
 

Real and stochastic time in process algebras for performance
evaluation
Citation for published version (APA):
Markovski, J. (2008). Real and stochastic time in process algebras for performance evaluation. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR637756

DOI:
10.6100/IR637756

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.6100/IR637756
https://doi.org/10.6100/IR637756
https://research.tue.nl/en/publications/c9354790-0681-4cdc-b604-440c6606becc


Real and Stochastic Time
in Process Algebras

for Performance Evaluation

by Jasen Markovski



c©Jasen Markovski
IPA Dissertation Series 2008-26
Typeset using LATEX2e
Printed by University Press Facilities, Eindhoven
Cover design by Jasen Markovski, adaptation by Paul Verspaget

A catalogue record is available
from the Eindhoven University of Technology Library
ISBN: 978-90-386-1394-9

The work in this thesis has been carried out under the auspices of the re-
search school IPA (Institute for Programming research and Algorithmics).

The author was employed at the Eindhoven University of Technology, sup-
ported by the Dutch BSIK/BRICKS project AFM 3.2.



Real and Stochastic Time
in Process Algebras

for Performance Evaluation

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op donderdag 2 oktober 2008 om 16.00 uur

door

Jasen Markovski

geboren te Skopje, Macedonië



Dit proefschrift is goedgekeurd door de promotor:

prof.dr. J.C.M. Baeten

Copromotor:
dr. E.P. de Vink



Preface

This thesis is the final result of four years of research done in the Formal
Methods Group at Eindhoven University of Technology in The Netherlands.
First of all, I would like to thank my supervisor, professor Jos Baeten, for
giving me a position in the group. He has provided me with a great deal
of support, as well as tolerance, understanding, and flexibility as much as a
supervisor can give. I am grateful for the trust that was given to me in the
beginning of my research and the freedom to follow my own path at the later
stages. I am also thankful for his endurance of the many ‘fiery’ discussions
and the knowledge that he transferred to me.

I owe a lot to my co-supervisor Erik de Vink. He always had my best
interest in mind, offering a helping hand every time I needed it. I gained
expertise in writing papers under his guidance and he was always willing to
share his experiences and teach me the tricks of the trade. I thank him for
always being there for me and giving me the kind of endless support that
any PhD student hopes for.

Many results presented in this thesis are a product of joint work. Nikola
Trčka was involved in most of it as one of my closest co-workers and a
great friend. In the beginning, we had long discussions, in which he was
unselfishly transferring all of his knowledge to me. In the past four years,
he always shared his ideas, open to criticism, and promptly sharing his own
considering my inventions as well. He crushed many of my theories, never
giving up in building new ones. The quality of my research and my expertise
as a researcher would never be on this level if it were not for him.

I have learned a lot about writing, being more precise, and expressing
myself better and clearer from Bas Luttik. I thank him for always finding
the time and energy to read and comment on everything that Nikola and I
put in front of him.

I would also like to thank Ana Sokolova for her support in and out of the
workplace. I learned a lot from her both in her classes in Skopje as a student,
as well as during my stay in the Netherlands, where we were involved in the

v



vi

same research. Here, I continued to learn from her thoroughness, attention
to detail, and ease of expression.

One year ago, Sonja Georgievska, a former colleague of mine, and Suzana
Andova, her co-supervisor, joined our group. Almost immediately we began
collaborating, which resulted in some interesting research. Sonja also greatly
contributes to the never-ending discussions together with Nikola, and her
input was always valued.

I thank the members of the reading committee professor Koos Rooda,
professor Joost-Pieter Katoen, Manuel Núñez, and Pedro D’Argenio for re-
viewing the manuscript and giving me valuable comments that improved
the quality of this thesis. I also thank professor Holger Hermanns, professor
Joost-Pieter Katoen, and professor Tom Henzinger for inviting me to visit
and present my work. I also thank professor Frank de Boer for having me
in the BSIK/BRICKS AFM 3.2 project, which funded my research. Addi-
tionally, I thank professor Koos Rooda for offering me a post-doc position
inhis group, which I gladly accepted.

I thank my colleagues at the Formal Methods Group for contributing
to a relaxed and productive working atmosphere. Special thanks goes to
Simona Orzan as my part-time office-mate for almost three years during
which she politely endured my discussions with Nikola and the “q-doi” stuff.
I also thank miss Joosten for always being supportive, helpful, and ready to
laugh. Later, Astrid Volkers came in her position and provided a cheerful
company, which I enjoyed pretty much. I thank Tijn Borghuis for leading
several interesting IPA days and for inviting me to talk there. I thank Ruurd
Kuiper for his support during his Java classes. I also managed to learn a
lot from Jing Pan, who exposes me to her different points of view. I would
also like to thank Mohammad Mousavi for always finding time to answer my
questions. I thank Walter van Niftrik for his support to my research during
his master project.

My stay in the Netherlands would have not been as pleasant if it were
not for the many new and old friends. They know who they are and that
they are really treasured, but still I want to mention some of them. Ana
has helped me a lot in the beginning and provided me with more than just
useful advice. George has become a great friend of mine and he introduced
me to one of my favorite sports. So, I thank him for the many bruises and
some exhilarating experiences. I was lucky to also have some of my old
friends here in Eindhoven and I thank Bate Žare and Src for all the time
we spent together. With Nikola and Marija I had many pleasant gatherings
and their company and advice is always welcome. A group of Spanish people
made my life very interesting and playful and I thank them for their amusing



vii

company, especially Zlato, Irene, Emily, and Emma. Sonja and Starski came
here one year ago and make my life here even more delightful. I also enjoy
each of the Nataša’s parties and Nadezhda’s recipes. Grga and Nataša have
also been great company and I wish them the best in their new home.

I cannot forget about my friends and family back home in Macedonia.
They have always made my trips there memorable, making me feel like I
almost never left home. Some of them came to visit, some of them I hope
soon will. I thank Mire for always being there, never giving up on me, nor
judging me. Special thanks goes to Kum and Nevestička who always found
time in their very busy schedules. I also thank Dac for always keeping in
touch, although I was not always at my best behavior. Jiggy and Šatana
provided an enjoyable company, very often until very late in the evening.
Suzi has always proven to me that all things are possible if you put your mind
to it. Topče has been a great friend, always providing delightful company
and conversation. Pileto Šareno always pointed me in the right direction of
the best cafés and restaurants. Cecolina has always provided me with good
advice, having in mind my best interest. I also thank Goce, Boki, Dečki,
and Vesna for staying in touch despite their hectic obligations. Running out
of space and time I apologize for not mentioning the rest of you. I hope you
know you are much appreciated.

Endless amount of gratitude goes to Meri, who managed to make my life
interesting, eventful, warm, comfortable, and full of love and sunshine, even
on the cloudiest of days.

Finally, I want to express my deepest gratitude and appreciation for my
parents Smile and Slavica, and my sister Jasminka, who have always been
there to support me. Without their love, support, compassion, selfless sac-
rifice, and vision I would have never become the person that I am.

 
Jasen Markovski Eindhoven, August 14th, 2008





Summary

Real and Stochastic Time in Process Algebras
for Performance Evaluation

Process algebras are formalisms for abstract modeling of systems for the
purpose of qualitative verification and quantitative evaluation. The purpose
of verification is to show that the system behaves correctly, e.g., it does not
contain a deadlock or a state with some desired property is eventually going
to be reached. The quantitative or performance evaluation part gives an
approximation how well the system will behave, e.g., the average time of
a message to get through is 10 time units or the utilization (percentage of
time that something is used) of some machine is 23.5 percent.

Originally, process algebras were only developed for qualitative model-
ing, but gradually they have been extended with time, probabilities, and
Markovian (exponential) and generally-distributed stochastic time. The ex-
tensions up to stochastic time typically conservatively extended previous
well-established theories. However, mostly due to the nature of the under-
lying (non-)Markovian performance models, the stochastic process algebras
were built from scratch. These extensions were carried out as orthogonal
extensions of untimed process theories with exponential delays or stochastic
clocks. The underlying performance model is obtained by abstracting from
the qualitative behavior using some weak behavioral equivalence.

The thesis investigates several issues: (1) What is the relationship be-
tween discrete real and generally-distributed stochastic time in the process
theories? (2) Is it possible, and if so, how, to extend timed process theories
with stochastic time? (3) Reversely, is it possible, and if so, how, to embed
discrete real time in generally distributed process theories? Additionally,
(4) is the abstraction using the weak behavioral equivalence in Markovian
process theories (and other modeling formalisms as well) performance pre-
serving, and is such an approach compositional? In the end, (5) how can we
do performance analysis using discrete-time and probabilistic choices?

ix



x

The contents of the thesis is as follows. First, we introduce the central
concept of a race condition that defines the interaction between stochastic
timed delays. We introduce a new type of race condition, which enables
the synchronization of stochastic delays with the same sample as in timed
process theories. This gives the basis for the notion of a timed delay in a
racing context, which models the expiration of stochastic delays. In this
new setting, we define a strong bisimulation relation that deals with the
(probabilistic) race condition on a symbolic level. Next, we show how to
derive stochastic delays as guarded recursive specification involving timed
delays in a racing context and we derive a ground-complete stochastic-time
process theory. Then, we take the opposite viewpoint and we develop a
stochastic process theory from scratch, relying on the same interpretation
of the race condition. We embed real time in the stochastic-time setting
by using context-sensitive interpolation, a restricted notion of time additiv-
ity. Afterwards, we turn to Markovian process theories and we show com-
positionality of the Markov reward chains with fast and silent transitions
with respect to lumping-based and reduction-based aggregation methods.
These methods can be used to show preservation of performance measures
when eliminating probabilistic choices and non-deterministic silent steps in
Markovian process theories. Then, we specify the underlying model of prob-
abilistic timed process theories as a discrete-time probabilistic reward graph
and we show its transformation to a discrete-time Markov reward chain.
The approach is illustrated by extending the environment of the modeling
language χ. The developed theories are illustrated by specifying a version
of the concurrent alternating bit protocol and analyzing it in the χ toolset.



Contents

1 Introduction 1
1.1 Describing a Testing System . . . . . . . . . . . . . . . . . . . 1
1.2 Formal Methods and Performance Evaluation . . . . . . . . . 10
1.3 Process Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Timed and Probabilistic Extensions . . . . . . . . . . . . . . 13
1.5 Markovian Time Extensions . . . . . . . . . . . . . . . . . . . 14
1.6 Extensions with Generally-Distributed Stochastic Time . . . 16
1.7 Outline and Contribution . . . . . . . . . . . . . . . . . . . . 20

2 Race Condition 25
2.1 Racing Stochastic Delays . . . . . . . . . . . . . . . . . . . . 26
2.2 Stochastic Delay Prefix . . . . . . . . . . . . . . . . . . . . . 28
2.3 Dependent and Independent Race Condition . . . . . . . . . . 29
2.4 Timed Delays in a Racing Context . . . . . . . . . . . . . . . 31
2.5 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Process Theory TCPdrst 37
3.1 Racing Timed Transition Schemes . . . . . . . . . . . . . . . 37
3.2 Probabilistic Timed Transition Systems . . . . . . . . . . . . 39
3.3 Bisimulation Relation . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Auxiliary Operations . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Naming Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Structural Operational Semantics . . . . . . . . . . . . . . . . 47
3.8 α-conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.9 Term Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xi



xii CONTENTS

4 Equational Theory 61
4.1 Renaming of Independent Delays . . . . . . . . . . . . . . . . 61
4.2 Dependence Scope . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Alternative Composition . . . . . . . . . . . . . . . . . . . . . 64
4.4 Renaming of Independent Delays . . . . . . . . . . . . . . . . 67
4.5 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6 Parallel Composition . . . . . . . . . . . . . . . . . . . . . . . 71
4.7 Maximal Progress . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.8 Head Normal Form . . . . . . . . . . . . . . . . . . . . . . . . 75
4.9 Ground Completeness . . . . . . . . . . . . . . . . . . . . . . 76
4.10 Guarded Recursive Specifications . . . . . . . . . . . . . . . . 77
4.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Process Theory DTCPdst
rec 81

5.1 Delayable Action Prefix and Delayable Deadlock . . . . . . . 81
5.2 Stochastic Delay Prefix . . . . . . . . . . . . . . . . . . . . . 82
5.3 Interaction between the Prefix Operators . . . . . . . . . . . 84
5.4 Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5 Dependence Scope and Encapsulation . . . . . . . . . . . . . 87
5.6 Alternative Composition . . . . . . . . . . . . . . . . . . . . . 88
5.7 α-conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.8 Parallel Composition . . . . . . . . . . . . . . . . . . . . . . . 93
5.9 Maximal Progress . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.10 Head Normal Form . . . . . . . . . . . . . . . . . . . . . . . . 96
5.11 Race-Complete Process Specifications . . . . . . . . . . . . . 98
5.12 The G/G/1/∞ Queue . . . . . . . . . . . . . . . . . . . . . . 99
5.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Extending Real Time with Stochastic Time 103
6.1 Overview of Stochastic Bisimulation Relations . . . . . . . . . 103
6.2 Extending Real Time with Stochastic Time . . . . . . . . . . 104
6.3 Context-Sensitive Interpolation . . . . . . . . . . . . . . . . . 106
6.4 Stochastic Process Theory TCPst

rec . . . . . . . . . . . . . . . 108
6.5 Stochastic Transition Schemes . . . . . . . . . . . . . . . . . . 110
6.6 Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.7 Structural Operational Semantics . . . . . . . . . . . . . . . . 114
6.8 Expansion of the Parallel Composition . . . . . . . . . . . . . 120
6.9 Embedding Real Time as Dirac Stochastic Time . . . . . . . 121
6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



CONTENTS xiii

7 Aggregation Methods for Markov Reward Chains with Fast
and Silent Transitions 123
7.1 Extended Markovian Models . . . . . . . . . . . . . . . . . . 128
7.2 Aggregation Methods . . . . . . . . . . . . . . . . . . . . . . 134
7.3 Relational Properties . . . . . . . . . . . . . . . . . . . . . . . 144
7.4 Parallel Composition and Compositionality . . . . . . . . . . 146
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8 Analyzing the Concurrent Alternating Bit Protocol 155
8.1 The Language χ . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.2 Discrete-Time Probabilistic Reward Graphs . . . . . . . . . . 157
8.3 The Concurrent Alternating Bit Protocol . . . . . . . . . . . 173
8.4 Specification and Analysis in χ . . . . . . . . . . . . . . . . . 175
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9 Conclusions and Future Work 181

Bibliography 185

Curriculum Vitae 195





Chapter 1

Introduction

In this thesis we deal with timed and stochastic specifications of complex
systems for the purpose of verification and performance analysis. Although
initially targeted at the analysis of software-intensive systems, the techniques
developed are applicable to a wide range of timed and stochastic distributed
systems. The process theories developed in this thesis are inherently of a
technical nature. A little of the reader’s patience is required to digest the
unavoidable overhead preceding the presentation of results.

We begin by informally presenting the topics explored in this thesis by
means of an example. We aim to provide the reader outside the fields of
formal methods and performance analysis with a better insight into the
matters investigated in the sequel. Then, we give an overview of the topics
of interest by chronologically discussing the timed and stochastic extensions
of process algebras. We finish the introduction by sketching the structure of
the thesis, underlying the main results and contributions, as well as listing
the supporting publications.

1.1 Describing a Testing System

We start off with modeling a simple testing system using paradigms from
formal methods and performance analysis. Using this example we point out
the key issues discussed in this thesis using an informal language, terminol-
ogy, and notation.

We begin by describing the qualitative behavior of the testing system,
i.e., the activities or actions that an observer of this system might be inter-
ested in. The system is depicted in Figure 1.1.

We observe the testing system in isolation in the sense that we do not
model the whole environment, i.e., we do not care how the products are

1



2 Chapter 1. Introduction

produced (although we do take into account the temporal and probabilistic
properties of the arrival process) and what happens with the defective or
approved products. We clearly separate the system in four components,
each one with its own purpose: (1) “Arrival of products”, which sends the
products for testing, (2) “Product tester”, which receives the product, begins
its testing, and determines whether the product is defective or approved, (3)
“Receiver of defective products”, which consumes the defective products,
and (4) “Receiver of approved products”, which consumes the approved
products.

Arrival of
products Product tester

Receiver of
defective
products

Receiver of
approved
products

/.-,()*+

snd-prd

YY
/.-,()*+ rcv-prd // /.-,()*+ prd-tst // /.-,()*+

snd-dfc

VV

snd-app

©© /.-,()*+

rcv-dfc

YY
/.-,()*+

rcv-app

YY

Figure 1.1: Qualitative description of the components of the testing system

In general, we visualize models using graphs or transition systems in
which the states denote points with different behavior and the outgoing
transitions depict the activities. We consider the leftmost state as the start-
ing state of each graph. For example, in the component “Arrival of prod-
ucts” there is only one outgoing transition labeled “snd-prd” denoting that
a product has arrived and it is ready to be sent further. This component has
only one state, meaning that it is just responsible for delivering products in
the system. The following component “Product tester”, first has to receive
a product in order to begin its operation as given by the transition “rcv-
prd”. The activities “snd-prd” and “rcv-prd” are synchronizing, meaning
that when the former component sends a product to the latter there is a syn-
chronized communication between the components. Later, we denote this
synchronization activity as “prd-snt”. After the product has been received,
the tester begins the testing of the product (as given by the transition “prd-
tst”) and makes a choice whether the product is defective or approved as
depicted by the two outgoing transitions “snd-dfc” and “snd-app”, respec-
tively. Note that there is no quantification on the way that the choice is
made, i.e., it is made nondeterministically. In this situation we also say that



1.1. Describing a Testing System 3

the system is underspecified.
The components of the system can be merged to give the observable

behavior of the testing system as depicted at the left-hand side in Figure 1.2.

Testing system Reduced testing system

/.-,()*+ prd-snt // /.-,()*+ prd-tst // /.-,()*+

dfc-snt

©©

app-snt

VV
/.-,()*+ prd-snt // /.-,()*+

dfc-snt

¯¯

app-snt

RR

Figure 1.2: Qualitative description of the testing system

The arriving products are now sent to the tester by synchronizing the
sending and receiving activity of the product from the component “Arrival
of products” to the component “Product tester”, which is denoted by the
‘synchronizing’ transition “prd-snt”. Afterwards, the product is being tested
and either defective or approved products are ‘communicated’ to the corre-
sponding receiver, denoted by the synchronization activities “dfc-snt” and
“app-snt”, respectively.

For the purpose of verification of the correct (observable) functioning
of the testing system, we sometimes wish to ‘abstract’ from the internal
workings of the system. At the right-hand side of Figure 1.2 we depict the
reduced model of the testing system. Here, we do not care about the actual
activities involving the testing of the product. Instead, we treat the tester
as a black box, assuming that the testing is done in a proper manner. From
the observable behavior of the system we can now ensure that the products
that go inside the tester eventually come out labeled either as defective or
approved.

Next, we proceed by quantifying the temporal aspects of the system.
For example, if we wish to specify that the products arrive every three units
of time, then we can extend the specification of the component “Arrival
of products” as depicted in Figure 1.3. The time delays are represented by
transitions labeled by a number that represents the duration of the delay. We
extend the specification of the component “Product tester” as well. Let us
assume that finding a defective product takes two units of time. Approved
products need to be labeled, for which we assign additional two units of



4 Chapter 1. Introduction

time, amounting to four units of time required for the testing of approved
products.

Arrival of products

/.-,()*+

3

µµ/.-,()*+

snd-prd

RR

Product tester

/.-,()*+ rcv-prd // /.-,()*+ prd-tst // /.-,()*+ 2 // /.-,()*+

snd-dfc

¦¦

2pp/.-,()*+
snd-app

TT

Figure 1.3: Timed description of the components “Arrival of products”
and “Product tester”

Here, an interesting phenomenon occurs: we do not see in the description
of the component “Product tester” in Figure 1.3 a composite delay of four
time units. We do see, however, a delay of two time units preceding a
choice between the transition “snd-dfc”, which denotes testing of defective
products, and a delay of two time units followed by the transition “snd-app”,
which labels approved products. The description implies that the passage of
time for testing defective or approved products is observed simultaneously.
The passage of time by itself does not make a choice, but the activities of
the system are the ones that make it. This temporal property is referred
to as time determinism. Another implication from the above discussion is
that two delays, each with duration of two units of time are considered as
equivalent to one composite delay of four time units. This temporal property
is referred to as time additivity. Time determinism and time additivity are
the identifying properties of passage of time.

The timed behavior of the testing system is depicted in Figure 1.4.
Here, we see that both time determinism and time additivity play a role.

The initial product comes into the system after three units of time, which
are depicted as two successive delays of two and one time unit, respectively.
If the tested product is defective, then the result is known in two time units,
leaving a time-unit gap before the arrival of the next product. If the tested
product is approved, then the testing operation costs four time units. Thus,
the following arriving product has already waited an extra time unit in the
component “Arrival of products” for synchronization with the component
“Product tester”. This means that we implicitly assume that the activities



1.1. Describing a Testing System 5

The testing system

/.-,()*+ 2 // /.-,()*+ 1 // /.-,()*+ prd-snt // /.-,()*+ prd-tst // /.-,()*+ 2 // /.-,()*+

dfc-snt

££

2pp/.-,()*+
app-snt

TT

Figure 1.4: Timed description of the testing system

of the components (e.g., “snd-prd”, “rcv-dfc”) are delayable, i.e., they allow
passage of time before the other component is ready to synchronize. The
synchronization itself is assumed to happen instantly as there is no point
in waiting, so, e.g., the activities “prd-snt” or “dfc-snt” happen as soon as
possible and are deemed undelayable. This assumption is also known as the
maximal progress of time. We also note that internal activities that have
no synchronizing counterpart, like “prd-tst”, are also typically considered
as undelayable.

Looking at the testing system from the perspective of performance analy-
sis, the emphasis is put on the quantitative aspects of the system, instead of
the qualitative ones. So, the transitions of the system that do not carry any
quantitative information are superfluous and they do not exist in the speci-
fication. In Figure 1.5 we depict the testing system from Figure 1.4 suitable
for performance analysis. The choice whether the product is defective or
approved is now quantified by an explicit probabilistic choice (denoted by
dotted arrows), which expresses that on average 9 out of 10 products are
approved. It is assumed that the probabilistic choice is immediate, i.e., its
resolution does not consume any time.

We note, however, that this model is incomplete in the sense that ad-
ditional information in form of rewards or costs is required to specify the
performance measures of interest. The rewards are numbers assigned to
states that are used to form a meaningful weighted sum of the fraction of
time that the system spends in each of its states. For example, if we wish
to find out the long-run utilization of the tester, then reward 0 is assigned
to the leftmost two states and reward 1 is assigned to the rightmost three
states. The intuition behind such distribution of rewards is that the tester
is employed in the rightmost three states, which can be deduced by com-



6 Chapter 1. Introduction

The testing system

/.-,()*+ 2 // /.-,()*+ 1 // /.-,()*+ 2 // /.-,()*+

1
10

¦¦

9
10

pp/.-,()*+2

\\

Figure 1.5: Timed description suitable for performance analysis

paring the specifications in Figures 1.4 and 1.5. Thus, this distribution of
rewards will collect the fraction of time that the system on average spends
for testing of products. What is left to do is to compute the fraction of
time that the process spends in each state and multiply it with the rewards,
which amounts to a long-run utilization of 38

39 . We deal with this class of
performance models in the last part of the thesis.

For a precise performance modeling, the deterministic delays of the
timed description of Figure 1.5 are sometimes insufficient. The most general
manner of approximating passage of time is by using generally-distributed
stochastic time. The most prominent performance models with generally-
distributed stochastic time are the generalized semi-Markov processes. They
employ decreasing stochastic clocks that can sample from any probability
distribution. In a state the clocks can be reset, which is denoted by the
name of the clock in the state. When the clock is reset, it is assigned a value
or sample and it immediately starts counting downwards. The expiration of
the clock, i.e., its reaching zero, is denoted by an outgoing transition with
its name. We note that when sampling from continuous distributions, the
probability that two clocks expire at the same time is zero. On the left-hand
side in Figure 1.6 we give a generalized semi-Markovian description of the
testing system, assuming that the clocks cannot expire simultaneously.

The clock a is assigned to the arriving delay of the component “Arrival
of products”, the clock d is assigned to the delay required to test a defective
product, and the clock p is assigned to the delay required to test an ap-
proved product. Recall that in the timed specification the time delays were
explicitly merged according to the principle of time determinism. When
doing performance analysis the delays are typically represented as separate



1.1. Describing a Testing System 7

The testing system as
a generalized semi-Markov process

The testing system as
an aggregated Markov chain

76540123a

a

¼¼/.-,()*+ a // GFED@ABCa,d,p

d

yy

p

ee
a // /.-,()*+
d

ww

p

gg
/.-,()*+

λ

µµ/.-,()*+

µ+ν

RR

µ+ν

µµ/.-,()*+

λ

RR

Figure 1.6: Descriptions of the testing system from a performance analytic
point of view

constructs and their interaction is guided by a so-called race condition. The
race condition states that the transitions guided by the (simultaneously-
expiring) clock(s) with the smallest sample will be taken. Notably, the
property of time determinism is preserved, although each clock can have a
separate outgoing transition as depicted in Figure 1.6. A major part of this
thesis is dedicated to the relationship between deterministic or real time
and stochastic time and the preservation of the real-time properties in race
condition semantics.

Coming back to our example, the testing system introduces the initial
product after the expiration of a. In the next state, all clocks are reset,
meaning that there is simultaneous passage of time for the arrival of the
successive product, its testing as defective product, and its testing as an
approved product. In this state there is a race, which can have only one
winner, as for the sake of simplicity we assume that no two clocks can
expire simultaneously. Then, two things can happen: (1) either the product
is labeled defective or approved and sent to the corresponding receiver, which
is denoted by the outgoing transitions labeled by d and p, respectively, or (2)
a new product has arrived in the component ”Arrival of products” and it is
waiting to be received by the tester as depicted by the outgoing transition a.
Note that in both cases there is no resetting of clocks as no new activities
are started. In the former case, the system waits for the a clock to expire,
i.e., it expects the successive product for testing, whereas in the latter case
the new product is waiting for synchronization as the tester has to finish
the current testing operation. We note that the starting state is unique, as
it is the only state in which there is no simultaneous expiration of the three



8 Chapter 1. Introduction

clocks (cf. the starting states of the timed descriptions given in Figures 1.4
and 1.5).

Often performance evaluation is done assuming only exponentially dis-
tributed clocks or delays. In this case the stochastic delay is simply denoted
by the parameter of the negative exponential distribution as depicted in the
right-hand side in Figure 1.6. The exponentially distributed delays have
several important properties: (1) such delays are memoryless, meaning that
passage of time does not alter the distribution of the delay to its expiration,
which is also a unique property of the negative exponential distribution in
the continuous domain, (2) they are closed for the minimum, implying that
multiple delays originating and ending in same states can be replaced only
by one delay, which parameter is the sum of the parameters of the other de-
lays, and (3) knowing nothing about the distributions of the delays except
for their mean, they are statistically the most suitable fit.

If we assume that the clocks a, d, and p are exponentially distributed
with parameters λ, µ, and ν, respectively, then the generalized semi-Markov
process, becomes a continuous-time Markov chain. Due to the memory-
less property, the starting state can now be merged with its target state.
This is because the simultaneous expiration of the clocks does not alter the
distribution of a, which remains exponentially distributed with a parame-
ter λ. Also, the winning transitions of d and p are represented by only one
transition which represents the shortest sample of d and p distributed with
parameter µ+ ν. The continuous-time Markovian representation is given at
the right-hand side in Figure 1.6.

To support verification and performance analysis from the same specifi-
cation, one can add, e.g., exponential delays to the untimed description of
the components in Figure 1.1. This leads to a Markovian description of the
testing system as depicted in Figure 1.7.

For the purpose of doing performance analysis the qualitative informa-
tion from the specification should be eliminated. This reduction should also
guarantee that the performance of the model depicted in the bottom of Fig-
ure 1.7 is equal to the performance of the pure Markov chain depicted on
the right-hand side in Figure 1.6. In this thesis, we study the properties of
aggregation methods based on stochastic interpretations of the action tran-
sitions, devoid of their meaning, as infinitely fast exponential delays with
an unknown parameter. We show that the aggregation methods induce pre-
order relations and that the aggregations themselves can be performed in
a compositional manner. So, the aggregation of the components is allowed
before composing the complete system, which reduces the space required to
calculate the final process.



1.1. Describing a Testing System 9

Arrival of products Product tester

/.-,()*+

λ

µµ/.-,()*+

snd-prd

RR

/.-,()*+snd-dfc

££/.-,()*+ rcv-prd // /.-,()*+ prd-tst // /.-,()*+

νpp

µnn

/.-,()*+snd-app

\\

The testing system

/.-,()*+dfc-snt

­­

/.-,()*+dfc-snt

££/.-,()*+ λ // /.-,()*+ prd-snt // /.-,()*+ prd-tst // /.-,()*+

µnn

νpp

λ // /.-,()*+

µnn

νpp/.-,()*+
app-snt

TT

/.-,()*+app-snt

\\

Figure 1.7: Markovian description

Additionally, we wish the explore the domain of generally-distributed
stochastic delays and their relation to real (deterministic) delays as in the
description in Figure 1.4. The expirations of the clocks in the general-
ized semi-Markov processes do preserve time determinism, but they do not
straightforwardly support time additivity. For that purpose, we look at sto-
chastic time from a different perspective, by using conditionally distributed
delays as depicted in Figure 1.8.

Here, we model stochastic delays as (conditional) random variables that
guide the distribution of the delays. Different from the decreasing stochastic
clocks as given in Figure 1.6, here we probabilistically decide on the win-
ner(s) of the race and condition the distribution of the remaining stochastic
delays according to the exhibited winning sample. The race condition is
partially represented in Figure 1.8 as we assume only two (out of seven)
possible outcomes of the race between the random variables A, D, and P
which guide the stochastic delays of the arrival of products, testing for a
defective, and testing for an approved product, respectively. In case one
stochastic delay depends on the sample of the shorter one (as in the case



10 Chapter 1. Introduction

The testing system (partial representation)

/.-,()*+A−d (D<A,D=d)

££

/.-,()*+dfc-sntoo

/.-,()*+ A // /.-,()*+ prd-snt // /.-,()*+ prd-tst // /.-,()*+

D (D<P,D<A)nn

P (P<D,P=A)pp/.-,()*+
app-snt

TT

Figure 1.8: Description with generally-distributed delays

when D < P and D < A), the remaining distribution of A must be adjusted
by the sample d exhibited by the stochastic delay guided by D as indicated
by the label of the topmost left transition. This extended representation
of the race allows for a deeper understanding of the relation between the
winning and the losing delays of the race and provides a better insight into
the relationship between the race condition and passage of time. It is the
foundation upon which the first and largest part of this thesis is built.

We continue with a more formal introduction to the topics dealt with
within this thesis. We give an overview of the timed and stochastic exten-
sions of process algebras and relate to the relevant concepts covered in this
thesis.

1.2 Formal Methods and Performance Evaluation

Formal methods have arisen as prominent techniques for the validation of
functionality and the evaluation of performance of complex systems. They
are constantly promoted by the need to manage and support (with ample
confidence) the correct functioning and quality of time critical systems and
their supporting components (with ever-growing complexity of software and
hardware). Such systems include, e.g., health-care equipment, airplanes,
space shuttles, and nuclear power plants, as well as other, less vital, but
societally important devices, like mobile phones, Internet protocols, cash
machines, etc.

The purpose of formal verification is to show that the model of the
system or its conception behaves or will behave correctly according to the
specification. For example, the flight management software does not stall



1.2. Formal Methods and Performance Evaluation 11

the airplane or the new cash machine will not block the bank card when
the correct pin code is supplied. In addition to the correct functional or
qualitative behavior, the quantitative behavior plays a crucial role as well.
The quantitative analysis or performance evaluation gives an approximation
how well the system behaves or will behave. For example, in 95 percent of the
cases, the Internet video protocol enables smooth viewing of high-definition
movies or the expected utilization of the new jet engine design is 50 percent.

Modeling formalisms come in different flavors. Originally, they modeled
only the qualitative behavior of the system, focusing on different aspects
of the specification. Here we can mention some of them, e.g., automata,
finite-state machines, Petri nets, or process theories. These high-level for-
malisms produce an explicit (or underlying) model of the system, that we
will typically represent as a kind of labeled transition system. A relation,
normally an equivalence, is given between transitions systems to identify
the ones that are considered to have the same ‘behavior’. This behavioral
equivalence is used to check whether the specification and the model of the
implementation coincide. The distinguishing power of this relation can range
from identifying processes with the same set of traces to mutual simulation
of the branching potential. The use of a particular relation depends on the
formalism that is used to describe the system, as well as the purpose of the
model and the level of abstraction.

Much earlier and in a different community, performance evaluation tech-
niques have been developed in order to assess the performance of a sys-
tem. These techniques include the study of renewal processes, queueing
theory and queuing networks, Markovian and non-Markovian analysis, sim-
ulation, etc. The underlying models of the non-simulation techniques are
usually types or extensions of Markovian processes. The most prominent
are discrete- and continuous-time Markov (reward) chains, Markov deci-
sion processes, semi-Markov, and generalized semi-Markov processes. These
models can also be represented as transition systems. The behavioral rela-
tion between these models is generally given in terms of partitions, called
lumpings, or aggregations, which preserve the performance measures of the
model.

In this thesis, we mainly restrict our research domain to process theories
in the form of process algebras, and, more specifically, ACP-style process
algebras. Process algebras provide for an equational characterization (ax-
iomatization) of the behavioral equivalence that is typically required to be a
congruence for an interesting set of operators. Besides being compositional,
the equational reasoning has an advantage against model checking and the-
orem proving as it avoids (as much as possible) construction of large state



12 Chapter 1. Introduction

spaces. The style of the process algebra indicates the way some general fea-
tures are brought into the theory, like alternative and parallel composition,
inclusion of time and probabilities, etc. Following the design rationale of
ACP-style process algebras, we define strong bisimulation relations for each
new setting and we identify a set of primitive operators that are used to
bring more complex features in the theory [18].

Notably, the results from Chapter 7 are applicable to all formalisms that
use continuous-time Markov reward chains as underlying performance mod-
els. Chapter 8 discusses the modeling language χ, which is a process algebra
with data. Moreover, the performance model developed in the same chapter
can be derived from any formalism that comprises probabilistic choices and
discrete-time delays.

1.3 Process Algebras

Similarly to other modeling formalisms, process algebras were initially devel-
oped for qualitative modeling solely, but they gradually have been extended
with time, probabilities, Markovian (exponential), and generally-distributed
stochastic time. For an overview of the history and crucial milestones in the
field of process algebra, we refer to [7, 19, 1]. Usually, qualitative behavior
is specified by using action prefixed terms that give the dynamics of the
system. The action prefix operators induce labeled transitions in the under-
lying transition system. The process terms are combined using two basic
operators:

1. Alternative composition that provides the alternatives in a given sit-
uation, i.e., the outgoing labeled transitions of a state.

2. Parallel composition that that enables the compositional modeling by
building more complex systems from communicating components. The
(synchronous) communication is modeled as synchronization of action
prefixes or merging of action transitions.

A typical model of an ACP-style process algebra is the term model,
that is obtained as the quotient algebra modulo the behavioral equivalence.
Therefore, this equivalence must be also a congruence for the given op-
erations. An equational theory (axiomatization) identifies the equivalent
process terms according to the behavioral equivalence. A typical require-
ment for an equational theory is to be ground-complete, i.e., to identify
all equivalent processes that do not contain term variables. Sometimes, ω-
complete axiomatizations that include term variables are needed as well.



1.4. Timed and Probabilistic Extensions 13

The definitions of the behavioral relations can be involved, so the axioma-
tization gives another point of view. Usually, for closely related behavioral
relations the equational theories differ only on some axioms, which exactly
pinpoint their difference.

An expansion law gives the relation between the two basic composi-
tion operators by transforming a parallel composition of two terms into an
alternative composition of action prefixed terms. Therefore, the parallel
composition is prone to state explosion, as the number of states increases
exponentially when it is resolved to explicitly state all alternatives in the
transition system. This expansion law plays a central role in process alge-
bras as it provides for a so-called head normal form. Every process in such
form is represented as an alternative composition of action prefixed terms in
head normal form [18]. The head normal form itself has an important role as
it supports many technical results like ground-completeness and uniqueness
of solutions of recursive relations [9, 8].

1.4 Timed and Probabilistic Extensions

Timed features were introduced to model time-critical systems, which cannot
be modeled realistically without capturing their temporal behavior. The
temporal aspects were brought in by conservatively extending some existing
standard process theory. The extensions were conservative because they did
not introduce any new equalities or behavior when restricted to the untimed
part of the theories. For an overview and a generic approach to extensions
with time, we refer to [84]. The most prominent timed versions of ACP-style
process algebras are given in [11].

Time can be introduced in several manners. The time domain can be
discrete or continuous, depending on the support set. Then, the timing it-
self can be relative, which is typically introduced by timed delay prefixes
that give the duration of the timed delay, or absolute, which is incorpo-
rated as time-stamped actions. In the setting of this thesis, we will employ
discrete relative timing in the form of timed delay prefix operators that in-
duce timed transitions. The behavioral equivalence usually requires that
equivalent processes allow passage of time of equal duration.

From a process-theoretical point of view, the identifying features of the
timed process theories are time determinism and time additivity. Time
determinism states that passage of time does not decide a choice by itself.
As a consequence, timed prefixes and timed transitions in the alternative
and parallel composition are merged. Time additivity allows subsequent
timed delays to be merged together and form an accumulative delay. This



14 Chapter 1. Introduction

supports the intuition that passage of time does not have an observable
role, so timed delays can be “dissected” to suit our needs. Of interest is also
the treatment of maximal progress, i.e., the priority of undelayable action
transitions that do not allow passage of time over timed transitions.

In ACP-style process algebras, a nondeterministic weak choice in the
alternative composition between undelayable actions and passage of time is
assumed, similar to the choice between action transitions. The underlying
intuition is that future alternatives should not be disabled by default, unless
that is what is actually wanted. In the latter case, this is accomplished by a
maximal progress operator that disables passage of time in the presence of
outgoing prioritized labeled transitions. It is also practice to derive compos-
ite notions, instead of introducing them as separate constructs. For example,
the delayable action prefix that either delays indefinitely long or performs
an undelayable action transition is derived by combining undelayable ac-
tion and timed delay prefixes. In this way, the manipulation of the higher
constructs is supported and justified by the manipulation of the comprising
primitive operations. This also validates the design of the primitives, as the
intuition on the higher level and the derivation on the lower must match.

We briefly discuss probabilistic extensions. We refer to [59] for an in-
depth discussion. Notably, probabilistic extensions are also conservative
extensions of existing process algebras. Typically, the probabilistic choice
has priority over the alternative composition and it is synchronized in the
parallel composition. The behavior equivalence relates processes that have
the same accumulative probability of reaching the same partitioning class.
The underlying models are probabilistic transition systems in which the next
state/transition is determined by a probabilistic distribution. There are also
probabilistic extensions of timed process theories, which have discrete-time
Markov reward chains as an underlying model [50]. In timed and proba-
bilistic extensions, we study a more natural performance model compris-
ing immediate probabilistic choices and deterministic delays. The perfor-
mance measures of the model are derived by a translation to a corresponding
discrete-time Markov reward chain.

1.5 Markovian Time Extensions

The process theories up to stochastic time usually (conservatively) extended
previously well-established theories. However, due to the nature of the un-
derlying (non-)Markovian performance models mostly, the stochastic process
algebras were built from scratch. Markovian extensions employ exponen-
tial delays that are either coupled with the action prefixes (like in TIPP,



1.5. Markovian Time Extensions 15

EMPA, PEPA) [52, 20, 55] or orthogonally introduced as separate delays
(e.g., IMC) [51]. The appeal of the exponential delay lies in the fact that it
is memoryless, i.e., its distribution does not change if the delay is observed
after some passage of time during which it did not expire. Moreover, the ex-
ponential distribution is the only continuous distribution with this property.
The memoryless property and the fact that the minimum of two exponential
distribution is an exponential distribution enabled the development of the
Markovian performance models.

The same properties also supported the development of Markovian pro-
cess algebras that aimed for a single specification suitable for both functional
verification and performance evaluation. The advantage of such an approach
lies in the possibility to develop a common framework for automated vali-
dation and performance evaluation based on the concept of model checking.
Model checking is the process of certifying whether a model satisfies some
logical formula. It is extended to performance evaluation by reusing exist-
ing algorithms for computing performance measure of Markovian models and
adapting the logical formulae to specify performance-like requirements [14].
As the performance model is derived in a compositional manner from the
stochastic process theories, it suffers from the state space explosion problem.

An essential problem arose when actions coupled with exponential delays
had to be synchronized. The problem is due to the fact that the maximum
of two exponential distributions is not exponentially distributed. Here, we
do not enter in a discussion of the proposed solutions and we refer the
interested reader to [54]. Notably, the orthogonal extension of IMC that
introduces exponential delays as separate constructs circumvents this prob-
lem. The parallel composition is resolved by interleaving exponential delays
and synchronizing only on delayable action transitions. The underlying per-
formance model is obtained by eliminating the abstracted action transitions
using some weak behavioral equivalence, whereas exponential delays are
lumped as in Markov reward chains.

We note that the models employed for performance evaluation have their
performance measures founded on broadly-accepted notions in probability
theory. Although usually represented as transition systems, the perfor-
mance models are in fact stochastic processes with strong mathematical
background. The behavioral equivalence between the transition systems
that model the processes comprising Markovian time standardly reduces
such graphs to Markovian models. Such reduction supports the intuition to
a great extent, but there is no obvious way to show that the original graph
(where the notion of performance is at best ambiguous) and the underlying
Markovian model have the same performance characteristics.



16 Chapter 1. Introduction

One approach to showing the correctness of these reductions is to treat
the transition systems as generalizations of Markovian processes and, then,
show that the reduction methods preserve the performance measures. Re-
markably, different formalisms use different methods for determining the per-
formance model, but they should all eventually reduce the original process
to the same aggregated version of the model. It is also interesting to see
whether the (existing) aggregation methods that induce behavioral relations
in the Markovian realm are actually usable. More precisely, the behavioral
relation should be an equivalence and preferably a congruence, at least for
the parallel composition. Thus a probe into the relational and compositional
properties of the preorders induced by the aggregation methods is in place.

From the standpoint of timed process algebra, it can be argued that
time determinism can be supported in Markovian time, as the choice is not
made by the passage of time per se, but by the probabilistic choice that
determines the delay that expires first. However, time additivity cannot be
directly supported as the sum of two exponentially distributed random vari-
ables is not exponentially distributed. This means that the passage of time
of two consecutive exponential delays cannot be represented by a single
exponential delay. Moreover, as exponential distributions are continuous,
standard deterministic timed delays cannot be ‘mimicked’ by exponential
ones, so conservative extensions are not immediate, if possible. Also, al-
though the classes of deterministic and exponential distributions are closed
for the minimal sets of operations as discussed above, their combinations are
not. For example, the residual distribution of a deterministic distribution
after an exponential one expired is neither deterministic nor exponential.

1.6 Extensions with Generally-Distributed Stochastic Time

The need for general distributions arose as exponential delays are not ef-
ficient for the modeling of deterministic delays or high-variance heavy-tail
distributions, e.g., the fixed timeouts of the Internet protocols or the dis-
tributions of the delays in media streaming services. Notably, most (well-
behaved) distributions can be approximated by so-called phase-type distri-
butions that can be viewed as absorbing Markov chains comprising expo-
nential delays that replace the original probability distribution. However,
discrete or high-variance distributions require substantial effort and space
to be satisfactorily estimated [82]. Prominent stochastic process algebras
with generally-distributed delays include TIPP, GSMPA, SPADES, IGSMP,
NMSPA, and MODEST [52, 27, 42, 26, 64, 22]. Despite the greater expres-
siveness, compositional modeling with general distributions proved to be



1.6. Extensions with Generally-Distributed Stochastic Time 17

challenging, as the memoryless property could not be relied on [60, 28].
Other stochastic process algebras that we mention here are the stochastic
π-calculus and stochastic LOTOS [87, 4]. More can be found in the re-
view [28].

