meaning that the response
has become non-stationary. The transition from the harmonic response to
the non-stationary response occurred without a (noticeable) sudden increase
in out-of-plane vibrations, i.e. the frequency-amplitude plot does not exhibit
jumps for this value of vd (see Fig. 8.18). Note that in the semi-analytical
analysis the appearance of additional peaks around f = f2 also occurred, see
for example Fig. 8.14. However, there the additional peaks correspond directly
to very severe nonstationary responses with high amplitude.
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Figure 8.18: frequency sweep results (’+’ sweep down, ’o’ sweep up).
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Figure 8.19: Measured dimensionless out-of-plane displacement (wL/2, top)
and corresponding PSD (bottom) for f = 170 [Hz] and vd = 0.06 [V].

By increasing the value of vd further to vd = 0.14, the frequency-amplitude
plot starts to exhibit jumps near f = 162 [Hz] and near f = 170 [Hz], see
enlargement A in Fig. 8.18. Especially the jump near f = 170 [hz] rapidly
increases if vd is increased further, see the frequency-amplitude plot for vd = 0.2
[V] in Fig. 8.21. Furthermore, several small transition regions can be observed,
see enlargements A and B in Fig. 8.21. For this level of vd, the jump near
f = 170 [hz] could also very clearly be noted audibly. More specifically, for the
sweep down, the noise produced by the cylindrical shell significantly increased
suddenly after passing the jump. By examining the time histories of the sweep-
down response in terms of wL/2 just before the large jump (f = 170 [Hz],
see Fig. 8.5) and just after the large jump (f = 167.5 [Hz], see Fig. 8.23),
a significant change of the response can be noted. At f = 167.5 [Hz], the
response not only has a much larger amplitude but also has a much broader
PSD compared to f = 170 [Hz].

The transition from the harmonic response towards the nonstationary response
is further examined by performing stepped sine amplitude sweeps (∆vd =
0.0025 [V]). Results of this investigation (now only in terms of out-of-
plane displacements W̃m) are depicted in Fig. 8.24 for various excitation
frequencies in the frequency region where the large jumps occurred during the
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Figure 8.20: Measured dimensionless out-of-plane displacement wL/2 (top) and
corresponding PSD (bottom) for f = 170 [Hz] and vd = 0.08 [V].

stepped frequency sine sweeps. As can be noted, for all considered excitation
frequencies, a transition in response amplitude can be observed in the low
excitation amplitude region (i.e. vd < 0.03 [V]). These transitions can also
be noted in the measurements in terms of uL (not shown). Possibly, these
transitions are due to the presence of little dry friction somewhere in the shaker,
the LVDT sensor and/or the air bearing supported upper sledge (see Fig. 8.3).
The transitions in the ’large’ excitation amplitude region for f = 165 and
f = 167.5 [Hz] are more important. At these transitions (around vd = 0.19
[V]), the response amplitude starts to increase rapidly. Similar as during the
frequency sweeps, these sudden increases could also be heard very clearly. The
responses with the largest amplitude are found for f = 167.5 [Hz]. As already
illustrated in Fig. 8.23, for this excitation frequency and vd = 0.2 [V], the
corresponding ’large’ amplitude response also exhibit a very broad PSD.

In conclusion, the experiments confirm that for increasing excitation amplitude,
the harmonic response around the (relative low frequent) resonance at f = f2
[Hz] may switch to a nonstationary (large amplitude) response with a very
broad PSD. However, in the experiments the transition is far less clear
as observed during the semi-analytical analysis (see Section 8.4). In the
experiments, already for relatively low values of the excitation amplitude vd,
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Figure 8.21: Frequency sweep results for vd = 0.2 [V] (’+’ sweep down, ’o’
sweep up).
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Figure 8.22: Measured dimensionless out-of-plane displacement wL/2 (top) and
corresponding PSD (bottom) for f = 170 [Hz] and vd = 0.20 [V].

additional peaks start to appear around the resonance at f = f2 (see Fig. 8.18).
Furthermore, in this frequency region also transitions are found where the
response switches from a harmonic response to a non-stationary response. In
the experimental analysis these transitions occur, however, without (noticeable)
sudden increases of the out-of-plane vibrations of the shell. This behaviour is
not found in the numerical analysis. For larger amplitudes of the harmonic
input voltage, the experimental frequency-amplitude plot indeed starts to
exhibit jumps for vd ≥ 0.14 [V] around f = 162 [Hz] and f = 170 [Hz]. By
increasing vd further to vd ≥ 0.19 [V], large amplitude responses with a very
broad PSD appear for excitation frequencies in the neighbourhood of f = 167.5
[Hz].

Quantitatively, the semi-analytical results do not show a clear match with
the experimental results. This can be explained by (a combination) of two
main causes. Firstly, this mismatch can be explained by the imperfection
sensitivity of the post-critical response as illustrated in the semi-analytical
analysis (e.g. compare Fig. 8.8, Fig. 8.14 and Fig. 8.16). The cylindrical
shell used in the experiments will obviously not be geometrically perfect and
its actual (unknown) radial imperfection shape will be different from the
imperfection shapes considered in the semi-analytical analysis. Furthermore,
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Figure 8.23: Measured dimensionless out-of-plane displacement wL/2 (top) and
corresponding PSD (bottom) for f = 167.5 [Hz] and vd = 0.20 [V].

at the experimental setup, also other types of imperfections will be present,
for example small misalignments between the lower and the upper sledge (see
Fig. 8.3), small thickness variations of the shell and non-perfect shell clamping
conditions.

As a second cause, arbitrary imperfections in the shell and/or in its boundary
conditions will simultaneously trigger multiple axi-asymmetrical modes with
different circumferential wave numbers (n). The effect of the participation of
multiple modes with different circumferential wave numbers is not examined
in the semi-analytical analysis. However, the effect of variation in the
circumferential wave number n on the dynamic stability has been considered
in the semi-analytical analysis for several imperfections, see Fig. 8.17. From
these analysis follows that the lowest obtained critical amplitudes of the input
voltage are closely grouped together for different values of n. This suggests that
in case of arbitrary imperfections, multiple modes with different circumferential
wave numbers may start to interact for vd > vc

d. To examine such responses
using the semi-analytical approach, more DOFs (corresponding to modes with
other circumferential wave numbers) should be included in the expansion of w
and w0 (see Eq. (7.14) and Eq. (7.15)).
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Nevertheless, the presented experimental results agree qualitatively with the
semi-analytical results in the sense that for increasing excitation amplitude,
the harmonic response around the (relative low frequent) resonance at f = f2
[Hz] may switch to an nonstationary (large amplitude) response with a very
broad PSD. This confirms that the dynamic stability analysis of base-excited
cylindrical shells structures with top mass and thus with a relatively low
frequent axi-symmetrical vibration mode (Fig. 7.7-a) should be concentrated
around the corresponding low frequent resonance peak.

With respect to a detailed analysis of the experimental response, much more
sensors should be used. With the current two sensors (the LVDT and
the laser vibrometer), it is not straightforward to obtain insight in which
(axi-asymmetrical) modes substantially participate in the response. To be
able to measure instantaneously the vibrations of the complete cylindrical
shell surface, currently a measurement technique based on sound pressure
measurements [118] using a cylindrically orientated array of microphones is
under development.

In addition, in order to quantitatively verify semi-analytical models and in order
to validate the observed imperfection sensitivity of the dynamic instability
phenomena, it would be of interest to measure the actual (level of) imperfection
of the cylindrical shell and to consider various shells with different imperfections
shapes and amplitudes. These will be topics for further research.

8.6 Conclusions

The objective of this chapter is to determine numerically and experimentally,
the dynamic stability limits of a thin cylindrical shell with top mass which
is axially excited at the base using an electrodynamic shaker. For this case,
the resulting acceleration of the base is determined by the interactions of the
dynamics of the electro/mechanical shaker system carrying the cylindrical shell
with top mass. To be able to compare the experimental results with the semi-
analytical results, a coupled shaker/structure model is derived. The linearized
model is validated by comparing numerical and experimental results for the
FRF from input voltage to top mass acceleration and eigenfrequencies.

