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Abstract—Shannon wrote in 1948: ”The semantic aspects of
communication are irrelevant to the engineering problem.” He
demonstrated indeed that the information generated by a source
depends only on its statistics and not on the meaning of the
source output. The authors derived the fundamental limits for
semantic compaction, transmission and compression systems
recently. These systems have the property that the codewords are
semantic however, i.e. close to the source sequences. In the present
article we determine the minimum distortion for semantic partial
transmission systems. In these systems only a quantized version
of each source source symbol is transmitted to the receiver. It
should be noted that our achievability proof is based on weak
instead of strong typicality. This is unusual for Gelfand-Pinsker
[1980] related setups as e.g. semantic coding and embedding.

I. INTRODUCTION

In [1] Shannon wrote: ”The semantic aspects of commu-

nication are irrelevant to the engineering problem.” Indeed

Shannon demonstrated that the information that is generated

by a source depends only on the statistics of the source, and

not on the meaning of the source output. In contrast with

this we have investigated in [2] whether in a compaction

system the codewords can be (almost) as meaningful as

the source output sequences. We required the codewords to

be close to the source sequences for some given distortion

measure. Moreover we considered semantic transmission. Now

the encoded source output sequence is transmitted over a

memoryless noisy channel to a decoder. Semantic transmission

requires the codewords, i.e. the channel input sequences, to be

close to the source sequences again. Finally we investigated

semantic compression. A semantic compression system is

a vector quantizer for which the codeword, i.e. the index

to the reproduction vector, resembles the source sequence.

For semantic compaction, transmission, and compression we

determined the fundamental limits for the i.i.d. case in [2].

Here we consider semantic partial transmission, which

is the transmission over a memoryless noisy channel of a

”quantized” version of the source sequence, in such a way

that the channel input sequence is semantic, i.e. close to the
source sequence. The quantized symbols could e.g. represent

the most significant bits of the source symbols. Since the

receiver is only interested in the quantized source outputs we

speak about partial transmission. For this model we determine

the fundamental limit, i.e. set of achievable distortions. The

obtained result is an extension of the semantic transmission

problem, but can also be considered as a solution for the

problem that combines semantic transmission and semantic
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Fig. 1. A semantic partial transmission system.

compression, however only for a special distortion measure.

In this combined problem the decoder at the output of the

noisy channel has to produce a sequence whose distortion to

the source sequence is small. In addition the channel input

sequence has to semantic. For the case where the distortion

measure is such that for each source output only its quantized

value is allowed as receiver output, we found the solution.

It should be noted that for arbitrary distortion measures the

problem is still unsolved.

The achievability parts in [2] are based on to the Gelfand-

Pinsker proof for the side-information channel [3]. For seman-

tic partial transmission we need a more general achievability

proof than the one in [2]. Important is also that the proof that

is presented here, is not based on strong typicality (developed

by Wolfowitz [4], Berger [5], etc.) as in [3], but rather on

weak typicality (developed by Forney [6] and Cover [7], etc.).

Semantic coding is closely related to reversible embedding.

In fact semantic compaction is identical to zero-rate reversible

embedding [8], semantic transmission is the same as robust

reversible embedding [9], and semantic compression is zero-

rate partially reversible embedding [10]. For an overview see

[11]. Reversible embedding work has the same flavor as the

work of Sutivong et al. [12], [13], however there semantic

distortion is absent. We conclude this article by demonstrating

how it relates to a result of Yang and Sun on embedding

correlated watermarks [14].

II. DEFINITIONS, STATEMENT OF RESULT

A. Definitions

In Figure 1 a model of a semantic partial transmission

system is shown. The source is assumed to be independent

and identically distributed (i.i.d.). It produces the sequence

xN
1 = (x1, x2, · · · , xN ) with probability

Pr{XN
1 = xN

1 } = ΠN
n=1Ps(xn) (1)

for all xN
1 ∈ XN . Here X is the finite source alphabet and

{Ps(x), x ∈ X} is probability distribution of the source. N
is the block length. We are now interested in transmitting a
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quantized version mN
1 = (m1,m2, · · · , mN ) of the source

sequence xN
1 . The mapping μ(·) from X on finite alphabet M

determines the partial source sequence mN
1 = (m1,m2, · · · ,

mN ) of xN
1 component by component, as follows:

mn = μ(xn), for n = 1, N. (2)

The mapping μ(·) defines the joint probability of a source

symbol x ∈ X and its quantized version m ∈ M as follows

P ′
s(x, m) = Ps(x)δm,μ(x), (3)

where δi,j = 1 if i = j and zero otherwise (Kronecker delta).