Usually, the underlying performance model is a generalized semi-Markov
process that exploits clocks to memorize past behavior in order to retain the
Markov property of history independence [48]. Similarly, the semantics of
stochastic process algebras is given using clocks that represent the stochastic
delays at a symbolic level. Such a symbolic representation allows for the
manipulation of finite structures, e.g., stochastic automata [41] that support
SPADES or extensions of generalized semi-Markov processes [26] for IGSMP.
The concrete execution model is subsequently obtained by sampling the
clocks, frequently yielding infinite probabilistic timed transition systems.
For the sampling of the clock two execution policies can be adopted:

1. A race condition [52, 42, 64, 22], which enables the action transitions
guarded by the clocks that expire first (the execution policy of the
Markov chains), and

2. pre-selection policy [27, 26], which preselects the clocks by making a
probabilistic choice (the execution policy of generalized semi-Markov
processes).

Notably, more execution policies have been developed for stochastic and
generalized stochastic Petri nets, comprising exponential delays and imme-
diate probabilistic choices. There, multiple transitions can be enabled and
taken at the same time, leading to more complicated runs.

In absence of the memoryless property, the samples of the clocks must be
updated after each stochastic delay transition. This is because the residual
sample/distribution of the clock depends on the duration of time that the
clock has been active. Again, the literature provides two techniques for
doing this:

1. keeping track of the residual lifetime of clocks, i.e., the time that is
left before the clock expires; or

2. keeping track of the spent lifetime of clocks, i.e., the time that the
clock has been active.

The residual lifetime semantics [42], depicted in Figure 1.9a, supports per-
formance analysis via discrete event simulation, that is extensively exploited
when analytical methods do not apply. However, it has been criticized for its



18 Chapter 1. Introduction

Figure 1.9: a) Residual lifetime semantics with clocks and b) spent life-
time semantics with clocks. The notation F2|d1 and F3|d1 denotes that the
distributions F2 and F3 of the clocks C2 and C3, respectively, have been
shifted to the right by the duration d1.

being unfair as the outcome of the race condition is known upfront due to the
early sampling of clocks. The spent lifetime semantics [52, 27, 26, 64], de-
picted in Figure 1.9b, has been advocated for its correspondence to standard
real-time, as the clocks increase as time passes. Additionally, the approach
is considered fair with respect to the race condition as the clocks are first
pre-sampled to statistically determine the minimal sample. Afterwards, the
original samples are discarded, while the probability distributions of the re-
maining clocks are ‘aged’ with the minimal sample. However, the fairness
comes at a price: re-sampling of the clocks is required after each resolution
of the race condition.

Figure 1.10: Spent lifetime semantics with stochastic delays. The notation
F2|d1 and F3|d1 denotes that the distributions F2 and F3 of the stochastic
delays 2 and 3, respectively, have been shifted to the right by d1.



1.6. Extensions with Generally-Distributed Stochastic Time 19

An alternative, but equivalent approach to the race condition is to make
a probabilistic assumption on the outcome of the race condition by condi-
tioning the clocks that win the race, and, afterward, to sample from the
(joint) probability distribution of the winning clocks [57]. See Figure 1.10.
In this approach each clock is sampled only once. So, there is no need to
keep track of the lifetimes of clocks. Instead, distributions have an ‘age’
which takes account for time exhibited by previous samples. We refer to the
samples as stochastic delays, resembling the notion of timed delays. In the
present setting, we employ the race condition with spent-lifetime semantics.
We rely on its interpretation in terms of conditional random variables, which
makes a probabilistic assumption on the winning stochastic delays, i.e., the
ones that expire. This is followed by conditioning the distributions of the
losing delays, i.e., the ones that do not expire, on the time spent for the
winning samples [57].

Of interest is the interplay between real and stochastic time that coexist
in the same process theory. We investigate the possibility and means to (con-
servatively) extend real-time process theories with stochastic time. We also
look into the possibility of extending timed delays with probabilistic features
that might enable the derivation of stochastic delays, similar to delayable
actions. We opt for discrete time as continuous distributions cannot be re-
stricted to mimic standard real-time delays. Moreover, the extension with
discrete stochastic time is more complicated (if the probability distributions
of the stochastic delays are measurable [35]) as there is non-zero probability
that several delays expire simultaneously. We also look into the problem of
embedding real time in a stochastic-time setting. Finally, we consider the
replacement of timed delays with stochastic ones and we examine closer the
effect of such an experiment.

The relation between real and stochastic time has already been studied
in various settings. Due to the nature of the stochastic process theories
the results show an embedding or translations to a purely timed formalism.
A structural translation from stochastic automata to timed automata with
deadlines that preserves the timed traces is given in [40]. This approach
found its way into MODEST [22] as a means to introduce real and stochas-
tic time as separate constructs in the same formalism. Also, a translation
from IGSMP into pure real-time models called interactive timed automata
is reported in [26]. In [4] a proposal of extending timed LOTOS is made by
exploiting stochastic timers.



20 Chapter 1. Introduction

1.7 Outline and Contribution

In the course of this thesis we investigate several issues concerning real and
stochastic time and their interaction in process algebras for performance
evaluation:

– What is the relationship between discrete real and generally-distributed
stochastic time in process theories?

– Is it possible, and if so, how, to (conservatively) extend timed process
theories with stochastic time?

– Reversely, is it possible, and if so, how, to embed (discrete) real time
in generally-distributed process theories?

– What is the effect of replacing timed delays by stochastic ones and
what are the consequences of such a generalization?

– Is it possible to show that the abstraction using the weak behavioral
equivalence in Markovian process theories (and other modeling for-
malisms) is performance preserving. Moreover, is such an approach
compositional?

– Can we do performance analysis using discrete-time delays and prob-
abilistic choices?

To tackle these issues, first we develop a ground-complete process theory
that accommodates timed delays in racing contexts. These timed delays
model the expiration of stochastic delays in race condition semantics per
time unit. Basically, they dissect the execution of the race per unit time
step, symbolically representing the choice whether the stochastic delay ex-
pires in one time unit or not. Different from other approaches, instead of
introducing both timed and stochastic delays as separate constructs, we de-
rive stochastic delays as time-delayed processes in a racing context. The
relationship between the expiring stochastic delays and the ones that have
to be aged is made explicit, which allows for an explicit handling of the race
condition.

The theory provides a non-trivial expansion law for the parallel compo-
sition, as well as an explicit treatment of the maximal progress operator. It
also enables the possibility of specifying a partial race of stochastic delays,
e.g., that one stochastic delay always has a shorter sample than another
one. This feature facilitates the modeling of timed systems whose correct
behavior depends on the ordering of the durations of the timed delays, e.g.,



1.7. Outline and Contribution 21

in a time dependent controller. It also supports the replacement of timed
delays by stochastic ones. In that case, the total order of the samples is, in
general, lost, unless it is possible to specify which delays are the ones that
expired first and which are made dependent in the imposed race.

Then, we isolate an independent part of the theory that comprises unde-
layable and delayable action prefixes, and stochastic delays. We show that
even though the delayable action and stochastic delay prefix are derived
notions, their interaction can be handled without resorting to the defining
timed specifications. Still, to justify the derived equational theory we an-
alyze the representations in terms of equations involving timed delays in
racing contexts.

Afterwards, we take exactly the opposite approach by treating real time
from a stochastic viewpoint and we reveal the other side of the same coin.
Here, we treat timed and stochastic delays as ‘atomic’, rather than series
of timed delays in racing contexts. This puts the timed delays on the same
level with the stochastic ones as passage of time is studied in terms of dis-
crete events, where the actual duration/sample of the delay plays more of
a background role. The race condition remains the central notion in both
settings. We investigate what needs to be in place to generalize timed de-
lays to stochastic ones. Therefore, we analyze stochastic bisimulation as
well as the fit of identifying real-time features, like time determinism and
time additivity, in a stochastic-time setting. This brings us to the notion of
context-sensitive interpolation, which can be viewed as an interpretation of
the race condition in the timed setting. We benefit from our findings in the
development of a stochastic process algebra that retains many features of
the timed process theories, but permits a restricted form of time additivity
only.

We illustrate the developed theories by specifying G/G/1/∞ queue and
solving its recursive specification. We also specify a variant of the concurrent
alternating bit protocol that has fixed time-outs (represented by timed de-
lays) and lossy channels (with discrete generally-distributed delays), stress-
ing the interplay of real and stochastic time. It is well known that only
a small, restricted classes of models comprising generally-distributed de-
lays are analytically solvable. Preliminary research on model checking of
stochastic automata is reported in [29] and a proposal for model checking
probabilistic timed systems is given in [90]. However, at the moment, the
performance analysts turn to simulation when it comes to analyzing models
with generally distributed delays.

For the purpose of analyzing the specification of the concurrent alter-
nating bit protocol we depend on the toolset of the χ-language [6, 25]. At



22 Chapter 1. Introduction

Figure 1.11: The framework of the language timed χ

the start, χ was used to model discrete-event systems only, not supported
by an explicit semantics. Later, it was turned into a formal specification
language set up as a timed process algebra with data [25]. More recently,
the χ language was extended with differential algebraic equations, leading to
hybrid χ [88]. The framework of timed χ is depicted in Figure 1.11. Specifi-
cations in χ can be compiled as an input language to several model checkers
for validation purposes. Performance evaluation is done either by Markov-
ian analysis (by translating the model to an interactive Markov chain [51])
or by discrete-event simulation. We augment the χ-toolset with a prototype
extension to support performance evaluation of probabilistic timed specifi-
cations as well. The protocol case study illustrates the new approach when
the channel distributions are deterministic.

Figure 1.12: Outline of the thesis

The outline of the thesis can be visualized as in Figure 1.12. Chapter 2
deals with the central concept of the race condition along the lines sketched
above and using a representation in terms of conditional random variables. It
gives the base for the development of a process theory that comprises timed



1.7. Outline and Contribution 23

delays in a racing context in Chapter 3. We proceed with the equational
theory in Chapter 4. Next, in Chapter 5, we introduce delayable actions
and stochastic delays in the theory as derived notions and we show they can
be manipulated without resorting to the primitives that comprise them. Af-
terwards, in Chapter 6, we approach the issues from a different perspective.
We develop a stochastic process theory from scratch and attempt to fit dis-
crete time by both extending and embedding it into the theory. Chapter 7
studies the derivation of Markov reward chains from modeling formalisms
and their relational and compositional properties. Chapter 8 illustrates the
developed theory by analyzing the concurrent alternating bit protocol with
deterministic, Markovian, and generally-distributed lossy channels. Here,
we also develop a performance model for systems comprising immediate
probabilistic choices and deterministic delays. We conclude the thesis with
a summary in Chapter 9.

This thesis is based on the following publications and submitted manu-
scripts:

– J. Markovski and E.P. de Vink: “Embedding Real Time in Stochastic
Process Algebra” [66]. In a longer version the paper also appeared
as [67]. It gives a preliminary account of stochastic process algebras
that embed real-time delays. It introduces the notion of environments
as constructs that keep track of the age of the distributions and gives
semantics of stochastic delay prefixed terms. The ideas underlying
Chapters 6 originate from this work.

– J. Markovski and E.P. de Vink: “Real-Time Process Algebra with Sto-
chastic Delays” [69]. The paper introduces two types of race conditions
that enable a non-trivial expansion law for stochastic delay prefixed
terms. It provides the groundwork for Chapters 2 and 3.

– J. Markovski and E.P. de Vink: “Real-Time in Stochastic Process
Algebra: Keeping Track of Winners and Losers” [68]. This technical
report introduces the splitting of a race on disjoint events by explicitly
stating the relationship between expired and aged stochastic delays.
The technical results are adapted in Chapters 3 and 6.

– J. Markovski and E.P. de Vink: “Discrete Real-Time and Stochastic-
Time Process Algebra for Performance Analysis of Distributed Sys-
tems” [71]. In a longer version the paper also appeared as a part
of [70]. The paper is the base for Chapters 3, 4, and 5 as it discusses
the semantics and presents a ground-complete equational theory for



24 Chapter 1. Introduction

race-complete specifications. It also presents a method for perform-
ing transient analysis of the discrete-time probabilistic reward graphs
discussed in Chapter 8.

– J. Markovski and E.P. de Vink: “Extending Timed Process Algebra
with Discrete Stochastic Time” [72]. In a longer version the paper
also appeared as a part of [70]. This paper analyzes the effect of re-
placing real-time delays by stochastic-time delays. To support the
“stochastifying” of real-time delays it discusses the race condition se-
mantics from the viewpoint of real-time process theories. It proposes
a restricted notion of time-additivity, referred to as context-sensitive
interpolation, that conforms to the race condition. It is incorporated
in the thesis as a part of Chapter 6.

– J. Markovski and N. Trčka: “Lumping Markov Chains with Silent
Steps” [75]. In a longer version the paper also appeared as part of [76].
This paper paves the way of looking at intermediate performance mod-
els containing nondeterministic silent steps as stochastic processes. It
defines a lumping method for such models and presents the initial idea
underlying Chapter 7.

– J. Markovski and N. Trčka: “Aggregation Methods for Markov Reward
Chains with Fast and Silent Transitions” [78]. In a longer version the
paper also appeared as part of [77]. This paper makes a comparative
analysis of lumping- and reduction-based aggregation methods for ex-
tensions of Markov reward chains with immediate probabilistic and
nondeterministic transitions. It gives the base of Chapter 7.

– J. Markovski, A. Sokolova, N. Trčka, and E.P. de Vink: “Composi-
tionality for Markov Reward Processes with Fast Transitions” [74]. In
a longer version the paper also appeared as [73]. A version general-
ized with nondeterministic silent transitions has been submitted to a
special issue of the journal Performance Evaluation. This paper stud-
ies the relational and composition properties of aggregation methods
based on lumping and reduction. It gives the base of Section 7.3.

– N. Trčka, S. Georgievska, J. Markovski, S. Andova, and E.P. de Vink:
“Performance Analysis of Chi Models using Discrete-Time Probabilis-
tic Reward Graphs” [95]. In a longer version the paper also appeared
as [96]. It shows the extension of the framework of χ with discrete-time
probabilistic reward graphs and we build on it to obtain the theoretical
and empirical results in Chapter 8.



Chapter 2

Race Condition

In this chapter we provide the mathematical background and we postulate
the central concepts of race condition, racing context, timed, and stochastic
delays. We define two types of race conditions to accommodate for compo-
sitional modeling as well as manipulation of stochastic delays in expansion
laws. One condition treats delays as having independent samples, whereas
the other synchronizes on delays with the same name.

We use discrete random variables to represent durations of stochastic
delays. The set of discrete distribution functions F such that F(n) = 0
for n 6 0 is denoted by F ; the set of the corresponding random variables
by V. We use X, Y , and Z to range over V and FX , FY , and FZ for their
respective distribution functions. Also, W , L, V , and D range over 2V .
By assumption, the support set supp(X) = {n > 0 | P(X = n) > 0 } of
a random variable X is finite or countably infinite. The domain A of a
function f : A → B is denoted by dom(f). In case f is bijective, we write
f : A↔B. The identity bijection on the set A is denoted by idA. We write
p ⊆ A for a predicate p : A → {>,⊥}, where > and ⊥ denote the truth
values true and false, respectively. Composition of two relations r1 ⊆ A×B
and r2 ⊆ B × C is given by r2 ◦ r1 ⊆ A × C where (x, z) ∈ r2 ◦ r1 if there
exists a y ∈ B such that (x, y) ∈ r1 and (y, z) ∈ r2. We restrict and rename
functions on disjoint parts of the domain by g{f1/D1} . . . {fn/Dn}(x) = fi(x)
if x ∈ Di, and g(x) if x ∈ D \ (

⋃n
i=1 Di), for functions g, f1, . . . , fn : A →

B and disjoint subsets D1, . . . , Dn ⊆ A. By P(A) we denote the set of
standard discrete probabilistic spaces (A, P) over the set A with probability
measure P.

25



26 Chapter 2. Race Condition

2.1 Racing Stochastic Delays

A stochastic delay is a timed delay of a duration that is guided by a random
variable. We use the random variable as the name of the stochastic delay.
We observe simultaneous passage of time for a number of stochastic delays
until one or some of them expire. This phenomenon is referred to as the
race condition and the underlying process as the race. For multiple racing
stochastic delays, different stochastic delays may be observed simultaneously
as being the shortest. The ones that have the shortest duration are called the
winners, the others are referred to as the losers. We illustrate the concepts
by an example.

Example 2.1.1 Let X and Y be random variables with P(X = 1) = P(X =
2) = P(X = 3) = 1

3 and P(Y = 2) = 1
2 , P(Y = 3) = P(Y = 4) = 1

4 . Now, let
us assume that two delays X and Y are guided by the variables with the same
name. The probability that X wins the race is the probability P(X < Y ) =
1
3 ·(1

2 + 1
4 + 1

4)+ 1
3 ·(1

4 + 1
4)+ 1

3 · 14 = 7
12 . Then, the winning delay is distributed

as WX = 〈X | X < Y 〉 with P(WX = 1) = P〈X = 1 | X < Y 〉 =
P(X=1,X<Y )

P(X<Y ) =
1
3
7
12

= 4
7 , P(WX = 2) = 2

7 , and P(WX = 3) = 1
7 . Similarly, the

probability that Y wins the race is the probability P(Y < X) = 2
12 . Then,

the winning delay is distributed as WY = 〈Y | Y < X 〉 with P(WY = 2) =
1. Both, X and Y win the race together with probability P(X = Y ) = 3

12
and a winning delay distributed as WXY = 〈X | X = Y 〉 (or, the equivalent,
〈Y | X = Y 〉) with P(WXY = 2) = 2

3 and P(WXY = 3) = 1
3 . 2

An outcome of a race is completely determined by the winners and the losers.
So, we can explicitly represent the outcome of the race by a pair of sets of
stochastic delays [WL ], where W is the set of winners and L is the set of losers.
We write [W ] instead of [W∅ ] and omit the set brackets when clear from the
context. Thus, [X] represents a stochastic delay with name X, guided by
the random variable X.

Outcomes of races may be involved in other races, so we refer to an
outcome [WL ] as a (conditional) stochastic delay induced by the disjoint sets
of winners W and losers L. By W < L we denote the event

W < L iff X1 = X2 for X1, X2 ∈ W and X3 < Y for X3 ∈ W, Y ∈ L

and by W < n for n ∈ N we denote

W < n iff X < n for X ∈ W.



2.1. Racing Stochastic Delays 27

Similarly, we also use W = n.

Now, the probability of the outcome [WL ] is P(W < L) and the stochastic
delay is guided by the conditional random variable 〈X | W < L 〉 for any
X ∈ W . Two stochastic delays [W1

L1 ] and [W2
L2 ] can race against each other and

they can form a joint outcome if it is possible to consistently combine the
winners and the losers such that the resulting outcome has disjoint winners
and losers. Here, by consistently we mean that in the joint outcome no
winner can come from the original sets of losers L1 or L2.

We take a closer look at the relation between the winners and the losers
of the racing delays [W1

L1 ] and [W2
L2 ]. There are three possible combinations

that give the relation between the winners and the losers: (1) L1 ∩W2 6= ∅,
which means that the race must be won by W1 and lost by L1 ∪W2 ∪ L2,
(2) W1 ∩ W2 6= ∅, which means that the race must be won by W1 ∪ W2

together and lost by L1 ∪ L2, and (3) W1 ∩ L2 6= ∅, which means that the
race must be won W2 and lost by W1∪L1∪L2. Obviously, these ‘restrictions’
are disjoint and cannot be applied together. If more than one holds, then
they lead to ill-defined outcomes. For example, if both (1) and (2) hold at
the same time, then L1 and W2 must exhibit the same sample and also W1

and W2 must exhibit the same sample. Then W1 and L1 must exhibit the
same sample, which is a contradiction.

To summarize, there are four possible joint outcomes of a race be-
tween [W1

L1 ] and [W2
L2 ]: if (1) holds then the outcome is given by [ W1

L1∪W2∪L2],
if (2) holds the outcome is given by [W1∪W2

L1∪L2 ], if (3) holds then the outcome
is given by [ W2

W1∪L1∪L2] and if none of the restrictions (1)–(3) hold, then all
three (disjoint) outcomes are possible: [ W1

L1∪W2∪L2], [W1∪W2
L1∪L2 ], and [ W2

W1∪L1∪L2]. If
at least two restrictions apply, then the outcomes cannot be combined as
they represent disjoint events. In this case we say the race between the de-
lays [W1

L1 ] and [W2
L2 ] with W1 ∪ L1 = W2 ∪ L2, is resolved. The extra condition

ensures that the outcomes stem from the same race, i.e, they have the same
racing delays. For example, [XY ] and [Y, Z

X ] cannot form a joint outcome. The
delays do not stem from the same race, which renders their combination
inconsistent.

Resolved races play an important role as they enumerate every possible
outcome of the race. We define a predicate rr([W1

L1 ], [
W2
L2 ]) that checks whether

two delays [W1
L1 ] and [W2

L2 ] are in a resolved race. It is satisfied if W1 ∪ L1 =



28 Chapter 2. Race Condition

W2 ∪ L2 and at least two of the above three restrictions hold, i.e.,

rr([W1
L1 ], [

W2
L2 ]) if W1 ∪ L1 = W2 ∪ L2 and(

(L1 ∩W2 6= ∅ and W1 ∩W2 6= ∅) or
(L1 ∩W2 6= ∅ and W1 ∩ L2 6= ∅) or
(W1 ∩W2 6= ∅ and W1 ∩ L2 6= ∅)).

We proceed by introducing processes that are prefixed by stochastic delays.

2.2 Stochastic Delay Prefix

By [WL ].p we denote a process term p prefixed by a stochastic delay [WL ].
This prefixed term denotes a process that behaves as p after [WL ] expires.
To express a race, we use the alternative composition + . So, [X].p1 +
[Y ].p2 represents two processes that are prefixed by the stochastic delays X
and Y that are racing against each other. As discussed above, there are
three possible outcomes of this race in terms of the participating stochastic
delays: (1) [XY ], (2) [X, Y

∅ ], and (3) [YX], i.e., the first stochastic delay expires
before the second, they both expire together, or the second stochastic delay
expires before the first. The passage of time of the stochastic delay [XY ] is
guided by the conditional random variable 〈X | X < Y 〉. In this case, the
stochastic delay X expires, whereas Y becomes dependent on the amount
of time that has passed for X. Intuitively, this is represented by the term
[XY ].(p1 + [Y ].p2), where both occurences of Y refer to the same stochastic
delay, i.e., the second occurrence of Y is bound by the first one. Similarly,
we have [YX].([X].p1 + p2), when the winner is Y . In the case when both
delays win, they expire together. By the notion of time determinism, which
states that passage of time by itself cannot make a choice, the resulting term
should be [X, Y

∅ ].(p1 + p2).
The race is resolved when every possible outcome of the race is enu-

merated, i.e., no more outcomes are possible. Thus, we can also write
[XY ].(p1 +[Y ].p2)+ [X, Y

∅ ].(p1 +p2)+ [YX].([X].p1 +p2) instead of [X].p1 +[Y ].p2

as both expressions have the same final outcomes of a race. The advantage
of the first term is that it explicitly states all possible outcomes of the race
and that these events are disjoint. Thus, we can clearly separate the disjoint
stochastic behavior of the term depending on the resolved outcomes of the
race. If an additional racing delay Z is added to the race, this also leads to
the same outcomes, i.e., ([X] + [Y ]) + [Z] and ([XY ] + [X, Y

∅ ] + [YX]) + [Z] will
yield the same racing behaviour. As an example, the outcome of [XY ] + [Z]
is given by [ Z

X, Y ] + [X, Z
Y ] + [ X

Y, Z]. When considering complete races, i.e., race



2.3. Dependent and Independent Race Condition 29

which have all possible outcomes, such an alternative composition is asso-
ciative (cf. [68]). However, when considering incomplete races, e.g., the race
induced by the term [XY ].p1 + [YX].p2, the alternative composition is no longer
associative as discussed below in Section 4.3.

Next, we motivate the need and introduce an additional type of a race
condition.

2.3 Dependent and Independent Race Condition

We give a motivation and illustrate the notions of a dependent and an inde-
pendent race condition by a simple example. Consider the term [X].p‖[X].p,
where ‖ denotes parallel composition. The semantics of the race condition in
the parallel composition is the same as for the alternative composition. We
can interpret the race between the two processes above in two ways: (1) from
the standard viewpoint of Markovian/race condition semantics, the process
is a composition of two independent components that are competing for
the same resource and (2) from real-time perspective this composition syn-
chronizes the two components that exhibit the same sample as they have
the same name. The former interpretation is according to the independent
(standard) race condition and it enables compositional modeling. It states
that stochastic delays with the same name have the same distribution, but
do not necessarily exhibit the same sample. The latter interpretation is ac-
cording to the dependent race condition that forces racing delays with the
same name to always exhibit the same duration. It supports the existence
of expansion laws and it enables resolution of races. We give an example to
illustrate the situation by interpreting a simple race in both ways.

Example 2.3.1 The term [XY ].p1 + [XZ ].p2 should be equivalent to the term
[ X
Y, Z].(p1+p2) if X is treated as a dependent stochastic delay. Both stochastic
delays have a winner guided by X, which exhibits the same sample in both
terms and, therefore, the winners of both delays must exhibit passage of time
together. On the other hand, if X is treated as an independent stochastic
delay, then the same term is equivalent to [ X

Y, Z, U].(p1 + [UZ].p2) + [X, U
Y, Z ].(p1 +

p2) + [ U
X, Y, Z].([XY ].p1 + p2) for a random variable U satisfying FU = FX . In

the standard independent race condition interpretation, the two occurrences
of X can exhibit different samples that are guided by the same distribution.
Therefore, they actually represent separate stochastic delays and the second
occurrence of X is renamed to a new stochastic delay U with the same
distribution. 2



30 Chapter 2. Race Condition

We introduce a dependence scope operator |p|D for D ⊆ V to specify de-
pendent and independent delays. The racing delays in the races induced by
the term p that are in D are treated as dependent. The names of dependent
delays are important as they identify stochastic delays that exhibit the same
sample. On the contrary, the names of the independent delays play no role
except for identifying stochastic delays with the same distribution. In the
previous example, |[XY ].p2|X would denote that X is a dependent stochastic
delay, but Y is an independent one. Intuitively, this term is equivalent to
|[XZ ].p2|X , for every Z such that FZ = FY , but it is not equivalent to |[UY ].p2|U
for any U 6= X, even if FU = FX . Multiple scopes intersect, i.e., ||p|

D2
|
D1

is
equivalent to |p|D1∩D2

. For example, ||[XY ].p|X |Y denotes a process prefixed
by the independent delay |[XY ].p|∅ because {X} ∩ {Y } = ∅.

The dependence scope plays an important role in giving operational se-
mantics to the terms. Recall, the stochastic delay prefix [WL ].p denotes an
outcome of a race between the stochastic delays in W ∪L, where the winners
are given by W and the losers are given by L. Moreover, it denotes that
there was passage of time for the losing delays in L that may continue to per-
sist in p. This means that the losers do not have their original distribution
in the resulting process p and that their distributions must be ‘aged’ by the
duration of the sample exhibited by the winners W . Therefore, the names of
the losing delays must be protected in p, i.e., they become dependent. This
is achieved by writing |p|

L
as the remaining term after the expiration of the

delay given by [WL ]. Thus, [WL ].p is actually equivalent to [WL ].|p|L as only the
names in L must be preserved in p. This also means that the stochastic
delays that are not in L become independent. To support the interpreta-
tion of process terms as discussed above, the stochastic delays that are not
encompassed by any dependence scope are considered as dependent. Thus,
[WL ].p is equivalent to |[WL ].p|

W∪L
. We illustrate the above discussion by an

example.

Example 2.3.2 The first occurrences of X and Y in the term [XY ].[X,Y ].p,
denote dependent stochastic delays [X] and [Y ]. However, the second oc-
currence of X in the subterm [X, Y ].p, which by the discussion above is
equivalent to |[X,Y ].p|

Y
, denotes an independent stochastic delay, whereas

the second occurrence of Y in the same subterm refers to the losing depen-
dent delay [Y ] from the first race. 2

Next, we analyze the expiration of a stochastic delay per unit of time, which
leads us to the notion of a timed delay in a racing context.



2.4. Timed Delays in a Racing Context 31

2.4 Timed Delays in a Racing Context

Before introducing timed delays in the process theory, we give a simple
example of an expiration of a stochastic delay over a period of time.

Example 2.4.1 Suppose that X is a random variable such that P(X =
1) = 1

2 , P(X = 2) = 1
3 , and P(X = 3) = 1

6 . We observe what happens to
the stochastic delay [X] after 1 unit of time. Then, either the stochastic
delay expires with probability 1

2 or it is aged by one time unit, i.e., its
distribution is shifted to the right by 1. In the latter case the aged stochastic
delay [X] allows a passage of time according to the random variable X ′ where
X ′ = 〈X − 1 | X > 1 〉 with P(X ′ = 1) = 2

3 and P(X ′ = 2) = 1
3 .

Now, we observe what happens to the delay [X ′] after one unit of time.
The delay [X ′] expires with probability that [X] did not expire after one
time unit multiplied by the probability that X ′ = 1, i.e., P(X > 1) ·P(X ′ =
1) = 1

2 · 2
3 = 1

3 . Note that the probability of expiration of [X ′] in one time
unit is the same as the probability of expiration of [X] in two time units.
However, [X ′] can also delay more than one time unit and become aged by 1.
Then, it allows passage of time according to X ′′ where X ′′ = 〈X ′−1 | X ′ >
1 〉, with P(X ′′ = 1) = 1.

Obviously, [X ′′] must expire in one time unit and it does so with prob-
ability that both [X] and [X ′] did not expire in one time unit, i.e., P(X >
1) · P(X ′ > 1) · P(X ′′ = 1) = 1

2 · 1
3 · 1 = 1

6 . Again, the expiration of [X ′′] in
one time unit is equivalent to expiration of [X ′] in two time units or to the
expiration of [X] in three time units. 2

Although being a simple exercise in probability, Example 2.4.1 illustrates
how to handle an expiration of a stochastic delay per unit of time. It shows
that the distribution of the expiring delay does not have to be re-adapted
each time, but it is sufficient to remember its age. First, we formalize
the notion of the aging of a distribution, which gives the right shift of a
distribution over passage of time.

Definition 2.4.2 A distribution function F can be aged by m ∈ N if
F(m) < 1. The resulting distribution F|m is given by

(F|m)(n) =
F(n + m)− F(m)

1− F(m)
·

2

If the condition of Definition 2.4.2 is fulfilled, then F|m is again a probability
distribution function. Because we work with probability distributions satis-
fying F(0) = 0, we have that F|0 = F. Moreover, iterative application of the



32 Chapter 2. Race Condition

aging function is the same as aging the function once by the accumulative
time duration as illustrated by Example 2.4.1 [66]. This is stated by the
following lemma.

Lemma 2.4.3 If (. . . (F |d1) . . . )|dn is defined for d1, . . . dn ∈ N and n ∈ N,
then

(. . . (F |d1) . . . )|dn = F |
(

n∑

i=1

di

)
.

2

Proof By induction on the number of applications of |. The case when
n = 1 is trivial. Assume that the proposition holds for n = k, k ∈ N. We

denote by S the sum S =
n∑

i=1
di. We prove that the proposition holds for

k + 1 applications of |. One obtains the following derivation:

(. . . (F |d1) . . . |dk)|d = (F |S)|d
=

(F |S)(t + d)− (F |S)(d)
1− (F |S)(d)

=
F (t+S+d)−F (S)

1−F (S) − F (S+d)−F (S)
1−F (S)

1− F (S+d)−F (S)
1−F (S)

=
F (t + (S + d))− F (S + d)

1− F (S + d)
= F |(S + d),

which completes the proof. ¥

As a direct consequence, to compute a total age of a distribution of a sto-
chastic delay it suffices only to compute the sum of the duration of the
samples of every race that it lost.

Now, let us denote by σX

∅ the event that the delay [X] expires after
one time unit has passed, i.e., in race condition terminology the stochastic
delay [X] wins a race with a sample of one unit timed delay and there are
no losers. Let us assume that the age of X is m and let us denote by X|m =
〈X−m | X > m 〉 the conditional random variable with distribution FX |m.
Then, the probability of the event σX

∅ is P((X|m) = 1), i.e., the probability
that [X] expired after m + 1 unit of time. By σ∅

X
, we denote the event

that the delay [X] does not expire in one time unit, i.e., the stochastic
delay [X] loses the race to a unit timed delay and there are no additional
winners. Again, by assuming that X has age m, the probability of this



2.4. Timed Delays in a Racing Context 33

event is P((X|m) > 1), and after the expiration of the timed delay, the age
of X becomes m + 1. Thus, at each point in time we have two possibilities:
either the delay expires, or the delay does not expire and it is aged by one
time unit. Then, the process [X].p can be specified as the solution of the
recursive equation

A = σX

∅ .p + σ∅
X
.A,

for the recursion variable A.
In a generalized context, by the same reasoning, we specify a stochastic

delay [WL ].p as the solution of the recursive equation for B:

B = σW

L
.p + σ∅

W∪L
.B,

where either the set of winners expire after a unit time step and the losers
are aged by one time unit or all racing delays are aged one time unit. We
will refer to σW

L
. as a unit timed delay prefix in a racing context of the race

induced by the winner W and the losers L, or simply timed delay prefix for
short. The probability of this event is denoted by

RC1(W,L) = P(W = 1, L > 1),

where the racing delays in W ∪L can have their own ages as in the discussion
for a race with a single delay [X] above.

We emphasize that timed delays are not stochastic delays that impose
a race condition and form joint outcomes to resolving it, but they allow
passage of one time unit in presupposed racing contexts that can be consis-
tently merged as shown below. In our setting we build a process theory for
timed delays in a racing context and retrieve stochastic delays via guarded
recursive specifications as indicated above. The standard unit timed delay
prefix is embedded in the theory as σ∅∅. , i.e., a timed delay in an empty
racing context. By convention we put the probability RC1(∅, ∅) = 1. We
omit the empty sets from the notation when clear from the context and we
also write σn. for n > 1 subsequent timed delays prefixes σ. .

Timed delays can also be in a context of resolved races. If rr([W1
L1 ], [

W2
L2 ])

holds, then σW1
L1

and σW2
L2

are in the context of the resolved race between [W1
L1 ]

and [W2
L2 ]. However, this does not cover the case when there are no winners in

the racing context, i.e., no stochastic delays expire after one unit time step.
For that purpose we overload the resolved race predicate rr( ) to rr(σW1

L1
, σW2

L2
)



34 Chapter 2. Race Condition

as follows:

rr(σW1
L1

, σW2
L2

) if W1 ∪ L1 = W2 ∪ L2 and(
(L1 ∩W2 6= ∅ and W1 ∩W2 6= ∅) or
(L1 ∩W2 6= ∅ and W1 ∩ L2 6= ∅) or
(W1 ∩W2 6= ∅ and W1 ∩ L2 6= ∅) or
(W1 = ∅ and W2 ∩ L1 6= ∅) or
(W2 = ∅ and W1 ∩ L2 6= ∅)).

Recall that the predicate rr( ) defines the context in which the race between
the stochastic delays [W1

L1 ] and [W2
L2 ] is resolved. The extra conditions deal

with the overloaded situation for the timed delays σ∅
W∪L

and σW

L
where in the

context of one timed delay no racing delay has yet expired, whereas in the
context of the other the winners have expired, creating a disjoint event.

As stochastic delays can form inconsistent races, timed delays can also
have inconsistent racing contexts. However, unlike the stochastic delays, the
context of the timed delay is static, i.e., the racing condition is not resolved,
but only endorsed. We illustrate the situation by an example.

Example 2.4.4 The process σX.p1 + σY

X
.p2 can only deadlock. The process

σX.p1 performs a unit time step after which [X] expires. The process σY

X
.p2

performs a unit time step after which [Y ] expires in a context of a race in
which [Y ] won over [X]. Thus, the process allows [X] to expire in one timed
unit, but it also allows for [Y ] to expire in one time unit. However, [Y ]
should delay less than [X] as implied by the racing context of σY

X
, which

leads to an inconsistency as there is no information about [Y ] in context of
the first timed delay. 2

Example 2.4.4 also illustrates the main difference between stochastic de-
lays and timed delays in a racing context as [X].p1 + [YX].p2 is equivalent
to [YX].([X].p1 + p2), after the resolution of the race between [X] and [YX].
This type of dynamics is enabled for the timed delays by the unfolding of
the guarded recursive specifications that model the stochastic delays (see
Section 5.2 below).

2.5 Design Choices

We model processes using probabilistic timed automata that have proba-
bilistic timed transition systems as the underlying model. We note that the
probabilistic timed automata used in the thesis are not related to the prob-
abilistic extensions of timed automata used in PRISM [62]. Processes have



2.6. Summary 35

outgoing timed delay transitions and undelayable action transitions that do
not allow any passage of time. The choice between several action transitions
is nondeterministic and, in general, depends on the environment as in stan-
dard process algebras. The choice between timed delays is probabilistic as it
is induced by the racing context of the delays. We favor time-determinism,
i.e., the principle that passage of time alone cannot make a choice [99, 84, 11].
The probabilistic choices only resolve the race condition, but do not resolve
the choice in the alternative composition. Also, we adopt the weak choice
between undelayable actions and passage of time, i.e., we impose a nonde-
terministic choice on the undelayable action transitions and the passage of
time in the vein of ACP-styled timed process algebras [84, 11]. To support
maximal progress, i.e., to prefer undelayable action to passage of time, we in-
clude a maximal progress operator in the theory together with encapsulation
of actions, thereby disabling unwanted action transitions. We also opt for
guarded recursion introduced by means of guarded recursive specifications.
We derive delayable actions as solutions of guarded recursive equations that
can perform an undelayable action at any point in time. Stochastic delays
are also introduced in the theory using guarded recursive specifications as
briefly discussed above. We believe this approach to be systematic as it
builds on well-established notions. Moreover, it helps to identify the set of
primitive operators that can be combined to bring the other more complex
features into the theory.

2.6 Summary

We define two types of race conditions:

1. Independent, which enables compositional modeling by treating every
delay as having an independent sample.

2. Dependent, which relates the treatment of stochastic time to standard
real time and enables the expansion laws and resolution of races.

Then, we dissect races to unit timed delays in racing contexts, that actually
provide information about the expiration of the winning and the losing de-
lays of the race. Such timed delays can be used to derive discrete stochastic
delays by means of recursive equations. Finally, we bring the two types
of races into the theory by identifying dependent and independent racing
delays that induce the corresponding race condition.

In the next section, we introduce the signature of a theory comprising
timed delays in racing contexts. We give semantics to closed process terms



36 Chapter 2. Race Condition

using a type of probabilistic timed automata we refer to as racing timed
transition schemes.



Chapter 3

Process Theory TCPdrst

In this section we begin the introduction to TCPdrst
rec (A,V,R, γ) – the theory

of communicating processes with discrete real and stochastic time, where A
denotes the set of actions, V denotes the set of random variables, R denotes
the set of recursion variables, and γ is the ACP-style [13] commutative and
associative action synchronization function. First, we analyze the nonrecur-
sive part of the theory denoted by TCPdrst(A,V, γ). We introduce guarded
recursion later in Section 4.10 by means of guarded recursive specifications.
We give operational semantics to process terms using racing timed transi-
tion schemes. We define the strong bisimulation relation and show that it is
congruence for the given operators. Afterwards, we use it to define a term
model for the theory.

3.1 Racing Timed Transition Schemes

In essence, racing timed transition schemes are probabilistic timed automata
in which the probabilistic choice is implicitly and symbolically stated by
the racing context of the timed delays. The states determine the timed
transitions, whereas we use an additional construct, called an environment,
to keep track of the ages of the racing delays. It is denoted by a function α
that holds the age of the distribution function of each racing delay. We put
α : V → N and we write E for the set of all such environments. We recall
that age 0 actually means that the stochastic delay has no age, i.e., it did not
lose any race until that point. The independent racing delays are identified
in each state by the function I( ).

Definition 3.1.1 A racing timed transition scheme is a tuple
(S × E , A, V,−→, 7−→, ↓, I), where the extended state u = 〈s, α〉 ∈ S × E

37



38 Chapter 3. Process Theory TCPdrst

represents a state s in an environment α, A is a set of actions, V is a set of
random variables giving the stochastic delay names, and

– −→ ⊆ (S × E) × A × (S × E) is the undelayable action transition
relation.

– 7−→ ⊆ (S×E)×2V×2V×(S×E) is a timed delay transition relation. For
every timed delay transition u W7−→

L
u′ (in infix notation) it holds that

the winners and the losers are disjoint, i.e., W ∩L = ∅. Moreover, for
every two different timed delay transitions originating from the same
state u

W17−→
L1

u1 6= u
W27−→
L2

u2 the predicate rr(σW1
L1

, σW2
L2

) is satisfied.

– ↓ ⊆ S × E is the undelayable termination predicate.

– I : S → 2V is the independent racing delays function. It satisfies
I(s) ⊆ ⋃{W ∪ L | 〈s, α〉 W7−→

L
〈s′, α′〉}, for every α ∈ E . 2

Definition 3.1.1 requires that the predicate rr(σW1
L1

, σW2
L2

) holds for every two

different timed delay transitions u
W17−→
L1

u1 6= u
W27−→
L2

u2 originating from the
same state u. This implies that W1 ∪ L1 = W2 ∪ L2. Thus, for every
state s there exists a set of racing delays R(s) satisfying R(s) = W ∪ L for
every 〈s, α〉 W7−→

L
〈s′, α′〉. Then, for the independent racing delays it holds

that I(s) ⊆ R(s) and the set of dependent racing delays is given by D(s) =
R(s) \ I(s). For notational convenience, we sometimes write I(u) instead of
I(s) for u = 〈s, α〉 and, similar for R(u) and D(u). We illustrate the situation
by an example.

?>=<89:;1@

X

α(X)=0, α(Y )=0

Y
¡¡¡¡

¡¡
¡¡

¡¡
¡ Ä

X

Y

ÂÂ?
??

??
??

??

?>=<89:;2
_

Y

α(Y )=1

²²

?>=<89:;3

a

α(X)=1

²²
?>=<89:;4 ?>=<89:;5↓

Figure 3.1: Racing timed transition scheme



3.2. Probabilistic Timed Transition Systems 39

Example 3.1.2 We depict a racing timed transition scheme as in Fig-
ure 3.1. The states are numbered for ease of reference. In state 1 there
are two outgoing timed transitions. Note that the race is incomplete as the
outcomes where both X and Y are winners or losers are missing. The age of
both delays in the beginning is 0. When the transition from state 1 to state 2
is taken the age of the loser Y is increased by 1 because it waits one time
unit, whereas X has expired. The racing delays of state 1 are R(1) = {X, Y }.
If we assume that X is an independent delay, i.e., I(1) = {X}, then Y is a
dependent delay and D(1) = {X,Y } \ {X} = {Y }. The termination predi-
cate holds only in state 5 as indicated by ↓. In state 2 the only racing delay
is Y , i.e., R(2) = {Y } and it is also a dependent delay as it has age 1, so
I(2) = ∅. Also the race in state 2 is not complete as the outcome when Y is
a loser is missing. 2

3.2 Probabilistic Timed Transition Systems

A probabilistic timed transition system represents an instantiation of a tran-
sition scheme with respect to a given assignment d: V → F of the prob-
ability distributions. The race condition is used to derive the underlying
probability spaces that define the probabilistic behavior of each timed de-
lay transition. In order to compute the correct distributions of the rac-
ing delays we will use the environment and the aging function. More pre-
cisely, the distribution of a racing delay [X] in an environment α is given by
FX = d(X)|α(X).