The coupled shaker/cylindrical shell/top mass structure exhibits two (rela-
tively) low frequent resonances. The first resonance (f1) corresponds to a
suspension type of vibration mode of the shaker and the second resonance
(f2) corresponds to a vibration mode dominated by axial displacements of the
cylindrical shell. Numerical analysis show that around the second resonance,
the harmonic response may become unstable and a nonstationary response
with severe out-of-plane deformations may appear instead. The critical value
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for the input voltage for which the harmonic response changes to the severe
post-critical response, highly depends on the initial imperfections present in
the shell.

Experiments quantitatively confirm the dynamic response predicted by the
semi-analytical model (including the shaker dynamics) showing that in the
neighbourhood of the (relative low frequent) resonance at f = f2, the harmonic
response may switch to a severe nonstationary response by increasing the
excitation amplitude. A quantitative match between the experimental and
the semi-analytical results is not realized yet. In order to achieve this it is
important to extend the semi-analytical model with modes corresponding to
multiple circumferential wave numbers and to measure the actual imperfection
of the shell under experimental investigation, so that these can be included in
the semi-analytical model.

The presented experimental results confirm the observation from the semi-
analytical analysis, that the dynamic stability analysis of base-excited cylindri-
cal shells structures with top mass and thus with a relatively low frequent axi-
symmetrical vibration mode should be concentrated around the corresponding
low frequent resonance peak.



9

Conclusions/Recommendations

In this chapter the main conclusions regarding the work in this thesis will be
presented and recommendations for future research will be given.

9.1 Conclusions

The response of a dynamically loaded thin-walled structure may change
abruptly due to a small change of one or more of the system and/or
load parameters. Such sudden changes show a strong similarity to the
phenomena of static buckling of structures and are, therefore, often denoted
as dynamic buckling. The resistance of structures liable to buckling, to
withstand dynamic (i.e. time-dependent) loading is often addressed as the
dynamic stability of these structures. The dynamic stability analysis of thin-
walled structures encompasses several challenges. Firstly, determining the
time-response of dynamically loaded thin-walled structures is computationally
complex, especially since in such analyses (at least) geometrical nonlinearities
should be taken into account. Furthermore, in general time-dependent loads
are described by multiple parameters (i.e. multi-parameter studies must be
performed) and a wide variety in possible time-dependent loading types can
be considered, like for example shock/impact loading, step loading, periodic
loading or stochastic loading. Finally, the behaviour of thin-walled structures
may be very sensitive to geometric imperfections (small deviations from the
nominal shape) and loading imperfections.

To obtain competitive designs for dynamically loaded thin-walled structures
such as discussed above, it is vital to be able to understand, predict, and
eventually optimize the dynamic stability behaviour of the structure. However,
design strategies and fast (pre-) design tools for thin-walled structures under
dynamic loading are still lacking. In this thesis, a set of computational tools
for modelling and analysis of dynamically loaded thin-walled structures is
developed and/or combined. The tools are developed for structures with a
relatively simple geometry. The geometric simplicity of the structures allows
to derive approximate models with a relatively low number of degrees of
freedom which are, therefore, very suitable for extensive parameter studies (as
essential during the design process of a thin-walled structure). These models
are derived via an energy based approach based on analytical expressions for
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the undeformed and deformed structural geometry. This approach has been
implemented in a symbolic manipulation software package in such a manner
that model variations can be easily performed. In the analyses, both nonlinear
static and nonlinear dynamic responses will be computed using numerical
techniques in combination with the derived models (i.e. sets of coupled
nonlinear ordinary differential equations). Hereto, a set of designated numerical
tools is combined (e.g. continuation tools for equilibria, periodic solutions
and bifurcations, and numerical integration routines) to solve the analytically
derived models in a computationally efficient manner. The combination of the
symbolic derivation of the model and the numerical techniques to obtain the
solutions is called a semi-analytical approach. To illustrate and to test the
abilities of the developed semi-analytical tools, four case studies are examined.
For each of the case study, new research results have been found with respect to
existing literature. Moreover, these results have been verified by FEM analysis
and/or experiments.

In the first case study (Chapter 3), dynamic buckling of shallow arches due
to shock loading in transversal direction in studied. For this structure and
loading, dynamic buckling corresponds to a sudden reverse of the curvature of
the shallow arch if the transversal shock load exceeds a critical value (i.e. the
dynamic buckling load). In the case study, the semi-analytical tools are used to
study the effect of the arch shape (i.e. the initial curvature of the arch) on the
dynamic buckling load. It is shown that the dynamic buckling load, in contrast
to the static buckling load, can be influenced significantly by varying the arch
shape. Small asymmetries in the arch shape (i.e. geometric imperfections) have
only a mild effect on the dynamic pulse buckling load and do not significantly
change the sensitivity of the dynamic pulse buckling load with respect to the
arch shape parameter. Quasi-static buckling results, modal analysis results
and nonlinear dynamical transient analysis results obtained with the semi-
analytical approach and obtained from FEM analysis are compared and a good
correspondence is obtained.

The second test case (Chapter 4) considers dynamic buckling of a (statically)
buckled beam subjected to harmonic excitation in transversal direction. The
buckled beam structure possesses two coexisting stable static equilibrium
states. Consequently, for sufficient large periodic transversal excitation, the
buckled beam may exhibit severe vibrations which encircle both equilibrium
states, referred to as snap-through motions. In the derived model, the beam
is assumed to be inextensible. Based on Taylor series expansions of the
inextensibility constraint and the exact curvature of the beam, and by using
one or more displacement functions, a semi-analytical modelling approach
is presented. The effect of using Taylor expansions of the inextensibility
constraint and the exact curvature of the beam higher than third order is not
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previously considered in literature. Nevertheless, in this case study it is shown
that Taylor expansions of at least of seventh order or higher are necessary to
obtain a good match with results obtained using accurate FEM analysis. Also
inclusion of the effect of the axial inertia of the beam appeared to be important
to get a good match with the FEM analysis results. With the developed semi-
analytical approach such model variations (i.e. varying the order of the Taylor
expansions and including or excluding the effect of axial inertia) can be studied
very effectively.

The third case study (Chapters 5 and 6) considers a base-excited thin beam
with top mass. The vertical beam is subjected to an axial static pre-load
due to the presence of gravity plus an axial dynamic load due to the base
motion. For this case, the same modelling assumptions as presented in the
previous chapter are followed. However, now also geometric imperfections in
the beam are incorporated. First, in a preliminary numerical analysis (Chapter
5), base-excitation in the form of prescribed harmonic base-acceleration is
considered. The lowest vibration modes of the beam structure correspond
to modes dominated by transversal displacements (i.e. beam bending modes).
The bending modes of the imperfect beam are excited both in a direct manner
and in a parametric manner. In general and for the considered level of
imperfection, the (subharmonic) resonance due to the parametric excitation
(i.e. parametric resonance) appears to be the most severe. For parametric
resonance to occur, the excitation amplitude must exceed a certain critical
value. It is shown that this critical value (mildly) depends on the level
of geometric imperfection in the beam and (strongly) on possible nonlinear
damping characteristics of the beam. The parametric resonance may appear as
a resonance peak emerging from the harmonic response branch, as a separate
branch (island) or as a combination of both. Such complex appearance of
the parametric resonance peak complicates the computation of the critical
value for the excitation amplitude. It is shown that the threshold value of
the excitation amplitude for the existence of parametric resonance can be
determined in a straightforward manner using a two-parameter continuation
approach of bifurcations.