An encoder e(·) transforms the source sequence xN
1 into a

channel input sequence yN
1 = (y1, y2, · · · , yN ) ∈ YN . The

modified sequence yN
1 is close to the original sequence xN

1 in

the sense that the so-called average semantic distortion Dxy

between XN
1 and Y N

1 is not too large. Here

Dxy
Δ=

∑
xN
1

Pr{XN
1 = xN

1 }D(xN
1 , e(xN

1 )) with

D(xN
1 , yN

1 ) Δ=
1
N

N∑
n=1

Dxy(xn, yn), (4)

where Dxy(·, ·) is a matrix consisting of |X ||Y| non-negative

values. The semantic sequence yN
1 is now transmitted over

a discrete memoryless channel with input alphabet Y , output

alphabet Z , and transition probability matrix {Pc(z|y), y ∈
Y, z ∈ Z}. The probability that output sequence zN

1 =
(z1, z2, · · · , zN ) occurs when yN

1 is the channel input se-

quence is

Pr{ZN
1 = zN

1 |Y N
1 = yN

1 } = ΠN
n=1Pc(zn|yn). (5)

From the channel output sequence zN
1 a decoder d(·) con-

structs an estimate M̂N
1 of the partial source sequence mN

1 .

The error probability PE is defined as

PE
Δ= Pr{M̂N

1 �= MN
1 }. (6)

B. Statement of result

An (N, Dxy, PE)-code consists of an encoding function e(·)
and a decoding function d(·), both operating on sequences of

length N , resulting in an average semantic distortion Dxy and

error probability PE . Distortion level Δxy is now said to be

achievable if for all ε > 0 there exists for all large enough N,
codes (N, Dxy, PE) such that

Dxy ≤ Δxy + ε, and PE ≤ ε. (7)

In sections III and IV we will prove the next theorem.

Theorem 1: For semantic partial transmission the set of

achievable distortions is equal to D which is defined as

D Δ= {Δxy : Δxy ≥
∑
x,y

P (x, y)Dxy(x, y), for

P (x,m, u, y, z) = P ′
s(x,m)Pt(u, y|x)Pc(z|y)

for some auxiliary U with |U| ≤ |X ||Y|
and test channel Pt(u, y|x)
such that I(M,U ; Z) ≥ I(M,U ;X)}. (8)
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Fig. 2. An underlying model for semantic partial transmission.

The smallest possible distortion Δmin = minΔxy∈D Δxy .

Semantic transmission turns out to be impossible if H(M)
is larger than the capacity of the channel.

III. ACHIEVABILITY PROOF

A. Introduction

We will first consider a slightly different problem and

prove a lemma concerning a joint distribution P (x, v, y, z) =
Ps(x)Pt(v, y|x)Pc(z|y) where Ps(·) is the source distribution,

V a finite auxiliary alphabet, Pt(·, ·|·) some fixed test-channel

between X and V × Y , and Pc(·|·) the channel. We claim

the existence of a set of sequences vN
1 ∈ VN having certain

properties within the following scenario. Consider Figure 2.

The memoryless source produces a sequence xN
1 . An encoder

e(·) observing xN
1 transmits over the channel {Pc(z|y), y ∈

Y, z ∈ Z} a sequence vN
1 ∈ V that results in a channel input

sequence yN
1 and whose (semantic) distortion to xN

1 should be

acceptable. Moreover the sequence vN
1 should be the unique

sequence jointly-typical with zN
1 such that a decoder d(·)

can find vN
1 using typicality. An error occurs if the semantic

distortion is too large or if vN
1 is not decoded.