Definition 3.2.1 A probabilistic timed transition system (S, A,→, 7→, ↓) is
a tuple, where S is the set of states, A is a set of labels, and

– → ⊆ S ×A× S is the action transition relation;

– 7→ : S → P(N× S) is the probabilistic timed transition function; and

– ↓ ⊆ S is the undelayable termination predicate. 2

Each racing timed transition scheme coupled with an assignment of prob-
ability distributions to the stochastic delays induces a probabilistic timed
transition system. The action transitions and the termination predicate are
adopted from the racing timed transition scheme. The probability mea-
sure of the (unit) timed delay is induced by its racing context. The formal
definition is as follows.



40 Chapter 3. Process Theory TCPdrst

Definition 3.2.2 Let R = (S × E , A, V,−→, 7−→, ↓, I) be a racing timed
transition scheme and d: V → F a distribution assignment function. Then,
the pair (R, d) induces the probabilistic timed transition system P = (S ×
E , A,→, 7→, ↓), where the action transition and termination options → and ↓
of P are given by −→ and ↓ of R, respectively, and 7→(u) = ((1, S × E), P)
is the probability space induced by the race condition. The probability
measure P is given by

P(1, u′) =





RC1(W ′, L′)∑{RC1(W,L) | u W7−→
L

u}
if R(u) = W ′ ∪ L′ 6= ∅

1 otherwise

,

where u W ′7−→
L′

u′ and FX = d(X)|α(X) for X ∈ R(u). 2

We remind the reader that W ′∪L′ = W ∪L for every timed delay transition
u W7−→

L
u of u. The probability measure is normalized because the race need

not be complete, i.e.,
∑

u
W7−→
L

u
RC1(W,L) 6 1. Only if the race is complete,

i.e., all possible outcomes are stated by the timed delay transitions, the sum
above equals one for every possible race. We illustrate the situation by an
example.

?>=<89:;1@
( 2
3
) 1

¡¡¡¡
¡¡

¡¡
¡¡

¡ Ä
( 1
3
) 1

ÂÂ?
??

??
??

??

?>=<89:;2
_

(1) 1

²²

?>=<89:;3

a

²²
?>=<89:;4 ?>=<89:;5↓

Figure 3.2: Probabilistic timed transition system

Example 3.2.3 Let X and Y be random variables with P(X = 1) = P(X =
2) = 1

2 and P(Y = 1) = 1
3 , P(Y = 2) = 2

3 . The probabilistic timed tran-
sition system that is induced by the racing timed transition scheme from
Example 3.1.2 and the above assignment of distributions to the delays X
and Y is depicted in Figure 3.2. The probability mass is indicated in brack-
ets, next to the duration of the timed transition on the 7→ arrow. As we



3.3. Bisimulation Relation 41

deal with unit time steps, the duration of every timed transition is 1. The
probability in state 1 that X expires in one time step and Y does not is
RC1(X, Y ) = 1

2
2
3 = 1

3 . The probability in the same state that Y expires
in one time step and X does not is RC1(Y,X) = 1

3
1
2 = 1

6 . As the race is
not complete, the probabilities are normalized to 2

3 and 1
3 , respectively, as

depicted in Figure 3.2. In state 2 the probability is normalized to 1. The
action transitions and the termination options are inherited from the racing
timed transition scheme. 2

3.3 Bisimulation Relation

We define a strong bisimulation relation on racing timed transition schemes.
It requires timed delays to be in the same racing context modulo names
of independent delays. This ensures that the related racing timed transi-
tion schemes have the same probabilistic behavior, i.e., they induce the same
probabilistic timed transition systems when coupled with corresponding dis-
tribution assigning functions. As usual, bisimilar terms are required to have
the same termination options and action transitions [8, 12].

Definition 3.3.1 Let R ⊆ (S × E)2 × (V ↔ V) be a relation. Then R
is a racing timed bisimulation if for all (u1, u2, r) ∈ R it holds that also
(u2, u1, r−1) ∈ R and r: R(u1)↔ R(u2) is a bijection with r(I(u1)) = I(u2),
and FX = Fr(X) and α1(X) = α2(r(X)) for X ∈ dom(r), and:

1. if u1↓ then u2↓;
2. if u1

a−→ u′1 for some u′1 ∈ S × E , then u2
a−→ u′2 for some u′2 ∈ S × E

such that (u′1, u
′
2, r

′) ∈ R for some r′ ∈ V ↔ V; and

3. if u1
W17−→
L1

u′1 for some u′1 ∈ S × E , then u2
W27−→
L2

u′2 for some u′2 ∈ S × E
where r(W1) = W2, r(L1) = L2, and (u′1, u

′
2, r

′) ∈ R for some r′ ∈ V↔V
satisfying r′(X) = r(X) for X ∈ L1 ∩D(u′1).

We say that two states u1 and u2 are racing timed bisimilar, notation
u1 -t u2, if there exists a bisimulation relation R such that (u1, u2, r) ∈ R
for some r ∈ V ↔ V. 2

The relationship between racing contexts of timed delays of bisimilar states
is established using the bijection r. It is a bijection as the same number
of racing delays must be present in both states. It also must respect the
independent delays stated by r(I(u1)) = I(u2). The independent delays can



42 Chapter 3. Process Theory TCPdrst

have different names, but they must have the same distribution and age,
meaning that they will exhibit the same probabilistic behavior. Conditions 1
and 2 state that bisimilar states have the same termination options and
action transitions. The timed delay transitions have racing contexts induced
by winners and losers related by r. Condition 3 requires that the losers,
identified in the resulting state by L1 ∩ D(u′1), are backward compatible,
i.e., they retain their names as they are bound in the first race that they
lost. We illustrate the situation by an example.

a) ?>=<89:;1G

Z

α(Z)=0, α(Y )=0

Y
¤¤̈ ¨̈

¨̈
¨̈

¨ x

Z
Y

¾¾8
88

88
88

8

?>=<89:;2
_

Y

α(Y )=1

²²

?>=<89:;3

a

α(Z)=1

²²
?>=<89:;4 ?>=<89:;5↓

b) ?>=<89:;1J

Z

α(Z)=0, α(Y )=0

Y
¥¥­­

­­
­­

­ v

Z
Y

½½6
66

66
66

?>=<89:;2
_

U

α(U)=1

²²

?>=<89:;3

a

α(Z)=1

²²
?>=<89:;4 ?>=<89:;5↓

Figure 3.3: Racing timed transition schemes

Example 3.3.2 The racing timed transition scheme depicted in Figure 3.3a
is racing timed bisimilar to the one from Figure 3.1 provided that FZ = FX .
As X is an independent racing delay, it can be renamed to the delay Z with
the same distribution. However, the racing timed transition scheme depicted
in Figure 3.3b is not racing timed bisimilar to the one from Figure 3.1 (nor
to the one from Figure 3.3a) even if FU = FY . This is because Y is a
loser in a previous race and its name must be preserved. As we have strong
bisimilarity the action transitions and termination options must be mutually
simulated in bisimilar states. 2

As a prerequisite to being a congruence in TCPdrst, bisimilarity should be
an equivalence relation as stated in the following theorem.

Theorem 3.3.3 Bisimilarity is an equivalence relation. 2

Proof It should be clear that -t is a reflexive relation, i.e., u -t u, by
putting R = {(u, u, idR(u)) | u ∈ S × E}.

For symmetry, assume that u -t v. Then there exists a bisimulation R
such that (u, v, r) ∈ R, for some bijection r satisfying the conditions of



3.4. Signature 43

Definition 3.3.1. Put R′ = {(v, u, r−1) | (u, v, r) ∈ R}. Clearly r−1 satisfies
the conditions of Definition 3.3.1 and R′ is a stochastic bisimulation.

For transitivity, assume that u1 -t u2 -t u3, i.e., there exist two bisimu-
lation relations R1 and R2 such that (u1, u2, r1) ∈ R1 and (u2, u3, r2) ∈ R2.
Define R3 as the composition R3 = R2 ◦ R1, where r3 = r2 ◦ r1 is again a
bijection satisfying the conditions of Definition 3.3.1. It is not difficult to
see that R3 is a racing timed bisimulation, which completes the proof. ¥

Next, we introduce the process theory and we give semantics to the process
terms using racing timed transitions schemes.

3.4 Signature

We informally introduce the operators before giving the signature of TCPdrst.
The deadlocked process that does not have any outgoing transitions is de-
noted by 0; successful termination by 1. Undelayable action prefixing is a
unary operator scheme a. , for every a ∈ A. Similarly, timed delay prefixes
are of the form σW

L
. for W,L ⊆ V disjoint. The dependence scope oper-

ator scheme is given by | |D, for a dependence binding set D ⊆ V. The
encapsulation operator scheme ∂H( ) for H ⊆ A blocks the actions in H.
The maximal time progress operator scheme θI( ) for I ⊆ A gives priority
to the undelayable actions in I over passage of time. The alternative com-
position is given by + , at the same time representing a nondeterministic
choice between action transitions and termination, a weak nondeterministic
choice between action and timed delay transitions, and probabilistic choice
between the resolved racing contexts of the timed delay transitions. The
parallel composition is given by ‖ . It allows passage of time only if both
components do so.

Definition 3.4.1 The signature of TCPdrst is given by

P ::= 0 | 1 | a.P | σW

L
.P | |P |

D
| ∂H(P ) | θI(P ) | P + P | P ‖ P ,

where a ∈ A, W,L, D ⊆ V with W ∩L = ∅, and H, I ⊆ A. The set of closed
terms that do not contain term variables is denoted by C(TCPdrst) and it is
ranged over by p and q. 2

Next, we take a closer look at the races induced by the timed delay prefixes.



44 Chapter 3. Process Theory TCPdrst

3.5 Auxiliary Operations

The general idea of having both dependent and independent delays available
is the following: For specification one can use multiple instances of a compo-
nent comprising independent delays. As the delays are independent, there is
no need to worry about the actual samples. However, outgoing timed delay
transitions from the states of the racing timed transition schemes have racing
delays with unique names (as there the races are resolved). So, process terms
may exhibit naming conflicts. For example, the term p = |σX.q|∅ ‖ |σX.q|∅ ex-
presses a race between two components guided by independent delays with
the same name. However, the timed delay transitions of 〈p, α〉 comprise two
racing delays with unique different names, but equal distributions.

For p to have proper semantics, the conflicting independent delay names
have to be detected and renamed, e.g., to |σY.q|∅‖|σX.q|∅ where FX = FY . To
detect the conflicting racing delay names, we use auxiliary operations D(p)
and I(p) to extract the dependent racing delays and the independent racing
delay names of the term p, respectively. We say independent delay names
instead of independent delays since there might not be one-to-one correspon-
dence between the two in the process terms, e.g., in p from above. Having
the dependent racing delays and the independent racing delay names, the
set of racing delay names is given by R(p) = D(p) ∪ I(p).

One more type of naming conflicts arises when a loser and some new
independent delay, which became enabled due to an expiration of a win-
ner, have the same name. For example, such situation is given by the
term σX.σY.0 + σY.0. If the winner of the race between [X] and [Y ] is [X],
then the resulting term is |σY.0|∅ + σY.0. It has two racing delays with the
name Y that do not represent the same racing delay, because the one on the
right has age of at least 1, whereas the one on the left is independent (as [X]
has no losers it does not induce any dependence) and it has no age at all. To
detect this type of naming conflicts, the set of newly enabled independent
delay names N(p) of a term p is extracted.

We will use α-conversion to enable dynamic renaming that resolves local
naming conflicts in the vein of [41]. Intuitively, α-conversion enables renam-
ing of independent delay names without distorting the structure of the term
and conforming to the bisimulation relation. Its definition requires renam-
ing of racing delay names, including the ones that are in the dependence
set D of the dependence scope operator | |D. We refer to the binding delay
names of the dependence scope operators encompassing racing delays as the
dependence binding delay names and we denote them by B(p).

The definitions of the auxiliary operations are given in Table 3.1. The



3.5. Auxiliary Operations 45

dependent racing delays D(p) of the process term p are calculated as the
racing delays in the context of the timed delays connected by the outer-
most composition that are not in any scope; and as the ones that are in the
intersection of the dependence sets of all encompassing dependence scope
operators. The independent racing delay names cannot be calculated di-
rectly, as we need to keep track and exclude the delays of the intersection of
the dependence scopes. For that purpose we extend I(p) with an auxiliary
(exclusion) set E and obtain I(p, E). Now, the set of independent racing
delay names can be computed as the set of dependent racing delays of p
excluding the ones in E. Initially, we put E = V as by default all racing de-
lay names are treated as dependent, i.e., I(p) = I(p,V). The newly enabled
independent delay names N(p) are the independent delay names that are
introduced in the race due to an expiration of a winner. Note that the losers
of the prefixing timed delay are the only dependent delays in the resulting
term. The dependence binding delay names B(p) are extracted as the names
in the dependence binding sets of the scope operators encompassing racing
delays of the topmost race.

D(1) = D(0) = D(a.p) = ∅, D(|p|
D

) = D(p) ∩D, D(σW

L
.p) = W ∪ L,

D(∂H(p)) = D(θI(p)) = D(p), D(p1 + p2) = D(p1 ‖ p2) = D(p1) ∪D(p2)

I(1, E) = I(0, E) = I(a.p, E) = ∅, I(∂H(p), E) = I(θI(p), E) = I(p,E)
I(p1 + p2, E) = I(p1 ‖ p2, E) = I(p1, E) ∪ I(p2, E)
I(|p|D, E) = I(p,D ∩ E), I(σW

L
.p, E) = (W ∪ L) \E

N(1) = N(0) = N(a.p) = ∅, N(|p|D) = N(∂H(p)) = N(θI(p)) = N(p)
N(σW

L
.p) = I(|p|L), N(p1 + p2) = N(p1 ‖ p2) = N(p1) ∪N(p2)

B(1) = B(0) = B(a.p) = B(σW

L
.p) = ∅, B(|p|

D
) = B(p) ∪D

B(∂H(p)) = B(θI(p)) = B(p), B(p1 + p2) = B(p1 ‖ p2) = B(p1) ∪ B(p2)

Table 3.1: Auxiliary operations

We illustrate the situation by a simple example.

Example 3.5.1 Let p = ||σX

Y, Z
.σX, Y.0|X,Z |X,Y . Then (1) D(p) = {X} and

(2) I(p) = I(p,V) = {Y, Z} because V ∩ {X,Z}∩ {X, Y } = {X}, (3) N(p) =
I(|σX, Y.0|Y,Z) = {X}, and (4) B(p) = {X, Z} ∪ {X, Y } = {X,Y, Z}. 2



46 Chapter 3. Process Theory TCPdrst

C(1) = C(0) = C(a.p) = ∅,
C([WL ].p) = L ∩ I(p)
C(|p|D) = C(∂H(p)) = C(θI(p)) = C(p)
C(p1 + p2) = C(p1 ‖ p2) =(

(I(p1) ∪N(p1)) ∩ R(p2)
) ∪ (

R(p1) ∩ (I(p2) ∪N(p2))
) ∪ C(p1) ∪ C(p2).

Table 3.2: Set of conflicting names

Remark 3.5.2 We note that in case there is a maximal progress operator in
the term, then it may happen that not all timed delay transitions are actually
taken because of prioritization of undelayable actions. Hence, the auxiliary
operators may actually result in more stochastic delay names than actually
observed in the racing contexts of the timed delay transitions. To model this
behavior precisely, the operators have to become more complicated in order
to examine the behavior of the maximal progress. However, this does not
contribute in any sense to the semantics and the only side effect is that the
α-conversion and the requirements for naming conflicts defined below yield
more delays in some cases. For that reason and for the sake of clarity and
compactness we leave these redundant stochastic delay names in place. 2

We proceed by identifying the naming conflicts that may lead to inconsistent
probabilistic behavior as discussed above.

3.6 Naming Conflicts

When an independent and a dependent delay or multiple independent delays
have the same name, naming conflicts arise that influence the probabilistic
behavior of the race. Moreover, naming conflicts arise in the environment
when a loser with an age and a newly enabled independent delay have the
same name. In principle, all naming conflicts in closed terms can be stati-
cally resolved by giving unique names to independent delays [69]. In the cur-
rent setting, however, we adopt a dynamic approach by using α-conversion
in the vein of [41] to support renaming for guarded recursion as well, which
cannot easily be handled statically. The set of conflicting names C(p) of a
term p ∈ C(TCPdrst) is given in Table 3.2.

Conflicts arise when the set of losers and the set of newly enabled in-
dependent delays have a common name as given by C([WL ].p). In that case
the stochastic delay guiding the losers has an age, but the same stochastic



3.7. Structural Operational Semantics 47

delay guiding the newly enabled independent delay does not have an age,
leading to conflict. Also, compositions can introduce conflicting names as
independent or newly enabled independent delay names of one component
can overlap with the racing delay names of the other. Here, the search for
conflicting names must continue in the components as well, as they also
might comprise alternative or parallel compositions.

In case naming conflicts arise, we resolve them using α-conversion as
discussed in Section 3.8 below. For the time being, we give the operational
semantics for process terms without naming conflicts. In case naming con-
flicts arise, the process term ‘ignores’ the conflicting behavior by disregarding
timed delay transitions with conflicting racing contexts.

3.7 Structural Operational Semantics

The semantics of a term p ∈ C(TCPdrst) in an environment α ∈ E is given
by the racing timed transition scheme (C(TCPdrst)× E ,A,V,−→, 7−→, ↓, I),
where −→, 7−→, and ↓ are defined by the operational rules in Table 3.3 and
Table 3.4. For notational convenience, we write α0 for the environment such
that α0(X) = 0, for X ∈ V. Also, we write α + 1 for the function satisfying
(α+1)(X) = α(X)+1. We use four additional predicates in the operational
rules: (1) 〈p, α〉 7−→ denoting that the state has an outgoing timed delay
transition, (2) 〈p, α〉 X7−→ denoting that the state has no outgoing timed delay
transitions, (3) 〈p, α〉 WX7−→

L
denoting that the state does not have an outgoing

timed delay transition with winners W and losers L, and (4) 〈p, α〉 X a−→
denoting that the state does not have outgoing action transitions labeled by
the action a.

Table 3.3 gives the operational rules for the termination constant, the
prefix operators, the dependence scope operator, and the alternative com-
position. Rule 3.1 states that the termination constant terminates inde-
pendent of the environment. Rule 3.2 states that action prefixes enable
action transitions and reset the ages of the racing delays to the zero envi-
ronment. Rule 3.3 states that timed delay prefixes enable timed transitions
with racing contexts induced by the winners and the losers provided the
term does not exhibit naming conflicts. The resulting environment contains
the ages of the losers increased by one time unit. Rules 3.4–3.6 show that
the dependence scope does not affect the termination nor the outgoing tran-
sitions of the term. If the term has an outgoing timed delay transition, then
it is conflict-free as the scope operator cannot introduce naming conflicts.
Rules 3.7 and 3.8 state that the alternative composition has a termination



48 Chapter 3. Process Theory TCPdrst

3.1 〈1, α〉↓ 3.2
〈a.p, α〉 a−→ 〈|p|∅, α0〉

3.3
C(σW

L
.p) = ∅

〈σW
L
.p, α〉 W7−→

L
〈|p|L, α0{(α + 1)/L}〉

3.4
〈p, α〉↓
〈|p|

D
, α〉↓ 3.5

〈p, α〉 a−→ 〈p′, α′〉
〈|p|D, α〉 a−→ 〈p′, α′〉

3.6
〈p, α〉 W7−→

L
〈p′, α′〉

〈|p|
D

, α〉 W7−→
L
〈p′, α′〉

3.7
〈p1, α〉↓

〈p1 + p2, α〉↓ 3.8
〈p2, α〉↓

〈p1 + p2, α〉↓

3.9
〈p1, α〉 a1−→ 〈p′1, α1〉

〈p1 + p2, α〉 a1−→ 〈p′1, α1〉
3.10

〈p2, α〉 a2−→ 〈p′2, α2〉
〈p1 + p2, α〉 a2−→ 〈p′2, α2〉

3.11
〈p1, α〉 W17−→

L1
〈p′1, α1〉, 〈p2, α〉 X7−→

〈p1 + p2, α〉 W17−→
L1

〈p′1, α1〉
3.12

〈p1, α〉 X7−→ , 〈p2, α〉 W27−→
L2

〈p′2, α2〉
〈p1 + p2, α〉 W27−→

L2
〈p′2, α2〉

3.13

〈p1, α〉 W17−→
L1

〈p′1, α1〉, 〈p2, α〉 W27−→
L2

〈p′2, α2〉,
(W1 ∪W2) ∩ (L1 ∪ L2) = ∅, C(p1 + p2) = ∅
〈p1 + p2, α〉 W1∪W27−→

L1∪L2
〈p′1 + p′2, α1{α2/L2}〉

3.14
〈p1, α〉 W17−→

L1
〈p′1, α1〉, rr(σW1

L1
, σW2

L2
) for 〈p2, α〉 W27−→

L2
〈p′2, α2〉, C(p1 + p2) = ∅

〈p1 + p2, α〉 W17−→
L1

〈p′1, α1〉

3.15
〈p2, α〉 W27−→

L2
〈p′2, α2〉, rr(σW1

L1
, σW2

L2
) for 〈p1, α〉 W17−→

L1
〈p′1, α1〉, C(p1 + p2) = ∅

〈p1 + p2, α〉 W27−→
L2

〈p′2, α2〉

Table 3.3: Operational rules for the termination constant, the prefix op-
erators, the dependence scope operator, and the alternative composition
operator

option if one of the summands does. Rules 3.9 and 3.10 enable the nondeter-
ministic choice between two action transitions. Rules 3.11 and 3.12 enable
the weak choice between action transitions and timed delays. As one sum-
mand cannot perform a timed delay, the alternative composition does not
introduce a naming conflict. Rule 3.13 gives the synchronization of timed
delays when the racing contexts can be merged provided that there are no
naming conflicts. We note that the resulting environment can also be repre-
sented by α2{α1/L1} as the winners from both summands expire together.



3.7. Structural Operational Semantics 49

Rules 3.14 and 3.15 enable the resolution of races on disjoint events, again
provided that there are no naming conflicts. A timed delay transition is
in a context of a resolved race if it is in a resolved race with every timed
delay transition of the other term. For example, the requirement that the
timed delay σW2

L2
of the right summand is in a resolved race is ensured by the

condition rr(σW1
L1

, σW2
L2

) for 〈p1, α〉 W17−→
L1

〈p′1, α1〉.

3.16
〈p1, α〉↓, 〈p2, α〉↓
〈p1 ‖ p2, α〉↓

3.17
〈p1, α〉 a1−→ 〈p′1, α1〉, 〈p2, α〉 X7−→
〈p1 ‖ p2, α〉 a1−→ 〈p′1 ‖ p2, α1〉

3.18
〈p1, α〉 X7−→ , 〈p2, α〉 a2−→ 〈p′2, α2〉
〈p1 ‖ p2, α〉 a2−→ 〈p1 ‖ p′2, α2〉

3.19
〈p1, α〉 a1−→ 〈p′1, α1〉, 〈p2, α〉 7−→
〈p1 ‖ p2, α〉 a1−→ 〈p′1 ‖ p2, α〉

3.20
〈p1, α〉 7−→ , 〈p2, α〉 a2−→ 〈p′2, α2〉
〈p1 ‖ p2, α〉 a2−→ 〈p1 ‖ p′2, α〉

3.21
〈p1, α〉 a1−→ 〈p′1, α1〉, 〈p2, α〉 a2−→ 〈p′2, α2〉, γ(a1, a2) = a3

〈p1 ‖ p2, α〉 a3−→ 〈p′1 ‖ p′2, α0〉

3.22

〈p1, α〉 W17−→
L1

〈p′1, α1〉, 〈p2, α〉 W27−→
L2

〈p′2, α2〉,
(W1 ∪W2) ∩ (L1 ∪ L2) = ∅, C(p1 ‖ p2) = ∅
〈p1 ‖ p2, α〉 W1∪W27−→

L1∪L2
〈p′1 ‖ p′2, α1{α2/L2}〉

3.23
〈p, α〉↓

〈∂H(p), α〉↓ 3.24
〈p, α〉 a−→ 〈p′, α′〉, a 6∈ H

〈∂H(p), α〉 a−→ 〈∂H(p′), α′〉

3.25
〈p, α〉 W7−→

L
〈p′, α′〉

〈∂H(p), α〉 W7−→
L
〈∂H(p′), α′〉

3.26
〈p, α〉↓

〈θI(p), α〉↓ 3.27
〈p, α〉 a−→ 〈p′, α′〉

〈θI(p), α〉 a−→ 〈θI(p′), α′〉

3.28
〈p, α〉 W7−→

L
〈p′, α′〉, 〈p, α〉 X a−→ for a ∈ I

〈θI(p), α〉 W7−→
L
〈θI(p′), α′〉

Table 3.4: Operational rules for the parallel composition, the encapsula-
tion, and maximal progress operator

Table 3.4 gives the operational rules for the parallel composition, the



50 Chapter 3. Process Theory TCPdrst

encapsulation, and the maximal progress operator. Rule 3.16 states that
the parallel composition can terminate only when both components can.
Rules 3.17–3.20 enable interleaving of action transitions in the parallel com-
position. Rules 3.17 and 3.18 state that the environment is reset when
the other component cannot perform a timed delay transition. This is to
preserve the desired property that only the ages of the losers persist in
the environment. However, the environment must be preserved in case the
other component can perform a timed delay as given by rules 3.19 and 3.20.
Rule 3.21 allows for synchronization of action transitions if defined by the
synchronization function. Similarly to the alternative composition, synchro-
nization of timed delays is allowed when the racing contexts can be merged
as given by rule 3.22 provided that there are no naming conflicts. Rule 3.23
states that the termination option is not affected by the encapsulation op-
erator. Rule 3.24 states that action transitions are allowed only if they are
not labeled by actions that should be suppressed. Rule 3.25 states that the
encapsulation does not affect the timed delays. Rules 3.26 and 3.27 state
that the maximal progress operator does not affect the termination options
nor the action transitions. Timed delay transitions, however, are exhibited
only if the term cannot perform a transition labeled by a prioritized action
as given by rule 3.28.

Next, we give a racing timed bisimulation relation on closed TCPdrst

terms. Intuitively, the names of the dependent racing delays must be pre-
served, whereas the independent ones must have the same distributions.

Definition 3.7.1 Two terms p1, p2 ∈ C(TCPdrst) are racing timed bisimi-
lar, notation p1 -t p2 if there exists a racing timed bisimulation relation R
such that (〈p1, α0〉, 〈p2, α0〉, r) ∈ R for some r ∈ V ↔ V satisfying r(X) = X
for X ∈ D(p1). 2

The condition that r(X) = X for X ∈ D(p1) states that bisimilar terms
must have the same dependent delays. This preserves the congruence prop-
erty as dependent delays are explicitly aged by the timed delay prefix σW

L
,

whereas independent delays cannot have an explicit age dependence. The
definition may seem restrictive as it deals with process terms only in the
zero environment α0. However, by an inspection of the operational rules it
is easily observed that the environment does not influence the outgoing tran-
sitions nor the predicates. It is only used to properly define the underlying
probabilistic timed transition system. To show this, we have the following
lemma, which also justifies the use of the zero environment.



3.8. α-conversion 51

Lemma 3.7.2 Let R be a racing timed bisimulation relation and (〈p1, α1〉,
〈p2, α2〉, r) ∈ R. Then there exist a racing timed bisimulation relation R′

such that (〈p1, α
′
1〉, 〈p2, α

′
2〉, r) ∈ R′ for every α′1, α

′
2 ∈ E satisfying α′1(X) =

α′2(r(X)) for X ∈ dom(r). 2

Proof It is clear that the initial environments α′1 and α′2 satisfy the con-
ditions of Definition 3.3.1 for the bisimulation relation, i.e., corresponding
stochastic delays have the same ages. By direct inspection of the opera-
tional rules, one concludes that the termination options, the action, and
the timed delay transitions do not depend on the aging of the delays, i.e.,
〈p, α〉↓, 〈p, α〉 a−→ 〈p′, α′〉, and 〈p, α〉 W7−→

L
〈p′′, α′′〉 for some a ∈ A, W,L ⊆ V,

p′, p′′ ∈ C(TCPdrst), and α′, α′′ ∈ E , if and only if 〈p, α′〉↓, 〈p, α′〉 a−→〈p′, α′〉,
and 〈p, α′〉 W7−→

L
〈p′′, α′′〉 for some α′, α′, α′′ ∈ E . Thus, the states 〈p1, α1〉 and

〈p1, α
′
1〉, and 〈p2, α2〉 and 〈p2, α

′
2〉, respectively, have the same termination

options and perform the same action and timed delay transitions. We con-
clude that the bijections that relate the stochastic delay names in the racing
context of the timed delays in R and R′ are the same. Now by following the
operational rules for 〈p1, α1〉, 〈p1, α

′
1〉, 〈p2, α2〉, and 〈p2, α

′
2〉 it should not be

difficult to see that the relation R′ that has triples built of the same process
terms and bijections relating the random variables of the racing delays as R,
but different initial environments, is a bisimulation. ¥

Before we define the term model of TCPdrst we provide means to give oper-
ational semantics to process terms that exhibit naming conflicts. We follow
the approach of [41] and we use α-conversion to rename independent delay
names and resolve naming conflicts.

3.8 α-conversion

Intuitively, two terms can be α-converted if they have the same dependent
delays and the names of the independent ones are consistently renamed. We
illustrate the situation by an example.

Example 3.8.1 The term σX

Z
.(σY

X
.0 + σX, Z

Y
.0) is α-convertible to σS

V
.(σU

T
.0 +

σT, V

U
.0) provided that FX = FS = FT , FY = FU , and FZ = FV . The sto-

chastic delay X of the outermost prefix σX

Z
can be renamed to S, whereas X

in the subterm σY

X
.0 + σX, Z

Y
.0 can be renamed to T . These two occurrences

of X are independent of each other, having in common only that they are
guided by the same distribution function FX . Both X and Y in the sub-
term σY

X
.0+σX, Z

Y
.0 must be consistently renamed to T and U in the subterm



52 Chapter 3. Process Theory TCPdrst

σU

T
.0 + σT, V

U
.0, respectively. This is to preserve the correct probabilistic be-

havior as they are dependent delays in the corresponding subterms. The
loser Z of the topmost race is a dependent delay is aged because of the
timed transition of the prefixing delay σX

Z
. So, its name is bound and it

must be consistently renamed in the whole term to V . 2

To formalize the renaming as illustrated by Example 3.8.1, we introduce a
predicate ccrd,i(p1, E1, p2, E2) that checks whether the stochastic delays of
the closed terms p1 and p2 have been consistently renamed. Renaming of
dependent racing delays is represented by a bijection d between the union of
the dependent racing and dependence binding delay names of the terms. It
is a bijection because dependent racing and dependence binding delay names
of one term can have only one counterpart in the other. The renaming of
the independent racing delay names is given by a total surjective relation i.
It is a relation because there might be multiple stochastic delays with the
same name related to their counterpart with different names. For example,
the renaming of X in |σX.0|∅ + |σX.0|∅ to both Y and Z in |σY.0|∅ + |σZ.0|∅
provided that FX = FY = FZ . It must be a total and surjective relation as
all independent delay names from one term must be related to some inde-
pendent delay names of the other. Still, the renaming must be consistent
with respect to the subterm in which independent delay names are renamed,
e.g., the renaming of X to T in the subterm σY

X
.0 + σX, Z

Y
.0 in Example 3.8.1.

As in the definition of I(p), to extract the independent delay names, we need
auxiliary (exclusion) sets of delays E1 and E2 that keep track of the intersec-
tions of the dependence binding sets. Finally, two states can be α-converted
if the process terms can be α-converted and, moreover, the environments
differ only on the independent delay names provided that corresponding
delays have the same age.

Definition 3.8.2 Two closed terms p1, p2 ∈ C(TCPdrst) are α-convertible,
notation p1∼αp2, if the predicate ccrd,i(p1,V, p2,V) given in Table 3.5 holds,
for the identity bijection d: D(p1) ∪ B(p1)↔D(p2) ∪ B(p2) and a total sur-
jective relation i ⊆ I(p1)× I(p2).

Two states 〈p1, α1〉, 〈p2, α2〉 ∈ C(TCPdrst)×E are α-convertible, notation
〈p1, α1〉∼α 〈p2, α2〉, if p1∼αp2 and the environment differs only on the racing
independent delays provided that renamed delays have the same age, i.e.,
α1(X) = α2(Y ) for every (X, Y ) ∈ i, and α0{α1/(V \ I(p1))} = α0{α2/(V \
I(p2))}. 2



3.8. α-conversion 53

ccrd,i(1, E1, 1, E2) = ccrd,i(0, E1, 0, E2) = >
ccrd,i(a.p1, E1, a.p2, E2) if ccrd′,i′(p1,V, p2,V)

for a bijection d′ : D(p1) ∪ B(p1)↔D(p2) ∪ B(p2) and
a total surjective relation i′ ⊆ I(p1)× I(p2)

ccrd,i(σW1
L1

.p1, E1, σ
W2
L2

.p2, E2)

if there exists a bijection j : (W1 ∪ L1) \ E1 ↔ (W2 ∪ L2) \ E2

satisfying j(X) = Y if (X, Y ) ∈ i,
j(W1 \E1) = W2 \ E2, j(L1 \E1) = L2 \ E2,

FX = Fj(X) for X ∈ (W1 ∪ L1) \ E1, and

d(W1 ∩ E1) = W2 ∩ E2, d(L1 ∩ E1) = L2 ∩ E2,

FX = Fd(X) for X ∈ (W1 ∪ L1) ∩ E1, and

ccrd′,i′(p1,V, p2,V) holds
for a bijection d′ : D(p1) ∪ B(p1)↔D(p2) ∪ B(p2)
with d′(X) = d(X) for X ∈ L1 ∩ E1 ∩D(p1) and
d′(X) = i(X) for X ∈ (L1 \E1) ∩D(p1), and
a total surjective relation i′ ⊆ I(p1)× I(p2)

ccrd,i(|p1|D1
, E1, |p2|D2

, E2) if d(D1) = D2 and ccrd,i(p1, D1 ∩ E1, p2, D2 ∩ E2)

ccrd,i(∂H(p1), E1, ∂H(p2), E2) if ccrd,i(p1, E1, p2, E2)
ccrd,i(θI(p1), E1, θI(p2), E2) if ccrd,i(p1, E1, p2, E2)
ccrd,i(p1 + p′1, E1, p2 + p′2, E2) if ccrd,i(p1, E1, p2, E2) and ccrd,i(p′1, E1, p

′
2, E2)

ccrd,i(p1 ‖ p′1, E1, p2 ‖ p′2, E2) if ccrd,i(p1, E1, p2, E2) and ccrd,i(p′1, E1, p
′
2, E2)

Table 3.5: Definition of ccrd,i( )

We comment on the definition of the predicate ccrd,i( ). As an example
we consider the renaming of the term p1 to p2 given as follows:

p1 = |σX

Y
.σY.0|∅ + |σZ

X
.a.σX.0|Z

p2 = |σU

V
.σV.0|∅ + |σZ

W
.a.σX.0|

Z
.

The bijection d relating dependent racing delays relates only Z and Z. The
total surjective relation i contains the pairs (X, U), (Y, V ), and (X, W ).

The renaming of the constant processes is always consistent. The action
prefix is α-convertible as long as the remaining process is α-convertible, ex-



54 Chapter 3. Process Theory TCPdrst

pressed by the existence of the bijection d′ and the total surjective relation i′.
Recall that all racing delays prefixed by an action prefix are independent.
For that reason the occurrence of X following the action prefix in p1 can
remain with the same name in p2 even though the occurrence of X in σZ

X

has been renamed to W in p2.
The most involved consistency requirement is for the timed delay prefix.

First, the independent delays must be isolated by subtracting the exclusion
sets from the racing delays. Then, there has to be a one-to-one correspon-
dence between the independent racing delays of the racing contexts. This
is expressed by the bijection j that respects the relation i between the inde-
pendent racing delay names. The independent delays in the racing context
of σW1

L1
and σW2

L2
are identified as the ones that are not in the exclusion sets E1

and E2, respectively. Then, there must a correspondence between the in-
dependent winners and losers, respectively, such that they have the same
distribution functions. The remaining processes must also be α-convertible,
which is given by the existence of the bijection d′ and the total surjective
relation i′. The bijection d′ that relates the dependent delays of the remain-
ing processes must respect the names of both independent and dependent
losers as stated by the last two conditions. In the example, the bijection j
relating the independent delays of the timed prefix of the first summand
relates X 7→ U and Y 7→ V . Note that there can not be multiple occur-
rences of the same independent delay in one racing context, so j can always
be defined if the renaming is consistent. The bijection d′ must respect the
renaming of Y 7→ V , so in the remaining term Y continues to be renamed
as V . Note that this is not the case in the second summand, as the action
prefix resets the race and all delays become independent.

For the dependence scopes, the dependence binding sets must be re-
lated and the remaining processes are checked with the adapted exclusion
sets. The alternative and the parallel composition are α-convertible if the
components are. The encapsulation and the maximal progress operator are
α-convertible if the encompassed processes are.

We add one more operational rule to the ones in Table 3.3 and Table 3.4
that exploits α-conversion to resolve naming conflicts as follows:

3.29
〈p, α〉 ∼α 〈p′′, α′′〉, 〈p′′, α′′〉 W7−→

L
〈p′, α′〉, C(p′′) = ∅

〈p, α〉 W7−→
L
〈p′, α′〉

·

This rule renames the independent delays that cause conflicts, thus keeping
the timed delay transitions locally free of conflict. The approach is similar
to the one of [41].



3.8. α-conversion 55

Remark 3.8.3 Here, however, we are slightly more liberal as rule 3.29 can
potentially produce infinitely many transitions, although its purpose is to
support the resolution of possible naming conflicts. More precisely, the rule
allows for a renaming of an independent delay to every other non-conflicting
stochastic delay, whereas the intention is to use it only once. One way to
formally resolve this would be to alter the logic that drives the deduction of
the operational rules by introducing the ∇ operator of [79] that enables local
scopes. This operator locally binds an arbitrary name, enabling a choice of
names for the conflicting stochastic delay that resolves the naming conflicts.
In [79] an embedding of late π-calculus is given in the extended logic that
formalizes α-conversion in that setting. Another approach would be to adopt
the approach of history-based automata in order to explicitly represent the
dependencies between variable names by means of relations that keep the
past behavior of the system [81]. Also in this setting, a translation of π-
calculus to the proposed theory is given that shows how to explicitly model
α-conversion. In the current setting, however, we decide not to explicitly
model the one-time usage of the α-conversion rule as this goes beyond the
scope of our work and does not contribute to the presentation of ideas in
the current setting. 2

The following theorem shows that α-conversion is a congruence on closed
TCPdrst terms. This theorem in combination with Theorem 3.8.5, which
shows that α-congruence implies bisimulation, enables the treatment of the
process terms modulo α-conversion, i.e., modulo naming of independent
delays.

Theorem 3.8.4 α-conversion is a congruence on C(TCPdrst). 2

Proof It should be clear that α-conversion is an equivalence relation as it
is based on bijections to provide renaming of the stochastic delays. To show
reflexivity, take d to be the identity bijection and i the identity relation.
To show symmetry, suppose that p1 ∼α p2 for some bijection d and some
total surjective relation i. Now, p2 ∼α p1 by using the reverse bijection d−1

and the total surjective relation i−1. Transitivity follows from the fact that
composition of two bijections is again a bijection and a composition of two
total surjective relations is again a total surjective relation.

It is straightforward that α-conversion is a congruence for the trivial
contexts of 0 and 1.

Now, suppose that p1 ∼α p2 and that ccrd′,i′(p1,V, p2,V) holds for the
identity bijection d′ = idD(p1)∪B(p1) and some total surjective relation i′ ⊆
I(p1)× I(p2).



56 Chapter 3. Process Theory TCPdrst

For the action prefixed terms we readily have that a.p1 ∼α a.p2 because
the conditions are trivially satisfied for the empty bijection and the empty
total surjective relation on ∅×∅ as there are no racing delays. The predicate
ccr∅,∅(a.p1,V, a.p2,V) holds as ccrd′,i′(p1,V, p2,V) holds.

For the timed delay prefixed terms σW

L
.p1 and σW

L
.p2, we have that the

dependent delays are the same in both terms and that there are no inde-
pendent terms. Thus, σW

L
.p1 ∼α σW

L
.p2 as ccrd,∅(σW

L
.p1,V, σW

L
.p2,V) holds for

the identity bijection d = idW∪L that is respected by the identity bijection
d′ = idL∪D(p1).

For the encapsulation operator and the maximal progress operator it is
straightforward that ∂H(p1)∼α∂H(p2) and θI(p1)∼αθI(p2) as the dependent,
dependence binding, and independent delays are the same as for p1 and p2.
Therefore, ccrd′,i′(∂H(p1),V, ∂H(p2),V) and ccrd′,i′(θI(p1),V, θI(p2),V) hold.

The dependence delays scope operator | |D can introduce additional
independent and dependence binding delays. We obtain the bijection d
as the identity bijection d = idD(dom(d′)∪D). The total surjective rela-
tion i is obtained by extending i′ with the additional independent delays
as i = i′ ∪ idD(p1)\D. Trivially d(D) = D. We proceed by analyzing
ccrd,i(p1, D, p2, D). Assume that p1 = σW1

L1
.p′1 and p2 = σW2

L2
.p′2. Then

d′(W1) = W2, d′(L1) = L2, and i′ = ∅ for the identity bijection d′. It
is not difficult to see that in this case the bijection j is the identity bijec-
tion j = id(W1∪L1)\D and that ccrd,i(p1, D, p2, D) holds. Next, assume that
p1 = |p′1|D1

and p2 = |p′2|D2
after several applications of the rule. Then,

d′(D1) = D2 and ccrd′,i′(p1, E1, p2, E2) holds for d′(E1) = E2. Again, the
same cases repeat except for the timed delay prefix. In this case we extend
the existing bijection j′ with idD(p1)\E1

to obtain j, which is covered by the
definition of i. Thus, we conclude that ccrd,i(|p1|D,V, |p2|D,V) holds.

Now, suppose that p′1 ∼α p′2 and that ccrd′′,i′′(p′1,V, p′2,V) holds for the
identity bijection d′′ = idD(p′1)∪B(p′1) and some total surjective relation i′′ ⊆
I(p′1)× I(p′2).

To show that p1 + p′1∼α p2 + p′2 and p1 ‖ p′1∼α p2 ‖ p′2, we put d to be the
identity bijection d = idD(p1+p′1). It should be clear that it conforms to d′

and d′′. We build i as the union of i′ and i′′, i.e., i = i′ ∪ i′′. Now, we have
that ccrd,i(p1 + p′1,V, p2 + p′2,V) and ccrd,i(p1 ‖ p′1,V, p2 ‖ p′2,V) hold as both
ccrd,i(p1,V, p2,V) and ccrd,i(p′1,V, p′2,V) hold, which completes the proof. ¥

Because α-conversion is a congruence, we will also refer to it as α-congruence.
The following theorem states that α-congruence implies racing timed bisim-
ilarity.

Theorem 3.8.5 If 〈p1, α1〉 ∼α 〈p2, α2〉 then 〈p1, α1〉-t 〈p2, α2〉. 2



3.9. Term Model 57

Proof If C(p1) = ∅ and C(p2) = ∅ hold, then the relation i giving the
renaming of independent racing delays becomes a one-to-one total surjection
and, therefore, a bijection. Moreover, dom(i) ∩ dom(d) = ∅. Now, it should
not be difficult to observe that the union d∪ i is the renaming bijection r of
the bisimulation relation between the states, whereas the condition on the
environments is satisfied by the definition of α-conversion. ¥

We will show that bisimulation is a congruence, which paves the way for
defining a term model for the process theory.

3.9 Term Model

The congruence property of the racing timed bisimilarity is stated in the
following theorem, which is a requirement for the definition of the term
model.