In the second part of the third case study (Chapter 6), semi-analytical results
are compared with experimental results. For this purpose an experimental
setup dedicated to test base-excited structures with top mass is realized. At
the experimental setup the base-excitation is realized by supplying a harmonic
input voltage to an electrodynamic shaker system. To be able to compare
the experimental results with the semi-analytical results, the semi-analytical
model of the thin beam structure is coupled with a model of the shaker system.
In the semi-analytical approach, single mode and two mode discretizations of
the transversal displacement field of the beam are considered. The unknown
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geometric imperfection and damping parameters of the resulting model(s) are
identified based on experimental steady-state results. The semi-analytical
steady-state responses based on the single (beam) mode model are in good
correspondence with the experimental results. However, still some qualitative
discrepancies can be observed. It is shown that these discrepancies occur
because of the nonlinear interactions between the first and the second bending
mode of the beam. Obviously, such interactions can only be predicted correctly
by a two mode model. The semi-analytical results based on the two mode model
are in good agreement with the experimental results.

The last case study considers a base-excited thin cylindrical shell with top
mass. The dynamics of thin cylindrical shells may depend strongly on the in-
plane boundary conditions. However, a procedure to derive a (nonlinear) semi-
analytical model with a low number of degrees of freedom and which satisfies
exactly the in-plane boundary conditions is not readily available in literature.
Therefore, such an approach is derived in this thesis. Initially, the resulting
model is numerically validated through a comparison with static buckling and
modal analysis results obtained using FEM analysis.

Similar as for the beam with top mass, first a preliminary numerical analysis
is performed considering base-excitation in the form of a prescribed harmonic
base-acceleration (Chapter 7). The lowest resonance frequency of the cylin-
drical shell with top mass corresponds to an axi-symmetrical vibration mode
dominated by in-plane displacements in axial direction. It is shown that for
increasing excitation amplitude, the harmonic response may become unstable
in the peak of this resonance and that a beating response with severe out-of-
plane deformations may appear instead. The critical value for the amplitude of
the prescribed harmonic base-acceleration for which the harmonic response
changes to the severe post-critical beating response highly depends on the
initial imperfections present in the shell. As shown in many other studies
in literature, for harmonically axially excited cylindrical shells without top
mass, the dynamic stability limits are in general determined by parametric
resonance(s) near twice the eigenfrequency of a bending vibration mode of
the cylindrical shell (i.e. an axi-asymmetrical vibration mode). However, the
results presented in Chapter 7 indicate that the dynamic stability analysis of
harmonically axially excited cylindrical shells with a relatively high top mass
and thus with a relatively low frequent axi-symmetrical vibration mode should
be concentrated around the corresponding resonance peak. The dynamic
stability results as presented in Chapter 7 are not observed in previous
numerical studies of dynamically axially loaded cylindrical shells, since these
studies did not include the effect of a top mass.
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In Chapter 8 (part two of the last case study), the dynamic stability of
a base-excited thin-cylindrical shell with top mass is examined using the
realized experimental setup (i.e. the same setup as used in Chapter 6 for
the experiments with the base-excited thin beam with top mass). To be able
to compare the experimental results with semi-analytical results, also here
a coupled shaker/structure model derived. At the experimental setup, the
cylindrical shell with top mass is supported by the shaker which has a relatively
low support stiffness in axial direction. Nevertheless, also in this case a low
frequent resonance dominated by axi-symmetrical shell vibrations occurs. In
analogy with the results presented in Chapter 7, semi-analytical results indicate
again that in the top of this peak the stability of the harmonic response
may be lost and severe out-of-plane beating responses may appear instead
if the excitation amplitude is increased above some threshold. Experiments
qualitatively confirm the dynamic response predicted by the semi-analytical
model (including the shaker dynamics). It has been illustrated that the
differences between the experimental results and the semi-analytical results
for the cylindrical shell may be due to the strong dependency of the results
with respect to the geometrical imperfections present in the shell.

In summary, with the adopted semi-analytical approach, for four case studies
new insights and results have been obtained. For each case study, the semi-
analytical models are validated through a comparison with results obtained
using FEM analysis. Furthermore, for the last two cases, semi-analytical results
have been compared with experimental results and good (quantitative and/or
qualitative) correspondences have been obtained. In conclusion, it has been
shown that the semi-analytical approach is a valuable tool in the (pre-) design
process of thin-walled structures under dynamic loading.

9.2 Recommendations

In this thesis, a semi-analytical approach to study in a computational
effective manner the dynamic buckling of thin-walled structures is proposed.
Furthermore, an experimental setup has been realized to test base-excited
structures carrying a top mass. The semi-analytical approach in combination
with experiments is used in this thesis to predict and verify the dynamic
buckling a thin beam and a thin cylindrical shell subjected to a harmonic
base-excitation. Base-excited thin-walled structures with top mass represent
an important class of structures in structural and aerospace engineering.
It is, therefore, recommended to exploit the powerful combination of the
semi-analytical approach and the experimental setup to study also other
structures (e.g. plate, frame or panel type of structures and/or initially buckled
structures) and also to consider other types of base-excitation (e.g. shock
loading, stochastic loading or combined types of loading).
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As for example shown in Chapter 7 and 8 for the base-excited thin cylindrical
shell with top mass, dynamic buckling loads for shell type structures may
be very sensitive to initial imperfections. In this thesis, only geometric
imperfections are considered. However, imperfections in the loading and/or
the boundary conditions may also be important. Therefore, it is recommended
to also study the effect of such imperfections. Furthermore, to validate the
imperfection sensitivity of dynamic buckling loads, several similar structures
with different geometric imperfections (different shape and/or amplitude)
may be examined experimentally. Especially the determination of worst-case
imperfection shapes (i.e. the imperfection shape with a predefined maximum
amplitude for which the dynamic buckling load is minimal) is of interest. To be
able to make a good quantitative comparison with numerical and experimental
results it is important to measure the geometric imperfections so that these
can be included in the semi-analytical model.

With respect to the experimental setup it is recommended to extend the
measurement system such that vibrations of two dimensional structures (i.e.
plates and shells) can be characterized better. This is important since
for a good correspondence between semi-analytical results and experimental
results, the discretization used for the semi-analytical model must be able
to approximately describe the experimentally observed vibration/buckling
patterns. Furthermore, it would be of interest to apply a feedback control
strategy for the shaker such that a prescribed harmonic base-acceleration can
be realized accurately. In this manner, the results become more generally
applicable and no coupled structure/shaker model has to be applied to be able
to make a comparison with experimental results. However, given the nonlinear
behaviour observed for the base-excited structures with top mass (i.e. softening,
period doubling, beating, etc.), designing a controller suitable for this purpose
is not trivial.
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Modelling of the electrodynamic

shaker

In Chapters 5 and 7, two structures subjected to harmonic base-acceleration
are considered. To validate the semi-analytical results for these two cases,
experiments are performed. At the experimental setup, the base-acceleration
is realized by a electrodynamic shaker system, see Fig. A.1. The shaker system
consists of a laptop in combination with a data acquisition and control system
(TUeDACS AQI), a power amplifier (LDS PA1000L), an electrodynamic shaker
(LDS V455) and an accelerometer with charge amplifier (Bruell and Kjær
4367) to measure the acceleration of the armature of the shaker. For model
identification purposes, the mass of the armature will be varied by mounting
an additional known mass (madd) on top of the armature (see Fig. A.1). At
the laptop, input signals for the shaker are generated and sensor signals are
stored using MATLAB/Simulink. No active feedback is used to control the
acceleration of the shaker armature. Consequently, the resulting acceleration
of the shaker will be determined by the dynamics of the electro/mechanical
shaker system with on top the structure under test (SUT) (i.e. the structures
as considered in Chapters 5 and 7). To be able to compare the experimental
results with the semi-analytical results, the equations of motion for the thin-
walled structure have to be coupled with a model of the electrodynamic shaker
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Armature
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Figure A.1: Overview shaker system.
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Armature
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Figure A.2: Cross section of the electrodynamic shaker with permanent
magnet.

system. The modelling of the electromagnetic shaker and the approach to
obtain the final coupled total set of equations of motion will be discussed in
this appendix.