Lemma 1: In the scenario described above, for each ε > 0,

for all N large enough, there exists a set of M sequences

vN
1 ∈ VN such that the error probability is not larger than 4ε

if

I(V ; X) + 4ε ≤ 1
N

log2 M ≤ I(V ; Z) − 4ε. (9)

B. Definition and properties of typical sets AN
ε and BN

ε

First let K be a positive integer and fix an 0 < ε < 1.

Definition 1: The set AN
ε (V1V2 · · ·VK) of ε-typical N -

sequences (v1, v2, · · · , vK) with respect to joint distribution

P (v1, v2, · · · , vK) is defined by

AN
ε (V1V2 · · ·VK)
Δ= {(v1, v2, · · · , vK) :

∣∣∣∣ 1
N

log2

1
P (w)

− H(W )
∣∣∣∣ ≤ ε,

∀W ⊆ {V1, V2, · · · , VK}}, (10)

where P (w) =
∏N

n=1 P (wn).
For the properties of AN

ε we refer to Cover and Thomas [15].

Definition 2: For given v1, · · · vK−1 we define

AN
ε (VK |v1, · · · , vK−1) (11)

Δ= {vK : (v1, · · · , vK−1, vK) ∈ AN
ε (V1V2 · · ·VK)},

which is the set of sequences vK conditionally ε-typical on

v1, · · · vK−1 with respect to P (v1, v2, · · · , vK).
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Note that the test-channel Pt(v, y|x) determines the joint prob-

ability distribution P (x, v, y, z) = Ps(x)Pt(v, y|x)Pc(z|y).
The following definition is crucial. It allows us to avoid using

strong typicality.

Definition 3: Consider the sets BN
ε (XV ) defined as

BN
ε (XV ) (12)
Δ= {(x, v) : Pr{Z ∈ AN

ε (Z|x, v)
∧d(Y , x) ≤ Dexp + ε | (X,V ) = (x, v)} ≥ 1 − ε}

where Z is the output of a ”channel” P (z|x, v) =
P (x, v, z)/

∑
z P (x, v, z), with fixed inputs x and v. More-

over Dexp =
∑

x,y P (x, y)Dxy(x, y).

Property 1: For (x, v) ∈ BN
ε (XV ) there is at least one

z such that (x, v, z) ∈ AN
ε (XV Z), and therefore (x, v) ∈

AN
ε (XV ).
Property 2: Let X,V , Y , Z be i.i.d. with respect to

P (x, v, y, z). Then observe that

Q
Δ= Pr{(X,V , Z) ∈ AN

ε (XV Z) ∧ d(X,Y ) ≤ Dexp + ε}
≤

∑
(x,v)∈BN

ε (XV )

p(x, v) +
∑

(x,v)/∈BN
ε (XV )

p(x, v)(1 − ε)

= 1 − ε Pr{(X,V ) /∈ BN
ε (XV )}, (13)

or

Pr{(X,V ) /∈ BN
ε (XV )} ≤ 1 − Q

ε
. (14)

The weak law of large numbers implies that Q ≥ 1 − ε2 for

large enough N . Using (14) this leads to the statement that

for large enough N ∑
(x,v)∈BN

ε (XV )

p(x, v) ≥ 1 − ε. (15)

C. Random code construction

• Random coding: Generate M sequences v(w) for

w ∈ {1, 2, · · · ,M} at random according to p(v) =∑
x,y Ps(x)Pt(v, y|x).

• Encoding: The encoder chooses an index w such that

(x, v(w)) ∈ BN
ε (XV ). If such an index cannot be

found an error is declared. The channel input sequence

y now results from applying the ”channel” p(y|x, v) =
p(v, y|x)/

∑
y p(v, y|x) to (x, v(w)).

• Decoding: The decoder upon receiving z, looks for the

index ŵ such that (v(ŵ), z) ∈ AN
ε (V Z). If a unique

index does not exists an error is declared.