Theorem 3.9.1 The racing timed bisimilarity relation -t is a congruence
on C(TCPdrst). 2

Proof Suppose that p1 -t p2 and p′1 -t p′2. Then there exist racing timed
bisimulation relations R and R′, respectively, such that (〈p1, α0〉, 〈p2, α0〉, r) ∈
R and (〈p′1, α0〉, 〈p′2, α0〉, r′) ∈ R′. The trivial contexts 0 and 1 are clearly
bisimilar.
[a. ] Define R′′ = {(〈a.p1, α0〉, 〈a.p2, α0〉, ∅)}∪R. That R′′ is a racing timed
bisimulation relation follows from the fact that only the following action
transitions are possible: 〈a.p1, α0〉 a−→〈|p1|∅, α0〉 and 〈a.p2, α0〉 a−→〈|p2|∅, α0〉,
and that the rest is captured by the bisimulation R.
[σW

L
. ] By using Lemma 3.7.2, let R′′′ be the bisimulation relation relating

〈p1, α0{α0 + 1/L}〉 and 〈p2, α0{α0 + 1/L}〉. Define R′′ = {(〈σW

L
.p1, α0〉,

〈σW

L
.p2, α0〉, idW∪L)} ∪ R′′′. It should be clear that R′′ is a racing timed

bisimulation relation.
[| |

D
] Define R′′ = {(〈|p1|D, α0〉, 〈|p2|D, α0〉, r)} ∪R. By direct inspection of

the operational rules we have that the processes 〈|p|D, α〉 and 〈p, α〉 have
the same termination options and action transitions, and result in the same
states. Putting the term p in a dependence scope may just turn a dependent
delay into an independent one. However, the racing delay names remain the
same. Thus, |p1|D and |p2|D have the same timed delay transitions as p1

and p2, respectively, which makes R′′ a racing timed bisimulation relation.
[∂H( )] Define R′′ = {(〈∂H(p1), α1〉, 〈∂H(p2), α2〉, r) | (〈p1, α1〉, 〈p2, α2〉, r)
∈ R}. By inspection of the operational rules for ∂H( ) it should be clear



58 Chapter 3. Process Theory TCPdrst

that R′′ is a racing timed bisimulation relation by using the same bijection
for the stochastic delays as R.
[θI( )] Define R′′ = {(〈θI(p1), α1〉, 〈θI(p2), α2〉, r′) | (〈p1, α1〉, 〈p2, α2〉, r) ∈
R}. Now, the proof is the same as for ∂H( ).
[ + ] Before defining the bisimulation relation we analyze the alternative
composition of p1 and p′1. If 〈p1 +p′1, α0〉↓, then either 〈p1, α0〉↓ or 〈p′1, α0〉↓,
and consequently, either 〈p2, α0〉↓ or 〈p′2, α0〉↓. It easily follows that 〈p2 +
p′2, α0〉↓. Similarly for the other direction.

If 〈p1, α0〉 a−→〈p1, α0〉, then R′′ = R on this part of the transition scheme.
In the symmetric case when 〈p′1, α0〉 a−→ 〈p′1, α0〉, we have R′′ = R′.

Possible naming conflicts arise in p1+p′1 if C(p1+p′1) 6= ∅. Let p′′1 and p′′′1
be the α-converted versions of p1 and p′1, respectively, such that C(p′′1+p′′′1 ) =
∅ holds. By Theorem 3.8.5 there exist racing timed bisimulation relations R1

and R′
1 such that (〈p1, α0〉, 〈p′′1, α0〉, r1) ∈ R1 and (〈p′1, α0〉, 〈p′′′1 , α0〉, r′1) ∈

R′
1. Similarly for p2 and p′2 we have that (〈p2, α0〉, 〈p′′2, α0〉, r2) ∈ R2 and

(〈p′2, α0〉, 〈p′′′2 , α0〉, r′2) ∈ R′
2, for some racing timed bisimulation relations R2

and R′
2 and p′′2∼αp2 and p′′′2 ∼αp′2. Now, we define r′′ as r′′ = r2◦r◦r1∪r′2◦r′◦r′1.

It is well defined as C(p′′1 + p′′′1 ) = ∅ and C(p′′2 + p′′′2 ) = ∅ hold.
Now, we construct the racing timed bisimulation relation R′′. If p1 or p′1

performs an action transition then the alternative composition degrades to
a part of the transitions schemes of p1 or p′1, respectively. Similarly, if p1

or p′1 perform a timed delay in a resolved race. Thus, we initially put
R′′ = R∪R′∪{(〈p1+p′1, α0〉, 〈p1+p′1, α0〉, r′′)}. However, when the summands
synchronize on performing a timed delay transition, i.e., when the summands
perform timed delays that induce an unresolved race, then both results of the
timed delay transitions persist in the final term. In this case, one proceeds
in the same manner as before by induction and, again, the union of the
composition of the bijections induced by the α-conversion is computed to
obtain the bijection for the racing timed bisimulation relation between the
alternative compositions.
[ ‖ ] As in the case of the alternative composition, with the exception that
an action transition does not make a choice. ¥

Now, we have all the prerequisites to define the term model of TCPdrst as
the quotient algebra modulo racing timed bisimulation [13].

Definition 3.9.2 The term model of TCPdrst is the quotient algebra
P(TCPdrst)/-t, where P(TCPdrst) = (C(TCPdrst), 0, 1, a. for a ∈ A,
σW

L
. for W,L ⊆ V, satisfying W ∩L = ∅, | |

D
for D ⊆ V, ∂H( ) for H ⊆ A,

θI( ) for I ⊆ A, + , ‖ ). 2



3.10. Summary 59

Remark 3.9.3 We note that because of the congruence property of α-con-
version and because it implies racing timed bisimilarity, we could also take
the set of processes to be (P(TCPdrst)/∼α)/-t as originally done in [66, 68].
However, in the current setting we opt for explicit equations to show α-
conversion, as we believe that this provides an additional insight in the
nature of the process theory. 2

3.10 Summary

We give the signature and semantics of the theory of communicating processes
with discrete real and stochastic time – TCPdrst. The theory comprises
timed delays in racing contexts that can express an expiration of an out-
come of a race per time unit. The semantics is given in terms of racing
timed transitions schemes that present a kind of probabilistic timed au-
tomata where the probabilistic choices are symbolically given by the race
condition. Consequently, an assignment of probability distributions to the
stochastic delays induces a probabilistic timed transition system.

As multiple independent racing delays can have the same name, the
racing semantics can be ambiguous when two independent delays with the
same name occur simultaneously in a race. We resolve this problem by
employing α-conversion. In the following chapter we provide a sound and
ground-complete axiomatization of the developed theory.





Chapter 4

Equational Theory

As we mentioned before, the associativity of the alternative composition
does not hold for process terms that induce incomplete races. Moreover,
the expansion of the parallel composition and the resolution of the maximal
progress operator require resolved races. This forces us to give the theory
TCPdrst in terms of equations on normal forms. First, we give axioms for
manipulation of the dependence scope operator. We employ them to de-
rive an intermediate normal form that enumerates all possible outcomes of
a race, making the alternative composition associative. It is unique for the
timed delays modulo commutativity, associativity, and naming of indepen-
dent delays. We use this normal form to give expansion laws for the rest of
the operators, such that the expansions are again in the same normal form.
Afterwards, we define a head norm form, in which every operator except
the alternative composition and the prefix operators is eliminated. Relying
on it, we show that the equational theory presented is ground-complete. At
the end of this section, we introduce guarded recursion by means of guarded
recursive specifications, which have unique solutions in the term model of
TCPdrst

rec .

4.1 Renaming of Independent Delays

As already elaborated upon, the main idea behind having two types of race
condition is that systems are modeled by independent delays whereas, the
race condition is resolved by assigning unique names to racing delays and
afterwards treating them as dependent. Thus, we need a mechanism for
renaming independent delays and turning them into dependent ones. We
give a simple example to illustrate the situation.

61



62 Chapter 4. Equational Theory

Example 4.1.1 Given the simple component |σX

Y
.σY.a.0|∅, we can use it

as a building block of the system |σX

Y
.σY.a.0|∅ ‖ |σX

Y
.σY.a.0|∅. However, for

analysis we revert to the system |σX

Y
.σY.a.0‖σU

V
.σV.a.0|∅, where FX = FU and

FY = FV . The advantage of encompassing the whole term within a single
dependence scope is that all independent delays are given unique names.
Moreover, the dependent delays are ‘declared’ in the dependence binding
set, the parameter of the dependence scope. 2

Proper resolution of the race condition requires uniqueness of names of the
racing delays as suggested by Definition 3.1.1 (for more details also refer
to the maximal distinct representation of terms in [68]). The mechanism
that enforces all independent delays to be assigned a different name is to
encompass them using a single dependence scope.

It is clear that naming conflicts may arise in such a situation, as in
Example 4.1.1 above. Therefore, it has to be checked whether there are
independent racing delays with conflicting names and the ones introducing
the clash must be renamed. Care has to be taken to rename losing delays
consistently as their names are made dependent and bound by the winners
in the first race that they lost. To this end, we define a renaming operation
p[Y/X] (cf. Table 4.1) that consistently renames the stochastic delay X into Y
in the term p ∈ C(TCPdrst).

0[Y/X] = 0, 1[Y/X] = 1, (a.p)[Y/X] = a.p

∂H(p)[Y/X] = ∂H(p[Y/X]), θI(p)[Y/X] = θI(p[Y/X])
(p1 + p2)[Y/X] = p1[Y/X] + p2[Y/X], (p1 ‖ p2)[Y/X] = p1[Y/X] ‖ p2[Y/X]
(σW

L
.p)[Y/X] = σW

L
.p if X 6∈ W ∪ L

(σW

L
.p)[Y/X] = σ(W\{X})∪{Y }

L
.p if X ∈ W

(σW

L
.p)[Y/X] = σW

(L\{X})∪{Y }.p[Y/X] if X ∈ L

(|p|D)[Y/X] = |p|D if X 6∈ D

(|p|
D

)[Y/X] = |p[Y/X]|
(D\{X})∪{Y } if X ∈ D

Table 4.1: Renaming operation

By now, we have gathered all the prerequisites to present the axioms
and the expansion laws for the operators.



4.2. Dependence Scope 63

4.2 Dependence Scope

We begin by giving the axioms for manipulating with the dependence scope
operators in Table 4.2. Axioms A4.1–A4.3 deal with terms that have no

|0|∅ = 0 A4.1

|1|∅ = 1 A4.2

|a.p|∅ = a.p A4.3

a.p = a.|p|∅ A4.4

σW

L
.p = |σW

L
.p|W∪L A4.5

σW

L
.p = σW

L
.|p|

L
A4.6

||p|D1
|D2

= |p|D1∩D2
A4.7

Table 4.2: Axioms for the dependence scope operator

timed delays, so they impose an empty dependence scope. Axiom A4.4
states that there is no dependence of timed delays that are enabled by an
action transition. Axiom A4.5 states that all delays are treated as dependent
by default. Axiom A4.6 states that the losers of a timed delay retain their
names and that they are treated as dependent in the remaining process.
Axiom A4.7 states that multiple scope operators intersect. It enables the
replacement of iterative application of scope operators by a single simulta-
neous one.

First we show that the axioms in Table 4.2 are sound. Afterwards,
we derive intermediate normal forms that enable the merger of the racing
contexts of timed delay prefixed terms in the alternative composition.

Theorem 4.2.1 The axioms in Table 4.2 are sound. 2

Proof We give a racing timed bisimulation relation that relates the left-
hand and the right-hand side of every axiom. By ∆(p) we denote the bisim-
ulation relation satisfying (〈p, α0〉, 〈p, α0〉, r) ∈ ∆(p), for some r ∈ V ↔ V.

[A4.1] Define R = {(〈0, α0〉, 〈|0|∅, α0〉, ∅)}. It is clear that R is a racing timed
bisimulation relation as both sides can do nothing.

[A4.2] Define R = {(〈1, α0〉, 〈|1|∅, α0〉, ∅)}. It is clear that R is a racing timed
bisimulation relation as both sides can only terminate.



64 Chapter 4. Equational Theory

[A4.3] Define R = {(〈a.p, α0〉, 〈|a.p|∅, α0〉, ∅)} ∪∆(p). It is clear that R is a
racing timed bisimulation relation as both sides do only action transitions
with a label a to 〈|p|∅, α0〉.
[A4.4] Define R = {(〈a.p, α0〉, 〈a.|p|∅, α0〉, ∅), (〈|p|∅, α0〉, 〈||p|∅|∅, α0〉, r)}∪∆(p).
It is clear that 〈a.p, α0〉 and 〈a.|p|∅, α0〉 can do only action transitions la-
beled by a to 〈|p|∅, α0〉 and 〈||p|∅|∅, α0〉, respectively. By soundness of A4.7
(see below), we have that R is a racing timed bisimulation relation.

[A4.5] Analogous to A4.3 having in mind that the dependent and indepen-
dent delays of both states are the same.

[A4.6] Analogous to A4.4.

[A4.7] Define R = {(〈||p|
D1
|
D2

, α0〉, 〈|p|D1∩D2
, α0〉, r)} ∪ ∆(p). By a direct

inspection of the operational rules one concludes that both sides have the
same termination options, action, and timed delay transitions. Moreover,
the dependent and independent racing delay names are the same. ¥

The axioms in Table 4.2 enable manipulation of iterated applications of the
dependence scope operator and scopes encompassing action or timed delay
prefixed processes. Next, we deal with the alternative composition.

4.3 Alternative Composition

In general, associativity does not hold for the alternative composition. In-
tuitively, the condition for resolved racing contexts is problematic as it may
depend on the order we merge racing contexts of timed delays in incomplete
races. The following example illustrates the situation.

Example 4.3.1 Consider the terms (σX

Y
.0+σZ.0)+σY, Z

X
.0 and σX

Y
.0+(σZ.0+

σY, Z

X
.0). The transition scheme of the first term has two outgoing transitions,

viz.

(σX

Y
.0 + σZ.0) + σY, Z

X
.0 X, Z7−→

Y
0 + 0 and (σX

Y
.0 + σZ.0) + σY, Z

X
.0 Y, Z7−→

X
0 + 0

because ({X} ∪ {Z}) ∩ ({Y } ∪ ∅) = ∅ and rr(σX, Z

Y
, σY, Z

X
) holds. However,

the second process only deadlocks as the timed delay transitions X7−→
Y

of σX

Y
.0

and Y, Z7−→
X

of σZ.0 + σY, Z

X
.0 are in inconsistent racing contexts as {X} ∪ {Y } 6=

{Y, Z} ∪ {X}. 2

Nevertheless, associativity holds for terms that comprise alternative com-
position of action prefixed terms and timed delay prefixed terms that are



4.3. Alternative Composition 65

already in a context of resolved races. In this case, there is no merging of the
timed delays as they are in resolved racing contexts and, therefore, the timed
delay transitions are distinctly modeled by the prefixes. Such a term p can
be represented in a ‘normal’ form that is unique only for the timed delays
modulo commutativity, associativity, and naming of independent delays (see
Remark 4.3.2 below), as

p = |
m∑

i=1

ai.pi +
n∑

j=1

σ
Wj
Lj

.qj ( + 1) ( + 0)|D,

where Wj ∪ Lj = R(p) for all 1 6 j 6 n is the set of racing delay names,
D ⊆ R(p) determines the dependent delay names, the summand 1 may or
may not exist, the summand 0 exists if none of the other summands does,
and rr(σWj

Lj
, σ

W
j′

L
j′ ) holds for 1 6 j < j′ 6 n. The notation

∑m
i=1 pi is shorthand

for p1 + . . . + pm if m > 0, and otherwise the summand does not exist.
It should be clear that Wj∪Lj = Wj′ ∪Lj′ and therefore Wj∪Lj = R(p)

for every 1 6 j, j′ 6 n. Then, D(p) = D and I(p) = R(p) \D.

Remark 4.3.2 Unlike standard head normal forms, e.g. [11, 13], we do not
have ai.pi 6= ai′ .pi′ for 1 6 i < i′ 6 m, at this point. This is a prerequisite
for the uniqueness of the normal form and we discuss it later on. Similarly,
associativity still holds if we relax the condition of the timed delay prefixes to
require that rr(σWj

Lj
, σ

W
j′

L
j′ ) holds or (Wj = Wj′ and Lj = Lj′) for 1 6 j, j′ 6 n,

relying on the fact that σW

L
.p1+σW

L
.p2-tσ

W

L
.(p1+p2). We also note that when

restricting to race-complete process specifications that induce only complete
races, the associativity of the alternative composition holds (see Section 5.11
and [68]). In this special case, the situation of Example 4.3.1 cannot arise as,
in that setting, the timed delays with the remaining resolved racing contexts
would also be available. 2

We give the following law for an alternative composition of two terms in
a normal form. We refer to it as axiom A4.8.

Theorem 4.3.3 Let p and p′ have the normal forms

p = |
m∑

i=1

ai.pi+
n∑

j=1

σ
Wj
Lj

.qj (+1)(+0)|D, p′ = |
m′∑

k=1

a′k.p
′
k+

n′∑

`=1

σ
W ′

`

L′
`
.q′` (+1)(+0)|D′

with D ⊆ Wj ∪Lj, D′ ⊆ W ′
` ∪L′`, rr(σWj

Lj
, σ

W
j′

L
j′ ) holds for 1 6 j < j′ 6 n, and

rr(σW ′
`

L′
`
, σ

W ′
`′

L′
`′
) holds for 1 6 ` < `′ 6 n′. If I(p) ∩ R(p′) = R(p) ∩ I(p′) = ∅,



66 Chapter 4. Equational Theory

then the normal form of their alternative composition is given by

p + p′ =
∣∣

m∑

i=1

ai.pi +
m′∑

k=1

a′k.p
′
k +

∑

j,` : (Wj∪W ′
`)∩(Lj∪L′`)=∅

σ
Wj∪W ′

`

Lj∪L′
`
.(|qj |Lj

+ |q′`|L′`) +

∑

j : rr(σ
Wj
Lj

,σ
W ′

`
L′

`
) for all 16`6n′

σ
Wj
Lj

.qj +

∑

` : rr(σ
Wj
Lj

,σ
W ′

`
L′

`
) for all 16j6n

σ
W ′

`

L′
`
.q` ( + 1)( + 0)

∣∣
D∪D′ A4.8

where the summand 1 exists if p or p′ contain it, and 0 exists if none of the
other summands does. 2

Proof The required form of the dependence scope operator is easily ob-
tained by using the axioms A4.1–A4.7 as a rewriting system from left to
right. The condition I(p) ∩ R(p′) = R(p) ∩ I(p′) = ∅ ensures that there are
no naming conflicts and, thus, enables the consistent merger of the depen-
dence scope operators.

Trivially, p+p′ = 0 if p = p′ = 0. Also, p+p′ deadlocks if p and p′ induce
inconsistent races, e.g., σX.0 + σY

X
.0. The state 〈p + p′, α0〉 has a termination

option if at least one of states 〈p, α0〉 or 〈p′, α0〉 have a termination option.
The termination option depends on the optional summand 1.

By inspection of the operational rules we have the outgoing transi-
tions of 〈p, α0〉 are 〈p, α0〉 ai−→ 〈|pi|∅, α0〉 for 1 6 i 6 m and 〈p, α0〉 Wj7−→

Lj

〈|qj |Lj
, αj〉 for 1 6 j 6 n. Similarly, for 〈p′, α0〉 we have 〈p′, α0〉 ak−→

〈|p′k|∅, α0〉 for 1 6 k 6 m′ and 〈p′, α0〉 W ′
`7−→

L′`
〈|q′`|L′` , α`〉 for 1 6 ` 6 n.

Thus, the outgoing action transitions of the alternative composition are
given by the term

∑m
i=1 ai.pi +

∑m′
k=1 a′k.p

′
k. As the timed delays in p

and p′ are in the context of resolved races, then they can induce a joint
race only with timed delays of the other term. This is expressed by the
term

∑
j,` : (Wj∪W ′

`)∩(Lj∪L′`)=∅ σ
Wj∪W ′

`

Lj∪L′
`
.(|qj |Lj

+ |q′`|L′`). Finally, a timed delay
is considered to have a resolved racing context in the alternative compo-
sition if it is in a resolved race with all timed delays of the other sum-
mand. This is expressed by the term

∑
j : rr(σ

Wj
Lj

,σ
W ′

`
L′

`
) for all 16`6n′

σ
Wj
Lj

.qj when

the timed delay in the resolved race originates from p and by the term∑
` : rr(σ

Wj
Lj

,σ
W ′

`
L′

`
) for all 16j6n

σ
W ′

`

L′
`
.q` when it originates from p′.



4.4. Renaming of Independent Delays 67

To show that p + p′ is in normal form, we have to show that the race is
resolved for the timed delays. Suppose that the timed delay is in the racing
context induced by the winners W and the losers L. First, suppose that
W 6= ∅. Then (W ∩Wj 6= ∅ and (W ∪Wj)∩ (L∪Lj) 6= ∅) or (W ∩Wj = ∅,
W ∩ Lj 6= ∅, and L ∩ Wj 6= ∅) or (Wj = ∅ and W ∩ Lj 6= ∅) for all
1 6 j 6 n and, similarly, (W ∩W ′

` 6= ∅ and (W ∪W ′
`) ∩ (L ∪ L′`) 6= ∅) or

(W ∩W ′
` = ∅, W ∩ L′` 6= ∅, and L ∩W ′

` 6= ∅) or (W ′
` = ∅ and W ∩ L′` 6= ∅)

for all 1 6 ` 6 n′. Now it should not be difficult to see, by inspecting all
possible cases, that the condition rr(σW

L
, σ

Wj ∪W ′
`

Lj ∪ L′
`
) is fulfilled for any Wj , Lj ,

W ′
`, and L′` satisfying (Wj ∪W ′

`)∩ (Lj ∪L′`) = ∅. For example, suppose that
(Wj = ∅ and W ∩Lj 6= ∅) and (W ∩W ′

` = ∅, W ∩L′` 6= ∅, and L∩W ′
` 6= ∅).

Then (W ∩ (Wj ∪W ′
`) = W ∩W ′

` = ∅, W ∩ (Lj ∪ L′`) ⊇ W ∩ L′` 6= ∅, and
L ∩ (Wj ∪W ′

`) = L ∩W ′
` 6= ∅). In the case when W = ∅ we have only one

possible case, viz. (W = ∅ and L ∩Wj 6= ∅) and L ∩W ′
` 6= ∅). Then clearly

L ∩ (Wj ∪W ′
`) 6= ∅.

Finally, it is not difficult to see that by construction the timed delays
are uniquely determined modulo commutativity, associativity, and naming
of independent delays, which completes the proof. ¥

Using Theorem 4.3.3 we can represent every term comprising alternative
composition of deadlock, termination, action, and timed prefixed terms in
a normal form provided there are no naming conflicts of the independent
delays. In case there are conflicts, we have to resolve them by renaming the
independent delays.

4.4 Renaming of Independent Delays

The following theorem shows how to rename the independent delays in a
consistent manner as given by Definition 3.8.2 for the α-conversion. We
give the renaming directly on normal forms as for incomplete races it is not
always possible to propagate the dependence scope operator in the alterna-
tive composition. We give an example to illustrate the situation.

Example 4.4.1 The term |σX

Y
.0 + σY

X
.0|X cannot be presented as an alter-

native composition of |σX

Y
.0|D and |σY

X
.0|D′ for any D, D′ ⊆ V. It should be

clear that X ∈ D and X ∈ D′ must hold. If Y ∈ D and Y ∈ D′ then the
stochastic delay [Y ] will be treated as a dependent delay also in the alter-
native composition. However, if Y 6∈ D or Y 6∈ D′, then the resulting term
will have two independent delays Y ′ and Y ′′ with FY = FY ′ = FY ′′ . For
example, |σX

Y
.0|

X,Y
+ |σY

X
.0|

X
= |σX

Y
.0 + σY ′

X
.0|

X,Y
with FY ′ = FY . 2



68 Chapter 4. Equational Theory

We refer to the equality given by the following theorem as axiom A4.9,
which enables renaming of independent delays as given by the α-congruence
of Definition 3.8.2.

Theorem 4.4.2 Let p have the normal form

p = |
m∑

i=1

ai.pi +
n∑

j=1

σ
Wj
Lj

.qj ( + 1)( + 0) |
D

,

where D ⊆ R(p) = Wj ∪Lj and rr(σWj
Lj

, σ
W

j′
L

j′ ) holds for 1 6 j < j′ 6 n. Then
the independent racing delay X 6∈ D can be renamed to Y as follows:

p = |
m∑

i=1

ai.pi +
∑

j : X 6∈R(p)

σ
Wj
Lj

.qj +
∑

j : X∈Wj

σ
(Wj\{X})∪{Y }
Lj

.qj +

∑

j : X∈Lj

σ
Wj

(Lj\{X})∪{Y }.qj [Y/X] ( + 1)( + 0)|D A4.9,

where the optional summands are as for p. 2

Proof We build the bisimulation relation R that relates p = |∑m
i=1 ai.pi +∑n

j=1 σ
Wj
Lj

.qj (+1)(+0)|D and p′ = |∑m
i=1 ai.pi+

∑
j : X 6∈R(p) σ

Wj
Lj

.qj+
∑

j : X∈Wj

σ
(Wj\{X})∪{Y }
Lj

.qj +
∑

j : X∈Lj
σ

Wj

(Lj\{X})∪{Y }.qj [Y/X] ( + 1)( + 0)|D inductively by
using the racing timed transition scheme of p. All timed delays are in the
scope of the same dependence scope operator, so there are no naming con-
flicts. Also, the timed delays are in the context of resolved races, so the
timed delay transitions coincide with the timed delay prefixes. As X 6∈ D,
we have that X is an independent delay.

Initially, we put R = {(〈p, α0〉, 〈p′, α0〉, r{X 7→ Y/{X}})} ∪ ∆(p) for r
satisfying (〈p, α0〉, 〈p, α0〉, r) ∈ ∆(p). For outgoing action transitions and
timed delay transitions such that X 6∈ Wj ∪Lj the resulting states coincide.
If X ∈ Wj , then the renaming of X to Y in the timed delay transition
of p and p′ is captured by r{X 7→ Y/{X}} and both transition schemes
result in the same state. Now, suppose that there is a state 〈p, α〉 in the
transition scheme of p that can be reached by doing timed delay transitions
in which X is a loser. Then by the definition of the renaming operation and
by inspection of the operational rules it is not difficult to see that there is
a state 〈p′, α′〉 in the transition scheme of p′ that can be reached by taking
timed transitions in the same racing context, with the exception that X is
replaced by Y . We note that if the process in 〈p, α〉 performs an action or a
timed delay transition where X is not a loser, then those parts of the racing



4.5. Encapsulation 69

timed transition scheme are the same for both processes, which is covered
by ∆(p). Suppose (〈p, α〉, 〈p, α〉, r′′) ∈ ∆(|σW

L∪{X}.p|D). Then we include the
triple (〈p, α〉, 〈p′, α′〉, r′′{X 7→ Y/{X}}) ∈ R. As X and Y are dependent
delays, we have that r′′ is well-defined. By construction R is a bisimulation
relation, which completes the proof. ¥

We proceed by giving axioms that deal with the encapsulation operator.

4.5 Encapsulation

The encapsulation operator suppresses unwanted action transitions. Unlike
the alternative composition, the encapsulation operator does not require
resolved races, and it freely propagates through the timed delay prefixes. It
is handled using the axioms in Table 4.3.

∂H(0) = 0 A4.10

∂H(1) = 1 A4.11

∂H(a.p) = a.∂H(p) if a 6∈ H A4.12

∂H(a.p) = 0 if a ∈ H A4.13

∂H(σW

L
.p) = σW

L
.∂H(p) A4.14

∂H(|p|
D

) = |∂H(p)|
D

A4.15

∂H(p1 + p2) = ∂H(p1) + ∂H(p2) A4.16

Table 4.3: Axioms for the encapsulation operator

Axioms A4.10 and A4.11 deal with the deadlock and successful termi-
nation that cannot perform action transitions. If the action prefix should
not be suppressed, the encapsulation operator is propagated to the remain-
ing process p as stated in axiom A4.12. In the opposite case, the whole
process is turned to deadlock as given by A4.13. Axioms A4.14 and A4.16
state that encapsulation propagates through the timed delay prefixes and
the alternative composition as it does not require resolved racing contexts.

Theorem 4.5.1 The axioms in Table 4.3 are sound. 2

Proof We give a bisimulation relation that relates the left-hand and the
right-hand side of every axiom. By ∆(p) we denote the bisimulation relation
satisfying (〈p, α0〉, 〈p, α0〉, r) ∈ ∆(p), for some r ∈ V ↔ V.



70 Chapter 4. Equational Theory

[A4.10] Define R = {(〈∂H(0), α0〉, 〈0, α0〉, ∅)}.
[A4.11] Define R = {(〈∂H(1), α0〉, 〈1, α0〉, ∅)}.
[A4.12] Define R = {(〈∂H(a.p), α0〉, 〈a.∂H(p), α0〉, ∅)}∪∆(∂H(p)). As a 6∈ H
the left-hand state has only one possible transition
〈∂H(a.p), α0〉 a−→ 〈∂H(|p|∅), α0〉, which is same as the one on the right-hand
side, i.e., 〈a.∂H(p), α0〉 a−→ 〈∂H(|p|∅), α0〉.
[A4.13] Define R = {(〈∂H(a.p), α0〉, 〈0, α0〉, ∅)}. As a ∈ H the left-hand
state has no outgoing transitions.
[A4.14] Define R = {(〈∂H(σW

L
.p), α0〉, 〈σW

L
.∂H(p), α0〉, idW∪L)} ∪ ∆(∂H(p))

and proceed analogous to the proof of A4.12.
[A4.15] Define R = {(〈∂H(|p|D), α0〉, 〈|∂H(p)|D, α0〉, r} ∪ ∆(∂H(|p|D)). It
should be clear that both sides have the same termination options and the
same outgoing transitions resulting in the same states.
[A4.16] We define R inductively on the racing timed transition scheme of
∂H(p1 + p2). Initially we put R = {(∂H(p1 + p2), ∂H(p1) + ∂H(p2), r)} ∪
∆(∂H(p1 + p2)) for r satisfying (〈∂H(p1 + p2), α0〉, 〈∂H(p1 + p2), α0〉, r) ∈
∆(∂H(p1 + p2)). Suppose that a state 〈∂H(p′1 + p′2), α

′〉 is reached by taking
none or more timed delay transitions. By direct inspection of the opera-
tional rules, if 〈p′1, α′〉 takes an action transition then the resulting state
exists in the transition scheme of ∂H(p1 + p2) and this case is covered by
∆(∂H(p1 + p2)). Similarly, for resolved timed delay transitions. Unresolved
timed delays synchronize for both summands, and the resulting state has the
form 〈∂H(p′′1 + p′′2), α

′′〉. We include the triple (〈∂H(p′′1 + p′′2), α
′′〉, 〈∂H(p′′1) +

∂H(p′′2), α
′′〉, r′′) in R for r′′ satisfying (〈∂H(p′′1+p′′2), α

′′〉, 〈∂H(p′′1+p′′2), α
′′〉, r′′)

∈ ∆(∂H(p1 + p2)) and proceed with 〈∂H(p′′1 + p′′2), α
′′〉. By construction R is

a racing timed bisimulation relation. ¥

Using the axioms from above it should not be difficult to see the application
of the encapsulation operator on normal forms is given by the following
corollary.

Corollary 4.5.2 Let p have the normal form

p = |
m∑

i=1

ai.pi +
n∑

j=1

σ
Wj
Lj

.qj ( + 1)( + 0)|D,

where D ⊆ Wj ∪ Lj and rr(σWj
Lj

, σ
W

j′
L

j′ ) holds for 1 6 j < j′ 6 n. Then,

∂H(p) = |
∑

ai 6∈H

ai.∂H(pi) +
n∑

j=1

σ
Wj
Lj

.∂H(qj) ( + 1)( + 0)|D,



4.6. Parallel Composition 71

where the optional summands are as for p. 2

Proof By straightforward application of the axioms in Table 4.3. The nor-
mal form is preserved as there are no changes in the timed delay prefixes.¥

Next, we give an expansion law for the parallel composition.

4.6 Parallel Composition

The expansion law of the parallel composition requires resolved racing con-
texts. The following example illustrates the matter.

Example 4.6.1 Let p = (σ
X
.0 + σY.0) ‖ σX.0. By first resolving the race

in the left operand and afterwards eliminating the parallel composition ac-
cording to the operational rules one readily obtains that p = σY

X
.0‖σX.0 = 0.

However, if we attempt to naively expand the parallel composition as it
is done in the timed process theories, we would wrongly obtain that p =
σ

X
.0 ‖ σX.0 + σY.0 ‖ σX.0 = 0 + σX, Y.0 = σX, Y.0. 2

The following theorem gives the expansion. The expansion law is referred
to as A4.17.

Theorem 4.6.2 Let p and p′ have the normal forms

p = |
m∑

i=1

ai.pi+
n∑

j=1

σ
Wj
Lj

.qj(+1)(+0)|
D

, p′ = |
m′∑

k=1

a′k.p
′
k+

n′∑

`=1

σ
W ′

`

L′
`
.q′`(+1)(+0)|

D′

with D ⊆ Wj ∪ Lj, D′ ⊆ W ′
` ∪ L′`, rr(σWj

Lj
, σ

W
j′

L
j′ ) for 1 6 j < j′ 6 n, and

rr(σW ′
`

L′
`
, σ

W ′
`′

L′
`′
) for 1 6 ` < `′ 6 n′. If I(p) ∩ R(p′) = R(p) ∩ I(p′) = ∅, then the

normal form of their parallel composition is given by p ‖ p′ =

|
m∑

i=1

ai.(|pi|∅ ‖ p′) +
m′∑

k=1

a′k.(p ‖ |p′k|∅) +

∑

i,k : γ(ai,a′k)=bik

bik.(|pi|∅ ‖ |p′k|∅) +

∑

j,` : (Wj∪W ′
`)∩(Lj∪L′`)=∅

σ
Wj∪W ′

`

Lj∪L′
`
.(|qj |Lj

‖ |q′`|L′`) ( + 1)( + 0)|D∪D′ A4.17,

where the summand 1 exists only if it exists in both p and p′ and the sum-
mand 0 exists if none of the other summands does. 2



72 Chapter 4. Equational Theory

Proof The first three summands of the parallel composition are directly
derivable from the structural operational semantics of the action prefix op-
erator. Also it should be clear that the parallel composition has a termi-
nation option only if both components have a termination option. As both
terms are in normal form the stochastic delays from one component can
only race with the stochastic delays of the other component. The condition
I(p) ∩ R(p′) = R(p) ∩ I(p′) = ∅ ensures that there are no naming conflicts.
If it is not fulfilled, then we use the α-conversion law A4.9 to rename the
conflicting independent racing delay names. The last summand captures the
synchronized timed delays when both delays can delay together without any
racing conflicts. Again, uniqueness of the timed delays modulo commutativ-
ity, associativity, and naming of independent delays follows by construction,
which completes the proof. ¥

Unlike alternative composition, parallel composition is associative for closed
TCPdrst terms. This is an important property that supports compositional
modeling. Intuitively, parallel composition is associative as it does not al-
low for resolved races that obstructed the associativity of the alternative
composition. This is captured in the following theorem.

Theorem 4.6.3 Parallel composition is associative, i.e., (p ‖ p′) ‖ p′′ =
p ‖ (p′ ‖ p′′) for all p, p′, p′′ ∈ C(TCPdrst). 2

Proof Let p, p′, and p′′ have the normal forms

p = |
m∑

i=1

ai.pi +
n∑

j=1

σ
Wj
Lj

.qj( + 1)( + 0)|
D

,

p′ = |
m′∑

k=1

a′k.p
′
k +

n′∑

`=1

σ
W ′

`

L′
`
.q′`( + 1)( + 0)|D′ ,

p′′ = |
m′′∑

r=1

a′′r .p
′′
r +

n′′∑

s=1

σ
W ′′

s

L′′s
.q′′s ( + 1)( + 0)|

D′′

with D ⊆ Wj ∪ Lj , D′ ⊆ W ′
` ∪ L′`, D′′ ⊆ W ′′

s ∪ L′′s , rr(σWj
Lj

, σ
W

j′
L

j′ ) for 1 6 j <

j′ 6 n, rr(σW ′
`

L′
`
, σ

W ′
`′

L′
`′
) for 1 6 ` < `′ 6 n′, and rr(σW ′′

s

L′′s
, σ

W ′′
s′

L′′
s′
) for 1 6 s < s′ 6 n′′.

Without any loss of generality, we assume that I(p)∩R(p′) = R(p)∩I(p′) = ∅,
I(p′)∩R(p′′) = R(p′)∩ I(p′′) = ∅, and I(p)∩R(p′′) = R(p)∩ I(p′′) = ∅. In the
opposite case, one can always use the α-conversion law A4.9 of Theorem 4.4.2
to rename conflicting independent delay names. We prove the claim by



4.6. Parallel Composition 73

total induction on the length of the terms. The initial cases are trivially
satisfied as the parallel composition has a termination option only when all
components have a termination option.

One calculates for (p ‖ p′) ‖ p′′ using Theorem 4.6.2 in the first and
second step of the derivation, the induction hypothesis and associativity of
the synchronization function and the union set operation in the third step,
and Theorem 4.6.2 in the reverse direction in the last step:

(p ‖ p′) ‖ p′′

=
∣∣

m∑

i=1

ai.(|pi|∅ ‖ p′) +
m′∑

k=1

a′k.(p ‖ |p′k|∅) +
∑

i,k : γ(ai,a′k)=bik

bik.(|pi|∅ ‖ |p′k|∅) +

∑

j,` : (Wj∪W ′
`)∩(Lj∪L′`)=∅

σ
Wj∪W ′

`

Lj∪L′
`
.(|qj |Lj

‖ |q′`|L′`) ( + 1)( + 0)
∣∣
D∪D′ ‖ p′′

=
∣∣

m∑

i=1

ai.((|pi|∅ ‖ p′) ‖ p′′) +
m′∑

k=1

a′k.((p ‖ |p′k|∅) ‖ p′′) +
m′′∑
r=1

a′′r .((p ‖ p′) ‖ |p′′r |∅) +
∑

i,k : γ(ai,a′k)=bik

bik.((|pi|∅ ‖ |p′k|∅) ‖ p′′) +
∑

i,r : γ(ai,a′′r )=b′ir

b′ir.((|pi|∅ ‖ p′) ‖ |p′′r |∅) +

∑

k,r : γ(a′k,a′′r )=b′′kr

b′′kr.((p ‖ |p′k|∅) ‖ |p′′r |∅) +

∑

i,k,r : γ(γ(ai,a′k),a′′r )=cikr

cikr.((|pi|∅ ‖ |p′k|∅) ‖ |p′′r |∅) +

∑

j,`,s : ((Wj∪W ′
`)∪W ′′

s )∩((Lj∪L′`)∪L′′s )=∅
σ

(Wj∪W ′
`
)∪W ′′

s

(Lj∪L′
`
)∪L′′s

.((|qj |Lj
‖ |q′`|L′`) ‖ |q

′′
s |L′′s )

( + 1)( + 0)
∣∣
(D∪D′)∪D′′

=
∣∣

m∑

i=1

ai.(|pi|∅ ‖ (p′ ‖ p′′)) +
m′∑

k=1

a′k.(p ‖ (|p′k|∅ ‖ p′′)) +
m′′∑
r=1

a′′r .(p ‖ (p′ ‖ |p′′r |∅)) +
∑

i,k : γ(ai,a′k)=bik

bik.(|pi|∅ ‖ (|p′k|∅ ‖ p′′)) +
∑

i,r : γ(ai,a′′r )=b′ir

b′ir.(|pi|∅ ‖ (p′ ‖ |p′′r |∅)) +

∑

k,r : γ(a′k,a′′r )=b′′kr

b′′kr.(p ‖ (|p′k|∅ ‖ |p′′r |∅)) +

∑
i,k,r : γ(ai,γ(a′k,a′′r ))=cikr

cikr.(|pi|∅ ‖ (|p′k|∅ ‖ |p′′r |∅)) +
∑

j,`,s : (Wj∪(W ′
`∪W ′′

s ))∩(Lj∪(L′`∪L′′s ))=∅
σ

Wj∪(W ′
`
∪W ′′

s )

Lj∪(L′
`
∪L′′s ) .(|qj |Lj

‖ (|q′`|L′` ‖ |q
′′
s |L′′s ))

( + 1)( + 0)
∣∣
D∪(D′∪D′′)

= p ‖ (p′ ‖ p′′),

which completes the proof. ¥



74 Chapter 4. Equational Theory

We continue with the resolution of the maximal progress operator.

4.7 Maximal Progress

The typical resolution of the maximal progress operator in timed process
theory requires an additional operator that ascertains that a process has
no timed delays transitions [11]. Alternatively, one can use normal forms
that make the undelayable action transitions and the timed delay transitions
explicit. For example, θa(a.p1 + b.p2 + σ.p3) = θa(a.p1) + θa(b.p2) because
the action a is prioritized over passage of time. Note that the maximal
progress does not prioritize actions, so the second summand prefixed by the
undelayable action b remains.

Unlike alternative and parallel composition, the resolution of maximal
progress does not require resolved races. Nevertheless, for the sake of com-
pactness we give a law on the existing normal forms without introducing an
additional more relaxed type of normal form.

Theorem 4.7.1 Let p have the normal form

p = |
m∑

i=1

ai.pi +
n∑

j=1

σ
Wj
Lj

.qj ( + 1)( + 0)|D

where D ⊆ Wj ∪ Lj and rr(σWj
Lj

, σ
W

j′
L

j′ ) holds for 1 6 j < j′ 6 n. Then,

θI(p) = |
m∑

i=1

ai.θI(pi)( + 1)( + 0)|
D

if ai ∈ I for some i ∈ {1, . . . , m} A4.18

θI(p) = |
m∑

i=1

ai.θI(pi) +
n∑

j=1

σ
Wj
Lj

.θI(qj)( + 1)( + 0)|D
if

⋃m
i=1{ai} ∩ I = ∅ A4.19,

where the optional summands are as for p. 2

Proof It should be clear that when at least one enabled action transitions
has priority then the stochastic delay transitions are no longer available. In
the opposite case, the maximal progress operator propagates through the
timed delay prefix as given by the operational rules. The normal form is
preserved as there are no changes in the timed delay prefixes. ¥

Now that we provided expansion laws for all operators, we proceed by giv-
ing head normal forms for closed TCPdrst terms that support the further
development of the theory.



4.8. Head Normal Form 75

4.8 Head Normal Form

Using the axioms/expansion laws for every operator, it should not be difficult
to see that every closed TCPdrst term can be represented in the normal form
used in the previous derivations. To eliminate multiple instances of bisimilar
action prefixed terms in alternative composition we introduce an additional
axiom:

a.p + a.p = a.p A4.20.

It gives idempotence of action prefixed terms in the alternative composition.
It should be clear that axiom A4.20 is sound as 〈a.p+a.p, α〉 a−→〈|p|∅, α0〉 and
〈a.p, α〉 a−→〈|p|∅, α0〉 and no other transitions are possible. It enables unique
normal forms as discussed above in Remark 4.3.2. We proceed by giving a
head normal form that is unique modulo commutativity, associativity, and
naming of independent delays.