The electrodynamic shaker is constructed as schematically shown in Fig. A.2,
i.e. it consists of a fixed massive exciter base with a permanent magnet and a
moving armature which is elastically suspended. The coil which is attached to
the bottom of the armature is driven by a voltage E(t). Due to this voltage, a
current will run through the coil resulting in an electromagnetic force (Femf (t))
in the axial direction of the armature. The resulting force is

Femf (t) = κcI(t). (A.1)

The current-to-force constant κc depends on the strength of the magnetic field
that exists across the gap (due to the permanent magnet), the diameter, and
the number of windings of the coil [88]. Due to the electromagnetic force, the
armature will move in axial direction resulting in a relative motion between the
coil and the magnetic field. When a coil moves in a magnetic field, a voltage
will be induced. For the electrodynamic shaker, this voltage is called back
voltage (or back electromotive force) and has a similar dissipative nature as
mechanical viscous damping. The back voltage equals

Eback = −κcU̇b, (A.2)

where U̇b is the axial velocity of the armature and κc is the same force-to-
current constant as in Eq. (A.1).

A model of the complete shaker system is depicted in Fig. A.3, where the
electrical part and the mechanical part are presented separately. All parts of the
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Figure A.3: Model of the electromagnetic shaker (electrical part (a) and
mechanical part (b)).

shaker system are assumed to behave as be linear components. The electrical
part of the model (Fig. A.3-a), consists of the power amplifier (Gamp(s)),
the coil resistance R, the coil inductance L and back voltage voltage Eback

(which depends on the velocity of the armature, see Eq. (A.2)). The power-
amplifier operates in a so-called voltage-mode [88]. Within the voltage-mode
of operation, the output voltage E(t) is kept proportional to the input voltage
E0(t). More specifically, in the frequency domain

E(s) = Gamp(s)E0(s), (A.3)

where s = jω (with j2 = −1) and Gamp(s) is a frequency dependent amplifier
gain. Unfortunately, details about sole amplifier characteristics (i.e. Gamp(s))
are not available. Only the behaviour of the coupled amplifier/shaker system
can be measured. It should be noted that (other) power amplifiers used for
driving electrodynamic shakers may also operate in a so-called current-mode,
i.e. the output current I(t) is kept proportional to the input voltage E0(t)
[88]. The influence of the type of operation of the amplifier (voltage-mode or
current-mode) on the electrodynamic shaker dynamics is discussed in [88; 135].

The mechanical part of the model (Fig. A.3-b) corresponds to the elastically
suspended armature which is excited by the electromagnetic force Femf (t)
(which depends on the current I through the electrical part, see Eq. (A.1)).
This part is modelled as a linear structure with mass mb, stiffness kb, viscous
damping cb and single DOF Ub. It should be noted that for the mechanical
modelling of the shaker, the shaker base is assumed to be rigidly attached to
the fixed world. If this assumption is not followed, the resulting mechanical
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part of the shaker model would have more DOFs and unknown parameters
which must be identified, see for example [143].

The coupled electro/mechanical dynamics of the shaker are described by the
following set of ODEs [88]

Lİ +RI + κcU̇b = E(t),

moÜb + cbU̇b + kbUb = κcI,
(A.4)

where mo = mb +madd and E(t) is related to E0(t) by Eq. (A.3). From Eq.
(A.4), the frequency response function from E0 to Ub follows to be

Hs(s) =
Ub

E0

=
h1Gamp(s)

s3 + h2s2 + h3s+ h4

, (A.5)

where

h1 =
κc

Lmo
, h2 =

Rmo + Lcb
Lmo

, h3 =
Rcb + Lkb + κ2

c

Lmo
, h4 =

Rkb

Lmo
. (A.6)

Next the procedure used for identifying the parameters of the shaker model
will be discussed. The number of the physical parameters is equal to six (mo =
mb+madd, cb, kb, L, R and κc), plus the number of parameters in Gamp(s). The
identification results hold for the bare shaker system as shown in Fig. A.1. At
a later stage, it appeared that the armature suspension exhibited undesirable
’tilt’ type of vibrational eigenmode(s) (see Fig. A.4) in the frequency domain of
interest. To suppress these tilt vibrations in the frequency domain of interest,
an additional linear sledge based on elastic hinges is added between the shaker
and the SUT. The modelling and identification of the shaker system with this
additional elastic support mechanism is, however, similar as discussed for the
bare shaker system. Identification results for this case are reported at the end
of this section.

The parameters of the shaker model will be identified using frequency domain
techniques. Hereto, FRFs are measured by exciting the bare shaker system (i.e.
no SUT attached) with a randomly varying input voltage E0 while measuring
the acceleration of the armature Üb. To cancel measurement noise, the FRFs
are averaged over at least five measurements. By dividing the measured FRFs
in terms of Üb by −ω2, FRFs in terms of Ub are obtained (as in Eq. (A.5)).
For model identification purposes, the mass of the armature will be varied by
mounting additional mass(es) (madd) on top of the armature (see Fig. A.1).
The result of this approach is depicted in Fig. A.5 for the reference situation ,
for an additional mass of 0.559 [kg] and for an additional mass of 2.184 [kg]. As
can be noted, the shaker exhibits a heavily damped response. For the frequency
range of interest (20 - 400 [Hz]), the FRF measurements show a good coherence
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Tilt mode
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Figure A.4: Two types of vibration modes of a shaker.

(see the lowest graph in Fig. A.5).

Based on the measured FRF data, continuous-time transfer functions of the
form

H(s) =
b1s

n + b2s
n−1 + ...+ bn+1

sm + a1sm−1 + ...+ am
, (A.7)

are estimated using the function invfreqs, which is part of the MATLAB
signal processing toolbox. This function determines the n + 1 coefficients of
the nominator (bj) and the m coefficients of the denominator (ai) such that
Eq. (A.7) fits in a least squares sense to complex FRF data over a specified
frequency range (m and n are parameters which must be supplied by the user).
To be able to determine the order of the numerator (n) and denominator (m)
of the model Eq. (A.5), Gamp(s) must be specified first. First a constant
amplifier gain is assumed (i.e. Gamp(s) = Pamp). For this case, the order of
the nominator and denominator Eq. (A.5) are n = 0 and m = 3, respectively.
With these settings, however, a good fit could not be obtained. As an example,
the fit is compared with the measured FRF for madd = 0 [kg] (see Fig. A.7) in
Fig. A.7 (for the other two values of madd similar results are obtained). Note
that to elucidate the mismatch between the model and the experiments, the
FRFs are now depicted in terms Üb/E0 (i.e. acceleration instead of position
as output).

By introducing a frequency dependency of the amplifier gain as

Gamp(s) = Pamp(bamp s+ 1), (A.8)

an additional free parameter for the fitting procedure is introduced. This
increases the order of the nominator of Eq. (A.5) to n = 1) and results in a much
better fit with the experimental results, see Fig. A.6. Note that for Eq. (A.8),
the time domain version of Eq. (A.3) becomes E(t) = Pamp(bampĖ0(t)+E0(t)).
Since E0 is a known function of time, this expression can be implemented
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Figure A.5: Three measured FRFs of the bare shaker system.

without increasing the computational complexity of the shaker model (see Eq.
(A.4)). It must be stressed that the frequency dependency of the amplifier gain
as in Eq. (A.8) is simply a way to include an additional fit parameter allowing
obtain a better fit for the frequency range of interest. The actual frequency
characteristics of the amplifier are unknown and may be different from Eq.
(A.8). For example, a better fit could (possibly) also have been obtained by
including more DOFs in the mechanical part of the shaker model (as done in
[143]). However, this would have resulted in a more computationally demanding
shaker model (i.e. due to the increase of DOFs) with more unknown parameters
to be identified.