D. Error probability

Let X be the source sequence, W the index to V , and Z
the result of X and V (W ). Then for w ∈ {1, 2, · · · ,M} we

define the events:

Bw
Δ= {(X, V (w)) ∈ BN

ε (XV )},
Aw

Δ= {(V (w), Z) ∈ AN
ε (V Z)},

Cw
Δ= {(X, V (w), Z) ∈ AN

ε (XV Z)}. (16)

The error probability (averaged over the ensemble of codes)

is now:

PE = Pr {(∩wBc
w) ∪ Ac

W ∪ (∪w �=W Aw)} (17)

≤ Pr {∩wBc
w} + Pr {(∪wBw) ∩ Cc

W } +
∑

w �=W

Pr{Aw},

where we used the fact that Cw ⇒ Aw. We will investigate

these three terms now. First for all x let BN
ε (V |x) Δ= {v :

(x, v) ∈ BN
ε (XV )}. Note that M ≥ 2N(I(X;V )+4ε). Then,

see Gallager [16], p. 454,

Pr
{∩M

w=1B
c
w

}
=

∑
x∈XN

p(x)
M∏

w=1

⎛
⎝1 −

∑
v∈BN

ε (V |x)

p(v)

⎞
⎠ (18)

(a)

≤
∑

x∈XN

p(x)

⎛
⎝1 − 2−N(I(X;V )+3ε)

∑
v∈BN

ε (V |x)

p(v|x)

⎞
⎠

M

(b)

≤
∑

x∈XN

p(x)

⎛
⎝1 −

∑
v∈BN

ε (V |x)

p(v|x)

+ exp(−M2−N(I(X;V )+3ε))
)

≤
∑

(x,v)/∈BN
ε (XV )

p(x, v) +
∑

x∈XN

p(x) exp(−2Nε)
(c)

≤ 2ε,

for N large enough. Here (a) follows from the fact that for

(x, v) ∈ BN
ε (XV ), using Property 1,

p(v) = p(v|x)
p(x)p(v)
p(x, v)

≥ p(v|x)2−N(I(X;V )+3ε), (19)

(b) from the inequality (1 − αβ)M ≤ 1 − α + exp(−Mβ),
which holds for 0 ≤ α, β ≤ 1 and M > 0, and (c) from

Property 2. Secondly we consider

Pr
{(∪M

w=1Bw

) ∩ Cc
W

}
≤ max

(x,v)∈BN
ε (XV )

Pr{Z /∈ AN
ε (Z|x, v)|(V ,X) = (x, v)}

(d)

≤ ε. (20)

Here (d) follows directly from definition 3 of the set BN
ε (XV ).

Thirdly, for a fixed z

Pr{V ∈ AN
ε (V |z)} =

∑
v∈AN

ε (V |z)

p(v|z)
p(v)p(z)
p(v, z)

≤ 2−N(I(V ;Z)−3ε)
∑

v∈AN
ε (V |z)

p(v|z)

≤ 2−N(I(V ;Z)−3ε). (21)

From M ≤ 2N(I(V ;Z)−4ε) we now get for N large enough∑
w �=W

Pr{Aw} ≤
∑

w �=W

max
y

Pr{V ∈ AN
ε (V |z)}

≤
∑

w �=W

2−N(I(V ;Z)−3ε)

≤ M2−N(I(V ;Z)−3ε) ≤ 2−Nε ≤ ε. (22)
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E. Last part achievability proof

In the ensemble of codes, for all N large enough, there now

exists a a set of M sequences such that PE ≤ 2ε+ ε+ ε = 4ε,
as long as I(V ; X)+4ε ≤ 1

N log2 M ≤ I(V ;Z)−4ε, for our

fixed 0 < ε < 1. This follows from combining (24), (20), and

(22). This finishes the proof of the lemma.

Let Dmax
Δ= maxx,y Dx,y(x, y) then we obtain for the

average semantic distortion of this code

Dxy ≤ (1 − PE)(Dexp + ε) + PEDmax

≤ Dexp + ε + 4εDmax, (23)

Now returning to the achievability proof we assume that

V = (M, U). If I(M,U ;X) < I(M, U ;Z) there should be

an ε > 0 such that I(M, U ; X) + 4ε ≤ I(M,U ;Z)− 4ε. The

lemma implies for large enough N the existence of a code

(N, Dxy, PE) with PE ≤ 4ε and Dxy ≤ Dexp + ε + 4εDmax.