Corollary 4.8.1 Every closed term p ∈ C(TCPdrst) can be represented in a
unique head normal form modulo commutativity, associativity, and naming
of independent delays, viz.

p = |
m∑

i=1

ai.pi +
n∑

j=1

σ
Wj
Lj

.qj ( + 1) ( + 0)|D

with ai.pi 6= ai′ .pi′ for 1 6 i < i′ 6 m, D ⊆ R(p) = Wj ∪ Lj, rr(σWj
Lj

, σ
W

j′
L

j′ )
holds for 1 6 j < j′ 6 n, the summand 1 is optional, and the summand 0
exists if none of the other summands does. 2

Proof By the axioms A4.1 – A4.7 in Table 4.2 for manipulation with the
dependence scope operator, the expansion law A4.8 of the alternative com-
position of Theorem 4.3.3, the α-conversion law A4.9 for renaming of inde-
pendent delays of Theorem 4.4.2, axioms A4.10 – A4.16 in Table 4.3 that
deal with the encapsulation operator, the expansion law A4.17 of the par-
allel composition of Theorem 4.6.2, the expansion laws A4.18 and A4.19
of the maximal progress of Theorem 4.7.1 every closed TCPdrst term can
be reduced to the temporary normal form that is unique only for timed
delays modulo commutativity, associativity, and naming of independent de-
lays. By using axiom A4.20 for idempotence of the action prefixed terms
in the alternative composition as a rewriting rule from left to right, we also
obtain uniqueness for the action prefixed terms modulo commutativity and
associativity. ¥



76 Chapter 4. Equational Theory

The availability of a head normal form is technically important. It is instru-
mental for proving ground-completeness and showing uniqueness of solutions
of guarded recursive specifications in the term model [9].

4.9 Ground Completeness

As every term can be reduced to the head normal form given by Corol-
lary 4.8.1, which makes all transitions explicit, it should come as no surprise
that the equations given in this section form a ground-complete theory.

Theorem 4.9.1 Axioms A4.1 – A4.7 in Table 4.2, the α-conversion law
A4.9, axioms A4.10 – A4.16 in Table 4.3, the expansion laws A4.8, A4.17–
A4.19, and axiom A4.20 are ground-complete for the term model
P(TCPdrst)/-t. 2

Proof The theorem is proven by natural induction on the total number of
symbols in q, q′ ∈ C(TCPdrst). The base case is when q and q′ are either 0
or 1. Trivially 0 = 0 and 1 = 1. Suppose that the total number of symbols
is s and q -t q′. By Corollary 4.8.1 we have that the head normal forms p
and p′ of q and q′ are given by p-t q and p′ -t q′:

p = |
m∑

i=1

ai.pi+
n∑

j=1

σ
Wj
Lj

.qj(+1)(+0)|D, p′ = |
m′∑

k=1

a′k.p
′
k+

n′∑

`=1

σ
W ′

`

L′
`
.q′`(+1)(+0)|D′

with ai.pi 6= ai′ .pi′ for 1 6 i < i′ 6 m, a′k.p
′
k 6= a′k′ .p

′
k′ for 1 6 k < k′ 6 m′,

D ⊆ R(p) = Wj ∪Lj , D′ ⊆ R(p′) = W ′
` ∪L′`, rr(σWj

Lj
, σ

W
j′

L
j′ ) for 1 6 j < j′ 6 n,

and rr(σW ′
`

L′
`
, σ

W ′
`′

L′
`′
) for 1 6 ` < `′ 6 n′.

From q -t q′ and Theorem 3.3.3, stating that the bisimulation relation
is an equivalence, it immediately follows that p -t p′. Then there exists a
bisimulation relation R, such that (〈p, α〉, 〈p′, α′〉, r) ∈ R for some bijection r.
Note that we use an arbitrary environment instead of the zero environment
because of the inductive step, which is allowed by Lemma 3.7.2.

If p↓ then it must be that p′↓ and vice versa, so p contains an 1 summand
if and only if p′ contains a 1 summand.

Suppose that 〈p, α〉 a−→ 〈|p|∅, α0〉. Then it must be also that 〈p′, α′〉 a−→
〈|p′|∅, α0〉, where 〈|p|∅, α0〉-t 〈|p′|∅, α0〉 and vice versa. Suppose aj = a = a′`
for some 1 6 j 6 m and 1 6 ` 6 m′. Then from the hypothesis it follows
that pj = p′k as pj-tp

′
k. Because of the idempotence of action prefixed terms

in the alternative composition, the correspondence must be one-to-one, so



4.10. Guarded Recursive Specifications 77

we have that m = m′. Moreover, the summands can be renumbered such
that ai.pi = a′i.p

′
i for 1 6 i 6 m.

As the dependent delays must be identical in bisimilar terms, it follows
that D = D′. In the normal form all races are resolved, so it is not possible
to merge the timed delay transitions. Thus, to every timed delay of p, there
corresponds exactly one timed delay from p′ as the relation between the
delays is given by the bijection r. Thus, n = n′ and there must be one-to-one
correspondence between the timed delay transitions. The dependent delays
are identical, so only the independent delays can be guided by variables
with different names. However, one can use the α-conversion law A4.9 to
rename this delays, such that r becomes an identity bijection. Thus, we can
renumber the summands such that Wj = W ′

j , Lj = L′j , and qj = q′j for
1 6 j 6 n, which completes the proof. ¥

We proceed by introducing guarded recursion in the process theory,
which enables the introduction of delayable actions and stochastic delay
prefixes.

4.10 Guarded Recursive Specifications

We introduce guarded recursion in the process theory TCPdrst by means
of guarded recursive specifications obtaining the process theory TCPdrst

rec .
Guardedness is a well-known concept that typically guarantees unique solu-
tion of the recursive specifications. The prerequisite is that every recursion
variable must be prefixed, which ensures well-defined (predictable) behavior
of the process.

A guarded recursive equation is an equation of the form A = p, where A ∈
R is a recursion variable, and p is a term over the signature of TCPdrst that
additionally contains variables from R. Moreover, the term can be rewritten
in such a way that the variables only appear in subterms prefixed by a. or
σW

L
. for a ∈ A and W,L ∈ V provided that W ∩L = ∅. A guarded recursive

specification S ∈ G, G denoting the set of guarded recursive specifications
of our interest, is a set of guarded recursive equations with one equation for
every variable. The set of recursion variables of a specification S is denoted
by R(S).

The definitions of dependent racing, independent racing, dependence
binding, and newly enabled independent delay names are straightforwardly
extended to guarded recursive specifications as I(A) = I(p), D(A) = D(p),
B(A) = B(p), and N(A) = N(p), respectively, assuming that A = p. For the
renaming of delays we have that A[X/Y ] = A′, where A′ = p[X/Y ] provided



78 Chapter 4. Equational Theory

µ0.S = 0
µ1.S = 1
µ(a.p).S = a.(µp.S)
µ(σW

L
.p).S = σW

L
.(µp.S)

µ(µA.S).S = µA.S

µ(∂H(p)).S = ∂H(µp.S)
µ(θI(p)).S = θI(µp.S)
µ(p1 + p2).S = µp1.S + µp2.S

µ(p1 ‖ p2).S = µp1.S ‖ µp2.S

Table 4.4: Definition of µp.S

that A = p. For the notion of α-conversion we have:

ccrd,i(A1, E1, A2, E2) if ccrd,i(p1, E1, p2, E2) for A1 = p1 and A2 = p2.

Solutions of recursive specifications in the term model are process terms
that when replaced for the recursion variables give valid equations in the
term model. By the constant µA.S we denote a process term that is a
solution for the recursion variable A ∈ R(S) defined by the guarded recursive
specification S. Typically, a solution of a single variable is of interest, which
we refer to as the solution of the guarded recursive specification. We extend
the signature of P(TCPdrst) with the constants µA.S that are of our interest
for A ∈ R(S) and S ∈ G. The structural operational semantics is given in
Table 4.5.

We can generalize the notation µA.S to µp.S, for an arbitrary term p ∈
C(TCPdrst

rec ) that contains variables from R(S). The definition of µp.S is
given using structural induction in Table 4.4. It is supported by the opera-
tional semantics in Table 4.5.

It is straightforward from the structural operational semantics that every
equation of some guarded recursive specification has a solution. Thus, the
restrictive recursive definition principle, abbreviated as RDP−, that every
guarded recursive specification has a solution is sound in TCPdrst

rec . Also, it
should come as no surprise that the bisimulation relation is a congruence for
recursion and that the axioms and expansion laws are sound for P(TCPdrst

rec ).
Thus, we have the following term model for TCPdrst

rec .



4.11. Summary 79

4.1
〈µp.S, α〉↓, A = p ∈ S

〈µA.S, α〉↓ 4.2
〈µp.S, α〉 a−→ 〈p′, α′〉, A = p ∈ S

〈µA.S, α〉 a−→ 〈p′, α′〉

4.3
〈µp.S, α〉 W7−→

L
〈p′, α′〉, A = p ∈ S

〈µA.S, α〉 W7−→
L
〈p′, α′〉

Table 4.5: Operational rules for guarded recursion

Definition 4.10.1 The term model of TCPdrst
rec is the quotient algebra

P(TCPdrst
rec )/-t for P(TCPdrst

rec ) = (C(TCPdrst
rec ), 0, 1, µA.S for S ∈ G and

A ∈ R(S), a. for a ∈ A, σW

L
. for W,L ⊆ V satisfying W ∩ L = ∅, | |

D
for D ⊆ V, ∂H( ) for H ⊆ A, θI( ) for I ⊆ A, + , ‖ ). 2

It is readily observed that TCPdrst
rec is a conservative extension of TCPdrst [11,

8]. Additionally, it is not difficult to show that the head normal form of
Corollary 4.8.1 is preserved. Now, by an adaptation of the proofs of [9] along
the lines of [8] it can be shown that the recursive specification principle
holds, relying on the existence of the head normal norm. This principle,
abbreviated as RSP, states that every guarded recursive specification has
at most one solution in the model. As a consequence of the validity of the
principles RDP− and RSP in the model, all guarded recursive specifications
have a unique solution in P(TCPdrst

rec )/-t.

4.11 Summary

We develop a sound and ground-complete equational theory for TCPdrst.
The alternative composition is not associative, so we resort to normal forms
that make the race condition explicit in order to provide for expansion laws.
We also introduce guarded recursion by means of guarded recursive specifi-
cations. The guardedness assures unique solutions of the equations.

In the following section we employ guarded recursive specifications to
embed delayable actions and stochastic delays into the theory.





Chapter 5

Process Theory DTCPdst
rec

In this chapter we derive delayable action and stochastic delay prefixes by
means of guarded recursive specifications comprising undelayable actions
and timed delays as hinted in Section 2.4. The theory builds on the process
theory TCPdrst, set up in Chapters 3 and 4. Afterwards, we analyze process
specifications that comprise them. We will show that when dealing with such
process specifications, we need not to resort to the specifications that com-
prise timed delay prefixes, but we can manipulate with the higher-order con-
structions directly. This gives rise to the ground-complete derived theory of
communicating process with discrete stochastic time – DTCPdst

rec(A,V,R, γ).
We illustrate the approach by modeling and solving the G/G/1/∞ queue as
an example.

5.1 Delayable Action Prefix and Delayable Deadlock

We define the delayable action prefix scheme a. for a ∈ A by taking the
approach of [11] and putting

a.p = µA.{A = a.p + σ.A}.

This process allows for the undelayable action a at every time slice. If the
action is taken, then the process continues to behave as p and, otherwise,
the process is delayed one unit of time. As the semantics of the processes is
given per time unit, the process captures the intuition of a delayable action.

Of interest is the application of the encapsulation and the maximal
progress operator on the delayable action prefix. For the encapsulation one
obtains

∂a(A) = ∂a(a.p + σ.A) = 0 + σ.∂a(A) = σ.∂a(A).

81



82 Chapter 5. Process Theory DTCPdst
rec

So, the resulting process, can only delay arbitrary long. From the discussion
on stochastic delays above, it should be clear that this process is not a
stochastic delay as there are no winners. However, it plays a role in the
theory as it occurs as an encapsulation of a delayable action. We represent
this process in the theory as the constant process 0 called delayable deadlock
where

0 = µB.{B = σ.B}.
It is a neutral element in the alternative composition for a delayable action.
To see this, assume that the definitions of a.p and 0 are as above. Then for
a.p + 0 we have that

A + B = (a.p + σ.A) + σ.B = a.p + σ.(A + B),

i.e., a.p + 0 = a.p.

Remark 5.1.1 We can also define a delayable termination process constant
as 1 = µC.{C = 1+σ.C}. It is a neutral element for the parallel composition.
However, for the sake of clarity it is not included in the process algebra
presented in this chapter. 2

For the application of the maximal progress we have

θa(A) = θa(a.p + σ.A) = a.θa(p),

i.e., its application turns a delayable action prefix into an undelayable one.
Next, we analyze the interaction between undelayable action, delayable

action, and stochastic delay prefixes.

5.2 Stochastic Delay Prefix

We specify stochastic delays as suggested in Section 2.4, i.e., as an expiration
observed per unit of time in the same racing context.

Definition 5.2.1 The stochastic delay prefix [WL ].p is defined as the solution
of the following guarded recursive equation

[WL ].p = µA.{A = σW

L
.p + σ

W∪L
.A}. 2

The solution of this guarded recursive specification is an infinite racing timed
transition scheme. The ‘paths’ in the probabilistic timed transition system
induced by this scheme that end in p represent the duration of the stochastic
delay. The process is well-defined as the probability that a path of infinite



5.2. Stochastic Delay Prefix 83

length is taken in the probabilistic timed transition system that is induced
by some assignment of distributions is equal to zero. This is because the
probability distributions of the racing delays are aged by 1 in every state by
the expiration of the timed delay σ

W∪L
from above and limn→∞ F(n) = 1 for

every F ∈ F .
We illustrate by means of an example how to specify the desired sto-

chastic behavior in this fashion.

Example 5.2.2 Let

p1 = [X].p + [Y ].q and
p2 = [XY ].(|p|∅ + [Y ].q) + [X, Y ].(p + q) + [YX].([X].p + |q|∅).

We put [X].p = µA1.S for A1 = σX.p + σ
X
.A1 ∈ S and [Y ].q = µA2.S for

A2 = σY.q + σ
Y
.A2 ∈ S.

Let us put [XY ].(|p|∅ + [Y ].q) = µA3.S, [X,Y ].(p + q) = µA4.S, and
[YX].([X].p + |q|∅) = µA5.S. Then,

S = { A1 = σX.p + σ
X
.A1,

A2 = σY.q + σ
Y
.A2,

A3 = σX

Y
.(|p|∅ + A2) + σ

X, Y
.A3,

A4 = σX, Y.(p + q) + σ
X, Y

.A4,

A5 = σY

X
.(A1 + |q|∅) + σ

X, Y
.A5 }.

Now, we can write p1 = µ(A1 + A2).S and p2 = µ(A3 + A4 + A5).S. By
using the expansion law A4.8 for the alternative compositions A1 + A2 and
A3 + A4 + A5, one calculates:

A1 + A2

= (σX.p + σ
X
.A1) + (σY.q + σ

Y
.A2)

= σX, Y.(p + q) + σX

Y
.(|p|∅ + A2) + σY

X
.(A1 + |q|∅) + σ

X, Y
.(A1 + A2)

A3 + A4 + A5

= (σX

Y
.(|p|∅ + A2) + σ

X, Y
.A3) + (σX, Y.(p + q) + σ

X, Y
.A4) +

(σY

X
.(A1 + |q|∅) + σ

X, Y
.A5)

= σX, Y.(p + q) + σX

Y
.(|p|∅ + A2) + σY

X
.(A1 + |q|∅) + σ

X, Y
.(A3 + A4 + A5)

Now, by following the principles RDP− and RSP for the solutions of guarded
recursive specifications, p1 and p2 have the same solution. 2

Example 5.2.2 shows how to manipulate with stochastic delays by using
guarded recursive specifications. However, we note that p1 and p2 do not



84 Chapter 5. Process Theory DTCPdst
rec

specify explicitly any recursive equations and use only a stochastic delay
prefix of the form [WL ]. for W,L ⊆ V with W 6= ∅ and W ∩L = ∅. Actually,
we can manipulate stochastic delay prefixed terms directly in any context
without having to resort to the recursive specifications at all (as originally
proposed in [69, 68]).

However, the interaction between timed and stochastic delays generally
requires the representation of the stochastic delays in terms of the guarded
recursive specifications. We give a simple example of the interaction between
stochastic and timed delay prefixes.

Example 5.2.3 We consider the alternative composition θI(σ3.a.p+[WL ].b.q)
for I = {a, b}. Let [WL ].q = µB.{B = σW

L
.b.q + σ

W∪L
.B}. Then

θI(σ3.a.p + B)
= θI(σ.σ2.a.p + (σW

L
.b.q + σ

W∪L
.B))

= θI(σW

L
.(b.q + σ2.a.p) + σ

W∪L
.(σ2.a.p + B))

= σW

L
.θI(b.q + σ2.a.p) + σ

W∪L
.θI(σ.σ.a.p + σW

L
.b.q + σ

W∪L
.B)

= σW

L
.b.θI(q) + σ

W∪L
.θI(σW

L
.(σ.a.p + b.q) + σ

W∪L
.(σ.a.p + B))

= σW

L
.b.θI(q) + σ

W∪L
.(σW

L
.b.θI(q) + σ

W∪L
.θI(σ.a.p + B))

= σW

L
.b.θI(q) + σ

W∪L
.(σW

L
.b.θI(q) + σ

W∪L
.(σW

L
.(a.θI(p) + b.θI(q) +

σ
W∪L

.b.θI(q)))).

In the last step of the derivation we unfold B one more time and apply
the maximal progress operator. Even though no winner has expired, the
maximal progress operator prohibits the expiration of the stochastic delay
after time slice 3 as given by σ

W∪L
.b.θI(q). 2

Such an interaction between the timed and stochastic delays can also be used
to specify a probabilistic behavior after a passage of time. An example is
given in Section 8.3, where we give the specification of concurrent alternating
bit protocol in TCPdrst

rec . However, the theory cannot express a standard
probabilistic choice between processes that do not allow passage of time.

Next, we take a closer look at the interaction between undelayable action,
delayable action, and stochastic delay prefixes.

5.3 Interaction between the Prefix Operators

First, we investigate a common type of synchronization between delayable
action and stochastic delay prefixes in the parallel composition by means of
an example derivation.



5.3. Interaction between the Prefix Operators 85

Example 5.3.1 We consider the synchronization of the passage of time
of the delayable action and a stochastic delay given by the term ∂H(a.p ‖
[WL ].q). We put H = {a}, i.e., we suppress the synchronizing action as
in standard compositional modeling. Let a.p = µA.{A = a.p + σ.A} and
[WL ].q = µB.{B = σW

L
.q + σ

W∪L
.B}. Then,

∂H(A ‖B) = ∂H((a.p + σ.A) ‖ (σW

L
.q + σ

W∪L
.B))

= ∂H(a.(p ‖B) + σW

L
.(A ‖ |q|

L
) + σ

W∪L
.(A ‖B))

= σW

L
.∂H(A ‖ |q|L) + σ

W∪L
.∂H(A ‖B),

i.e., ∂H(a.p ‖ [WL ].q) = [WL ].∂H(a.p ‖ |q|L).
If q = b.q′ and the synchronization of a and b is defined, i.e., γ(a, b) = c

for some c ∈ A, then it is also common to prioritize this communication.
For example, this can be a communication via a channel, so naturally one
wants this communication to happen as soon as it is enabled. In that case,
one typically has a specification of the form θI(∂H(a.p ‖ [WL ].b.q′)) for H =
{a, b} and I = {c}. Then by extending the previous derivation with b.q′ =
µC.{C = b.q′ + σ.C} one obtains:

θI(∂H(A ‖B)) = θI(σW

L
.∂H(A ‖ |q|L) + σ

W∪L
.∂H(A ‖B))

= σW

L
.θI(∂H((a.p + σ.A) ‖ (b.q′ + σ.C))) + σ

W∪L
.θI(∂H(A ‖B))

= σW

L
.θI(∂H(a.(p ‖ b.q′) + b.(a.p ‖ q′) + c.(p ‖ q′) +

σ.(A ‖ C))) + σ
W∪L

.θI(∂H(A ‖B))
= σW

L
.θI(c.∂H(p ‖ q′) + σ.∂H(A ‖ C)) + σ

W∪L
.θI(∂H(A ‖B))

= σW

L
.c.θI(∂H(p ‖ q′)) + σ

W∪L
.θI(∂H(A ‖B)),

i.e., θI(∂H(a.p ‖ [WL ].b.q′)) = [WL ].c.θI(∂H(p ‖ q′)). 2

The composition of a stochastic delay prefixed process and the delayable
deadlock constant can also be resolved in terms of stochastic delay processes.
Unlike the compositions with delayable actions, the delayable deadlock prop-
agates through the stochastic delay. We show the case of the alternative
composition where 0 = µC.{C = σ.C} and the stochastic delay prefixed
term is defined as above:

B + C = (σW

L
.q + σ

W∪L
.B) + σ.C = σW

L
.(q + C) + σ

W∪L
.(B + C),

i.e., [WL ].q + 0 = [WL ].(q + 0).
Example 5.3.1 and the previous discussion illustrate that the synchro-

nization of passage of time of stochastic delay and delayable action prefixed



86 Chapter 5. Process Theory DTCPdst
rec

terms can be handled without resorting to guarded recursive specifications
comprising timed delay prefixes. Together with Example 5.2.2 and the dis-
cussion in Section 5.1 involving delayable actions motivated us to develop
a theory in the framework of TCPdrst

rec that directly manipulates delayable
action and stochastic delay prefixes.

5.4 Signature

The signature of DTCPdst
rec comprises separate delayable action and sto-

chastic delay prefixes, but their semantics is based on the interpretation
as guarded recursive specifications in TCPdrst. The signature is given in the
following definition.

Definition 5.4.1 The signature of DTCPdst
rec is given by

P ::= 0 | 1 | 0 | a.P | a.P | [WL ].P | |P |
D
| ∂H(P ) | θI(P ) | P+P | P‖P | µA.S,

where a ∈ A, W,L, D ⊆ V with W 6= ∅ and W ∩ L = ∅, H, I ⊆ A, S ∈ G,
and A ∈ R(S). The set of closed terms that do not contain term variables
is denoted by C(DTCPdst

rec) and it is ranged over by p and q. 2

By the definition of the delayable deadlock constant, the delayable action,
and the stochastic delay prefix, the process theory DTCPdst

rec is embedded
in TCPdrst

rec . The semantics of closed DTCPdst
rec-terms is given by the rac-

ing timed transition scheme induced by the solutions of guarded recursive
specifications that model the above constructs.

All auxiliary operations straightforwardly extend to the restriction of
the theory to DTCPdst

rec by an application to the corresponding recursive
specification. The renaming operation is extended as:

0[Y/X] = 0
(a.p)[Y/X] = a.p

([WL ].p)[Y/X] = [WL ].p if X 6∈ W ∪ L

([WL ].p)[Y/X] = [(W\{X})∪{Y }
L ].p if X ∈ W

([WL ].p)[Y/X] = [ W
(L\{X})∪{Y }].p[Y/X] if X ∈ L.

Next, we give the additional axioms for the dependence scope and the en-
capsulation operator.



5.5. Dependence Scope and Encapsulation 87

|0|∅ = 0 A5.1

|a.p|∅ = a.p A5.2

a.p = a.|p|∅ A5.3

[WL ].p = |[WL ].p|
W∪L

A5.4

[WL ].p = [WL ].|p|
L

A5.5

∂H([WL ].p) = [WL ].∂H(p) A5.6

Table 5.1: Axioms for the dependence scope encompassing stochastic delay
prefixes

5.5 Dependence Scope and Encapsulation

The additional axioms that manage the dependence scope and encapsulation
operator in DTCPdst

rec are given in Table 5.1. In the proof of the following
theorem we show that the axioms are sound.

Theorem 5.5.1 The axioms in Table 5.1 are sound. 2

Proof We prove the soundness of the axioms by showing that both sides
can be rewritten to recursive specifications that have the same solution.

[A5.1] Suppose 0 = µA.{A = σ.A} and |0|∅ = µ(|A|∅).{A = σ.A}. Then,
|A|∅ = |σ.A|∅ = σ.A = A.

[A5.2] Suppose a.p = µA.{A = a.p + σ.A} and |a.p|∅ = µ(|A|∅).{A = a.p +
σ.A}. Then,

|A|∅ = |a.p + σ.A|∅ = |a.p|∅ + |σ.A|∅ = a.p + σ.A = A

[A5.3] Suppose a.p = µA.{A = a.p + σ.A} and a.|p|∅ = µB.{B = a.|p|∅ +
σ.B}. Then,

A = a.p + σ.A = a.|p|∅ + σ.A.

Now, by the principles of RDP− and RSP, the solutions of A and B coincide.

[A5.4] Suppose [WL ].p = µA.{A = σW

L
.p+σ

W∪L
.A} and |[WL ].p|

W∪L
= µ|A|

W∪L
.

{A = σW

L
.p + σ

W∪L
.A}. Then,

A=σW

L
.p+σ

W∪L
.A=|σW

L
.p|W∪L + |σ

W∪L
.A|W∪L=|σW

L
.p+σ

W∪L
.A|W∪L=|A|W∪L.



88 Chapter 5. Process Theory DTCPdst
rec

[A5.5] Suppose [WL ].p = µA.{A = σW

L
.p + σ

W∪L
.A} and [WL ].|p|L = µB.{B =

σW

L
.|p|L + σ

W∪L
.B}. Then,

A = σW

L
.p + σ

W∪L
.A = σW

L
.|p|

L
+ σ

W∪L
.A.

Now, by the principles of RDP− and RSP, the solutions of A and B coincide.
[A5.6] Suppose [WL ].p = µA.{A = σW

L
.p + σ

W∪L
.A} and ∂H([WL ].p) = µ∂H(B).

{B = σW

L
.∂H(p) + σ

W∪L
.B}. Then

∂H(A) = ∂H(σW

L
.p + σ

W∪L
.A) = ∂H(σW

L
.p) + ∂H(σ

W∪L
.A) =

σW

L
.∂H(p) + σ

W∪L
.∂H(A).

Now, by the principles of RDP− and RSP, the solutions of A and B coin-
cide. ¥

Next, we deal with the expansion laws of the rest of the operators.

5.6 Alternative Composition

We derive expansion laws for the alternative composition, α-conversion, the
parallel composition, and the maximal progress operator for stochastic de-
lays that deal only with undelayable action and stochastic delay prefixed
terms along the lines of the expansion laws A4.8 for the alternative com-
position, A4.9 for the α-conversion, A4.17 for the parallel composition, and
A4.18 and A4.19 for the maximal progress operator in the timed delay set-
ting, respectively. Again, the laws are based on normal forms in which the
stochastic delays are in resolved races. The normal forms have additional
delayable action prefixes and the optional delayable deadlock constant. The
constant is present if no summands prefixed by a delayable action or a sto-
chastic delay exist because it is the neutral element for the delayable action
prefix and it propagates through the stochastic delays prefix as shown above
in Section 5.1.

A normal form of a term p ∈ DTCPdst
rec that is unique for the stochas-

tic delays modulo commutativity, associativity, and naming of independent
delays is given by

p = |
u∑

i=1

ai.pi +
d∑

j=1

bj .qj +
s∑

k=1

[Wk
Lk

].rk( + 0)( + 1)( + 0)|D,

where D ⊆ R(p) = Wk ∪ Lk, rr([Wk
Lk

], [W`
L`

]) holds for 1 6 k < ` 6 s, the
summand 0 may or may not exist provided that there are no delayable



5.6. Alternative Composition 89

action or stochastic delay prefixed summands, the summand 1 may or may
not exist, and the summand 0 exists if none of the other summands does.

Next, we give the expansion law for the alternative composition p + p′,
where

p′ = |
u′∑

i′=1

a′i′ .p
′
i′ +

d′∑

j′=1

b
′
j′ .q

′
j′ +

s′∑

k′=1

[
W ′

k′
L′

k′

]
.r′k′( + 0)( + 1)( + 0)|

D′

with D′ ⊆ R(p′) = W ′
k′ ∪ L′k′ and rr(

[
W ′

k′
L′

k′

]
,
[

W ′
`′

L′
`′

]
) holds for 1 6 k′ < `′ 6 n′.

The expansion is presented in three steps: (1) for the action prefixed
terms, (2) for the stochastic delay prefixed terms that form a joint race,
and (3) for the stochastic delay prefixed terms in resolved races. As for the
standard semantics of the alternative composition, the action transitions
from both terms are available, expressed by the term act(p + p′) given by

act(p + p′) =
u∑

i=1

ai.pi +
u′∑

i′=1

a′i′ .p
′
i′ +

d∑

j=1

bj .qj +
d′∑

j′=1

b
′
j′ .q

′
j′ .

Recall that in a joint race of two stochastic delays [W1
L1 ] and [W2

L2 ] there are
three possible outcomes: [ W1

L1∪W2∪L2], [W1∪W2
L1∪L2 ], and [ W2

W1∪L1∪L2]. The existence of
the outcomes depends on the relation between the losers and winners of the
delays (cf. Section 2.1). If one term can only allow passage of time according
to the delayable deadlock constant, then the stochastic delays synchronize on
the passage of time, whereas the constant propagates through the prefixes.
The term jrc(p+p′) gives the joint outcomes of the races between the racing
delays of p and p′. It is given by jrc(p + p′) =

∑

k,k′ : (Wk∪W ′
k′ )∩(Lk∪L′

k′ )=∅

[
Wk∪W ′

k′
Lk∪L′

k′

]
.(|rk|Lk

+ |r′k′ |L′
k′

( + 0)) +

∑

k : Wk∩R(p′)=∅

∑

k′

[
Wk

Lk∪R(p′)

]
.(|rk|Lk

+
∑s′

k′=1

[
W ′

k′
L′

k′

]
.r′k′) +

∑

k

∑

k′ : R(p)∩W ′
k′=∅

[
W ′

k′
R(p)∪L′

k′

]
.(

∑s
k=1 [Wk

Lk
].rk + |r′k′ |L′

k′
).

The first sum expresses the case when the winners from both delays win
together. The optional 0 constant is propagated if there are no winners
from one side, i.e., if the index set of either k or k′ is empty. In that case
the last two sums do not exist. If both summands do not have stochastic
delay prefixed terms, then no sum exists. In the second sum the left delay



90 Chapter 5. Process Theory DTCPdst
rec

coming from the term p wins the race, which also means that it wins the
race for every stochastic delay prefixed summand of p′. The third sum is
the symmetric case of the second situation.

The racing delays of p and p′ are in a resolved race in p and p′, respec-
tively. Thus, a racing delay from p is in a resolved race in p + p′ if it is
in a resolved race with every racing delay of p′. This is expressed by the
term rsd(p + p′) given by:

rsd(p + p′) =
∑

k : rr([Wk
Lk

],
�

W ′
k′

L′
k′

�
) for all 16k′6n′

[Wk
Lk

].rk +

∑

k′ : rr([Wk
Lk

],
�

W ′
k′

L′
k′

�
) for all 16k6n

[
W ′

k′
L′

k′

]
.r′k′ .

Now, we have all the ingredients to state the expansion law of the alter-
native composition.

Theorem 5.6.1 Let p and p′ have the normal forms from above. If I(p) ∩
R(p′) = R(p)∩I(p′) = ∅, then the normal form of the alternative composition
p + p′ is given by

p + p′=|act(p + p′) + jrc(p + p′) + rsd(p + p′) (+0)(+1)(+0) |D∪D′ A5.7

where the summand 0 exists if p or p′ contain it and both of them do not
have delayable action or stochastic delay prefixed summands, the summand 1
exists if p or p′ contain it, and 0 exists if none of the other summands does.2

Proof To see that p + p′ is again in normal form it is sufficient to ob-
serve that (1) rr(

[
Wk

Lk∪R(p′)

]
,
[

W`∪W ′
k′

L`∪L′
k′

]
) holds for every 1 6 k, ` 6 s and

1 6 k′ 6 n′ satisfying Wk ∩ R(p′) = ∅ and (W` ∪ W ′
k′) ∩ (L` ∪ L′k′) =

∅, (2) rr(
[

W ′
k′

R(p)∪L′
k′

]
,
[

Wk∪W ′
`′

Lk∪L′
`′

]
) holds as the symmetric case of (1) for 1 6

k 6 s and 1 6 k′, `′ 6 s′, (3) rr(
[

Wk
Lk∪R(p′)

]
,
[

W ′
k′

R(p)∪L′
k′

]
) holds for every 1 6

k 6 s and 1 6 k′ 6 s′ satisfying Wk ∩ R(p′) = ∅ and R(p) ∩ W ′
k′ = ∅,

(4) rr([Wk
Lk

],
[

W`∪W ′
k′

L`∪L′
k′

]
) holds for every 1 6 k, ` 6 n and 1 6 k′ 6 n′ satis-

fying rr([Wk
Lk

],
[

W ′
k′

L′
k′

]
) for all 1 6 k′ 6 n′ and (W` ∪ W ′

k′) ∩ (L` ∪ L′k′) = ∅,
(5) rr([Wk

Lk
],

[
W ′

k′
R(p)∪L′

k′

]
) holds for every 1 6 k 6 n and 1 6 k′ 6 n′ satisfying

rr([Wk
Lk

],
[

W ′
k′

L′
k′

]
) for all 1 6 k′ 6 n′ and R(p) ∩ W ′

k′ = ∅, (6) the symmetric



5.6. Alternative Composition 91

case of (4) holds, and (7) the symmetric case of (5) holds. For example,
(3) holds because Wk ∪ Lk ∪ R(p′) = R(p) ∪ R(p′) = R(p) ∪ W ′

k′ ∪ L′k′ ,
∅ 6= Wk∩R(p) ⊆ Wk∩(R(p)∪L′k′), and ∅ 6= W ′

k′∩R(p′) ⊆ W ′
k′∩(Lk∪R(p′)).

Next, we show that the recursive specification of p+p′ in terms of timed
delay prefixed terms and its expansion have the same solution. Suppose
0 = µA.{A = σ.A}, bj .qj = µBj .{Bj = bj .qj + σ.Bj} for 1 6 j 6 d, b

′
j′ .q

′
j′ =

µB′
j′ .{B′

j′ = b′j′ .q
′
j′ + σ.B′

j′} for 1 6 j′ 6 d′, [Wk
Lk

].rk = µCk.{Ck = σ
Wk
Lk

.rk +

σR(p).Ck} for 1 6 k 6 s, and
[

W ′
k′

L′
k′

]
.r′k′ = µC ′

k′ .{C ′
k′ = σ

W ′
k′

L′
k′

.r′k′ + σR(p′).C
′
k′} for

1 6 k′ 6 s′.
First, we analyze the alternative composition of a delayable action and

a stochastic delay prefixed term. By Theorem 4.3.3 for the alternative com-
position of bj .qj and [Wk

Lk
].rk of p one calculates

Bj + Ck = (bj .qj + σ.Bj) + (σWk
Lk

.rk + σR(p).Ck) +
= bj .Bj + σ

Wk
Lk

.rk + σR(p).(Bj + Ck)

for 1 6 j 6 d and 1 6 k 6 s. It should not be difficult to see that such an
alternative composition is associative.

Similarly, for the alternative composition of [Wk
Lk

].rk and [W`
L`

].r` one has:

Ck + C` = (σWk
Lk

.rk + σR(p).Ck) + (σW`
L`

.r` + σR(p).C`)
= σ

Wk
Lk

.rk + σ
W`
L`

.r` + σR(p).(Ck + C`)

for 1 6 k, ` 6 s. Again, this type of alternative composition is associative.
Similar results are obtained for the interaction between the delayable actions,
and the interaction with the delayable deadlock constant.

Now, the normal forms of p and p′ in terms of timed delay prefixed terms
can be given as

p = µ
(∣∣

u∑

i=1

ai.pi +
d∑

j=1

bj .qj +
s∑

k=1

σWk
Lk

.(rk ( + A)) +

σR(p).((A + )
∑d

j=1 Bj +
∑s

k=1 Ck) ( + 1)( + 0)
∣∣
D

)
.S

p′ = µ
(∣∣

u′∑

i′=1

a′i′ .p
′
i′ +

d′∑

j′=1

b′j′ .q
′
j′ +

s′∑

k′=1

σ
W ′

k′
L′

k′
.(r′k′ ( + A)) +

σR(p′).((A + )
∑d′

j′=1 B′
j′ +

∑s′
k′=1 C ′

k′) ( + 1)( + 0)
∣∣
D′

)
.S

where the optional recursion variable A exists if the term contains the 0
summand and the guarded recursive specification S contains the equations
for A, Bj , B′

j′ , Ck, and C ′
k′ for 1 6 j 6 d, 1 6 j′ 6 d′, 1 6 k 6 s, and



92 Chapter 5. Process Theory DTCPdst
rec

1 6 k′ 6 s′. We can use this normal form to compute p + p′. Also, in
a similar fashion one can rewrite the expanded alternative composition in
terms of timed delays. Then, by the principles of RDP− and RSP, it is easily
derived that both specification have the same solution.

Here, we show only the derivation of p + p′, as the one for the expanded
form is straightforward. By Theorem 4.3.3 the expansion of p + p′ is given
by p + p′ =

|
u∑

i=1

ai.pi +
u′∑

i′=1

a′i′ .p
′
i′ +

d∑

j=1

bj .qj +
d′∑

j′=1

b′j′ .q
′
j′ +

∑

k,k′ : (Wk∪W ′
k′ )∩(Lk∪L′

k′ )=∅
σ

Wk∪W ′
k′

Lk∪L′
k′

.(|rk|Lk
+ |r′k′ |L′

k′
( + A)) +

∑

k : Wk∩R(p′)=∅
σ

Wk

Lk∪R(p′).(|rk|Lk
+ |(A + )

d′∑

j′=1

B′
j′ +

s′∑

k′=1

C ′
k′ |R(p′)) +

∑

k′ : R(p)∩W ′
k′=∅

σ
W ′

k′
R(p)∪L′

k′
.(|(A + )

d∑

j=1

Bj +
n∑

k=1

Ck|R(p)
+ |r′k′ |L′

k′
) +

∑

k : rr(σ
Wk
Lk

,σ
W ′

k′
L′

k′
) for all 16k′6n′

σWk
Lk

.rk +

∑

k′ : rr(σ
Wk
Lk

,σ
W ′

k′
L′

k′
) for all 16k6n

σ
W ′

k′
L′

k′
.rk′ +

σR(p)∪R(p′).((A + )
d∑

j=1

Bj +
d′∑

j′=1

B′
j′ +

s∑

k=1

Ck +
s′∑

k′=1

C ′
k′) ( + 1)( + 0)|D∪D′ ,

where the recursion variable A exists if p or p′ contain it and they do not
have delayable action or stochastic delay prefixed summands, the summand 1
exists if p or p′ contain it, and 0 exists if none of the other summands does.
Now, having in mind that |Ck|R(p)

= Ck and |C ′
k′ |R(p′) = C ′

k′ , and along the
lines of the derivations in Examples 5.2.2 and 5.3.1 it is straightforward, but
meticulous, to calculate that the expansion A5.7 and the expansion of p+p′

using timed delay prefixed terms coincide, which completes the proof. ¥

Next, we give the α-conversion in terms of stochastic delays.



5.7. α-conversion 93

5.7 α-conversion

Similarly to the α-conversion law A4.9 of Theorem 4.4.2, we have the fol-
lowing theorem for renaming independent racing stochastic delays.

Theorem 5.7.1 Let p have the normal form

p = |
u∑

i=1

ai.pi +
d∑

j=1

bj .qj +
s∑

k=1

[Wk
Lk

].rk( + 0)( + 1)( + 0)|D

with D ⊆ R(p) = Wk ∪ Lk, rr([Wk
Lk

], [W`
L`

]) holds for 1 6 k < ` 6 s. Then the
independent racing delay X 6∈ D can be renamed to Y as follows:

p = |
u∑

i=1

ai.pi +
d∑

j=1

bj .qj +
∑

k : X 6∈R(p)

[Wk
Lk

].rk +
∑

k : X∈Wk

[
(Wk\{X})∪{Y }

Lk

]
.rk +

∑

k : X∈Lk

[
Wk

(Lk\{X})∪{Y }
]
.rk[Y/X] ( + 0)( + 1)( + 0) |D A5.8.

2

Proof A direct consequence of Theorem 4.4.2 as the disjoint sums range
over all stochastic delay prefixed terms. ¥

We proceed with the resolution of the parallel composition.

5.8 Parallel Composition

As for the alternative composition, we split the expansion of the parallel
composition in three parts: (1) resolution of an action prefix, (2) synchro-
nization of action prefixes, and (3) resolution of the race condition. Again,
unlike the alternative composition, the parallel composition is associative as
a direct consequence of Theorem 4.6.3. Also, we assume that p and p′ are
in normal form as above.

By pre(p ‖ p′) we denote the term that takes the action prefixes out of
the parallel composition. It is given by:

pre(p ‖ p′) =
u∑

i=1

ai.(|pi|∅ ‖ p′) +
u′∑

i′=1

a′i′ .(p ‖ |p′i′ |∅) +

d∑

j=1

bj .(|qj |∅ ‖ q′) +
d′∑

j′=1

b
′
j′ .(q ‖ |q′j′ |∅).



94 Chapter 5. Process Theory DTCPdst
rec

As action transitions reset races, the racing delays of the summand that was
prefixed by the action transition have to be made independent.

The synchronization of the action transitions is represented by the term
syn(p ‖ p′). It is given by:

syn(p ‖ p′) =
∑

i,i′ : γ(ai,a′i′ )=aaii′

aaii′ .(|pi|∅ ‖ |p′i′ |∅) +

∑

i,j′ : γ(ai,b′j′ )=abij′

abij′ .(|pi|∅ ‖ |q′j′ |∅) +

∑

j,i′ : γ(bj ,a′
i′ )=baji′

baji′ .(|qj |∅ ‖ |p′i′ |∅) +

∑

j,j′ : γ(bj ,b′
j′ )=bbjj′

bbjj′ .(|qj |∅ ‖ |q′j′ |∅).

Cross-synchronization of undelayable and delayable actions is possible, but
in that case the resulting action must be undelayable.

The stochastic delay prefixes are merged in the same manner as for the
alternative composition. The joint outcomes are given by the term std(p‖p′),
where std(p ‖ p′) =

∑

k,k′ : (Wk∪W ′
k′ )∩(Lk∪L′

k′ )=∅

[
Wk∪W ′

k′
Lk∪L′

k′

]
.((|rk|Lk

( + 0)) ‖ (|r′k′ |L′
k′

( + 0))) +

∑

k : Wk∩R(p′)=∅

∑

k′

[
Wk

Lk∪R(p′)

]
.(|rk|Lk

‖
[

W ′
k′

L′
k′

]
.r′k′) +

∑

k

∑

k′ : R(p)∩W ′
k′=∅

[
W ′

k′
Wk∪Lk∪L′

k′

]
.([Wk

Lk
].rk ‖ |r′k′ |L′

k′
)

The leading stochastic delay determines the set of losers in the term it
prefixes as in the timed setting. The optional summand 0 exists if one of
the components does not have stochastic delay prefixes as for the alternative
composition above.

Similarly to the alternative composition, we combine the three parts
from above to give an expansion law for the parallel composition.

Theorem 5.8.1 Let p and p′ have the normal forms as above. If I(p) ∩
R(p′) = R(p) ∩ I(p′) = ∅, then the normal form of the parallel composition
of p and p′ is given by

p ‖ p′ = |pre(p ‖ p′) + syn(p ‖ p′) + std(p ‖ p′) (+0)(+1)(+0)|D∪D′ A5.9,



5.9. Maximal Progress 95

where the summands 0 and 1 exist if both p and p′ contain them, respectively,
and 0 exists if none of the other summands does. 2

Proof Along the lines of the proof of Theorem 5.6.1 and using the ex-
pansion law A4.17 of Theorem 4.6.2 for expanding the timed delay prefix
representations of p and p′. Note that if both p and p′ have the 0 summand,
then they cannot have stochastic delay or delayable action prefixed terms.¥

Next, we give the expansion of the maximal progress operator.

5.9 Maximal Progress

Unlike the timed delay prefixed processes for which it is not important to
resolve the races in order to apply the maximal progress operator, when deal-
ing with stochastic delay prefixes all races must be resolved. We illustrate
the situation by an example.