With Matlab’s invfreqs function, the five coefficients ai and bj of Eq. (A.7)
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Figure A.6: Fitting of measured FRF data for two orders of numerator (n = 0
and n = 1), m = 3 and madd = 0 [kg].

can be determined, resulting in a good correspondence with the experimental
results. In this way, however, the values of the parameters present in the shaker
model (see Eq. (A.4)) are not determined yet. The coil resistance is provided
by the shaker manufacturer (R = 0.9 [Ω]). Determining the five coefficients
ai and bj of Eq. (A.7) for two values of madd and setting for each case the
resulting of coefficients of Eq. (A.7) equal to the corresponding coefficients of
Eq. (A.5), results in ten equations in terms of the unknown seven parameters
mo = mb + madd, cb, kb, L, κc), bamp, and Pamp. This set of equations is
numerically solved, consideringmadd = 0 [kg] andmadd = 0.56 [kg] and resulted
in an good fit of the original determined coefficients (i.e. the relative differences
between the coefficients determined by invfreqs and the coefficients of Eq.
(A.5) are less than 1.5%).

The identified parameter values are listed in Table A.1. The FRFs of the
resulting model are compared with the two experimentally determined FRFs
for madd = 0 [kg] and for madd = 0.56 [kg] (i.e. the ones which are used for the
identification of the parameter values) in Fig. A.7. As can be noted, a good
correspondence is obtained. For further validation, the FRF of the identified
model and the measured FRF for the largest additional mass (madd = 2.18
[kg]) are compared in Fig. A.8. The measurements for madd = 2.18 [kg] are not
used to identify the parameters, but the model still predicts the experiments
with good accuracy. This supports the assumption that the shaker dynamics
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Table A.1: Parameters shaker model (bare shaker configuration).

cb = 273 [kg/s] L = 2.7 · 10−3 [H]
mb = 1.7 [kg] κc = 8.7 [N/A]
kb = 3.2 · 103 [N/m] R = 0.9 [Ω]

Pamp = -119 [-] bamp = 1.3 · 10−3 [s−1]

Table A.2: Parameters shaker model (shaker with additional elastic support
mechanism).

cb = 278 [kg/s] L = 2.6 · 10−3 [H]
mb = 3.0 [kg] κc = 11.5 [N/A]
kb = 5.28 · 104 [N/m] R = 0.9 [Ω]

Pamp = -88.3 [-] bamp = 1.4 · 10−3 [s−1]

may be captured with sufficient accuracy using a linear model.

As stated before, at a later stage an additional elastic support mechanism
is mounted between the fixed world and the shaker armature to increase the
rotational stiffness of the moving part of the shaker in order to avoid tilt (see
Fig. A.4). The additional support mechanism is illustrated in Fig. 6.1 and
Fig. 8.3. The dynamics of the shaker system with additional elastic support
mechanism is captured with the same shaker model as used for the bare shaker
(see Eq. (A.4)). The parameters are identified using the same procedure as
discussed above for the bare shaker. The resulting parameters are listed in
Table A.2. As expected, the additional elastic support mechanism significantly
increases the stiffness kb and mass mb. Further comparison of Table A.1 and
Table A.2 reveals that for both cases the obtained values for cb, L, and bamp

differ very little while the obtained values for Pamp and κc differ significantly.
However, the product Pamp ·κc (which appears in the numerator of Eq. (A.5)),
differs less than 1%. Apparently, with the adopted identification procedure,
these two parameters can not be accurately identified separately from each
other. Nevertheless, with the current identification procedure also for the
shaker with additional elastic support mechanism, a satisfactory fit result is
obtained, see Fig. A.9.
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A.1 The coupled shaker-structure model

After the determination of the parameters of the shaker model, the shaker
model must be coupled with the model of the SUT (e.g. the beam structure
as considered in Chapter 5 or the cylindrical shell structure as considered
in Chapter 7). The coupled electro/mechanical equations of motion will be
derived by following a charge/displacement formulation of Lagrange’s equations
[113]. In this formulation, energy and work expressions of the complete
structure are formulated in terms of mechanical DOF and (in this case) one
additional charge coordinate q which time derivative constitutes the current
through the electrical part of the shaker model (i.e. q̇ = I).

The total set of DOFs is collected in the column

Q∗ = [Q1,Q2, ..,QN,Ub, q]
T , (A.9)

where the N DOF Qi are the generalized DOFs of the structure and Ub is the
axial motion of the shaker (see Fig. A.3).

The kinetic energy, potential energy and Rayleigh dissipation function of the
SUT are denoted by TSUT , VSUT , RSUT , respectively. In the model of the SUT,
the motions of the SUT are defined with respect to the base motion Ub (see
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Section 5.1 and Section 7.1). Consequently, the energy and work expressions
for the coupled shaker/SUT system may be expressed as

M = 1

2
Lq̇2 + κcq̇Ub,

T = TSUT + 1

2
mbU̇b,

V = VSUT + 1

2
kbUb

2,

R = RSUT + 1

2
cbU̇

2
b + 1

2
RI2,

δWnc = E(t)δq,

(A.10)

where M is the magnetic energy of the moving coil of the shaker and δWnc is
the virtual work of the voltage source E(t) [113]. Defining the Lagrangian L
of the complete system by L = T + M−V , the final coupled set of equations
of motion can be determined

d

dt
L,Q̇∗ −L,Q∗ +R,Q̇∗

= bE(t), (A.11)

where b = [0, .., 0, 1]T is an N + 2 dimensional column.

Since during the modelling of the SUT, the motions of the SUT are defined
with respect to the an arbitrary base motion Ub. For the coupled shaker/SUT
system, Ub corresponds to the axial motion of the shaker. Consequently, the
equations of motion for the SUT are not altered with respect to the case where
the base motion is directly prescribed (i.e. as in Eq. (5.17) and in Eq. (7.20)).
However, now Ub follows from

Lİ +RL+ κcU̇b = Pamp(bampĖ0(t) + E0(t)),

(mo +mt) Üb + cbU̇b + kbUb = κcI + FSUT ,
(A.12)

where mt is the axial inertia of the SUT structure (which is in fact the mass
of the top mass since the axial inertia of the supporting beam or cylindrical
shell is neglected compared to the axial inertia of the top mass) and FSUT is
an inertial force due to the relative axial acceleration of the SUT. For example,
for the single-mode third model model of the thin-beam with top mass (see Eq.
(5.17)),

FSUT =
mtπ

2

L

[
(he1 + 2Q1) Q̈1 + 2Q̇2

1

]
, (A.13)

while for the 4 DOF model of the cylindrical shell with top mass (see Eq. (7.20))

FSUT = mtÜt. (A.14)

Coupling of Eq. (5.17) with Eq. (A.12) results in the so-called 1-MODE model
used in Chapter 6.
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B

Stepped sine procedure

At the experimental setup, the steady-state response of the structure under
test will be analysed using stepped sine sweeps. Sine sweep tests are also often
used in engineering practise to determine experimentally the dynamic steady-
state behaviour of a structure. The details of the stepped sine procedure
are discussed in this appendix. Furthermore, also the way how averaged
response measures are computed from the obtained stepped sine experiments
is addressed.

The excitation is considered to be a known sinusoidal function of time

E0(t) = vd sin (2πft+ φ) , (B.1)

where vd is the excitation amplitude, f is the excitation frequency and φ the
phase of the excitation. Since Eq. (B.1) is generated using a PC, t is discrete
time. During the stepped sine procedure, one of the excitation parameters
(i.e. vd or f) is incrementally increased or decreased. After each incremental
update of the excitation parameter, the measurement signals are saved during
Ne excitation periods after which the excitation parameter is adapted again.
If the excitation frequency is adapted, also the phase of the excitation φ
is altered to obtain a continuous excitation force. The purpose of the
stepped sine experiment is to assess the steady-state response of the structure.
Consequently, the updating of the excitation parameters must be carried out
using sufficiently small increments while the number of Ne excitation periods
should be selected sufficiently large. In general, the stepped sine process is
performed both for an incrementally increasing excitation parameter (sweep
up) and for an incrementally decreasing excitation parameter (sweep down).
For nonlinear systems, the sweep-up response may differ (very much) from the
sweep-down response.