Letting ε ↓ 0 proves the achievability part of the theorem.

Observe that we did not consider test-channels for which

I(M, U ;X) = I(M, U ; Z). Also for such a test-channel

achievability can be proved, using the idea that this test-

channel can be adapted a little bit without increasing the

distortion too much. We will not work out this idea here.

IV. CONVERSE

A. Mutual information part

Consider an (N, Dxy, PE)-code. From H(MN
1 |XN

1 ) = 0,

and H(MN
1 |ZN

1 ) ≤ 1 + PE log2(|M|N ) we obtain

0 ≤ I(MN
1 ; ZN

1 )− I(MN
1 ; XN

1 )+1+PE log2(|M|N ). (24)

For the difference I(MN
1 ; ZN

1 ) − I(MN
1 ;XN

1 ) we find

I(MN
1 ;ZN

1 ) − I(MN
1 ; XN

1 )

=
∑

n=1,N

[
H(Zn|Zn−1

1 ) − H(Zn|MN
1 , Zn−1

1 , XN
n+1)

−I(Zn; XN
n+1|MN

1 , Zn−1
1 ) − I(MN

1 ; Xn|XN
n+1)

]
(a)
=

∑
n=1,N

[
H(Zn|Zn−1

1 ) − H(Zn|MN
1 , Zn−1

1 , XN
n+1)

−I(Xn; Zn−1
1 |MN

1 , XN
n+1) − I(MN

1 ; Xn|XN
n+1)

]
=

∑
n=1,N

[
H(Zn|Zn−1

1 ) − H(Zn|MN
1 , Zn−1

1 , XN
n+1)

−H(Xn|XN
n+1) + H(Xn|MN

1 , Zn−1
1 , XN

n+1)
]

(b)

≤
∑

n=1,N

[
H(Zn) − H(Zn|MN

1 , Zn−1
1 , XN

n+1)

−H(Xn) + H(Xn|MN
1 , Zn−1

1 , XN
n+1)

]
(c)
=

∑
n=1,N

[I(Zn;Mn, Vn) − I(Xn;Mn, Vn)] , (25)

with probability distribution

P (xn,mn, vn, yn, zn) = P ′
s(xn,mn)P (vn, yn|xn)Pc(zn|yn)

(26)

for some P (vn, yn|xn) for n = 1, N . Here (a) follows from

the “summation by parts”-lemma in Csiszar and Körner [17],

(b) from the fact that H(Xn|XN
n+1) = H(Xn) since the source

symbols are i.i.d., and (c) from the substitution

Vn
Δ= (Mn−1

1 , Zn−1
1 , XN

n+1) for n = 1, N, (27)

where we should note that MN
n+1 is contained in XN

n+1. We

continue with∑
n=1,N

[I(Zn;Mn, Vn) − I(Xn; Mn, Vn)]

(d)
= N [I(Z;M, V |T ) − I(X; M, V |T )]
(e)

≤ N [H(Z) − H(Z|M, V, T )
−H(X) + H(X|M, V, T )]

(f)
= N [I(Z;M, U) − I(X; M, U)] , (28)

with P (x,m, u, y, z) = P ′
s(x,m)P (u, y|x)Pc(z|y) for some

P (u, y|x). Here (d) follows from defining a time sharing-

variable T , independent of all the other variables, assuming

value n ∈ {1, 2, · · · , N} with probability 1/N , and X = XT ,

M = MT , U = UT , Y = YT and Z = ZT , (e) from the fact

that H(X|T ) = H(X) since the symbols Xn are assumed to

be i.i.d., and (f) from the substitution U = (V, T ).

B. Distortion part

Next we study the average semantic distortion

Dxy =
∑

xN
1 ,yN

1

P (xN
1 , yN

1 )
1
N

∑
n=1,N

Dxy(xn, yn)

=
N∑

n=1

1
N

∑
xn,yn

P (xn, yn)Dxy(xn, yn)

=
∑
x,y

P (x, y)Dxy(x, y), (29)

where P (x, y) =
∑

m,u,z P ′
s(x,m)P (u, y|x)Pc(z|y) for the

same P (u, y|x) that satisfies (28).