Example 5.9.1 Let p = [X].a.0 + [Y ].b.0. If we directly apply θa,b(p) and
assume that it propagates through stochastic delay prefixes as for timed
delay prefixes, we have θa,b(p) = θa,b([X].a.0 + [Y ].b.0) = [X].θa,b(a.0) +
[Y ].θa,b(b.0) = p. Now, assume [X].a.0 = µA.{A = σX.a.0 + σ

X
.A} and

[Y ].b.0 = µB.{B = σY.b.0 + σ
Y
.B}. Then, by using Theorem 4.3.3 for the

expansion of θa,b(p) one calculates

θa,b(A + B)
= θa,b((σX.a.0 + σ

X
.A) + (σY.b.0 + σ

Y
.B))

= θa,b(σX

Y
.(a.0 + B) + σX, Y.(a.0 + b.0) + σY

X
.(A + b.0) + σ

X, Y
.(A + B))

= σX

Y
.θa,b(a.0 + B) + σX, Y.θa,b(a.0 + b.0) + σY

X
.θa,b(A + b.0) + σ

X, Y
.θa,b(A + B)

= σX

Y
.a.0 + σX, Y.(a.0 + b.0) + σY

X
.b.0 + σ

X, Y
.θa,b(A + B).

Thus, θa,b(p) = [XY ].a.0 + [X,Y ].(a.0 + b.0) + [YX].b.0. 2

Following the guidelines of Example 5.9.1 and having in mind that the max-
imal progress operator turns delayable actions to undelayable ones (cf. Sec-
tion 5.1), as well as it disables passage of time (cf. Section 4.7), we have the
following theorem.



96 Chapter 5. Process Theory DTCPdst
rec

Theorem 5.9.2 Let the normal form of p be as above. Then the expansion
law of the maximal progress θI(p) is given by

θI(p) = |
u∑

i=1

ai.θI(pi) +
d∑

j=1

bj .θI(qj)( + 1)( + 0)|D

if
( u⋃

i=1

{ai} ∪
d⋃

j=1

{bj}
) ∩ I 6= ∅ A5.10

θI(p) = |
u∑

i=1

ai.θI(pi) +
d∑

j=1

bj .θI(qj) +
s∑

k=1

[Wk
Lk

].θI(rk)

( + 0)( + 1)( + 0)|D if
( u⋃

i=1

{ai} ∪
d⋃

j=1

{bj}
) ∩ I = ∅ A5.11,

where the conditions apply for the optional summands as in p. 2

Proof By direct application of Theorem 4.6.2 for the expansion of the
maximal progress operator for timed prefixed delays. ¥

Similarly to the timed process theory we can give head normal forms that
pave the way for a ground-completeness result and unique solutions to the
guarded recursive specifications.

5.10 Head Normal Form

It should come as no surprise that every closed DTCPdst
rec-term can be rewrit-

ten in a head normal form, in a similar way as the one of Corollary 4.8.1,
as all operators can be expressed using an alternative composition of unde-
layable action, delayable action, and stochastic delay prefixed terms. How-
ever, to show this, we require two more idempotency axioms that deal with
undelayable and delayable action prefixed terms. They can be stated as
follows:

a.p + a.p = a.p A5.12, a.p + a.p = a.p A5.13.

To show the soundness of the axioms assume that a.p = µA.{A = a.p +
σ.A}. Then by using axiom A4.20 and the expansion A4.8 of the alternative
composition we have

[A12] a.p + A = a.p + (a.p + σ.A) = a.p + a.p + σ.A = a.p + σ.A = A

[A13] A + A = (a.p + σ.A) + (a.p + σ.A) = a.p + σ.(A + A).



5.10. Head Normal Form 97

Now, by the principles of RDP− and RSP, we have that A and A + A have
the same solution.

The head normal form is stated in the following corollary.

Corollary 5.10.1 Every closed term p ∈ C(DTCPdst
rec) can be represented in

a unique head normal form modulo commutativity, associativity, and naming
of independent delays, viz.

p = |
u∑

i=1

ai.pi +
d∑

j=1

bj .qj +
s∑

k=1

[Wk
Lk

].rk( + 0)( + 1)( + 0)|D

with D ⊆ R(p) = Wk ∪ Lk, ai.pi 6= ai′ .pi and ai.pi 6= bj .qj for 1 6 i, i′ 6 u
with i 6= i′ and 1 6 j 6 d, rr([Wk

Lk
], [W`

L`
]) holds for 1 6 k < ` 6 s, the

summand 0 may or may not exist provided that there are no delayable action
or stochastic delay prefixed summands, the summand 1 may or may not exist,
and the summand 0 exists if none of the other summands does. 2

Proof The proof is analogous to the one of Corollary 4.8.1 by replacing the
axioms and expansion laws that deal with timed delays with ones that deal
with stochastic delays. By the axioms A4.1 – A4.4 and A4.7 in Table 4.2
and axioms A5.4 and A5.5 in Table 5.1 for manipulation with the depen-
dence scope operator, the expansion law A5.7 of the alternative composition
of Theorem 5.6.1, the α-conversion law A5.8 for renaming of independent
delays of Theorem 5.7.1, axioms A4.10 – A4.13 and A4.16 in Table 4.3
and axiom A5.6 in Table 5.1 that deal with the encapsulation operator, the
expansion law A5.9 of the parallel composition of Theorem 5.8.1, the expan-
sion laws A5.10 and A5.11 of the maximal progress of Theorem 5.9.2 every
closed TCPdrst

rec term can be reduced to the temporary normal form that
is unique only for timed delays modulo commutativity, associativity, and
naming of independent delays. By using axioms A4.20, A5.12, and A5.13
for idempotence of the action prefixed terms in the alternative composition
as a rewriting rule from left to write we also obtain uniqueness for the action
prefixed terms modulo commutativity and associativity. ¥

As before, since every term can be reduced in the head normal form given
by Corollary 5.10.1, the equations form a ground-complete theory.

Theorem 5.10.2 Axioms A4.1 – A4.4 and A4.7 in Table 4.2 and axioms
A5.4 and A5.5 in Table 5.1, axioms A4.10 – A4.13 and A4.16 in Ta-
ble 4.3 and axiom A5.6 in Table 5.1, the expansion laws A5.7–A5.11, and
axioms A4.20, A5.12, and A5.13 are ground-complete for the term model
P(DTCPdst

rec)/-t. 2



98 Chapter 5. Process Theory DTCPdst
rec

Proof Analogous to the proof of Theorem 4.9.1 for the timed setting. ¥

Next, we show the simplifications that can be applied in the case of race-
complete process specifications that induce only races with all possible out-
comes.

5.11 Race-Complete Process Specifications

Race-complete process specifications can be characterized as specifications
that can be rewritten such that only stochastic delay prefixes of the form [X].
for X ∈ V occur in the process term. This restriction assures that all pos-
sible outcomes of the race are given and it enables the associativity of the
alternative composition. As a consequence, the equational theory becomes
much more elegant as we do not have to resort to normal forms from the
start. However, the expansion of the parallel composition still requires a
(head) normal form in which the timed/stochastic delays are in resolved
racing contexts. Also, to resolve the maximal progress either an additional
operator or a normal form that makes explicit the undelayable action pre-
fixes and the timed delays is required.

We present in Table 5.2 the alternative simplified axioms for the alterna-
tive composition and renaming of independent racing delays of race-complete
process specifications.

Axiom A5.14 shows how to rename independent racing delays. It is
applicable as only complete races can be formed, which in the beginning
are formed by single stochastic delays. Axiom A5.15 is a simplified ver-
sion of the merging of dependence scopes of the expansion law A4.8 of the
alternative composition. The naming conflict condition remains the same.
Axioms A5.16 and A5.17 are the standard axioms for the idempotence of
the termination and the neutrality of the deadlock in the alternative compo-
sition. Axioms A5.18 and A5.19 state the commutativity and associativity
of the alternative composition. Axiom A5.20 shows the resolution of the
race when the winners from both terms have a common racing delay. Ax-
ioms A5.21 shows the resolution of the race when the winner comes from
the left summand. In that case, the stochastic delays of the right summand
must be made dependent on the winners of the first summand. The depen-
dent racing delays of the remaining process of the left summand can come
only from the set of losers L1. Finally, axiom A5.22 gives all possible out-
comes when there are no restrictions on the merging of the racing delays.
The axioms can be turned into a rewriting system to give the normal form



5.12. The G/G/1/∞ Queue 99

|[X].p|∅ = |[Y ].p|∅ if FX = FY A5.14

|p1 + p2|D = |p1|D + |p2|D
if I(|p1|D) ∩ R(|p2|D) = R(|p1|D) ∩ I(|p2|D) = ∅ A5.15

1 + 1 = 1 A5.16

p + 0 = p A5.17

p + q = q + p A5.18

(p + q) + r = p + (q + r) A5.19

[W1
L1 ].p1 + [W2

L2 ].p2 = [W1∪W2
L1∪L2 ].(|p1|L1

+ |p2|L2
),

if W1 ∩W2 6= ∅ and W1 ∩ L2 = L1 ∩W2 = ∅ A5.20

[W1
L1 ].p1 + [W2

L2 ].|p2|L2
= [ W1

L1∪W2∪L2].(|p1|L1
+ [W2

L2 ].p2),

if L1 ∩W2 6= ∅ and W1 ∩W2 = W1 ∩ L2 = ∅ A5.21

[W1
L1 ].p1 + [W2

L2 ].p2 = [ W1
W2∪L2∪L1].(|p1|L1

+ [W2
L2 ].p2) +

[W1∪W2
L1∪L2 ].(|p1|L1

+ |p2|L2
) + [ W2

L2∪W1∪L1].([
W1
L1 ].p1 + |p2|L2

),

if W1 ∩W2 = L1 ∩W2 = W1 ∩ L2 = ∅ A5.22

Table 5.2: Alternative simplified axioms in case of race-complete process
specifications

from Section 4.3 and they replace the expansion laws A5.7 and A5.8 for the
alternative composition and α-conversion, respectively.

To illustrate the features of the process theory DTCPdst
rec , we specify the

G/G/1/∞ queue and solve its recursive specification.

5.12 The G/G/1/∞ Queue

We proceed by specifying and solving the recursive specification of the
G/G/1/∞ queue, also discussed in [69]. The queue can be compactly mod-
eled by a generalized semi-Markov process [48] given in Figure 5.1. Here,
a denotes the event of an arrival job and s is an event of a processed job.
The states are labeled by the clocks that correspond to events. In every
state the clocks with which the state is labeled are reset, whereas the others
are updated typically using spent-lifetime semantics. After an expiration of
a clock, the transition labeled by the name of the event is taken. The model
shows that jobs arrive constantly in the queue and the server processes one
job at a time.



100 Chapter 5. Process Theory DTCPdst
rec

76540123a

a ++ ?>=<89:;a,s
a ++

s
jj ?>=<89:;a,s

a
**

s
kk . . .

s
kk

Figure 5.1: Generalized semi-Markov model of the G/G/1/∞ queue

We specify the G/G/1/∞ queue in our setting by using three components
given by the recursive equations for A, Q0, and S.

A = |[X].s1.A|∅
Q0 = r1.Q1

Qk+1 = r1.Qk+2 + s2.Qk if k > 0
S = r2.[Y ].s3.S

The equation for A models the arrival process that is delayed by the
stochastic delay [X]. This delay corresponds to the clock a in the general-
ized semi-Markov representation of the process in Figure 5.1. The process
modeled by Q0 is the standard representation of a queue. It comprises de-
layable actions and it is always able to receive a new job or to offer a job
that has already been queued. Finally, the process given by S models the
server that has processing time distributed according to Y . Its counterpart
in Figure 5.1 is given by the clock s. It is always ready to accept a job when
it is idle.

The specification of the G/G/1/∞ queue itself is given by

Q = θI(∂H(A ‖Q0 ‖ S)),

where γ(r1, s1) = c1, γ(r2, s2) = c2, H = {s1, r1, s2, r2}, and I = {c1, c2, s3}.
Along the lines of Examples 5.2.2 and 5.3.1 one calculates:

Q = S0 = θI(∂H(A ‖Q0 ‖ S))
= θI(∂H(|[X].s1.A|∅ ‖ r1.Q1 ‖ r2.[Y ].s3.S))

= θI(∂H(|[X].s1.A ‖ r1.Q1 ‖ r2.[Y ].s3.S|∅))
= |[X].c1.θI(∂H(A ‖ (r1.Q2 + s2.Q0) ‖ r2.[Y ].s3.S))|∅
= |[X].c1.c2.θI(∂H(A ‖Q0 ‖ |[Y ].s3.S|∅))|∅ .

Now, we put S1 = θI(∂H(A ‖ Q0 ‖ |[Y ].s3.S|∅)). Then, Q = |[X].c1.c2.S1|∅.



5.13. Summary 101

We proceed with the following derivation for S1:

S1 = θI(∂H(A ‖Q0 ‖ |[Y ].s3.S|∅))
= θI(∂H(|[X].s1.A ‖ r1.Q1 ‖ [Y ].s3.S|∅))
= θI(∂H(|[XY ].(s1.A ‖ r1.Q1 ‖ [Y ].s3.S) + [YX].([X].s1.A ‖ r1.Q1 ‖ s3.S) +

[X, Y ].(s1.A ‖ r1.Q1 ‖ s3.S)|∅))
= θI(∂H(|[XY ].c1.(A ‖Q1 ‖ [Y ].s3.S) + [YX].s3.([X].s1.A ‖ r1.Q1 ‖ S) +

[X, Y ].(c1.s3.(A ‖Q1 ‖ S) + s3.c1.(A ‖Q1 ‖ S))|∅))
= |[XY ].c1.θI(∂H((A ‖Q1 ‖ [Y ].s3.S))) + [YX].s3.θI(∂H((A ‖Q0 ‖ S))) +

[X, Y ].(c1.s3.c2.θI(∂H(A ‖Q0 ‖ |[Y ].s3.S|∅)) +

s3.c1.c2.θI(∂H(A ‖Q0 ‖ |[Y ].s3.S|∅))|∅
= [XY ].c1.S2 + [YX].s3.S0 + [X,Y ].(c1.s3.c2.S1 + s3.c1.c2.S1),

where S2 = θI(∂H((A ‖Q1 ‖ [Y ].s3.S))). Similarly, one can show that:

Sk = [XY ].c1.Sk+1 + [X, Y
∅ ].(c1.s3.c2.Sk + s3.c1.c2.Sk) + [YX].s3.c2.Sk−1 for k > 1

which completes the solution for the G/G/1/∞ queue, where

Sk+1 = θI(∂H(A ‖Qk ‖ |[Y ].s3.S|∅)) for k > 1.

5.13 Summary

We derive the notions of delayable actions and stochastic delays as solutions
of recursive equations comprising timed delays. We show that we need not
resort to these specifications in order to manipulate processes prefixed by
delayable actions and stochastic delays. This lead us to the derived theory
of communicating processes with discrete stochastic time. Similarly to the
timed setting, we develop a sound and ground-complete equational theory
that is again based on normal forms in which the races between the stochastic
delays are resolved. We illustrate the approach by specifying and solving
the recursive specification of the G/G/1/∞ queue.

Next, we take the opposite view and attempt to establish a stochastic
process theory in such a way that it extends the standard real-time setting.
However, first we need to introduce the notion of context-sensitive interpo-
lation that represents a restriction of time additivity that conforms to the
race condition.





Chapter 6

Extending Real Time with Stochastic

Time

In this chapter we take the viewpoint of stochastic time and we attempt to
mold real-time process algebras so that they can accommodate a stochastic
extension. We give a simple example to illustrate the situation.

Suppose we wish to extend the term σ2.σ3.p with stochastic time. If
we make use of time additivity, i.e., only observe the accumulative delays,
we may consider, e.g., the term σ5.p or even σ1.σ3.σ1.p. Now, suppose that
X1, X2, X3, X5 ∈ V are arbitrary distributed non-Dirac random variable
suitably chosen to represent the delays of duration 1, 2, 3, and 5, respectively.
Now, from the properties of the race condition (cf. Section 2) we have that
[X2].[X3].p is different from [X5].p and [X1].[X3].[X1].p. The reason is that
in a every racing context [X5] produces different probabilities and samples
for the winning delays than [X2].[X3] or [X1].[X3].[X1].

One solution is to consider timed delays as atomic, i.e., to explicitly
state the delay that we want to model. In that way timed and stochastic
delays are put on the same level and their expirations are viewed as discrete
events. The motivation for such an approach stems from a discussion on the
overlapping properties of prominent stochastic bisimulation relations.

6.1 Overview of Stochastic Bisimulation Relations

In general, timed bisimulation relations require that bisimilar processes de-
lay the same amount of time. They typically employ time additivity, i.e.,
merging of subsequent timed delays into a joint single delay with the same
accumulative duration, to compare the delays [84, 11]. For example, σ3.σ2.p
and σ5.p are typically considered to be equivalent.

103



104 Chapter 6. Extending Real Time with Stochastic Time

On the contrary, stochastic bisimulation relations are set up as discrete
event bisimulation relations (which is inherent to the underlying perfor-
mance model), i.e., they consider passage of time per an atomic stochastic
delay transition. To the best of our knowledge, with the exception of [65],
all stochastic process theories consider stochastic bisimulation that is atomic
in this sense: in [52] the actions are coupled with the stochastic clocks,
in [42] there is an alternation between clocks and action transitions, whereas
in [27, 26] the merging is impeded by the combination of the pre-selection
policy and start-termination semantics. Although originally introduced as
an atomic stochastic bisimulation [64], an effort is made in [65] to define
a notion of weak stochastic bisimulation that merges subsequent stochastic
delays. Unfortunately, such an approach is not compositional as merging
of stochastic delays does not support the race condition. A simple example
illustrates the problem. The process [X].[Y ].p intuitively has the same sto-
chastic properties as the process [Z].p provided that FZ = FX+Y . However,
standard compositions involving these processes are not bisimilar. For ex-
ample, [X].[Y ].p + [U ].p is not bisimilar to [Z].p + [U ].p in a race condition
setting. This is because the race of X and U induces a different probabilistic
choice on the winner compared to the race between Z and U .

We conclude that from the viewpoint of stochastic process theories that
employ the race condition, it is more convenient to treat timed delays as
atomic, discrete event constructs, which levels the semantic differences with
their stochastic counterpart.

6.2 Extending Real Time with Stochastic Time

The treatment of timed delays as atomic requires a new and more restrictive
notion of time additivity. Again, we illustrate the situation by an example.

�

�� ��� ���� �

�

�

�

�
������	
	�

��


�
�� ��


����

����

�
�����

����
����	
 ����

Figure 6.1: a) A timed delay prefix σn.p, b) arbitrary interpolation of
σn into σn′, σn′′, and σn′′′, c) parallel composition of σn.p and σm.q, and d)
context-sensitive interpolation of σn in the context of the parallel composi-
tion with σm.q



6.2. Extending Real Time with Stochastic Time 105

Example 6.2.1 Figure 6.1b depicts arbitrary interpolation of the timed
delay σn of the process σn.p of Figure 6.1a to three timed delays σn′, σn′′, and
σn′′′ satisfying n′ + n′′ + n′′′ = n. If interpreted as an atomic timed delay,
the delay must be left intact, unless it is in a context of a composition that
would induce a race. A race with another timed delay σm of the process
σm.q induced by a parallel composition is depicted in Figure 6.1c. Only
then we can interpolate the longer delay (in this case n > m, as depicted
in Figure 6.1d, conforming to race condition semantics. We note that the
resulting process (σn −m.p) ‖ q accounts for the remaining delay σn −m. 2

�
�

�� �

�
���	
�

��	
�
�

��
� ��� ��	
�

�
��

�

����	
�� � ���	
��
�����

��	
����� ��	
�����

�

��	
���	
��	
�

��	
��	
��� ��	
�

�

�
��

�� �

Figure 6.2: a) Stochastic extension of the composition in Figure 6.1c),
b) independent race condition with every possible outcome, c) stochastic
extension of σn.p in accordance with the context-sensitive interpolation of
Figure 6.1d), and d) dependent race condition synchronizing the dependent
delays

In the stochastic setting of this thesis, such behavior can be interpreted both
for the independent or dependent race condition as depicted in Figure 6.2.
Suppose that the original timed delay σn of Example 6.2.1 is replaced by
the stochastic delay [X], obtaining [X].p as depicted in Figure 6.2a, and
σm.q is extended to [Y ].q. In Figure 6.2b we consider an independent race
given by the term | [X].p|∅ ‖ | [Y ].q|∅, which results in all possible outcomes
as discussed in Section 2. Here, we label the transitions with the winners
on top and the losers below the arrow. This approach conveniently models
independent components competing for the same resource.

Now, suppose that the components are considered dependent regarding
their timing aspects. For example, σn.p of Example 6.2.1 is a controller that
has a timeout greater than the tolerated response time of the process that it
controls. This can be represented in the timed model as σm.q and conditioned
by the fact that n > m. In such a situation the stochastic modeling using
the independent race condition leads to undesirable behavior. For example,
the premature expiration of the stochastic delay of the controller given by
the outcome [XY ] could introduce non-existent deadlock behavior as it did not
wait for the result of the process that successfully finished its task. In this



106 Chapter 6. Extending Real Time with Stochastic Time

case, relying on the context-sensitive interpolation, the correct modeling of
σn.p would be [Y ].[Z].p as depicted in Figure 6.2c. The idea is that both, the
controller and the process, should synchronize on the dependent stochastic
delay [Y ]. The delay is followed by the short timeout [Z] that models the
extra timed delay σn−m in the context-sensitive interpolated representation
(σm.(σn−m.p) ‖ q) of (σn.p) ‖ (σm.q). The situation is depicted in Figure 6.2d.

Another way of modeling the above system is to explicitly state that
the stochastic delay [Y ] should be the winner of the race between [X] and
[Y ]. This is done by specifying σm.q in stochastic time as [YX].q. Such a
specification expresses the result of the race between [X] and [Y ]. The
parallel composition [X].p ‖ [YX].q is resolved as [YX].([X].p ‖ q). In this case,
however, the race is incomplete, i.e., the other disjoint outcomes [X, Y

∅ ] and
[YX] are not present. As elaborated above, a major consequence is that the
equational theory of terms exhibiting incomplete races is more intricate as
the alternative composition is no longer associative and one must rely on
normal form representations.

We conclude that the use of context-sensitive interpolation helps in iden-
tification of the nature of the stochastic delays by allowing the treatment
of timed delays as atomic. However, it should be noted that its use cannot
always reveal whether the delays should be interpreted as independent or
dependent in stochastic time. This still remains the task of the designer.

6.3 Context-Sensitive Interpolation

From a process theoretical point of view, fundamental properties of time are
time determinism and time additivity, i.e., passage of time does not make a
choice by itself and subsequence timed delays can be merged together to the
accumulative delay, respectively [84, 11]. They are captured by the following
operational rules.

6.1
σn.p n7−→ p

6.2
p n7−→ p′

σm.p m+n7−→ p′
6.3

p1
n7−→ p′1, p2

n7−→ p′2
p1 + p2

n7−→ p′1 + p′2
·

When treating timed delays as atomic, rule 6.1 holds again, but rule 6.2 for
time additivity now fails. Therefore, we add instead of rule 6.2, two new
rules similar to rule 6.3 for time determinism that enable context-sensitive
interpolation when racing timed delays exhibit different durations:

6.4
p1

m7−→ p′1, p2
n7−→ p′2, m < n

p1 + p2
m7−→ p′1 + σn−m.p′2

6.5
p1

m7−→ p′1, p2
n7−→ p′2, m > n

p1 + p2
n7−→ σm−n.p′1 + p′2

·



6.3. Context-Sensitive Interpolation 107

Note the emphasis on performing the shortest winning duration first.
Rules 6.4 and 6.5 give rise to the following axioms.

σm.p1 + σm.p2 = σm.(p1 + p2) A6.1

σm.p1 + σm+n.p2 = σm.(p1 + σn.p2) A6.2 .

Axiom A6.1 enables time determinism, whereas Axiom A6.2 replaces the
standard axiom for time additivity σm.σn.p = σm+n.p. Together with com-
mutativity the latter allows for context-sensitive interpolation. If zero-time
delays are allowed, then rule 6.3 and axiom A6.1 become obsolete. More
details can be found in [85].

Remark 6.3.1 We note, however, that the coexistence of the rules 6.2,
6.4, and 6.5 is at best problematic. In that case, one must ensure that
the context-sensitive interpolation has always been applied for every timed
transition as in the opposite case some transitions may be ‘lost’. Consider
the following process term p = (σ1.a.0 + σ2.b.0) + σ1.c.0. Using time addi-
tivity one derives the transition σ1.a.0 + σ2.b.0 27−→ b.0. Now, by applying
the context-sensitive interpolation rule p 17−→ σ1.b.0 + c.0 and the option of
performing a transition labeled by a is lost. 2

To conclude, at first sight context-sensitive interpolation may seem too
restrictive compared to time additivity. However, context-sensitive inter-
polation does exactly what time additivity is typically used for: merging of
delays with the same duration by taking the shortest/minimal possible delay
in a context with compositional operators. Moreover, context-sensitive in-
terpolation fits naturally in the expansion of the parallel composition, which
makes it a suitable candidate for a finer notion of time additivity in real-
time process algebras. Finally, the bisimulation relation remains unchanged
as context-sensitive interpolation is handled in the operational semantics on
the model level. However, it is noted that the resulting process equivalence
is finer. For example, σ2.σ3.p and σ5.p are no longer related, though σ2.σ3.p
and σ5.p + σ2.0 are.

Remark 6.3.2 For strong bisimilarity the elimination of the effect of time
additivity can be achieved by representing every timed delay as atomic,
i.e., by merging all subsequent timed delays. If the process terms are rep-
resented in such ‘normal forms’, then time additivity and context-sensitive
interpolation have the same power of distinction. However, when using some
weaker type of bisimilarity, e.g., weak timed or timed branching bisimilarity,
context-sensitive interpolation is finer because of the effect of elimination of



108 Chapter 6. Extending Real Time with Stochastic Time

silent steps between two timed delays. For example, in weak timed semantics
with time additivity a.σ3.τ.σ2.p, where τ represents the silent step, is typi-
cally considered equivalent to a.σ5.p, whereas when using context-sensitive
interpolation the same process is equivalent to a.σ3.σ2.p, but not to the latter
as discussed above. 2

We proceed by presenting a stochastic process theory that makes use of
the concepts discussed above to deal with stochastic time as an extension of
the real-time process theory. The gain lays in an expansion law that respects
time determinism and the explicit treatment of the maximal progress.

6.4 Stochastic Process Theory TCPst
rec

We proceed with the presentation of TCPst
rec(A,V,R, γ), the theory of com-

municating processes with (discrete) stochastic time. It has the same sig-
nature as the process theory DTCPdst

rec . However, unlike DTCPdst
rec , which

was constructed from the primitives of TCPdrst
rec by deriving delayable action

and stochastic delay prefixes using recursive equations, here, we give the se-
mantics of closed TCPst

rec-terms from scratch. In return, we obtain a greater
insight into the relationship between real time and the race condition, re-
discovering the notion of context-sensitive interpolation. The semantics is
given in terms of stochastic transition schemes that, in essence, represent
stochastic automata with explicit symbolic representation of the race con-
dition and passage of time as for the racing timed transitions schemes. We
focus on the handling of the race condition, the expansion for the parallel
composition, and the maximal progress operator. We note that we obtain
the same equational theory as for DTCPdst

rec , but the semantics is given in
terms of finite objects as passage of time is observed on an atomic delay
scale and not per unit of time.

For ease of reference, we repeat the signature of DTCPdst
rec as it is the

signature of TCPst
rec as well. The processes are defined by the following

grammar:

P ::= 0 | 1 | 0 | a.P | a.P | [WL ].P | |P |D | ∂H(P ) | θI(P ) | P +P | P ‖P | µA.S

where a ∈ A, W,L, D ⊆ V with W 6= ∅ and W ∩ L = ∅, H, I ⊆ A, S ∈ G,
and A ∈ R(S).

As before, we use an environment to keep track of the dependencies
between the racing delays. Recall, [WL ] denotes an outcome of a race that
was won by W and lost by L for disjoint W,L ⊆ V with W 6= ∅. However,



6.4. Stochastic Process Theory TCPst
rec 109

in view of time determinism, time has passed equally for all racing delays
in W ∪ L. To denote that after a stochastic delay [WL ], the same amount of
time that has passed for the winners W has also passed for the losers L,
we use an environment η : V → 2V . For each X ∈ V, η(X) is a set that
contains one representative of the winners of every race that X lost. One
representative suffices, because all winners share the same sample in the
winning race. If η(X) = ∅, then X has never lost a race. We write H for the
set of all such environments. We illustrate the use of these environments by
means of an example.

Example 6.4.1 The process term [X, Y
Z ].[U

Z].p has a stochastic delay transi-
tion in which X and Y are the winners and Z is the loser. In the resulting
process [U

Z].p, the variable Z must be made dependent on the amount of
time that has passed for X and Y before. This can be denoted either by
η(Z) = {X} or η(Z) = {Y }, assuming that initially η(Z) = ∅. As Z again
loses a race, this time to U , the transition induced by [U

Z] updates η(Z) to
η(Z) = {X,U}, provided X was chosen as a representative in the first race.2

As in the timed setting, the environment does not affect the outgoing tran-
sitions. It is used only to calculate the correct distribution of the racing
delays. However, it represents the effect of the races symbolically, so the
exhibited samples of the expired winners are required to compute the age of
the racing delays. Suppose that ρ ∈ E is used to keep track of the exhibited
samples. Then the racing delay [Y ] in the environment η has an age, i.e., it
participated in races that it lost with the total amount of time

αη,ρ(Y ) =
∑

X∈η(Y )

(ρ(X) + αη,ρ(X)).

By convention, αη,ρ(Y ) = 0 if η(Y ) = ∅. The distribution of Y at that point
in time is FY |αη,ρ(Y ), provided that FY (αη,ρ(Y )) < 1. Thus, in order to
compute the aged distribution of the racing delay [Y ], one has to know its
complete racing history, i.e., the names of all delays that contribute in the
derivation of its age αη,ρ(Y ). The racing history in a environment η of a set
of racing delays R is defined by

Hη(R) = R ∪
⋃

X∈R

(η(X) ∪Hη(η(X))).

The racing history plays an important role as it must be maintained in the
stochastic transition schemes and related by the corresponding bisimulation
relation. It also introduces additional naming conflicts as there might be
clashes between the racing delays names and the ones in the racing history.



110 Chapter 6. Extending Real Time with Stochastic Time

6.5 Stochastic Transition Schemes

Closed TCPst
rec terms are given semantics by means of stochastic transition

schemes that treat passage of time of stochastic delays as atomic. The
stochastic transition schemes are based on the same idea as the racing timed
transition schemes, i.e., keeping track of the aging of the racing delays. As
passage of time in stochastic transition schemes is observed as a discrete
event in terms of expired winners, then keeping track of the ages amounts
to preserving the racing history. To represent passive (unbounded) passage
of time for delayable actions we use an additional transition relation Ã. It
also gives the semantics of the delayable deadlock constant 0 (cf. Section 5.1).
Again, outgoing passive delay transitions exist only if the state does not have
outgoing stochastic delay transitions.

Definition 6.5.1 A stochastic transition scheme (S×H,L,V,−→, Z=⇒, Ã,
↓, I) is a tuple, where u = 〈s, η〉 ∈ S ×H is a state in an environment η and

– −→ ⊆ (S ×H)× L× (S ×H) is the labeled transition relation.

– Z=⇒ ⊆ (S×H)×(2V \{∅})×2V×(S×H) is a stochastic delay transition

relation satisfying that for every u
WZ=⇒
L

u′ it holds that the winners and
the losers are disjoint, i.e., W ∩ L = ∅, and for every two different
transitions originating from the same state u

W1Z=⇒
L1

u1 6= u
W2Z=⇒
L2

u2 the
predicate rr([W1

L1 ], [
W2
L2 ]) holds.

– Ã ⊆ (S×H)×(S×H) is the passive delay transition. It can relate two
states uÃu′ only if the state u does not have any outgoing stochastic
delay transitions.

– ↓ ⊆ S ×H is the termination option predicate.

– I : S → V is the independent racing delays function. It satisfies that
I(s) ⊆ ⋃

〈s,η〉 WZ=⇒
L
〈s′,η′〉

(W ∪ L), for every η ∈ H. 2

Again, we have that W1 ∪ L1 = W2 ∪ L2 for every u
W1Z=⇒
L1

u1 and u
W2Z=⇒
L2

u2

as rr([W1
L1 ], [

W2
L2 ]) holds. Thus, for every state s there exists a set of racing

delays R(s) and I(s) ⊆ R(s). Then, the set of dependent racing delays is
given by D(s) = R(s) \ I(s). For notational convenience, we also use R(u),
D(u), and I(u) when clear from the context.

Each stochastic transition scheme, coupled to an assignment of prob-
ability distributions to the stochastic delays induces a probabilistic timed



6.5. Stochastic Transition Schemes 111

transition system. As the racing history is represented symbolically, we
have to calculate the age of the racing delays using αη,ρ( ) as given above.
For that reason we also need an initial environment, standardly set to the
zero sample environment ρ0. The action transitions and the termination
predicate are adopted from the stochastic transition scheme as above in De-
finition 3.2.2. The probability measure of the probabilistic timed delay is
induced by the winners, the losers, and the sample of the winning delay. We
employ the notation

RCn(W,L) = P(W = n,L > n),

extending the one of Definition 3.2.2. The formal definition is as follows.

Definition 6.5.2 Let R = (S×H, A, V,−→, 7−→, ↓, I) be a stochastic tran-
sition scheme, d: V → F a distribution assignment function, and ρ0 ∈ E
an initial sample environment. If R does not have passive delay tran-
sitions, then (R, d, ρ0) induces the probabilistic timed transition system
P = ((S × H) × E , A,→, 7→, ↓), where the action transition and termina-
tion options → and ↓ of P are induced by −→ and ↓ of R, respectively, and
7→(v) = (N × (S × H) × E , P) with v = (〈s, η〉, ρ), is the probability space
induced by the race condition. The probability measure P is given by

P(n, v′) =
RCn(W ′, L′)∑

〈s,η〉 W7−→
L
〈s,η〉 P(W < L)

if 〈s, η〉 W ′7−→
L′

〈s′, η′〉,

where v′ = (〈s′, η′〉, ρ′), the distribution functions of X ∈ R(s) are given by
FX = d(X)|αη,ρ(X), and ρ′ = ρ0{ρ{n/W ′}/Hη(L′)}. 2

The probabilistic transition system is built from the states of the stochastic
transition scheme coupled with a sample environment. The samples are used
to calculate the aged distributions of the racing delays. The race induces a
probabilistic choice, which is normalized by the accumulative probability of
the outgoing stochastic delay transitions. The normalization is required in
case of incomplete races. Each probabilistic timed delay transition updates
the sample environment by first assigning the winning sample to the winners.
Afterwards, only the meaningful part of the environment given by the racing
history of the losers is retained. We illustrate the situation by an example.

Example 6.5.3 We depict a stochastic transition scheme as in Figure 6.3a.
It is very similar to the racing timed transition scheme, differing on the in-
terpretation of the stochastic transitions. The environment now holds the



112 Chapter 6. Extending Real Time with Stochastic Time

a) ?>=<89:;1GG
X

η(X)=∅, η(Y )=∅

Y
Ä¨ ¨̈

¨̈
¨̈

¨

¨̈
¨̈

¨̈
¨ xx

X
Y

ºÂ
88

88
88

8

88
88

88
8

?>=<89:;2
__

Y

η(Y )={X}

®¶

?>=<89:;3

a

η(X)={Y }

²²
?>=<89:;4 ?>=<89:;5↓

b) ?>=<89:;1'
( 4
9 )1

zz

=

( 2
9 )2

~~}}
}}

}}
}}

}} _

( 1
9 )3

²²

¢
( 2
9 )2

ÃÃA
AA

AA
AA

AA
A

?>=<89:;21

b

( 1
2 )1 //

y

( 1
4 )2

$$

² ( 1
4 )3

¼¼

?>=<89:;22
j

( 1
2 )2

­­

T
( 1
2 )1

··

?>=<89:;23
K

(1)1ww

?>=<89:;32

a

²²
?>=<89:;4 ?>=<89:;5↓

Figure 6.3: Stochastic transition scheme and an induced probabilistic
timed transition system

racing history of the delays instead of the age of the racing delays. In Fig-
ure 6.3b we depict the induced probabilistic timed transition system, where
the assignment of distributions to the delays X and Y is as in Example 2.1.1
and the initial age of the delays is assumed to be zero. We have suppressed
the presentation of the environment for the sake of clarity of presentation.

The distributions of X and Y are given by P(X = 1) = P(X = 2) =
P(X = 3) = 1

3 and P(Y = 2) = 1
2 , P(Y = 3) = P(Y = 4) = 1

4 . Again
the race in state 1 is incomplete and normalization is required. Recall that
the probability that P(X < Y ) = 7

12 and P(Y < X) = 2
12 , so the prob-

abilities are normalized to 7
9 and 2

9 , respectively. These probabilities can
be multiplied with the conditional probabilities that the winner X expires
in 1, 2, or 3 time steps and, respectively, that Y wins the race in 2 time
steps as depicted in Figure 6.3b. This is an alternative way of computing
the probabilities in addition to the one given in Definition 6.5.2.

Stochastic delays generally introduce multiple and sometimes infinitely
many timed transitions, depending on the support set of the distribution. In
the superscript of the states, we put the duration of the stochastic delay with
which that state has been reached. So, for example, state 22 is reached after
the delay X won the race against the delay Y with a duration of 2 time units.
This occurs with probability 2

9 as stated on the transition between state 1
and 22. In state 22, the environment contains η(Y ) = {X} and ρ(X) = 2.
Thus, the total age of Y is 2 and its residual distribution is computed as
Y ′ = 〈Y − 2 | X < Y,X = 2 〉, i.e., P(Y ′ = 1), P(Y ′ = 2) = 1

2 . 2

We note that passive delay transitions can be denoted (by self-loops) of
infinitely long timed transitions with probability 1. However, we do not typ-



6.6. Bisimulation 113

ically consider such transitions due to prioritization of synchronized actions.
Next, we give the bisimulation relation in the vein of Definition 3.3.1 for

the timed setting.

6.6 Bisimulation

We define a strong bisimulation relation on stochastic transition schemes
that requires stochastic delays to have the same dependence history mod-
ulo names of the independent delays. It is the counterpart of the racing
timed bisimulation relation for the stochastic time setting. As before, the
condition for stochastic delays ensures that the induced races have the same
probabilistic behavior by relating only independent delays with the same
distributions. In the current setting, we must also account for the behavior
of the passive delay transitions.

Definition 6.6.1 Let R ⊆ (S × H)2 × (V ↔ V) be a symmetric relation.
Then R is a stochastic bisimulation relation if for all (〈s1, η1〉, 〈s2, η2〉, r) ∈ R
it holds that r : Hη1(R(s1))↔Hη2(R(s2)) is a bijection with r(I(s1)) = I(s2),
and FX = Fr(X) and r(η1(X)) = η2(r(X)) for X ∈ dom(r), and:

1. if u1↓ then u2↓;
2. if u1 Ã u′1 for some u′1 ∈ S × H, then u2 Ã u′2 for some u′2 ∈ S × H

such that (u′1, u
′
2, r

′) ∈ R for some r′ ∈ V ↔ V;

3. if u1
a−→ u′1 for some u′1 ∈ S ×H, then u2

a−→ u′2 for some u′2 ∈ S ×H
such that (u′1, u

′
2, r

′) ∈ R for some r′ ∈ V ↔ V; and

4. if u1
W1Z=⇒
L1

u′1 for some u′1 = 〈u′1, η′1〉 ∈ S×H, then u2
W2Z=⇒
L2

u′2 for some u′2 =
〈u′2, η′2〉 ∈ S ×H where r(W1) = W2, r(L1) = L2, and (u′1, u

′
2, r

′) ∈ R
for some r′ ∈ V ↔V satisfying r′(X) = r(X) for X ∈ Hη1(L1 ∩D(s′1)).

We say that two states u1 and u2 are stochastic bisimilar, notation u1-s u2,
if there exists a stochastic bisimulation relation R such that (u1, u2, r) ∈ R
for some r ∈ V ↔ V. 2

The bisimulation relation is adapted for the stochastic setting by generalizing
the environment from an age of the distribution to a racing history of expired
winning delays. As the history also depends on the names of the delays, the
bisimulation also must cater for the consistency of the complete history
of the losers. This is expressed by the last condition r′(X) = r(X) for
X ∈ Hη1(L1 ∩ D(s′1)). The extension is pretty straightforward and the



114 Chapter 6. Extending Real Time with Stochastic Time

Cη(1) = Cη(0) = Cη(a.p) = Cη(a.p) = ∅
Cη([WL ].p) = L ∩ I(p)

Cη(|p|D) = Cη(∂H(p)) = Cη(θI(p)) = Cη(p)

Cη(p1 + p2) = Cη(p1 ‖ p2) = Cη(p1) ∪ Cη(p2) ∪
((I(p1) ∪N(p1)) ∩Hη(R(p2))) ∪ (Hη(R(p1)) ∩ (I(p2) ∪N(p2)).

Table 6.1: Set of conflicting names in an environment η

proofs from TCPdrst naturally extend to the new setting. The following
theorem states without proof that stochastic bisimilarity is an equivalence
relation.

Theorem 6.6.2 Stochastic bisimilarity is an equivalence relation. 2

We continue with the presentation of the operational semantics.

6.7 Structural Operational Semantics

The operational semantics of TCPst
rec has the same impediments as the one

of TCPdrst
rec . Again, for a closed term p ∈ C(TCPst

rec) to have proper seman-
tics, the conflicting independent racing delay names have to be detected and
renamed. We use the already established notions of dependent racing, inde-
pendent racing, dependence binding, and newly enabled independent delay
names to identify the conflicting names and set up α-conversion. As the
environment holds the racing history in terms of stochastic delay names,
the complete history has to be included in the detection of naming conflicts
as well. We give a simple example to illustrate the situation.

Example 6.7.1 Let [X].[Z].0 + [Y ].0 be a term in an environment η with
η(Y ) = {Z} and η(Z) = {U}. If [X] wins the race, the resulting term is
[Z].0 + [Y ].0 with η(Y ) = {X,Z} and η(Z) = {U}. Now, the conflict arises
because [Z] is a newly enabled independent delay, but because of the racing
history of [Y ] it has been wrongly made dependent on the sample of U . 2

We denote the environment as a subscript and we extract the set of conflict-
ing names Cη(p) of p ∈ C(TCPdrst) in an environment η as in Table 6.1.

For notational convenience we write η∅ for η∅(X) = ∅ for X ∈ V. By
η + W we denote (η + W )(X) = η(X) ∪ {Y } for X ∈ V, a non-empty set



6.7. Structural Operational Semantics 115

W ⊆ V, and a randomly chosen Y ∈ W . The notational conventions Y Z⇒
and YÃ express that the term does not have any outgoing stochastic delay
or passive delay transitions, respectively. Now that we have all prerequisites
we give the structural operational semantics in Table 6.2 for the constant
processes, the prefix operators, and the dependence scope, Table 6.3 for the
alternative composition, Table 6.4 for the parallel composition, and Table 6.5
for the encapsulation and maximal progress operator, and the recursion. We
comment upon some of the rules that are different from the ones for TCPdrst

rec .