During the stepped sine experiment, one or multiple measurement signals
will be stored. Based on these measurements, response plots (i.e. excitation-
frequency versus response-amplitude plots or excitation-amplitude versus
response-amplitude plots) will be constructed ’step by step’. Each step
corresponds to a data set of measurement signals mj(t), where j is the
jth measurement signal. These signals are stored during the time interval
ti ≤ t ≤ ti + NeT , where ti [s] is the time instance at which one of the
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ti ti +NtT ti +NeT =
ti +NtT +NmTm

TmTm

maxmax

minmin

mj(t)

Figure B.1: Averaging procedure of measurement data.

excitation parameters is incrementally updated, i the step number, Ti = 1/fi

[s], and Ne is a positive integer, see Fig. B.1. To minimize transient effects,
the measurement data during the first Nt < Ne periods is discarded. The rest
of the data is divided in Nm = Ne − Nt equal parts with length Tm ≥ T [s].
Subsequently, the following averaged response measures are determined

M̃ j
m =

1

Nm

(
Nm−1∑

k=0

max
Tm

mj(ti + kTm) − min
Tm

mj(ti + kTm)

)
, (B.2)

where M̃ j
m is the scalar measure of the measurement signal mj(t) during the

ith step of the stepped sine experiment.
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In-plane fields cylindrical shell model

This appendix is part of the modelling procedure of the cylindrical shell with
top mass as discussed in Chapter 7. First, the solution procedure of the
expressions for the in-plane fields (u and v, see Fig. 7.2) corresponding to
a given discretized out-of-plane displacement field (w) and radial imperfection
shape (w0) is discussed. Subsequently, as an example, the resulting expressions
for u and v are presented for a 3-DOF discretization of w.

C.1 Solving the in-plane fields

Using the assumed expressions for w (Eq. (7.14)) and w0 (Eq. (7.15)), the
in-plane equilibrium equations (Eqs. (7.9)-(7.10)) consist of a set of linear
inhomogeneous PDEs in terms of u and v. Consequently, the solutions for u
and v can be written as

u(t, x, θ) = up(t, x, θ) + uh(t, x, θ),

v(t, x, θ) = vp(t, x, θ) + vh(t, x, θ),
(C.1)

where up and vp are the particular solutions and uh and vh the homogenous
solutions (i.e. for w = w0 = 0) of Eq. (7.9) and Eq. (7.10), respectively.
First the particular solutions are found. As out-lined in [34], the in-plane
equilibrium equations (Eqs. (7.9) and (7.10)) can be decoupled into two linear
inhomogeneous fourth order differential equations as follows. By applying first
∂2

∂x2 and then ∂2

∂θ2 to Eq. (7.9), solving in both cases the term involving v and

substituting these two expressions in the equation obtained by applying ∂2

∂x∂θ
to (7.10), a fourth order differential equation in u is obtained

β1u,xxxx +ηu,xxθθ +
1

R4
u,θθθθ = Fu(w,w0, w,x , w,θ , ...). (C.2)

where β1 = Ex/Eθ, β2 = Gxθ/Eθ and

η =
β1 − νx (νx + 2β2 (1 − νxνθ))

(1 − νxνθ)β2R2
. (C.3)

Similarly, by applying ∂2

∂x2 and ∂2

∂θ2 to (7.10), solving in both cases the term

involving u and substituting these two expressions in (7.9) after applying ∂2

∂x∂θ ,
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a fourth order differential equation in v is obtained

β1v,xxxx +ηv,xxθθ +
1

R4
v,θθθθ = Fv(w,w0, w,x , w,θ , ...). (C.4)

The right-hand-sides of these equations, Fu(·) and Fv(·), are long expressions
in terms of w and w0 and their spatial derivatives (up to fourth order) and are
not reported here explicitly for the sake of brevity. The decoupled equilibrium
equations (Eqs. C.2-C.4) allow to solve up and vp independent from each other.
Using symbolic computations [87], the expansions for the particular solutions
are derived. Introducing the abbreviations sjθ = sin (jnθ), cjθ = cos (jnθ),
six = sin (λix) and cix = cos (λix), these expansions read

up(t, x, θ) =

N∑

i=1

M∑

j=0

[
Au

ijsjθ + Bu
ijcjθ

]
cix+

N∑

i=1

N∑

j=1

M∑

k=l

M∑

l=0

[
Cu

ijklslθskθ + Du
ijklclθckθ

]
sixcjx+

N∑

i=1

N∑

j=1

M∑

k=1

M∑

l=0

Eu
ijklskθclθsixcix,

(C.5)

and

vp(t, x, θ) =
N∑

i=1

M∑

j=1

[
Av

ijsjθ + Bv
ijcjθ

]
six+

N∑

i=j

N∑

j=1

M∑

k=l

M∑

l=1

(
Cv

ijklslθskθ + Dv
ijklclθckθ

)
sixsjx+

N∑

i=1

N∑

j=1

M∑

k=1

M∑

l=0

(
Ev

ijklsixsjx + Hv
ijklcixcjx

)
clθskθ+

N∑

i=j

N∑

j=1

M∑

k=l

M∑

l=1

(
Fv

ijklslθskθ + Gv
ijklclθckθ

)
cixcjx+

N∑

i=j

N∑

j=1

M∑

k=1

(
Dv

ijk0sixsjx + Gv
ijk0cixcjx

)
ckθ,

(C.6)

where Fv
iikk = 0. The coefficients Au,v

ij , Bu,v
ij , Cu,v

ijkl, Du,v
ijkl, Eu,v

ijkl, Fu,v
ijkl, Gv

ijkl,
Hv

ijkl (for readability the time dependency of these coefficients is omitted)

depend on the DOFs Qs,c
ij (t) from Eq. (7.14), the imperfection parameters

ei from Eq. (7.15) and the constants as present in Eqs. (7.14)-(7.15). These
coefficients are solved by substituting Eq. (C.5) and Eq. (C.6) into Eq. (C.2) and
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Eq. (C.4), respectively, and setting the coefficients of each unique combination
of (goniometric) functions present in the resulting expressions to zero. For
illustration, the particular solutions for an expansion of w with N = M = 1
(see Eq. (7.14)) and w0 = 0 [m] are supplied in Appendix C.2.

The particular solutions (Eqs. (C.5) and (C.6)) do not yet satisfy the boundary
conditions Eq. (7.5). Therefore, additionally the homogeneous solutions (uh

and vh) are solved such, that the total solutions Eqs. (C.1) satisfy exactly
the boundary conditions. The homogeneous solutions are determined by
considering the coupled in-plane equilibrium equations (Eqs. (7.9- 7.10)) for
w = w0 = 0 [m];

u,xx +
β2(1 − νxνθ)

β1R2
u,θθ +

νx + β2(1 − νxνθ)

β1R
v,θx = 0,

β2(1 − νxνθ)

β1

v,xx +
1

β1R2
v,θθ +

νx + β2(1 − νxνθ)

β1R
u,θx = 0.

(C.7)

The homogeneous solutions consist of two parts, uh = uI
h + uII

h and vh =
vI

h + vII
h . The first parts (uI

h and vI
h) correct for the boundary conditions in

u, the second part (uII
h and vII

h ) corrects for the boundary conditions in v.
Evaluating Eq. (C.5) at x = 0 and x = L results in expressions in terms of Au

ij

and Bu
ij. The homogeneous solutions which cancel out these terms, read

uI
h(t, x, θ) =

M∑

j=0

[
fu

j (x) sin (jnθ)Aj + gu
j (x) cos (jnθ)Bj

]
, (C.8)

vI
h(t, x, θ) =

M∑

j=0

[
gv

j (x) sin (jnθ)Bj + fv
j (x) cos (jnθ)Aj

]
, (C.9)

where Aj =
∑N

i=1
Au

ij, Bj =
∑N

i=1
Bu

ij and fu,v
j (x) and gu,v

j (x) are unknown
axial distributions which satisfy

x = 0 x = L
fu

j , g
u
j −1 − cos (iπ)

fv
j , g

v
j 0 0

. (C.10)

Substituting Eqs. (C.8)-(C.9) in Eq. (C.7), and setting each coefficient of Aj

and Bj to zero, results in coupled sets of ODEs in terms of fu,v
j (x) and gu,v

j (x).
These sets of ODEs in combination with the boundary conditions Eq. (C.10)
are solved using the symbolic ODE solver dsolve [87]. An important feature
of the homogeneous solution uI

h is that it includes a first order polynomial in
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x (see Eq. (C.8))

uI
h(t, x, θ) = uIa

h (t, x, θ) +

N∑

i=1

Bu
i0 +

[
N∑

i=1

Bu
i0(cos(iπ) − 1) + Ut(t)

]
x

L
,

(C.11)

where uIa
h (t, x, θ) is the axi-asymmetrical part of Eq. (C.8) and Ut(t) is a newly

introduced DOF corresponding to the (unknown) axial displacement of the top
mass relative with respect to Ub(t), i.e.