C. Last part converse

We now conclude that our (N, Dxy, PE)-code satisfies

0 ≤ I(Z; M, U) − I(X; M,U) +
1
N

+ PE log2(|M|),
Dxy =

∑
x,y

P (x, y)Dxy(x, y), (30)

for some

P (x,m, y, z) = P ′
s(x, m)P (u, y|x)Pc(z|y). (31)

This implies that for an achievable Δxy for any ε > 0 and N
large enough

0 ≤ I(Z;M, U) − I(X; M, U) +
1
N

+ ε log2(|M|),
Δxy ≥ Dxy − ε =

∑
x,y

P (x, y)Dxy(x, y) − ε.

for some P (x,m, u, y, z) = P ′
s(x,m)P (u, y|x)Pc(z|y). Let-

ting ε ↓ 0 and N → ∞, proves the converse part of the

theorem.
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D. Cardinality bounds

To find a bound on the cardinality of the auxiliary variable

U let D be the set of probability distributions on X × Y and

consider the |X ||Y| continuous functions of P ∈ D defined as

φxy(P ) = P (x, y) for all but one pair (x, y),
φh(P ) = HP (X|M) − HP (Z|M). (32)

By the Fenchel-Eggleston strengthening of the Caratheodory

lemma (see Wyner and Ziv [18]) there are |X ||Y| elements

Pu ∈ D and αu that sum to one, such that

P (x, y) =
∑

u=1,|X ||Y|
αuφxy(Pu) for

all but one pair (x, y),

H(X|M,U) − H(Z|M, U) =
∑

u=1,|X ||Y|
αuφh(Pu). (33)

The entire probability distribution {P (x, y), x ∈ X , y ∈ Y}
and consequently the entropy H(X) is now specified. Observe

that now also the distribution {P (y), y ∈ Y} and therefore also

H(Z), and
∑

x,y P (x, y)Dxy(x, y) are specified. Hence also

I(X; M,U) − I(Z;M, U). This implies that |U| = |X ||Y|
suffices.

V. EMBEDDING WATERMARKS CORRELATED TO THE

COVERTEXT

Suppose that we have an i.i.d. source S to which M is

correlated (as in Yang and Sun [14]). The correlated sequence

mN
1 now has to be embedded into sN

1 . The sequence yN
1

(semantic to sN
1 ) is conveyed via a memoryless channel

{Pc(z|y),Y,Z}. The decoder has to reconstruct mN
1 . The

fundamental limit for this problem was determined by Yang

and Sun [14]. We show here that this problem can also be cast

into our ”semantic partial transmission” setup. This leads to

the characterization of the set of achievable distortions.

Take X = (S, M) and let μ(X) = M . The set of achievable

distortion is now

D Δ=
{Δsy : Δsy ≥

∑
s,y

P (s, y)Dsy(s, y), for

P (s,m, u, y, z) = Ps(s,m)Pt(u, y|s, m)Pc(z|y)
for test channel Pt(u, y|s,m) such

that I(M, U ;Z) ≥ I(M, U ; S, M)}. (34)

It turns out that this result also can be obtained from [14]

if take an auxiliary random variable U that includes M .

Inspection of the converse in [14] shows that this is justified,

and consequently our characterization is more specific. For the

U -cardinality bound we obtain that |U| ≤ |S||M|‖Y|.
VI. CONCLUSION

In this article we have proposed the semantic partial trans-

mission setup. We could determine the set of achievable

distortions for this situation. By introducing a typical set

with some additional properties we were able to formulate an

achievability proof based on weak instead of strong typicality.

Strong typicality proofs are standard in semantic-coding and

embedding problems, which are based on the (strong typi-

cality) Gelfand-Pinsker proof. We have investigated the con-

nection between semantic partial transmission and embedding

a watermark that is correlated to the cover-text. Yang and

Sun [14] determined the fundamental limit for this embedding

setup. We could refine their formulation using our results for

semantic partial transmission.
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