6.6 〈1, η〉↓ 6.7 〈0, η〉Ã 〈0, η〉
6.8

〈a.p, η〉 a−→ 〈|p|∅, η∅〉
6.9

〈a.p, η〉 a−→ 〈|p|∅, η∅〉
6.10 〈a.p, η〉Ã 〈a.p, η〉

6.11
〈[WL ].p, η〉 WZ=⇒

L
〈|p|L, η∅{η′/Hη′(L)}〉

with η′ = η{(η + W )/L}

6.12
〈p, η〉↓
〈|p|D, η〉↓ 6.13

〈p, η〉 a−→ 〈p′, η′〉
〈|p|D, η〉 a−→ 〈p′, η′〉

6.14
〈p, η〉Ã 〈p′, η〉
〈|p|D, η〉Ã 〈p′, η〉 6.15

〈p, η〉 WZ=⇒
L
〈p′, η′〉

〈|p|
D

, η〉 WZ=⇒
L
〈p′, η′〉

Table 6.2: Structural operational semantics of TCPst
rec for the constants 1

and 0, the prefix operators, and the dependence scope operator

Rule 6.7 states that delayable deadlock constant has an outgoing passive
delay transition. Rule 6.8 states that undelayable action prefixes perform
only undelayable action transitions. Rules 6.9 and 6.10 state that delayable
action prefixes induce both an undelayable action and a passive delay tran-
sition. Rule 6.11 enables stochastic delay transitions. The environment is
updated in two phases. First, the dependence sets of the losers are up-
dated resulting in the new environment η′. Afterwards, only the relevant
dependence history of the losers, given by Hη′(L), is retained. The losers in
resulting term |p|

L
are treated as dependent as their names must be pro-

tected. Again, the dependence scope operator does not affect any transitions
as illustrated by the rules 6.12 – 6.15 and it is only used to specify dependent
and independent racing delay names.



116 Chapter 6. Extending Real Time with Stochastic Time

6.16
〈p1, η〉↓

〈p1 + p2, η〉↓ 6.17
〈p2, η〉↓

〈p1 + p2, η〉↓

6.18
〈p1, η〉 a1−→ 〈p′1, η1〉

〈p1 + p2, η〉 a1−→ 〈p′1, η1〉
6.19

〈p2, η〉 a2−→ 〈p′2, η2〉
〈p1 + p2, η〉 a2−→ 〈p′2, η2〉

6.20
〈p1, η〉Ã 〈p′1, η〉, 〈p2, η〉Y Z⇒, 〈p2, η〉YÃ

〈p1 + p2, η〉Ã 〈p′1, η〉
6.21

〈p1, η〉Y Z⇒, 〈p2, η〉YÃ, 〈p2, η〉Ã 〈p′2, η〉
〈p1 + p2, η〉Ã 〈p′2, η〉

6.22
〈p1, η〉 W1Z=⇒

L1
〈p′1, η1〉, 〈p2, η〉Y Z⇒, 〈p2, η〉YÃ

〈p1 + p2, η〉 W1Z=⇒
L1

〈p′1, η1〉
6.23

〈p1, η〉Y Z⇒, 〈p2, η〉YÃ, 〈p2, η〉 W2Z=⇒
L2
〈p′2, η2〉

〈p1 + p2, η〉 W2Z=⇒
L2

〈p′2, η2〉

6.24
〈p1, η〉Ã 〈p′1, η〉, 〈p2, η〉Ã 〈p′2, η〉

〈p1 + p2, η〉Ã 〈p′1 + p′2, η〉

6.25
〈p1, η〉Ã 〈p′1, η〉, 〈p2, η〉 W2Z=⇒

L2
〈p′2, η2〉

〈p1 + p2, η〉 W2Z=⇒
L2

〈p′1 + p′2, η2〉
6.26

〈p1, η〉 W1Z=⇒
L1

〈p′1, η1〉, 〈p2, η〉Ã 〈p′2, η〉
〈p1 + p2, η〉 W1Z=⇒

L1
〈p′1 + p′2, η1〉

6.27
〈p1, η〉 W1Z=⇒

L1
〈p′1, η1〉, 〈p2, η〉 W2Z=⇒

L2
〈p′2, η2〉, W1 ∩ (W2 ∪ L2) = ∅

〈p1 + p2, η〉 W1Z=⇒
L1∪W2∪L2

〈p′1 + p2, η∅{η′/Hη′(L1 ∪W2 ∪ L2)}〉
,

with η′ = {(η + W1)/L1 ∪W2 ∪ L2}

6.28
〈p1, η〉 W1Z=⇒

L1
〈p′1, η1〉, 〈p2, η〉 W2Z=⇒

L2
〈p′2, η2〉, (W1 ∪ L1) ∩W2 = ∅

〈p1 + p2, η〉 W2Z=⇒
W1∪L1∪L2

〈p1 + p′2, η∅{η′/Hη′(W1 ∪ L1 ∪ L2)}〉
,

with η′ = {(η + W2)/W1 ∪ L1 ∪ L2}

6.29
〈p1, η〉 W1Z=⇒

L1
〈p′1, η1〉, 〈p2, η〉 W2Z=⇒

L2
〈p′2, η2〉, (W1 ∪W2) ∩ (L1 ∪ L2) = ∅

〈p1 + p2, η〉 W1∪W2Z=⇒
L1∪L2

〈p′1 + p′2, η1{η2/L2}〉

6.30
〈p1, η〉 W1Z=⇒

L1
〈p′1, η1〉, rr([W1

L1 ], [
W2
L2 ]) for 〈p2, η〉 W2Z=⇒

L2
〈p′2, η2〉

〈p1 + p2, η〉 W1Z=⇒
L1

〈p′1, η1〉

6.31
rr([W1

L1 ], [
W2
L2 ]) for 〈p1, η〉 W1Z=⇒

L1
〈p′1, η1〉, 〈p2, η〉 W2Z=⇒

L2
〈p′2, η2〉

〈p1 + p2, η〉 W2Z=⇒
L2

〈p′2, η2〉

Table 6.3: Operational rules for TCPst
rec for the alternative composition



6.7. Structural Operational Semantics 117

Rules 6.16–6.19 are as before. Rules 6.20 – 6.23 illustrates the default
weak choice between action transitions and passage of time. Here, we have
two transitions that denote passage of time, so both of them must be dis-
abled in the other term. Rule 6.24 states that passive delay transitions
merge. Rules 6.25 and 6.26 state that passive passage of time synchronizes
with stochastic delays. Resolution of races is given by the rules 6.27 – 6.29.
Unlike the timed delays that had predetermined racing context, stochastic
delays resolve the races dynamically. The environment in rules 6.27 and 6.28
is again updated in two phases as for rule 6.11, but now with the joint set
of losers obtained by resolving the race. When the delays have winners that
exhibit the same sample, the resulting environment is a merger of the result-
ing environments as given by rule 6.29. As in the timed setting, rules 6.30
and 6.31 express that a stochastic delay transition of one summand is in a
resolved race if its racing delays are in a resolved race with the ones of every
outgoing stochastic delays of the other summand.

Rules 6.32 – 6.37 give the standard behavior for the parallel composition
for termination and action transitions as for TCPdrst

rec . Rule 6.38 gives the
synchronization of the passive delay transitions, whereas rules 6.39 and 6.40
give the synchronization of the passive and stochastic delay transitions as
for the alternative composition. Rules 6.41 – 6.43 show the resolution of
races analogous to the ones for the alternative composition. Again, resolved
races are not possible as they represent disjoint events that cannot occur
simultaneously.

Rules 6.44 – 6.47 express the standard behavior for the encapsulation
operator. It suppresses only unwanted actions, whereas it simply propagates
through the other transitions. Rules 6.48 – 6.51 show the behavior of the
maximal progress operator. Rules 6.50 and 6.51 state that passage of time is
enabled only if there are no prioritized outgoing action transitions. Finally,
rules 6.52 – 6.55 are standard for guarded recursion, enabling the solution
to have the same transitions as given by the specification.

The renaming of conflicting independent delay names is again performed
by means of α-conversion, which is defined as for DTCPdst

rec . The bisimilarity
relation is given in the same vein as for TCPdrst

rec requiring that dependent
delay names are respected.

Definition 6.7.2 Two terms p1, p2 ∈ C(TCPst
rec) are stochastic bisimilar if

there exists a stochastic bisimulation relation R with (〈p1, η∅〉, 〈p2, η∅〉, r) ∈ R
for some r ∈ V ↔ V satisfying r(X) = X for X ∈ D(p1). 2

As before, the definition does not impose a restriction on the use of environ-
ments because a result analogous to Lemma 3.7.2 holds. It should also come



118 Chapter 6. Extending Real Time with Stochastic Time

6.32
〈p1, η〉↓, 〈p2, η〉↓
〈p1 ‖ p2, η〉↓

6.33
〈p1, η〉 a1−→ 〈p′1, η1〉, 〈p2, η〉 Y Z⇒
〈p1 ‖ p2, η〉 a1−→ 〈p′1 ‖ p2, η1〉

6.34
〈p1, η〉 Y Z⇒ , 〈p2, η〉 a2−→ 〈p′2, η2〉
〈p1 ‖ p2, η〉 a2−→ 〈p1 ‖ p′2, η2〉

6.35
〈p1, η〉 a1−→ 〈p′1, η1〉, 〈p2, η〉 W2Z=⇒

L2
〈p′2, η2〉

〈p1 ‖ p2, η〉 a1−→ 〈p′1 ‖ p2, η〉

6.36
〈p1, η〉 W1Z=⇒

L1
〈p′1, η1〉, 〈p2, η〉 a2−→ 〈p′2, η2〉

〈p1 ‖ p2, η〉 a2−→ 〈p1 ‖ p′2, η〉

6.37
〈p1, η〉 a1−→ 〈p′1, η1〉, 〈p2, η〉 a2−→ 〈p′2, η2〉, γ(a1, a2) = a3

〈p1 ‖ p2, η〉 a3−→ 〈p′1 ‖ p′2, η∅〉
6.38

〈p1, η〉Ã 〈p′1, η〉, 〈p2, η〉Ã 〈p′2, η〉
〈p1 ‖ p2, η〉Ã 〈p′1 ‖ p′2, η〉

6.39
〈p1, η〉 W1Z=⇒

L1
〈p′1, η1〉, 〈p2, η〉Ã 〈p′2, η〉

〈p1 ‖ p2, η〉 W1Z=⇒
L1

〈p′1 ‖ p′2, η1〉

6.40
〈p1, η〉Ã 〈p′1, η〉, 〈p2, η〉 W2Z=⇒

L2
〈p′2, η2〉

〈p1 ‖ p2, η〉 W2Z=⇒
L2

〈p′1 ‖ p′2, η2〉

6.41
〈p1, η〉 W1Z=⇒

L1
〈p′1, η1〉, 〈p2, η〉 W2Z=⇒

L2
〈p′2, η2〉, W1 ∩ (W2 ∪ L2) = ∅

〈p1 ‖ p2, η〉 W1Z=⇒
L1∪W2∪L2

〈p′1 ‖ p2, η∅{η′/Hη′(L1 ∪W2 ∪ L2)}〉
,

with η′ = {(η + W1)/L1 ∪W2 ∪ L2}

6.42
〈p1, η〉 W1Z=⇒

L1
〈p′1, η1〉, 〈p2, η〉 W2Z=⇒

L2
〈p′2, η2〉, (W1 ∪ L1) ∩W2 = ∅

〈p1 ‖ p2, η〉 W2Z=⇒
W1∪L1∪L2

〈p1 ‖ p′2, η∅{η′/Hη′(W1 ∪ L1 ∪ L2)}〉
,

with η′ = {(η + W2)/W1 ∪ L1 ∪ L2}

6.43
〈p1, η〉 W1Z=⇒

L1
〈p′1, η1〉, 〈p2, η〉 W2Z=⇒

L2
〈p′2, η2〉, (W1 ∪W2) ∩ (L1 ∪ L2) = ∅

〈p1 ‖ p2, η〉 W1∪W2Z=⇒
L1∪L2

〈p′1 ‖ p′2, η1{η2/L2}〉

Table 6.4: Operational rules for the parallel composition



6.7. Structural Operational Semantics 119

6.44
〈p, η〉↓

〈∂H(p), η〉↓ 6.45
〈p, η〉 a−→ 〈p′, η′〉, a 6∈ H

〈∂H(p), η〉 a−→ 〈∂H(p′), η′〉

6.46
〈p, η〉Ã 〈p′, η〉

〈∂H(p), η〉Ã 〈∂H(p′), η〉 6.47
〈p, η〉 WZ=⇒

L
〈p′, η′〉

〈∂H(p), η〉 WZ=⇒
L
〈∂H(p′), η′〉

6.48
〈p, η〉↓

〈θI(p), η〉↓ 6.49
〈p, η〉 a−→ 〈p′, η′〉

〈θI(p), η〉 a−→ 〈θI(p′), η′〉

6.50
〈p, η〉Ã 〈p′, η〉, 〈p, η〉 X a−→ for a ∈ I

〈θI(p), η〉Ã 〈θI(p′), η〉

6.51
〈p, η〉 WZ=⇒

L
〈p′, η′〉, 〈p, η〉 X a−→ for a ∈ I

〈θI(p), η〉 WZ=⇒
L
〈θI(p′), η′〉

6.52
〈p, η〉↓, A = p ∈ S

〈µA.S, η〉↓ 6.53
〈p, η〉 a−→ 〈p′, η′〉, A = p ∈ S

〈µA.S, η〉 a−→ 〈p′, η′〉

6.54
〈p, η〉Ã 〈p′, η′〉, A = p ∈ S

〈µA.S, η〉Ã 〈p′, η′〉 6.55
〈p, η〉 WZ=⇒

L
〈p′, η′〉, A = p ∈ S

〈µA.S, η〉 WZ=⇒
L
〈p′, η′〉

Table 6.5: Structural operational semantics of TCPst
rec for the encapsulation

operator, the maximal progress operator, and recursion

as no surprise that stochastic bisimilarity is a congruence for TCPst
rec. The

proof is along the same lines as the one for Theorem 3.9.1 and, therefore, it
is omitted.

Theorem 6.7.3 Stochastic bisimilarity -s is a congruence on C(TCPst
rec).2

Supported by Theorem 6.7.3 we give a term model modulo stochastic bisim-
ilarity.

Definition 6.7.4 The term model of TCPst
rec is the quotient algebra

P(TCPst
rec)/-s, where P(TCPst

rec) = (C(TCPst
rec), 0, 1, 0, µA.S for S ∈ G and

A ∈ R(S), a. for a ∈ A, a. for a ∈ A, [WL ]. for W,L ⊆ V, satisfying
W 6= ∅ and W ∩ L = ∅, | |D for D ⊆ V, ∂H( ) for H ⊆ A, θI( ) for
I ⊆ A, + , ‖ ). 2

The equational theory of TCPst
rec coincides with the one of DTCPdst

rec . More-
over, the main results carry over to the new setting and the theory is ground-



120 Chapter 6. Extending Real Time with Stochastic Time

complete in TCPst
rec as well.

Next, we compare treatment of the passage of time with the other sto-
chastic formalisms by discussing the expansion of the parallel composition.

6.8 Expansion of the Parallel Composition

First, we give an abstract description of the expansion of the parallel compo-
sition in clock-based approaches [42, 26, 60, 28] that employ start-termination
semantics. There, the stochastic delay [X] is split into a starting (X+) and
an ending (X−) activity, which are then treated as normal undelayable
action transitions. Intuitively [X].p = X+.X−.p, and the expansion of
[X].p ‖ [Y ].q is given by

X+.X−.p ‖ Y +.Y −.q = X+.Y +.(X−.p ‖ Y −.q)+Y +.X+.(X−.p ‖ Y −.q).

This allows an expansion law that is much more elegant than our Theo-
rem 5.8.1. For comparison purposes, we present the expansion of the parallel
composition in SPADES, which employs clocks with residual lifetime seman-
tics [42]. The treatment of the expansion for clocks with spent lifetimes and
start-termination semantics is similar [26, 28].

To present the parallel composition in SPADES we give the normal form
of two processes x and y: x = set C in x′ and y = set D in y′, for x′ =∑m

i=1(when Ci 7→ ai; pi) and y′ =
∑n

j=1(when Dj 7→ bj ; qj). The operator
set sets the clocks, ‘a; ’ is the action prefix operator, and when C 7→ p is the
guard that enables the process p when all clocks in the set C have expired.
The expansion of CSP style parallel composition x‖Ay for a synchronization
set A, is given by x ‖A y =

set (C∪D) in
(∑

ai 6∈A when Ci 7→ ai; (pi‖A y′ ) +
∑

bj 6∈A when Dj 7→ bj ; (x′ ‖A qj) +
∑

ai=bj∈A when (Ci∪Dj) 7→ ai; (pi‖A qj)
)
.

Such treatment only involves the setting of the joint sets of clocks, i.e., the
enabling of the starting activities. There is no relation between the passage
of time of the components as in standard real-time semantics, where the
expansion of t.p ‖ s.q is given by

t.p ‖ s.q = min(t, s).
(
(t−min(t, s)).p ‖ (s−min(t, s)).q

)

provided that zero duration delays are allowed. As a consequence, the maxi-
mal progress operator cannot be handled explicitly as there is no knowledge



6.9. Embedding Real Time as Dirac Stochastic Time 121

about the relationship between the samples of the clocks in the race. This
leads to more complicated definitions of the bisimulation relations, which
must account for the priority of the internal actions [42, 26, 64, 22].

Finally, the explicit treatment of the race condition in the stochastic
transition schemes corresponds to the regional trees that are used in pre-
liminary attempts to model check stochastic automata (albeit in residual
lifetime semantics) [29]. Originally, the regional trees were obtained from
stochastic automata [41] by explicitly ordering clock samples by their dura-
tion as symbolically represented by the stochastic delay prefix.

Next, we discuss the embedding of real time in a stochastic setting by
means of Dirac stochastic delays.

6.9 Embedding Real Time as Dirac Stochastic Time

A natural embedding of real time in a stochastic setting is by means of
Dirac (or degenerated) stochastic delays. These delays are guided by Dirac
random variables Xn, where P(Xn = n) = 1. The Dirac delays can be
included in the theory as separate stochastic delay prefixes. The duration
of the Dirac delay is stated in the subscript.

Such direct inclusion of real time in the stochastic setting has a side ef-
fect, viz. the stochastic transition schemes may contain non-accessible tran-
sitions. For example, the transition

〈[Xm].p + [Xm+n].q, η∅〉 Xm+nZ=⇒
Xm

〈[Xm].p + q, η∅{Xm+n/{Xm}}〉

will never be observed in the probabilistic timed transition system for
m,n > 0. Similarly, the only transition with non-zero probability of
|[Xn].p|∅ + |[Yn].q|∅ is the joint stochastic delay transition with winners
{Xn, Yn}. Moreover, there is need to distinguish between independent and
dependent Dirac delays because of the resolution of the race condition. For
example, the age of the Dirac delay [Yn] in [X

Yn].[Yn].0 is dependent on the
sample of the winner [X]. In this case, the aged distribution of [Yn] in the
subterm [Yn].0 is no longer Dirac.

Also, it should be clear that the concept of time additivity does not
apply to the Dirac stochastic delays because of the race condition semantics
(cf. Section 6.1). Actually, the treatment of timed delays as stochastic Dirac
delays actually leads back to the notion of context-sensitive interpolation.
Thus, the embedding of real time as Dirac stochastic time can be done
by restricting the standard notion of time additivity by the new notion of



122 Chapter 6. Extending Real Time with Stochastic Time

context-sensitive interpolation. In such a setting Dirac delays support time
determinism, and moreover, the side-effects from above do not occur.

We will not develop the complete embedding of real-time delays as Dirac
stochastic delays, but we only give and briefly discuss the fingerprint axioms
for race-complete processes. The additional axioms for Dirac delays that
enable context-sensitive interpolation are given in Table 6.6.

|[Xn].p1|∅ + |[Xn].p2|∅ = |[Xn].(|p1|∅ + |p2|∅)|∅ A6.3

|[Xn].p1|∅ + |[Xn+m].p2|∅ = |[Xn].(|p1|∅ + |[Xm].p2|∅)|∅ A6.4

Table 6.6: Axioms for the context-sensitive interpolation of Dirac delays
in race-complete process specifications

The axioms are very similar to their real-time counterparts given by the
axioms A6.1 and A6.2. However, there is an extra condition that the Dirac
delays must be independent. This condition plays an important role because
it ensures that the age of the Dirac delays is zero. On the contrary, it is
possible that the Dirac delay is dependent on a stochastic delay as in the
term [X

Yn].[Yn].0 in the example above.

6.10 Summary

We take the viewpoint of stochastic time and attempt to interpret the con-
cepts of time determinism and time additivity in race condition semantics.
This leads us to the notion of context-sensitive interpolation that is a re-
striction of time additivity in race condition semantics. As timed delays
can be interpreted as either dependent or independent stochastic delays, the
resolution of timed delays employing context-sensitive interpolation turns
out to be a valuable tool. Then, we develop a theory of communicating
processes with stochastic time from scratch, following the guidelines set up
in the previous chapter. We embed standard timed delays into the theory,
which leads us again to context-sensitive interpolation due to the nature of
stochastic time. Finally, we look closer at this new notion and we provide
the identifying rules and axioms.

Next, we turn back to Markovian time and we give means to show that
the reduction methods for elimination of probabilistic choices and nondeter-
ministic (silent) transitions are correct. We also investigate the relational
and compositional properties of two aggregation techniques based on lump-
ing and reduction.



Chapter 7

Aggregation Methods

for Markov Reward Chains

with Fast and Silent Transitions

Compositionality is a central issue in the theory of concurrent processes. Dis-
cussing compositionality requires three ingredients: (1) a class of processes
or models, (2) an operation to compose processes, and (3) a notion of behav-
iour, usually given by a semantic preorder or equivalence relation on the class
of processes. For the purpose of this thesis, we will have semantic preorders
and the parallel composition as operation. Therefore, the compositionality
result can be stated as

P1 > P1, P2 > P2 implies P1 ‖ P2 > P1 ‖ P2 ,

where P1, P2, P1, and P2 are arbitrary processes and ‖ and > denote their
parallel composition and the semantic preorder relation, respectively. Hence,
compositionality enables the narrowing of a parallel composition by compos-
ing simplifications of its components, thus avoiding the construction of the
actual parallel system. In this chapter, we study compositionality for aug-
mented types of continuous-time Markov chains. Here, we note that even
though the exponential distribution that guides the delays is continuous,
the model has very close ties to and an alternative representation in discrete
time [58].

Homogeneous continuous-time Markov chains, Markov chains for short,
are among the most important and wide-spread analytical performance mod-
els. A Markov chain is given by a graph with nodes representing states and
outgoing arrows labelled by exponential rates determining the stochastic
behavior of each state. An initial probability vector indicates which states
may act as starting ones. Markov chains often come equipped with rewards

123



124 Chapter 7. Aggregation of Extended Markovian Models

that are used to measure their performance, such as throughput, utilization,
etc. (cf. [57]). In this thesis, we focus on state rewards only, and we refer
to a Markov chain with rewards as a Markov reward chain. Transition (im-
pulse) rewards [57] can be dealt with similarly. A state reward is a number
associated to a state, representing the rate at which gain is received while
the process resides in the state.

To cope with the ever growing complexity of the systems, several per-
formance modeling techniques have been developed to support the composi-
tional generation of Markov reward chains. This includes stochastic process
algebras [51, 55], (generalized) stochastic Petri nets [3, 38], probabilistic
I/O automata [98, 36], stochastic automata networks [86], etc. The compo-
sitional modeling enables composing a bigger system from several smaller
components. The size of the state space of the resulting system is in the
range of the product of the sizes of the constituent state spaces. Hence,
compositional modeling usually suffers from state space explosion.

In the process of compositional modeling, performance evaluation tech-
niques produce intermediate constructs that are typically extensions of Mar-
kov chains featuring transitions with communication labels [51, 55, 3, 38, 98,
36, 86]. In the final modeling phase, all labels are discarded and communi-
cation transitions are assigned instantaneous behavior. Previous work [75,
78, 94] gave an account of handling these models by using Markov reward
chains with fast transitions and Markov reward chains with silent transi-
tions. The former present extensions of the standard Markov reward chains
with transitions decorated with a real-valued linear parameter and in the
latter the real-valued linear parameter is not specified. To capture the intu-
ition that the labeled transitions are instantaneous, a limit for the parameter
to infinity is taken. The resulting process is a generalization of the stan-
dard Markov reward chain that can perform infinitely many transitions in
a finite amount of time. This model was initially studied in [45, 39] with-
out rewards, and it is called a (stochastically) discontinuous Markov reward
chain. The process exhibits stochastic discontinuity and is often considered
pathological. However, as shown in [39, 5, 38], it proves very useful for the
explanation of results.

Here, we consider discontinuous Markov reward chains, Markov reward
chains with fast transitions, and Markov reward chains with silent transi-
tions. These three models are intimately related: Markov reward chains
with fast and silent transitions are used for modeling, but some notions
for these processes are expressed asymptotically in terms of discontinuous
Markov reward chains. A limiting process of a Markov reward chain with
fast transitions is a discontinuous Markov reward chain; a Markov reward



125

chain with silent transitions is identified with an equivalence class of a rela-
tion ∼ on Markov reward chains with fast transitions relating chains with
the ‘same shape of fast transitions’. We define parallel composition of all
models in the vein of standard Markov reward chains [31] using Kronecker
products and sums.

As already mentioned, compositional modeling may lead to state space
explosion. Current analytical and numerical methods can efficiently han-
dle Markov reward chains with millions of states [32, 91]. However, they
only alleviate the problem and many real world problems still cannot be
feasibly solved. Several aggregation techniques have been proposed to re-
duce the state space of Markov reward chains. Ordinary lumping is the most
prominent one [61, 31]. The method partitions the state space into partition
classes. In each class, the states exhibit equivalent behavior for transiting to
other classes, i.e., the cumulative probability of transiting to another class
is the same for every state of the class. If non-trivial lumping exists, i.e., at
least one partition contains more than one state, then the method produces
a smaller Markov chain that retains the performance characteristics of the
original one. For example, the expected reward rate at a given time is the
same for the original as for the reduced, so-called lumped, process. Another
lumping-based method is exact lumping [30, 31]. This method requires that
each partition class of states has the same cumulative probability of transit-
ing to every state of another class and, moreover, each state in the class has
the same initial probability. The gain of exact lumping is that the proba-
bilities of the original process can be computed for a special class of initial
probability vectors by using the lumped Markov reward chain only.

A preliminary treatment of relational properties of lumping-based ag-
gregations of Markov chains has been given in [89]. It has been shown that
the notion of exact lumping is not transitive, i.e., there are processes which
have exactly lumped versions that can be non-trivially exactly lumped again,
but the original process cannot be exactly lumped directly to the resulting
process. On the other hand, ordinary lumping of Markov reward chains is
transitive and, moreover, it has a property of strict confluence. Strict con-
fluence means that whenever a process can be lumped using two different
partitions, there is always a smaller process to which the lumped processes
can lump to. Coming back to our models of interest, ordinary lumping is
defined for discontinuous Markov reward chains in [75, 78, 94]. Also, so-
called τ -lumping is proposed for Markov reward chains with fast transitions
in [75, 78, 94]. The two methods are in agreement and the situation can be
pictured as in Figure 7.1.

For Markov reward chains with silent transitions, a lifting of τ -lumping to



126 Chapter 7. Aggregation of Extended Markovian Models

Markov reward chain
with fast transitions

τ -lumping //

limit
²²

τ -lumped Markov reward chain
with fast transitions

limit
²²

Discontinuous
Markov reward chain

ordinary lumping // Lumped discontinuous
Markov reward chain

Figure 7.1: τ -lumping

the ∼ - equivalence classes is proposed, referred to as τ∼-lumping [75, 78, 94].
The lifting idea is justified if the τ -lumped processes do not depend on
the choice of the representative Markov reward chain with fast transitions,
depicted in Figure 7.2.

Markov reward chain
with fast transitions

τ -lumping

²²

∼ Markov reward chain
with fast transitions

τ -lumping

²²
τ -lumped Markov reward chain

with fast transitions
∼ τ -lumped Markov reward chain

with fast transitions.

Figure 7.2: τ∼-lumping

In addition, [78, 94] study an aggregation method by reduction that
eliminates the stochastic discontinuity and reduces a discontinuous Markov
reward chain to a Markov reward chain. The reduction method is an exten-
sion of a well-known method in perturbation theory [44, 43, 39]. Its advan-
tage is the ability to split states. The lumping method, in contrast, provides
more flexibility: also states that do not exhibit discontinuous behavior can
be aggregated. The reduction-based aggregation straightforwardly extends
to τ -reduction of Markov reward chains with fast transitions [78, 94]. There-
fore, we have the following situation depicted in Figure 7.3.

In the case of Markov reward chains with silent transitions, a direct
lifting of the τ -reduction to equivalence classes does not aggregate many
processes, as most of the time the reduced process depends on the actual fast
transitions [78, 94]. In an attempt to remedy the effect of the fast transitions



127

Markov reward chain
with fast transitions

limit
²²

τ -reduction

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Discontinuous Markov reward chain
reduction // Markov reward chain.

Figure 7.3: τ -reduction

we combine τ -reduction and standard ordinary lumping for Markov reward
chains to obtain τ∼-reduction as depicted in Figure 7.4. We note that the
method is called total τ∼-reduction in [78, 94], since there more τ∼-reduction
methods are considered.

Markov reward chain
with fast transitions

τ -reduction

²²

τ∼-reduction

++

∼ Markov reward chain
with fast transitions

τ -reduction

²²

τ∼-reduction

ss

Markov
reward chain

ordinary
lumping

""DD
DD

DD
DD

DD
DD

DD
∼ Markov

reward chain

ordinary
lumping

||yy
yy

yy
yy

yy
yy

yy

Markov
reward chain.

Figure 7.4: τ∼-reduction

Both the lumping-based and the reduction-based aggregation method
induce semantic relations. Namely, for two processes P and P we say that
P > P if P is an aggregated version of P. As already mentioned, composi-
tionality is very important as it allows us to aggregate the smaller parallel
components first, and then combine them into the aggregated complete sys-
tem. We show that the relations induced by the lumping and reduction
methods are indeed preorders, i.e., reflexive and transitive relations. Having
all the ingredients in place, we show the compositionality of the aggregation
preorders with respect to the defined parallel composition(s). We also show



128 Chapter 7. Aggregation of Extended Markovian Models

continuity of the parallel composition(s). In short, the parallel operators
preserve the diagrams above.

7.1 Extended Markovian Models

In this section we introduce the Markovian models studied here: discontin-
uous Markov reward chains as generalizations of standard Markov reward
chains where infinitely many transitions can be performed in a finite amount
of time; Markov reward chains with fast transitions as Markov reward chains
parameterized by a real variable τ ; and Markov reward chains with silent
transitions as equivalence classes of Markov reward chains with fast tran-
sitions with the same structure and unspecified ‘speeds’ of the fast transi-
tions. The fast transitions explicitly model stochastic behavior, while the
silent transitions model nondeterministic internal steps.

All vectors are column vectors if not indicated otherwise. By 1n we
denote the vector of n 1’s; by 0n×m the n×m zero matrix; by In the n× n
identity matrix. We omit the dimensions n and m when they are clear
from the context. By A[i, j] we denote an element of the matrix A ∈ Rm×n

assuming 1 6 i 6 m and 1 6 j 6 n. We write A > 0 when all elements of A
are non-negative. The matrix A is called stochastic if A > 0 and A · 1 = 1.
By AT we denote the transpose of A.

Let S be a finite set. A set P = {S1, . . . , SN} of N subsets of S is called
a partition of S if S = S1 ∪ . . .∪SN , Si 6= ∅ and Si ∩Sj = ∅ for all i, j, with
i 6= j. The partitions

{S}
and ∆ =

{{i} | i ∈ S}
are the trivial partitions.

Let P1 = {S1, . . . , SN} be a partition of S and P2 = {T1, . . . , TM}, in turn,
a partition of P1. The composition P1 ◦ P2 of the partitions P1 and P2 is a
partition of S, given by P1 ◦ P2 = {U1, . . . , UM }, where Ui =

⋃
C∈Ti

C.
In the standard theory (cf. [46, 37, 57]), Markov chains are assumed to

be stochastically continuous. This means that when t → 0, the probability
of the process occupying at time t the same state as at time 0 is 1. As we
include instantaneous transitions in our theory [39], this requirement must
be dropped. Therefore, we work in the more general setting of discontinuous
Markov chains originating from [45].

A discontinuous Markov reward chain is a time-homogeneous finite-state
stochastic process with an associated state reward structure that satisfies the
Markov property. It is completely determined by: (1) a stochastic initial
probability row vector that gives the starting probabilities of the process for
each state, (2) a transition matrix function P : R+ → Rn×n that defines
the stochastic behavior of the transitions at time t > 0, and (3) a state
reward rate vector that associates a number to each state representing the



7.1. Extended Markovian Models 129

gain of the process while spending time in the state. The transition matrix
function gives a stochastic matrix P(t) > 0 at every time t > 0, and has the
property P(t + s) = P(t) ·P(s) [46, 37]. It has a convenient characterization
independent of time as stated by the following proposition [39, 53, 94].

Proposition 7.1.1 Let (Π, Q) ∈ Rn×n × Rn×n be such that

1. Π > 0, Π · 1 = 1, Π2 = Π,

2. ΠQ = QΠ = Q,

3. Q · 1 = 0, and

4. Q + cΠ > 0 for some c > 0.

Then P(t) = ΠeQt is a transition matrix. Moreover, for any transition
matrix P(t) there exists a unique pair (Π, Q) that satisfies conditions 1–4
such that P(t) = ΠeQt. 2

In addition, it is known that P(t) is continuous for t > 0 and the limit
limt→∞ P(t) = Π always exist [45, 46]. Then, it holds that ΠP(t) = P(t)Π =
P(t) [39]. Proposition 7.1.1 enables us to give the following definition of a
discontinuous Markov reward chain.

Definition 7.1.2 A discontinuous Markov reward chain D is a quadruple
D = (σ,Π, Q, ρ), where σ is a stochastic initial probability row vector, ρ is a
state reward vector, and Π ∈ Rn×n and Q ∈ Rn×n satisfy the conditions of
Proposition 7.1.1. The matrix function P(t) = ΠeQt is the transition matrix
of D. 2

The transition matrix is continuous at zero if and only if Π = I. In this
case, Q becomes the standard generator matrix [39, 75]. Otherwise, the
matrix Q might contain negative non-diagonal entries. We note that, unlike
for standard Markov reward chains, a meaningful graphical representation
of discontinuous Markov reward chains when Π 6= I is not common. The
intuition behind the matrix Π is that Π[i, j] denotes the probability that a
process occupies two states via an instantaneous transition. Therefore, in
case of no instantaneous transitions, i.e., when Π = I, we get a standard
(stochastically continuous) Markov reward chain denoted by M = (σ,Q, ρ).



130 Chapter 7. Aggregation of Extended Markovian Models

For every discontinuous Markov reward chain D = (σ,Π, Q, ρ), Π gets
the following ‘ergodic’ form after a suitable renumbering of states [39], viz.

Π =




Π1 . . . 0 0
...

. . .
...

...
0 . . . ΠM 0
Π1 . . . ΠM 0




where for all 1 6 k 6 M , Πk = 1 · µk and Πk = δk · µk for a row vector
µk > 0 such that µk · 1 = 1 and a vector δk > 0 such that

∑M
k=1 δk = 1.

The new numbering induces a partition E = {E1, . . . , EM , T} of the
state space S = {1, . . . , n}, where E1, . . . , EM are the ergodic classes, de-
termined by Π1, . . . , ΠM , respectively, and T is the class of transient states,
determined by any Πi, 1 6 i 6 M . The partition E is called the ergodic
partition. For every ergodic class Ek, the vector µk is the vector of er-
godic probabilities. If an ergodic class Ek contains exactly one state, then
µk = ( 1 ) and the state is called regular. The vector δk contains the trapping
probabilities from transient states to the ergodic class Ek.

We next discuss the behavior of a discontinuous Markov reward chain
D = (σ,Π, Q, ρ). It starts in a state with a probability given by the initial
probability vector σ. In an ergodic class with multiple states the process
spends a non-zero amount of time switching rapidly (infinitely many times)
among the states. The probability that it is found in a specific state of the
class is given by the vector of ergodic probabilities. The time the process
spends in the class is exponentially distributed and determined by the ma-
trix Q. In an ergodic class with a single state the row of Q corresponding to
that state has the form of a row in a generator matrix, and Q[i, j] for i 6= j
is interpreted as the rate from i to j. In a transient state the process spends
no time (with probability one) and it immediately becomes trapped in some
ergodic class. The process in i ∈ T can be trapped in Ek if and only if the
trapping probability δk[i] > 0.

The expected reward rate at time t > 0, notation R(t), is obtained as
R(t) = σP(t)ρ. It is required in the calculation of the most important
performance measure, the expected accumulated reward up to time t, given
by

∫ t
0 R(s)ds. We have that the expected reward remains unchanged if the

reward vector ρ is replaced by Πρ. To see this, we use that P(t) = P(t)Π, so
σP(t)Πρ = σP(t)ρ = R(t). Intuitively, the reward in a transient state can
be replaced by the sum of the rewards of the ergodic states that it can get
trapped in as the process gains no reward while transiting through transient
states. The reward of an ergodic state is the sum of the rewards of all states



7.1. Extended Markovian Models 131

inside its ergodic class weighted according to their ergodic probabilities. This
alternative representation of the reward vector alleviates the presentation of
some aggregation methods in later sections. We give an illustration in the
following example.

Example 7.1.3 Let D = (σ,Π, Q, ρ) be defined as:

σT =




1
0
0
0


 Π =




0 p q 0
0 1 0 0
0 0 1 0
0 0 0 1


 Q =




0 −pλ −qµ pλ + qµ
0 −λ 0 λ
0 0 −µ µ
ν 0 0 −ν


 ρ =




r1

r2

r3

r4




for 0 < p, q < 1, where p + q = 1 and λ, µ, ν > 0. The ergodic partitioning
is E = {E1, E2, E3, T} where E1 = {2}, E2 = {3}, E3 = {4}, and T =
{1}. We have µi =

(
1
)

for all i = 1, 2, 3, and δ1 =
(
p
)
, δ2 =

(
1−p

)
,

and δ3 =
(
0
)
. When the process is in state 1, then with probability p,

respectively 1−p, it is trapped in the ergodic class E1, respectively E2. Note
that R(t) does not depend on r1. This is confirmed when ρ is replaced by
Πρ = ( pr2+(1−p)r3 r2 r3 r4 )T. 2

A Markov reward chain with fast transitions is obtained by adding parame-
terized, so-called fast, transitions to a standard Markov reward chain. The
remaining standard transitions are referred to as slow. The behavior of a
Markov reward chain with fast transitions is determined by two generator
matrices S and F , which represent the rates of the slow transitions and the
rates (called speeds) of the fast transitions, respectively.

Definition 7.1.4 A Markov reward chain with fast transitions F = (σ, S, F, ρ)
is a function assigning to each τ > 0, the parameterized Markov reward chain

Mτ = (σ, S + τF, ρ)

where σ ∈ R1×n is an initial probability vector, S, F ∈ Rn×n are two gener-
ator matrices, and ρ ∈ Rn×1 is the reward vector. 2

By taking the limit when τ → ∞, fast transitions become instantaneous.
Then, a Markov reward chain with fast transitions behaves as a discontinu-
ous Markov reward chain [39, 75, 78, 94].

Definition 7.1.5 Let F = (σ, S, F, ρ) be a Markov reward chain with fast
transitions. The discontinuous Markov reward chain D = (σ,Π, Q, Πρ) is
the limit of F, where the matrix Π is the so-called ergodic projection at zero
of F , i.e., Π = limt→∞ eFt, and Q = ΠSΠ. We write F →∞ D. 2



132 Chapter 7. Aggregation of Extended Markovian Models

The ergodic projection of a generator matrix also has an alternative char-
acterization given by the following proposition [46, 2].

Proposition 7.1.6 Let Q ∈ Rn×n. The matrix Π ∈ Rn×n is its ergodic
projection at zero if and only if

Π > 0, Π · 1 = 1, Π2 = Π, ΠQ = QΠ = 0

and rank(Π) + rank(Q) = n. 2

We note that the initial probability vector in Definition 7.1.5 is not affected
by the limit construction. We will later motivate the choice of using the re-
ward vector Πρ instead of just ρ. In addition, we define the ergodic partition
of a Markov reward chain with fast transitions to be the ergodic partition
of its limit discontinuous Markov reward chain.

The ergodic partition can also be obtained in an alternative manner. We
write i → j if F [i, j] > 0 and denote the reflexive-transitive closure of → by
³. If i ³ j we say that j is τ -reachable from i. If i ³ j and j ³ i we
say that i and j τ -communicate. In a slightly different context, it has been
shown (see, e.g. [46]) that every ergodic class is actually a closed class of
τ -communicating states. Moreover, for all states i and all ergodic states j,
i ³ j iff Π[i, j] > 0. Now, by erg(i) = {E ∈ E | i ³ j, j ∈ E} we denote
the set of ergodic classes which are τ -reachable from the state i. If i is a
transient state, i.e., i ∈ T , then erg(i) is the set of ergodic classes to which
it is trapped.

We depict Markov reward chains with fast transitions as in Figure 7.5.
The initial probabilities are depicted left above, and the reward rates right
above each state. Here, a, b, and c are speeds, whereas λ, µ, ν, and ξ are
rates of slow transitions. As in the definition, τ denotes the real parameter.

As an example, the limit of the Markov reward chain with fast transi-
tions in Figure 7.5c is given by the discontinuous Markov reward chain in
Example 7.1.3 for p = a

a+b and q = b
a+b .

We define a Markov reward chain with silent transitions as a Markov
reward chain with fast transitions in which the speeds of the fast transitions
are left unspecified. To abstract away from the speeds of the fast transi-
tions we introduce a suitable equivalence relation on Markov reward chains
with fast transitions that is induced by the following equivalence relation of
matrices.

Definition 7.1.7 Two matrices A,B ∈ Rn×n have the same shape (also
called a grammar), notation A ∼ B, if and only if

A[i, j] = 0 if and only if B[i, j] = 0,



7.1. Extended Markovian Models 133

a) ?>=<89:;1
1 r1

aτ

­­

λ

··
?>=<89:;2

r2

µ
33 ?>=<89:;3

r3ν
ss

b) ?>=<89:;1

bτ

··

π r4

?>=<89:;2
1−π r5

cτ

TT

ξ

²²
?>=<89:;3

0

c) ?>=<89:;1
1 r1

aτ

­­

bτ

··
?>=<89:;2

r2

λ

!!

?>=<89:;3
r3

µ

}}?>=<89:;4 r4

ν

OO

Figure 7.5: Markov reward chains with fast transitions

for all 1 6 i, j 6 n. 2

It is obvious that ∼ is an equivalence on matrices of the same order. The
abstraction from speeds is achieved by identifying generator matrices of fast
transitions with the same shape. Thus, silent transitions are modeled by
equivalence classes of ∼.

Definition 7.1.8 A Markov reward chain with silent transitions S is a
quadruple S = (σ, S,F , ρ) where F is an equivalence class of ∼ and for every
F ∈ F , F = (σ, S, F, ρ) is a Markov reward chain with fast transitions. 2

We write F ∈ S if S = (σ, S,F , ρ), and F = (σ, S, F, ρ) with F ∈ F .
Furthermore, we lift the relation ∼ to Markov reward chains with fast tran-
sitions and write F ∼ F′ if F, F′ ∈ S. The notion of an ergodic partition is
speed independent, i.e., if F ∼ F′, then they have the same ergodic partition.
This is because the ergodic partition depends only on the existence of fast
transitions, but not on the actual speeds. Hence we can define the ergodic
partition of a Markov reward chain with silent transitions S to be the ergodic
partition of any Markov reward chain with fast transitions F with F ∈ S.

We depict Markov reward chains with silent transitions as in Figure 7.6
by omitting the speeds of the fast transitions. The depicted Markov reward
chains with silent transitions are induced by the Markov reward chains with
fast transitions in Figure 7.5.

In Figure 7.6, τ can be understood as a label of internal action tran-
sitions, as it is common in transition system modeling and process alge-
bra [80, 13]. In this way we formalize the notion of performance analysis for
Markov reward chains with nondeterministic internal steps.