Ut(t) = u(t, L, θ). (C.12)

Evaluating Eq. (C.6) at x = 0 and x = L results in expressions in terms of
Fv

ijkl, Gv
ijkl and Hv

ijkl terms. The homogeneous solutions which cancel out
these terms, read

uII
h (t, x, θ) =

M∑

k=l

M∑

l=1

[
qu
kl(x) sin ((l − k)nθ)AII

kl+

ru
kl(x) sin ((l + k)nθ)BII

kls
u
kl(x) cos ((l − k)nθ)CII

kl+

tukl(x) cos ((l + k)nθ)DII
kl + pu

k0(x) sin (knθ)EII
k0

]
,

vII
h (t, x, θ) =

M∑

k=l

M∑

l=1

[
qv
kl(x) cos ((l − k)nθ)AII

kl+

rv
kl(x) cos ((l + k)nθ)BII

kl + sv
kl(x) sin ((l − k)nθ)CII

kl+

tvkl(x) sin ((l + k)nθ)DII
kl + pv

k0(x) cos (knθ)EII
k0

]
,

(C.13)

where AII
kl = 1

2

∑N
i=j

∑N
j=1

Fv
ijkl + Gv

ijkl, BII
kl = 1

2

∑N
i=j

∑N
j=1

Gv
ijkl − Fv

ijkl,

CII
kl = DII

kl = 1

2

∑N
i=1

∑N
j=1

Hv
ijkl, EII

k0 =
∑N

i=j

∑N
j=1

Gv
ijk0 and the unknown

axial distributions satisfy

x = 0 x = L
pu

k0, q
u
kl, r

u
kl, s

u
kl, t

u
kl 0 0

pv
k0, q

v
kl, r

v
kl, s

v
kl, t

v
kl −1 − cos(iπ) cos(jπ)

. (C.14)

For illustration, the homogeneous solutions for an expansion of w with N =
M = 1 (see Eq. (7.14)) and w0 = 0 [m] are supplied in appendix C.2. Adding
the homogenous solutions to the particular solutions

u(t, x, θ) = up(t, x, θ) + uI
h(t, x, θ) + uII

h (t, x, θ), (C.15)

v(t, x, θ) = vp(t, x, θ) + vI
h(t, x, θ) + vII

h (t, x, θ), (C.16)

results in expressions for the in-plane fields which satisfy exactly the in-
plane equilibrium equations (Eqs. (7.9)-(7.10))) and the in-plane boundary
conditions (Eq. (7.5)). Moreover, the continuity in θ for all displacement fields
is satisfied.
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C.2 Expressions in-plane fields for N = M = 1

For illustration, the particular solutions for u and v are reported here for
the expansion of w with N = M = 1 and for the case without initial radial
imperfection (w0 = 0 [m]). Adopting the same abbreviations as used in Eqs.
(C.5)-(C.6), the expression for w takes the form

w(t, x, θ) = Qc
10s1x + Qs

11s1xs1θ + Qc
11s1xc1θ. (C.17)

The corresponding particular solutions of Eq. (C.2) and Eq. (C.2) read

up(t, x, θ) = Au
11c1xs1θ + Bu

10c1x + Bu
11c1xc1θ + Cu

1111s
2
1θc1xs1x+

Du
1100c1xs1x + Du

1110c1θc1xs1x + Du
1111c

2
1θc1xs1x+

Eu
1110s1θc1xs1x + Eu

1111s1θc1θc1xs1x,

(C.18)

vp(t, x, θ) = Av
11s1θs1x + Bv

11c1θs1x + Cv
1111s

2
1θs

2
1x + Dv

1110c1θs
2
1x+

Dv
1111c

2
1θs

2
1x + Ev

1110s1θs
2
1x + Ev

1111s1θc1θs
2
1x + Gv

1110c1θc
2
1x+

Gv
1111c

2
1θc

2
1x + Hv

1110s1θc
2
1x + Hv

1111s1θc1θc
2
1x,

(C.19)

with

Au
11 = u1Q

s
11, Bu

10 = u2Q
c
10,

Cu
1111 = u4 (Qs

11)2 + u5 (Qc
11)2 + u6 (Qs

11)2 , Bu
11 = u3Q

c
11,

Du
1100 = u7 (Qc

10)2 , Du
1110 = u8Q

c
10Q

c
11,

Du
1111 = u9 (Qs

11)2 + u10 (Qc
11)2 + u11 (Qc

11)2 Eu
1110 = u12Q

c
10Q

s
11,

Eu
1111 = u13Q

s
11Q

c
11,

Av
11 = v1Q

c
11, Bv

11 = v2Q
s
11,

Cv
1111 = v3Q

s
11Q

c
11, Dv

1110 = v4Q
s
11Q

c
10,

Dv
1111 = v5Q

s
11Q

c
11, Ev

1110 = v6Q
c
11Q

c
10,

Ev
1111 = v7 (Qc

11)
2
+ v8 (Qs

11)
2

+ v9 (Qc
11)

2
, Gv

1110 = v10Q
s
11Q

c
10,

Gv
1111 = v11Q

s
11Q

c
11, Hv

1110 = v12Q
c
11Q

c
10,

Hv
1111 = v13 (Qc

11)2 + v14 (Qs
11)2 ,

(C.20)

where ui and vi are constants depending on L, n, ν and R. These constants
are not reported here for the sake of brevity.
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The homogeneous solutions of Eq. (C.7) read

uh(t, x, θ) = (u14s1θA
u
11 + u15c1θB

u
11 + u16s1θG

v
1110 + u17c1θH

v
1110) e

(nx
R )+

(u18s1θA
u
11 + u18c1θB

u
11 + u19s1θG

v
1110 + u10c1θH

v
1110) e

−(nx
R )+

(u20s2θG
v
1111 + u21c2θH

v
1111) e

( 2nx
R ) + u22s2θG

v
1111+

u23c2θH
v
1111e

−( 2nx
R ) − Bu

10 + (Ut − 2Bu
10)x/L,

vh(t, x, θ) = (v15c1θA
u
11 + v16s1θB

u
11 + v17G

v
1110c1θ + v10H

v
1110s1θ)e(

nx
R )+

(v18c1θA
u
11 + v19s1θB

u
11 + v20G

v
1110c1θ + v11H

v
1110s1θ)e(

−nx
R )+

(v21c2θG
v
1111 + v22s2θH

v
1111)e

(− 2nx
R ) + (v23c2θG

v
1111

+ v24s2θH
v
1111)e

( 2nx
R ),

where ui and vi are constants depending on L, n, ν and R (similar as in Eq.
(C.20)). Again, these constants are not reported here for the sake of brevity.
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Summary

Dynamic stability of thin-walled structures: a semi-analytical and
experimental approach

Buckling refers to a sudden large increase in the deformation of a structure due
to a small increase of some external load. If this external load has a dynamic
nature, (e.g. a harmonic load, shock load, a step load and/or a random load),
such a sudden increase in deformations is denoted as dynamic buckling. Thin-
walled structures are often met in engineering practice due to their favourable
mass-to-stiffness ratio. Such structures are very susceptible to buckling and
are often subjected to dynamic loading. However, fast (pre-) design tools for
obtaining detailed insight in the dynamic response and the stability of thin-
walled structures subjected to dynamic loading are still lacking. One of the
research objectives of this thesis is, therefore, to develop (fast) modelling and
analysis tools which give insight in the behaviour of dynamically loaded thin-
walled structures.

To illustrate and to test the abilities of the developed tools, a number of case
studies are examined. The tools are developed for structures with a relatively
simple geometry. The geometric simplicity of the structures allows to derive
models with a relative low number of degrees of freedom which are, therefore,
very suitable for extensive parameter studies (as essential during the design
process of thin-walled structures). These models are symbolically derived using
a Ritz method in combination with assumptions regarding geometric nonlinear
(strain-displacement) relations and the effects of (in-plane) inertia. The
resulting models, obtained from energy expressions, are sets of coupled ordinary
differential equations which include stiffness nonlinearities and (sometimes)
inertia and damping nonlinearities. The modelling approach is implemented
in a generic manner in a symbolic manipulation software package, so that
model variations can be easily performed. Furthermore, a set of designated
numerical tools is combined (e.g. continuation tools for equilibria, periodic
solutions and bifurcations, and numerical integration routines) to solve the
analytically derived models in a computationally efficient manner.

Using this semi-analytical (i.e. analytical-numerical) approach four case studies
are performed which include the dynamic buckling of an arch type of structure
due to shock loading, snap-through behaviour of a transversally, harmonically
excited pre-buckled beam, and the dynamic buckling of a beam and a cylindrical
shell structure, both with top mass, which are harmonically loaded in axial
direction at their base. For all cases, the effects of several parameter variations
are illustrated, including the effect of small deviations from the nominal
geometry (i.e. geometric imperfections).
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For validation, the semi-analytical results are compared with results obtained
using the computationally much more demanding finite element modelling
technique. However, more important, for two cases (i.e. the axially excited
beam and cylindrical shell structures carrying a top mass), the semi-analytical
results are also compared with experimentally obtained results. For this
purpose, a dedicated experimental set-up has been realized. For the beam
structure, the experimental results are in good agreement with the semi-
analytical results whereas for the cylindrical shell structure, a qualitative
match is obtained. It has been illustrated that the differences between the
experimental results and the semi-analytical results for the cylindrical shell may
be due to the strong dependency of the results with respect to the geometrical
imperfections present in the shell.

Next to the specific new insights obtained for each case considered, the major
result of the thesis is the illustrated power of the semi-analytical approach to
obtain practical relevant insights in the phenomena of dynamic buckling of
thin-walled structures. In conclusion it can be stated that the semi-analytical
approach is a valuable tool in the (pre-) design process of thin-walled structures
under dynamic loading.



Samenvatting

Dynamic stability of thin-walled structures: a semi-analytical and
experimental approach

Knik komt overeen met een plotselinge toename van de deformatie van een
constructie ten gevolge van een kleine verandering van de externe kracht welke
werkt op de constructie. Indien deze externe kracht dynamisch van aard is
(bijv. een harmonische belasting, een schokbelasting, een stapbelasting, een
stochastische belasting of een algemene tijdsafhankelijke belasting), wordt zon
plotselinge toename aangeduid als dynamische knik. Dunwandige constructies
worden vaak toepast vanwege hun gunstige massa-stijfheidsverhouding. Een
ander kenmerk van dunwandige constructies is dat ze erg gevoelig voor
(dynamische) knik kunnen zijn. Echter, snelle (voor-)ontwerpgereedschappen
(software) voor het verkrijgen van inzicht in het dynamische gedrag en de
dynamische stabiliteit van dynamisch belaste, dunwandige constructies zijn nog
niet beschikbaar. Een belangrijke onderzoeksdoelstelling van dit proefschrift is,
daarom, het ontwikkelen van efficiente modellerings- en analysegereedschappen,
waarmee inzicht verkregen kan worden in het gedrag van dynamisch belaste
dunwandige constructies.

De gereedschappen zijn ontwikkeld voor constructies met een relatief simpele
geometrie. Voor dit soort constructies is het mogelijk om nauwkeurige modellen
op te stellen met een relatief klein aantal vrijheidsgraden. Zulk soort modellen
zijn, in tegenstelling tot eindige-elementenmodellen, zeer goed bruikbaar voor
grootschalige parameterstudies (zoals uitgevoerd dienen te worden tijdens het
ontwerpproces van dunwandige constructies). De modellen worden symbolisch
afgeleid middels een Ritz methode in combinatie met aannames met betrekking
tot de geometrisch niet-lineaire rek/verplaatsingsrelaties en de traagheid in
het vlak van de constructieelementen. De resulterende modellen, afgeleid van
energie-uitdrukkingen, zijn stelsels van gewone differentiaalvergelijkingen en
bevatten naast niet-lineaire stijfheidstermen soms ook niet-lineaire traagheids-
en dempingstermen. De modelleringaanpak is gëımplementeerd op een ge-
nerieke manier in een software pakket dat uitermate geschikt is voor het
symbolisch manipuleren van vergelijkingen. Op deze manier kunnen model
variaties snel en eenvoudig worden uitgevoerd. Tevens zijn er een aantal
specifieke gereedschappen voor numerieke analyse gecombineerd. Dit betreft
software voor de berekening van (takken van) statische evenwichtspunten en
periodieke oplossingen en hun stabiliteit, software voor de berekening van
(takken van) bifurcaties en (standaard) numerieke integratie routines. Met
deze gereedschappen kan het statisch en dynamisch gedrag van de analytisch
afgeleide modellen op een snelle en efficiënte manier worden onderzocht.
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Gebruik makend van deze semi-analytische aanpak (waarin analytische mo-
dellen numeriek worden geanalyseerd) worden vier casestudies uitgevoerd. De
eerste casestudie betreft de dynamische knik van een boogvormige constructie
onder schokbelasting. Vervolgens wordt het doorknikken van een initieel
geknikte balk, die harmonisch wordt belast in transversale richting, onderzocht.
Tenslotte worden de dynamische knik van een balk- en van een cilindrische
schaalconstructie, die beide een topmassa dragen, onderzocht. Beide con-
structies worden via de bodem harmonisch geëxciteerd in axiale richting.
Voor alle casestudies zijn de effecten van een groot aantal parametervariaties
gëıllustreerd, waaronder het effect van kleine afwijkingen ten opzichte van de
nominale geometrie (beter bekend als geometrische imperfecties).

Ter validatie worden de semi-analytische resultaten vergeleken met resultaten
verkregen via eindige elementen analyses, die een veel langere rekentijd vragen
dan de semi-analytische aanpak. Daarnaast worden, en dit is van groter
belang, voor de laatste twee casestudies (d.w.z. voor de in axiale richting,
harmonisch belaste balk- en cilindrische schaalconstructie met top massa),
de semi-analytische resultaten vergeleken met experimentele resultaten. Voor
dit doel is een specifieke experimentele opstelling gerealiseerd. Voor de
balkconstructie zijn de experimentele en semi-analytische resultaten in zeer
goede overeenstemming. Voor de meer complexe cilindrische schaalconstructie
komen de experimentele en semi-analytische resultaten in kwalitatieve zin
overeen. Gëıllustreerd wordt dat de verschillen tussen de experimentele
en semi-analytische resultaten veroorzaakt kunnen worden door de extreme
gevoeligheid van de resultaten met betrekking tot geometrische imperfecties in
de schaal.

Eén van de belangrijkste resultaten van dit proefschrift is, naast de verkregen
specifieke nieuwe inzichten voor elke casestudy, de illustratie van de mogelijkhe-
den van de semi-analytische aanpak voor het verkrijgen van praktisch relevante
inzichten in dynamische knikverschijnselen van dunwandige constructies. Er
kan dus worden geconcludeerd dat de in dit proefschrift uitgewerkte semi-
analytische aanpak een waardevolle methode is in het (voor-)ontwerpproces
van dynamisch belaste dunwandige constructies.
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