134 Chapter 7. Aggregation of Extended Markovian Models

a) ?>=<89:;1
1 r1

τ

­­

λ

··
?>=<89:;2

r2

µ
33 ?>=<89:;3

r3ν
ss

b) ?>=<89:;1

τ

··

π r4

?>=<89:;2
1−π r5

τ

TT

ξ

²²
?>=<89:;3

0

c) ?>=<89:;1
1 r1

τ

­­

τ

··
?>=<89:;2

r2

λ

!!

?>=<89:;3
r3

µ

}}?>=<89:;4 r4

ν

OO

Figure 7.6: Markov reward chains with silent transitions

7.2 Aggregation Methods

In this section we introduce lumping methods for the Markovian models
of the previous section following [75, 78, 94]. First, we generalize ordinary
lumping of [61] to discontinuous Markov reward chains. Then, we define
τ -lumping for Markov reward chains with fast transitions based on ordinary
lumping of discontinuous Markov reward chains. Finally, we lift the τ -
lumping to τ∼-lumping of Markov reward chains with silent transitions.

We define aggregation by lumping in terms of matrices. Every partition
P = {C1, . . . , CN} of S = {1, . . . , n} can be associated with a so-called
collector matrix V ∈ Rn×N defined by V [i, k] = 0 if i /∈ Ck, V [i, k] = 1
if i ∈ Ck, and vice versa. The k-th column of V has 1’s for elements
corresponding to states in Ck and 0’s otherwise. Note that V · 1 = 1.
A distributor matrix U ∈ RN×n for P is defined as a matrix U > 0, such
that UV = IN . To satisfy these conditions, the elements of the k-th row
of U , which correspond to states in the class Ck, sum up to one, whereas
the other elements of the row are 0.

An ordinary lumping is a partition of the state space of a discontinu-
ous Markov reward chain into classes such that the states that are lumped
together have equivalent behavior for transiting to other classes and, addi-
tionally, have the same reward.

Definition 7.2.1 A partition L of {1, . . . , n} is an ordinary lumping, or
lumping for short, of a discontinuous Markov reward chain D = (σ,Π, Q, ρ)
if and only if the following hold: (1) V UΠV = ΠV , (2) V UQV = QV ,
and (3) V Uρ = ρ, where V is the collector matrix and U is any distributor
matrix for L. 2



7.2. Aggregation Methods 135

The lumping conditions only require that the rows of ΠV (respectively
QV and ρ) that correspond to the states of the same partition class are
equal. We have the following property [75, 78, 94].

Proposition 7.2.2 Let D = (σ,Π, Q, ρ) be a discontinuous Markov reward
chain and let L be its ordinary lumping. Define (1) σ = σV , (2) Π = UΠV ,
(3) Q = UQV , and (4) ρ = Uρ, for the collector matrix V of L and any
distributor U . Then D = (σ, Π, Q, ρ) is a discontinuous Markov reward
chain. Moreover, P(t) = UP(t)V where P(t) and P(t) are the transition
matrices of D and D, respectively. 2

Using Proposition 7.2.2 we define the lumped process.

Definition 7.2.3 If the conditions of Proposition 7.2.2 are satisfied, then
D = (σ,Π, Q, ρ) lumps to D = (σ,Π, Q, ρ), called the lumped discontinuous
Markov reward chain with respect to L. We write D

L→ D. 2

It can readily be seen that neither the definition of a lumping, nor the defi-
nition of the lumped process depends on the choice of a distributor matrix
U . For example, if V UQV = QV , then V U ′QV = V U ′V UQV = V UQV =
QV , for any other distributor U ′. In the continuous case, when Π = I we
have Π = I, so Q is a generator matrix and our notion of ordinary lump-
ing coincides with the standard definition [61, 83]. The expected reward is
preserved by ordinary lumping, since:

R(t) = σV UP(t)V Uρ = σP(t)V Uρ = σP(t)ρ = R(t).

Similarly, as in [61], one can show that other performance measures are also
preserved by lumping. We illustrate the situation by an example.

Example 7.2.4 Consider again the discontinuous Markov reward chain D
from Example 7.1.3, but assume that λ = µ and r2 = r3. Then, the partition
{{1}, {2, 3}, {4}} is an ordinary lumping. Now, D can be lumped to the
discontinuous Markov reward chain D = (σ,Π, Q, ρ) given by

σ =
(
1 0 0

)
Π =




0 1 0
0 1 0
0 0 1


 Q =




0 −λ λ
0 −λ λ
ν 0 −ν


 ρ =




r1

r2

r4


 .

Furthermore, the partition {{{1}, {2, 3}}, {4}} is an ordinary lumping of D.
So, it can be lumped all the way to the Markov reward chain M = (σ, Q, ρ)
given by

σ =
(
1 0

)
Q =

(−λ λ
ν −ν

)
ρ =

(
r2

r4

)
.



136 Chapter 7. Aggregation of Extended Markovian Models

Note that M could also be obtained directly from D by using the ordinary
lumping {{1, 2, 3}, {4}}. 2

The notion of τ -lumping is based on ordinary lumping for discontinuous
Markov reward chains. The aim is that the limit of a τ -lumped Markov
reward chain with fast transitions is an ordinary lumped version of the limit
of the original Markov reward chain with fast transitions.

Definition 7.2.5 A partition L of the state space of a Markov reward chain
with fast transitions F is called a τ -lumping, if it is an ordinary lumping of
its limiting discontinuous Markov reward chain D with F →∞ D. 2

Note that since we defined the reward of the limit by Πρ, a τ -lumping may
identify states with different rewards.

Like for ordinary lumping, we define the τ -lumped process by multiplying
σ, S, F , and ρ with a collector matrix and a distributor matrix. However,
unlike for ordinary lumping, not all distributors are allowed because the
lumping condition does not hold for F, but only for D. We give a special class
of distributors, called τ -distributors, that give a τ -lumped Markov reward
chain with fast transitions which limit is lumped version of the limit of the
original Markov reward chain with fast transitions [75, 78, 94].

Before we define the class of τ -distributors, we need a proposition that
gives the connection between the τ -lumping, the transient states, and the
ergodic classes [76, 94]. Intuitively, if two lumping classes share states from
at least one ergodic class, then they both share states from the same ergodic
classes. Moreover, if a lumping class contains transient and ergodic states,
then it must also contain states from every ergodic class to which these
transient states are trapped.

Proposition 7.2.6 Let (σ, S, F, ρ) be a Markov reward chain with fast tran-
sitions. Let E = {E1, . . . , Em, T} be its ergodic partitioning and let P =
{C1, . . . , CN} be a τ -lumping. Then, for all 1 6 I, J 6 M and all 1 6
K, L 6 N , if EI ∩ CK 6= ∅, EJ ∩ CK 6= ∅, and EI ∩ CL 6= ∅, then
EJ ∩ CL 6= ∅. Moreover, if there exists i ∈ CK ∩ T , then CK ∩ E 6= ∅
for every E ∈ erg(i). 2

Next, we give the definition of a τ -distributor.

Definition 7.2.7 Let F = (σ, S, F, ρ) be a Markov reward chain with fast
transitions. Let P = {C1, . . . , CN} be its τ -lumping and E = {E1, . . . , EM , T}
its ergodic partitioning. Let Π be the ergodic projection of F . Put e(K) =



7.2. Aggregation Methods 137

{E ∈ E | CK ∩ E 6= ∅}. Let αKL > 0 if EL ∈ e(K) be arbitrary, subject
only to

∑
L:EL∈e(K) αKL = 1 and αKL = αK′L for K, K ′, and L such that

EL ∈ e(K) and EL ∈ e(K ′). Let βKi > 0 for i ∈ CK and e(K) = ∅ be also
arbitrary, subject only to

∑
i∈CK

βKi = 1. Then, a τ -distributor W ∈ RN×n

is defined as

W [K, i] =





0, i 6∈ CK

αKL · |e(K)| · Π[i,i]P
k∈CK

Π[k,k]
, i ∈ CK ∩ EL

0, i ∈ CK ∩ T, e(K) 6= ∅
βKi, i ∈ CK , e(K) = ∅.

.

2

Note that if we restrict αKL = 1/|e(K)| and βKi = 1/|CK |, then we obtain
as a special case the τ -distributor of [75]. As a distributor, it assigns weights
to the rows of SV and FV , and then sums them up. The lumping and the
ergodic classes can be grouped such that lumping classes share states only
with the ergodic classes of the same group. The set of ergodic classes that
have common states with CK is given by e(K). The weights αKL > 0, for
L ∈ e(K), can be arbitrarily distributed among such classes. They must sum
up to one to ensure the form of a distributor. The condition αKL = αK′L
assures that the states from the same ergodic class are treated in the same
way. The weights are multiplied by |e(K)| as the normalization constant∑

k∈CK
Π[k, k] is a sum over all states of the |e(K)| shared ergodic classes.

As transient states have no ergodic probabilities, they are assigned weight 0
when lumped together with ergodic states. We assign arbitrary weights βKi

when lumping only transient states as their lumped trapping probabilities
must be equal [78, 94].

The class of τ -distributors in Definition 7.2.7 has an alternative charac-
terization given by the following proposition.

Proposition 7.2.8 A matrix W is a τ -distributor for V if and only if (1) it
is a distributor for V , (2) ΠV WΠ = ΠV W , and (3) the entries of W
corresponding to states in classes of transient states are positive. 2

Having defined τ -distributors, we can now explicitly define a τ -lumped
process.

Definition 7.2.9 Let F = (σ, S, F, ρ) and let L be a lumping with a col-
lector matrix V , and a corresponding τ -distributor W . The τ -lumped
Markov reward chain with fast transitions F = (σ, S, F , ρ) is defined as
σ = σV, S = WSV, F = WFV, ρ = Wρ. We say that F τ -lumps to F



138 Chapter 7. Aggregation of Extended Markovian Models

with respect to W and write F
L
;W F. We write F

L
; F if F

L
;W F for some

τ -distributor W . 2

In general, when lumping a Markov reward chain with fast transitions F
using a collector V and a distributor U , USV and UFV are not uniquely
determined, i.e., they depend on the choice of the distributor. The restric-
tion to τ -distributors does not change this. Subsequently, the τ -lumped
process depends on the choice of the τ -distributor. In order to make the τ -
distributor used explicit, we sometimes write F

L
;α,β F in order to emphasize

the parameter sets such that W = Wα,β.
The motivation for restricting to τ -distributors, despite that they do

not ensure a unique τ -lumped process, is that all τ -lumped processes are
equivalent in the limit. This is stated in the following proposition, which
gives the precise connection of ordinary lumping and τ -lumping [75, 94].

Proposition 7.2.10 The following diagram commutes

F
L ///o/o/o/o/o/o/o

∞ ²²

F

∞²²
D

L // D

that is, if F
L
; F →∞ D and if F →∞ D

L→ D
′, then D = D

′, for F and F
Markov reward chains with fast transitions, and D, D, and D

′ discontinuous
Markov reward chains. 2

Moreover, the τ -lumped processes that originate from the same Markov
reward chain with fast transitions become exactly the same, once all fast
transitions are eliminated [78, 94].

We depict in Figure 7.7 the lumped versions of the Markov reward chains
with fast transitions of Figure 7.5. The partitions are indicated by the state
labels. We assume that λ = µ and r2 = r3 for the Markov reward chain
with fast transitions in Figure 7.5c. We note that the lumped Markov reward
chain with fast transitions show that reward rates of transient states play
no role, whereas the ones of the ergodic classes are weighted by the ergodic
probabilities. The rate ξ of the Markov reward chain with fast transitions
depicted in Figure 7.7 is adjusted by the ergodic probability b

b+c of state 2.
We lift τ -lumping to equivalence classes of ∼ to obtain τ∼-lumping for

Markov reward chains with silent transitions. Intuitively, a partition is a
τ∼-lumping of S, if it is a τ -lumping for every F ∈ S and, moreover, the limit
of the τ -lumped process of F does not depend on the parameters chosen for



7.2. Aggregation Methods 139

a) GFED@ABC1,2
1 r2

µ

¶¶
?>=<89:;3

r3

ν

SS
b) GFED@ABC1,2

1 cr4+br5
b+c

b
b+c

ξ

²²
?>=<89:;3

0

c) ?>=<89:;1
1 r1

(a+b)τ

ªª
GFED@ABC2,3

r2

λ

33 ?>=<89:;4
r4

ν

aa

Figure 7.7: τ -lumped Markov reward chains with fast transitions

the τ -distributor. Recall that the parameter set α affects ergodic states,
whereas the parameter set β affects only transient states.

Definition 7.2.11 Let S be a Markov reward chain with silent transitions
and let L be its partition. Then L is a τ∼-lumping if and only if it is a
τ -lumping for every Markov reward chain with fast transitions F ∈ S and,
moreover, for every F, F′ ∈ S if F

L
;α,β F and F′ L;α′,β F

′, then F = F
′. 2

The motivation behind the use of the same parameter set β in Defini-
tion 7.2.11 is that there may be slow transitions originating from transient
states which will depend on β in the lumped process. If we do not restrict
to the same parameter set β, then τ∼-lumpings will only exist in rare cases
in which transient states have no slow transitions [78, 94].

Now we can define a τ∼-lumped process which is unique for a given
τ∼-lumping L and a parameter set β.

Definition 7.2.12 Let S be a Markov reward chain with silent transitions
and L its τ∼-lumping. Let F ∈ S be such that F

L
;α,β F and let S be the

Markov reward chain with silent transitions with F ∈ S. Then S τ∼-lumps
to S, with respect to L and β, notation S

L
;β S. We write S

L
; S if S

L
;β S

for some parameter set β. 2

As for Markov reward chains with fast transitions, all lumped processes co-
incide with a unique Markov reward chain, once all silent transitions are
eliminated [78, 94]. We depict in Figure 7.8 the τ∼-lumped versions of the
Markov reward chains with silent transitions given in Figure 7.6a and Fig-
ure 7.6c, again under the assumption that λ = µ and r2 = r3. The Markov
reward chain with silent transitions depicted in Figure 7.6b has only triv-
ial τ∼-lumpings because the representative τ -lumped Markov reward chains



140 Chapter 7. Aggregation of Extended Markovian Models

a) GFED@ABC1,2
1 r2

µ

¶¶
?>=<89:;3

r3

ν

SS
c) ?>=<89:;1

1 r1

τ

ªª
GFED@ABC2,3

r2

λ

33 ?>=<89:;4
r4

ν

aa

Figure 7.8: τ∼-lumped Markov reward chains with silent transitions

with fast transitions depend on the speed of the fast transitions as depicted
in Figure 7.7b.

Reduction is a specific aggregation method for transforming a discon-
tinuous Markov chain into a standard Markov chain, originally studied
in [44, 43, 39]. Extended to reward processes, the method reduces a discon-
tinuous Markov reward chain to a Markov reward chain by eliminating in-
stantaneous states, while retaining the behavior of the regular states. In the
same spirit, we define reduction methods that reduce Markov reward chains
with fast and silent transitions to Markov reward chains following [78, 94],
called τ -reduction and τ∼-reduction, respectively.

The reduction-based aggregation method masks the stochastic discon-
tinuity of a discontinuous Markov reward chain and transforms it into a
Markov reward chain [44, 39, 78, 94]. The underlying idea is to abstract
away from the behavior of individual states in an ergodic class. The method
is based on the notion of a canonical product decomposition.

Definition 7.2.13 Let D = (σ,Π, Q, ρ) and assume that rank(Π) = M ,
i.e., that there are M ergodic classes. A canonical product decomposition
of Π is a pair of matrices (L,R) with L ∈ RM×n and R ∈ Rn×M such that
L > 0, R > 0, rank(L) = rank(R) = M , L · 1 = 1, and Π = RL. 2

A canonical product decomposition always exists and it can be con-
structed from the ergodic form of Π as follows:

L =




µ1 0 . . . 0 0
0 µ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . µM 0


 R =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
δ1 δ2 . . . δM






7.2. Aggregation Methods 141

Moreover, it can be shown that any other canonical product decomposition is
permutation equivalent to this one. Since a canonical product decomposition
(L, R) of Π is a full-rank decomposition, and since Π is idempotent, we also
have that LR = IM . Thus, we have LΠ = LRL = L and ΠR = RLR = R.
Next, we present the reduction method.

Definition 7.2.14 Let D = (σ,Π, Q, ρ) be a discontinuous Markov reward
chain. Then, it reduces to the Markov reward chain M = (σ, Q, ρ), given
by σ = σR, Q = LQR, and ρ = Lρ, where (L,R) is a canonical product
decomposition of Π. We write D→r M. 2

If P(t) and P(t) are the transition matrices of the reduced and the original
chain, respectively, then one can show that P(t) = LP(t)R [39, 43].

The reduced process is unique up to a permutation of the states, since
the canonical product decomposition is. The states of the reduced process
are given by the ergodic classes of the original process, while the transient
states are ‘ignored’. Intuitively, the transient states are split probabilistically
between the ergodic classes according to their trapping probabilities. In
case a transient state is also an initial state, its initial probability is split
according to its trapping probabilities. The reward rate is calculated as the
sum of the individual reward rates of the states of the ergodic class weighted
by their ergodic probabilities. Like lumping, the reduction also preserves the
expected reward rate at time t:

R(t) = σRLP (t)RLρ = σΠP (t)Πρ = σP (t)ρ = R(t).

In case the original process has no stochastic discontinuity, i.e., Π = I, the
reduced process is equal to the original. We illustrate the situation by an
example.

Example 7.2.15 Recall again the discontinuous Markov reward chain D
from Example 7.1.3. The canonical decomposition of Π is given by:

Π =




0 p q 0
0 1 0 0
0 0 1 0
0 0 0 1


 L =




0 1 0 0
0 0 1 0
0 0 0 1


 R =




p q 0
1 0 0
0 1 0
0 0 1


 .

Now, D can be reduced to the Markov reward chain M′ = (σ′, Q′
, ρ′) given

by

σ′ =
(
p q 0

)
Q
′ =



−λ 0 λ
0 −µ µ
pν qν −ν


 ρ′ =




r2

r3

r4


 .



142 Chapter 7. Aggregation of Extended Markovian Models

We note that the Markov reward chain M′ cannot be obtained as a τ -lumped
version of D. However, M′ can be ordinary lumped to the Markov reward
chain M of Example 7.2.4 using the partition {{1, 2}, {3}} under the as-
sumption that λ = µ and r2 = r3. 2

In general, the aggregation methods by ordinary lumping and reduction are
not comparable, but the reduction method enjoys the advantage of splitting
transient states as in Example 7.2.15. On the other hand, reduction-based
aggregation reduces the discontinuous Markov reward chain to a Markov
reward chain in one step and it cannot produce the intermediate aggregated
Markov reward chains with fast transitions.

We now define a reduction-based aggregation method called τ -reduction.
It aggregates a Markov reward chain with fast transitions to an asymptoti-
cally equivalent Markov reward chain.

Definition 7.2.16 Let F = (σ, S, F, ρ) be a Markov reward chain with fast
transitions. Then, it τ -reduces to the Markov reward chain M = (σ, Q, ρ),
given by (1) σ = σR, (2) Q = LSR, and (3) ρ = Lρ, where F →∞
(σ,Π, Q,Πρ) and (L,R) is a canonical product decomposition of Π. We
write F ;r M. 2

The following simple property relates τ -reduction to reduction. It holds
since LQR = LΠSΠR = LSR and LΠρ = Lρ.

Proposition 7.2.17 The following diagram commutes

F

r )))i)i)i)i)i)i)i)i

∞ ²²
D r

// M

that is, if F ;r M and F →∞ D →r M′, then M = M′, for F a Markov
reward chain with fast transitions, D a discontinuous Markov reward chain
and M and M′ (continuous) Markov reward chains. 2

We depict in Figure 7.9 the τ -reduced versions of the Markov reward chains
with fast transitions given in Figure 7.5. Remarkably, the τ -reduced versions
of the Markov reward chains with fast transitions depicted in Figure 7.5a
and Figure 7.5b coincide with the τ -lumped ones. However, different from
τ -lumping in the τ -reduced process Figure 7.9a the transient state 1 is elim-
inated. The approach is equivalent when abstracting from whole ergodic
classes as illustrated in Figure 7.9b. Figure 7.5c shows the property of re-
duction to probabilistically split transient states and, consequently, their



7.2. Aggregation Methods 143

a) ?>=<89:;2
1 r2

µ

¶¶
?>=<89:;3

r3

ν

SS
b) GFED@ABC1,2

1 cr4+br5
b+c

b
b+c

ξ

²²
?>=<89:;3

0

c) ?>=<89:;2
p r2

λ
((

?>=<89:;3
q r3

µ
vv?>=<89:;4
r4

pν
hh

qν
66

Figure 7.9: τ -reduced Markov reward chains with fast transitions

incoming slow transitions. Note that the initial probability vector is also
adjusted according to the trapping probabilities.

As illustrated by the example, the aggregation methods by τ -lumping
and τ -reduction are, in general, incomparable [78, 94]. The reduction-based
method retains the feature of splitting transient states according to their
trapping probabilities. The combination of τ -reduction followed by ordi-
nary lumping of the resulting Markov reward chain aggregates more than
τ -lumping alone [78, 94]. It presents the core of the reduction-based aggre-
gation of Markov reward chains with silent transitions.

By combining τ -reduction with ordinary lumping of Markov reward
chains, we can eliminate the effect of the speeds and obtain a reduction-
like aggregation method for Markov reward chains with silent transitions.
Here, we refer to this method as τ∼-reduction.

Naturally, one could define a reduction-based method for Markov reward
chains with silent transitions by direct lifting of τ -reduction, i.e., by saying
that a Markov reward chain with silent transitions S reduces to a Markov
reward chain M if all Markov reward chains with fast transitions F ∈ S
τ -reduce to M. However, such is not an efficient reduction method as it
is applicable only in a few special cases when all Markov reward chains
with fast transitions in a ∼ - equivalence class τ -reduce to the same Markov
reward chain [78, 94]. For this reason we combine τ -reduction and lumping.

Similarly as for τ∼-lumping, the result of the τ∼-reduction should not
depend on the representative Markov reward chain with fast transitions.
Therefore, a Markov reward chain with silent transitions can be τ∼-reduced
if all Markov reward chains with fast transitions in its equivalence class τ -
reduce to Markov reward chains that can be ordinary lumped to the same



144 Chapter 7. Aggregation of Extended Markovian Models

Markov reward chain, as depicted below:

F r
///o/o/o/o/o/o M L

**VVVVVVVVVV

∼ M

F′ r
///o/o/o/o/o M′

L 44iiiiiiiii

This is captured by the following definition.

Definition 7.2.18 Let S be a Markov reward chain with silent transitions,
let E = {E1, . . . , EM , T} be its ergodic partition, and L a partition of
{E1, . . . , EM}. Then S can be τ∼-reduced according to L if and only if
there exists a Markov reward chain M, such that for every F ∈ S, we have
that F ;r M

L→M for some Markov reward chain M. We write S
L
;r M. We

may also write S ;r M if a partition L exists such that S
L
;r M. 2

We note that both τ∼-lumping and τ∼-reduction produce the same process
when all silent transitions are eliminated, cf. [78, 94] for details. Conse-
quently, the Markov reward chains with silent transitions depicted in Fig-
ure 7.6 τ∼-reduce in the same way as they can be τ∼-lumped. Again, the
Markov reward chain with silent transitions depicted in Figure 7.6b cannot
be non-trivially τ∼-reduced as its τ -reduced version, given in Figure 7.9b,
depends on the speeds of the fast transitions and has only trivial lumpings.

7.3 Relational Properties

Next, we investigate the relational properties of the lumping-based aggre-
gation methods. For ordinary lumping, the combination of transitivity and
strict confluence ensures that iterative application yields a uniquely deter-
mined process. In the case of τ -lumping, by Proposition 7.2.10, only the limit
of the final reduced process is uniquely determined, unless the final process
contains no fast transitions. Similarly, for τ∼-lumping the reduced process is
uniquely determined only if it does not contain any silent transitions. There
is no need to investigate the relational properties of the reduction-based
methods, since they act in one step (no iteration is possible), in a unique
way, between different types of models.

First, we investigate the properties of the relation > on discontinuous
Markov reward chains defined by

D1 > D2 if and only if there exists L such that D1
L→ D2.



7.3. Relational Properties 145

The above relation is clearly reflexive, since the trivial partition ∆ is al-
ways an ordinary lumping, i.e., D

∆→D for any discontinuous Markov reward
chain D. Transitivity enables replacement of repeated application of ordi-
nary lumping by a single application using an ordinary lumping that is a
composition of the individual lumpings.

Theorem 7.3.1 Let D be a discontinuous Markov reward chain such that

D
L→ D and D

L→ D. Then D
L◦L→ D. 2

Proof Let D = (σ,Π, Q, ρ), D = (σ,Π, Q, ρ), and D = (σ, Π, Q, ρ). Let V
and V denote the collector matrices for L and L, respectively. The collector
matrix for L ◦ L is V V . The following lumping conditions hold: V UΠV =
ΠV , V UQV = QV , and V Uρ = ρ. Also Π = UΠV , Q = UQV , and ρ = Uρ
for any distributor U for V . Similarly, it holds that: V U Π V = ΠV ,
V U QV = QV , and V U ρ = ρ. Moreover Π = U Π V , Q = U QV , and
ρ = U ρ for any distributor U for V .

The iterative application of the ordinary lumping method can be replaced
by the ordinary lumping given by the partition L◦L, that corresponds to the
collector matrix V = V V . A corresponding distributor is U = U U , because
U V = UUV V = I. That the partition is indeed an ordinary lumping follows
from the observation

V U Π V = V V U UΠV V = V V U ΠV = V Π V = V UΠV V = ΠV V = ΠV .

Similarly, one gets the condition for Q, and

V U ρ = V V U Uρ = V V U ρ = V ρ = V Uρ = ρ. ¥

The relation > on Markov reward chains with fast transitions, defined
by

F1 > F2 if and only if there exists L such that F1
L
; F2

is a preorder as well. It is reflexive via the trivial lumping ∆. The following
theorem shows the transitivity of the τ -lumping relation.

Theorem 7.3.2 Let F be a Markov reward chain with fast transitions, such

that F
L
; F and F

L
; F. Then F

L◦L
; F. 2

Proof Let F = (σ, F, S, ρ) and F = (σ, F , S, ρ). Denote by V and V the
collector matrices for L and L, respectively. The collector matrix for L ◦ L
is then V = V V . Let W and W be the corresponding τ -distributors used



146 Chapter 7. Aggregation of Extended Markovian Models

for F
L
; F and F

L
; F, respectively. Since τ -lumping is defined in terms of

ordinary lumping, it is sufficient to show that W = WW is a τ -distributor.
From Theorem 7.3.1 it follows that it is a distributor. The condition re-
quiring positive entries corresponding to transient states that lump only
with other transient states, can be checked using the explicit description of
τ -distributors as in [94]. It remains to verify the third condition.

Let Π and Π be the ergodic projections of F and F . Then, ΠV WΠ =
ΠV W and Π V W Π = Π V W . We have that

Π V W Π = ΠV V W WΠ = V WΠV V WWΠ = V ΠV W WΠ
= V ΠV W Π WΠ = V Π V W WΠV WΠ = V Π V W WΠV W
= . . .

= ΠV V W W = Π V W.

¥

Similarly, τ∼-lumping induces a preorder on Markov reward chains with
silent transitions defined by

S1 > S2 if and only if there exists L such that S1
L
; S2.

Reflexivity again holds due to the trivial partition ∆, while transitivity is
a direct consequence of Theorem 7.3.2 and the definition of τ∼-lumping,
Definition 7.2.11. Thus, we have the following theorem.

Theorem 7.3.3 Let S be a Markov reward chain with silent transitions.
Suppose S

L
; S and S

L
; S. Then S

L◦L
; S. 2

The lumping preorders also have the strict confluence property. In case of
lumping this means that if P

L1→P1 and P
L2→P2, then there exist two partitions

L1 and L2 such that P1
L1◦L1→ P and P2

L2◦L2→ P. One can prove the strict
confluence property by adapting the proof for Markov reward chains, e.g.,
from [89].

7.4 Parallel Composition and Compositionality

In this section, we define parallel composition for each of the models, and
prove the compositionality results. The definitions are based on Kronecker
products and sums, as for standard Markov reward chains [31, 33].

The intuition behind the Kronecker sum is that it represents interleaving,
whereas the Kronecker product represents synchronization. Let us first recall
the definition of Kronecker product and sum.



7.4. Parallel Composition and Compositionality 147

Definition 7.4.1 Let A ∈ Rn1×n2 and B ∈ Rm1×m2 . The Kronecker prod-
uct of A and B is a matrix (A⊗B) ∈ Rn1m1×n2m2 defined by

(A⊗B)[(i− 1)m1 + k, (j − 1)m2 + `] = A[i, j]B[k, `]

for 1 6 i 6 n1, 1 6 j 6 n2, 1 6 k 6 m1, and 1 6 ` 6 m2.
The Kronecker sum of two square matrices A ∈ Rn×n and B ∈ Rm×m is

a matrix (A⊕B) ∈ Rnm×nm defined by A⊕B = A⊗ Im + In ⊗B. 2

Next, we list some basic properties of the Kronecker product and sum [49].

Proposition 7.4.2 The following equations hold:

1. (A⊗B)(C ⊗D) = AC ⊗BD,

2. (A + B)⊗ (C + D) = A⊗ C + A⊗D + B ⊗ C + B ⊗D,

3. c(A⊗B) = (cA⊗B) = (A⊗ cB),

4. c(A⊕B) = (cA⊕ cB),

5. eA⊕B = eA ⊗ eB,

6. rank(A⊗B) = rank(A) rank(B). 2

We also need the notion of a Kronecker product of two partitions. Let
L1 and L2 be two partitions with corresponding collector matrices V1 and
V2, respectively. Then L1 ⊗ L2 denotes the partition corresponding to the
collector matrix V1 ⊗ V2.

First, we present the definition of parallel composition of discontinu-
ous Markov reward chains. The intuition is that ‘rates’ interleave, and the
probabilities of the instantaneous transitions synchronize, i.e., they are in-
dependent.

Definition 7.4.3 Let D1 = (σ1, Π1, Q1, ρ1) and D2 = (σ2,Π2, Q2, ρ2) be
discontinuous Markov reward chains. Then, their parallel composition is
defined as:

D1 ‖ D2 = (σ1 ⊗ σ2,Π1 ⊗Π2, Q1 ⊗Π2 + Π1 ⊗Q2, ρ1 ⊗ 1|ρ2| + 1|ρ1| ⊗ ρ2). 2

The following theorem shows that the parallel composition of two discontin-
uous Markov reward chains is well defined.

Theorem 7.4.4 Let D1 and D2 be two discontinuous Markov reward chains.
Then D1 ‖ D2 is a discontinuous Markov reward chain. 2



148 Chapter 7. Aggregation of Extended Markovian Models

Proof Let D1 = (σ1, Π1, Q1, ρ1) and D2 = (σ2,Π2, Q2, ρ2). The initial
probability vector σ1⊗σ2 is a stochastic vector and the reward vector is well
defined. Using Proposition 7.4.2(1)-(3), it is easy to check that the matrices
Π1 ⊗Π2 and Q1 ⊗Π2 + Π1 ⊗Q2 satisfy the conditions of Definition 7.1.2:

1. (Π1 ⊗Π2) > 0, (Π1 ⊗Π2) · 1 = 1, and (Π1 ⊗Π2)2 = Π1 ⊗Π2;

2. (Π1⊗Π2) · (Q1⊗Π2 + Π1⊗Q2) = (Q1⊗Π2 + Π1⊗Q2) · (Π1⊗Π2) =
Q1 ⊗Π2 + Π1 ⊗Q2;

3. (Q1 ⊗Π2 + Π1 ⊗Q2) · 1 = 0; and

4. Q1 ⊗Π2 + Π1 ⊗Q2 + (c1 + c2) · (Π1 ⊗Π2) = (Q1 + c1Π1)⊗Π2 + Π1 ⊗
(Q2 + c2Π2) > 0 for c1, c2 > 0 with Q1 + c1Π1, Q2 + c2Π2 > 0. ¥

In the special case, when both discontinuous Markov reward chains are con-
tinuous, their parallel composition is again a Markov reward chain as defined
in [31]. Moreover, the following property shows that the parallel composi-
tion of two discontinuous Markov reward chains has a transition matrix that
is the Kronecker product of the individual transition matrices, correspond-
ing to the intuition that the Kronecker product represents synchronization.
This justifies the definition of the parallel composition.

Theorem 7.4.5 Let D1 and D2 be two discontinuous Markov reward chains
with transition matrices P1(t) and P2(t), respectively. Then the transition
matrix of D1 ‖ D2 is given by P1(t)⊗ P2(t). 2

Proof Let D1 = (σ1, Π1, Q1, ρ1) and D2 = (σ2, Π2, Q2, ρ2). As the matrices
Q1 ⊗Π2 and Π1 ⊗Q2 commute, and Pi(t)Πi = ΠiPi(t) = Pi(t), we derive:

(Π1 ⊗Π2) e(Q1⊗Π2+Π1⊗Q2)t

= (Π1 ⊗Π2)(e(Q1⊗Π2)te(Π1⊗Q2)t)

= (Π1 ⊗Π2)(
∞∑

n=0

(Q1 ⊗Π2)ntn

n!
)(

∞∑

n=0

(Π1 ⊗Q2)ntn

n!
)

= (Π1 ⊗Π2)(I ⊗ I +
∞∑

n=1

(Q1 ⊗Π2)ntn

n!
)(I ⊗ I +

∞∑

n=1

(Π1 ⊗Q2)ntn

n!
)

= (Π1 ⊗Π2)(I ⊗ I +
∞∑

n=1

(Qn
1 ⊗Πn

2 )tn

n!
)(I ⊗ I +

∞∑

n=1

(Πn
1 ⊗Qn

2 )tn

n!
)

= (Π1 ⊗Π2)(I ⊗ I +
∞∑

n=1

(Qn
1 ⊗Π2)tn

n!
)(I ⊗ I +

∞∑

n=1

(Π1 ⊗Qn
2 )tn

n!
)

= (Π1 ⊗Π2)(I ⊗ I + (
∞∑

n=1

Qn
1 tn

n!
)⊗Π2)(I ⊗ I + Π1 ⊗

∞∑

n=1

Qn
2 tn

n!
)



7.4. Parallel Composition and Compositionality 149

= (Π1 ⊗Π2)(I ⊗ I + (eQ1t − I)⊗Π2)(I ⊗ I + Π1 ⊗ (eQ2t − I))
= (Π1 ⊗Π2)(I ⊗ I + eQ1t ⊗Π2 − I ⊗Π2)(I ⊗ I + Π1 ⊗ eQ2t −Π1 ⊗ I)
= (Π1 ⊗Π2 + P1(t)⊗Π2 −Π1 ⊗Π2)(I ⊗ I + Π1 ⊗ eQ2t −Π1 ⊗ I)
= (P1(t)⊗Π2)(I ⊗ I + Π1 ⊗ eQ2t −Π1 ⊗ I)
= (P1(t)⊗Π2 + P1(t)⊗ P2(t)− P1(t)⊗Π2)
= P1(t)⊗ P2(t),

which completes the proof. ¥

Remark 7.4.6 We motivate Definition 7.4.3 also from another perspective.
By the standard probabilistic, i.e., non-matrix representation of discontinu-
ous Markov reward chain the same notion can be obtained by the following
analysis. Let {X(t) | t > 0} and {Y (t) | t > 0} be two discontinuous Markov
reward chains defined on state spaces SX and SY respectively. Their parallel
composition can be defined as the stochastic process {(X ‖ Y )(t) | t > 0}
with the state space SX × SY , such that (X ‖ Y )(t) = (x, y) if and only if
X(t) = x and Y (t) = y. One can show that this process is again a discon-
tinuous Markov reward chain with transition matrix equal to the Kronecker
product of the transition matrices of {X(t) | t > 0} and {Y (t) | t > 0}. It
is known that the matrices Π and Q characterizing a transition matrix P(t)
are obtained as

Π = lim
t→0

P(t) and Q = lim
h→0

P(h)−Π
h

[39].

Applying this result on the transition matrix of {(X ‖ Y )(t) | t > 0} and
using the definition of (X ‖ Y )(0) we obtain the first three components of
the quadruple from Definition 7.4.3. The reward vector for the parallel
composition encodes the assumption that the reward rate in (x, y) is the
sum of the reward rates in x and y. 2

It is easy to see that the expected reward of the parallel composition is the
sum of the expected rewards of the components. Using Proposition 7.4.2(1)
and (2) we have

(σ1 ⊗ σ2)(P1(t)⊗ P2(t))(ρ1 ⊗ 1 + 1 ⊗ ρ2)
= σ1P1(t)ρ1 ⊗ σ1P1(t)1 + σ2P2(t)1 ⊗ σ2P2(t)ρ2

= R1(t)⊗ 1 + 1⊗R2(t)
= R1(t) + R2(t).

The following theorem shows that both lumping and reduction are compo-
sitional with respect to the parallel composition of discontinuous Markov
reward chains.



150 Chapter 7. Aggregation of Extended Markovian Models

Theorem 7.4.7 If D1
L1→ D1 and D2

L2→ D2, then D1 ‖ D2
L1⊗L2→ D1 ‖ D2.

Also, if D1 →r M1 and D2 →r M2, then D1 ‖ D2 →r M1 ‖M2. 2

Proof Let D1 = (σ1, Π1, Q1, ρ1), D1 = (σ1,Π1, Q1, ρ1), D2 = (σ2, Π2, Q2, ρ2),
and D2 = (σ2,Π2, Q2, ρ2). We first prove the compositionality of lumping.
We show that L1 ⊗ L2 is an ordinary lumping of

D1 ‖ D2 = (σ1 ⊗ σ2, Π1 ⊗Π2, Q1 ⊗Π2 + Π1 ⊗Q2, ρ1 ⊗ 1 + 1 ⊗ ρ2).

Let U1, U2, and U1 ⊗ U2 be distributors and V1, V2, and V1 ⊗ V2 be the
collectors for L1, L2, and L1 ⊗ L2, respectively. By using the lumping
conditions and Proposition 7.4.2(1) and (2) we have that

(V1 ⊗ V2)(U1 ⊗ U2)(Π1 ⊗Π2)(V1 ⊗ V2)
= V1U1Π1V1 ⊗ V2U2Π2V2

= Π1V1 ⊗Π2V2

= (Π1 ⊗Π2)(V1 ⊗ V2)

(V1 ⊗ V2)(U1 ⊗ U2)(Q1 ⊗Π2 + Π1 ⊗Q2)(V1 ⊗ V2)
= V1U1Q1V1 ⊗ V2U2Π2V2 + V1U1Π1V1 ⊗ V2U2Q2V2

= Q1V1 ⊗Π2V2 + Π1V1 ⊗Q2V2

= (Q1 ⊗Π2 + Π1 ⊗Q2)(V1 ⊗ V2)

(V1 ⊗ V2)(U1 ⊗ U2)(ρ1 ⊗ 1 + 1 ⊗ ρ2)
= V1U1ρ1 ⊗ V2U21 + V1U11 ⊗ V2U2ρ2

= ρ1 ⊗ 1 + 1 ⊗ ρ2.

Next, we prove that the lumped parallel composition is the parallel com-
position of the lumped components. We easily get, by Proposition 7.4.2(1)
and (2),

(U1 ⊗ U2)(Π1 ⊗Π2)(V1 ⊗ V2) = Π1 ⊗Π2 and

(U1 ⊗ U2)(Q1 ⊗Π2 + Π1 ⊗Q2)(V1 ⊗ V2) = Q1 ⊗Π2 + Π1 ⊗Q2.

Next, we consider reduction. Let Π1 = R1L1 and Π2 = R2L2 be some
canonical product decompositions. Put L = L1 ⊗ L2 and R = R1 ⊗ R2.
Note that L > 0 and R > 0 because L1, L2, R1, R2 > 0. We also have
L ·1 = (L1⊗L2) · (1⊗1) = L1 ·1⊗L2 ·1 = 1⊗1 = 1. Since rank(A⊗B) =
rank(A) · rank(B) by Proposition 7.4.2(6), we get that (L, R) is a canonical
product decomposition of Π = Π1⊗Π2. Reducing D1‖D2 using the canonical
product decomposition (L,R) gives us M1 ‖M2. ¥



7.4. Parallel Composition and Compositionality 151

We now present the definition of the parallel composition of Markov
reward chains with fast transitions. It comprises Kronecker sums of the
generator matrices, i.e., interleaving of the rates for both slow and fast
transitions.

Definition 7.4.8 Let F1 = (σ1, S1, F1, ρ1) and F2 = (σ2, S2, F2, ρ2) be two
Markov reward chains with fast transitions. Then their parallel composition
is defined as

F1 ‖ F2 = (σ1 ⊗ σ2, S1 ⊕ S2, F1 ⊕ F2, ρ1 ⊗ 1 + 1 ⊗ ρ2). 2

It is not difficult to see that the parallel composition of Markov reward
chains with fast transitions is well defined. In Figure 7.10a and Figure 7.10b
we recall the two Markov reward chains with fast transitions of Figure 7.5a
and Figure 7.5b, respectively. Their parallel composition is depicted in
Figure 7.10c.

Having defined parallel composition for both models, we show how they
are related: the limit of the parallel composition of two Markov reward
chains with fast transitions is the parallel composition of the limits of the
components (that are discontinuous Markov reward chains). Hence, a conti-
nuity property of the parallel composition holds as stated in the next result.

Theorem 7.4.9 If F1 →∞ D1 and F2 →∞ D2, then F1 ‖ F2 →∞ D1 ‖ D2. 2

Proof Let F1 = (σ1, S1, F1, ρ1) and F2 = (σ2, S2, F2, ρ2), and let their
corresponding limits be D1 = (σ1, Π1, Q1, Π1ρ1) and D2 = (σ2, Π2, Q2, Π2ρ2).
Using Proposition 7.4.2(4) and (5), we get that Π1 ⊗ Π2 is the ergodic
projection of F1⊕F2, i.e., limt→∞ e(F1⊕F2)t = Π1⊗Π2. As before, using the
distributivity of the Kronecker product and the fact that Π1 is a stochastic
matrix, we derive Q1 ⊗ Π2 + Π2 ⊗Q1 = (Π1 ⊗ Π2)(S1 ⊕ S2)(Π1 ⊗ Π2) and
(Π1 ⊗Π2)(ρ1 ⊗ 1 + 1 ⊗ ρ2) = Π1ρ1 ⊗ 1 + 1 ⊗Π2ρ2. ¥

Next we show that τ -lumping and τ -reduction are compositional as well,
with respect to the parallel composition of Markov reward chains with fast
transitions.

Theorem 7.4.10 If F1
L1
; F1 and F2

L2
; F2, then F1 ‖ F2

L1⊗L2
; F1 ‖ F2. Also,

if F1 ;r M1 and F2 ;r M2, then F1 ‖ F2 ;r M1 ‖M2. 2

Proof Let F1 = (σ1, S1, F1, ρ1), F2 = (σ2, S2, F2, ρ2), F1 = (σ1, S1, F 1, ρ1),
and F2 = (σ2, S2, F 2, ρ2). By Theorem 7.4.7 and the continuity result The-
orem 7.4.9, we get that L1 ⊗L2 is a τ -lumping for F1 ‖ F2. Let W1 and W2



152 Chapter 7. Aggregation of Extended Markovian Models

a) ?>=<89:;1
1 r1

aτ

­­

λ

··
?>=<89:;2

r2

µ
33 ?>=<89:;3

r3ν
ss

b) ?>=<89:;1

bτ

··

π r4

?>=<89:;2
1−π r5

cτ

TT

ξ

²²
?>=<89:;3

0

c) GFED@ABC1,1
r1+r4

bτ

··

π

aτ
22

λ

((
GFED@ABC2,1

r2+r4

bτ

··

µ
22 GFED@ABC3,1

bτ

··

r3+r4ν
rr

GFED@ABC1,2
r1+r5

ξ

²²

cτ

TT

1−π aτ //

λ
44

GFED@ABC2,2
r2+r5

ξ
²²

cτ

TT

µ
22 GFED@ABC3,2

r3+r5

ξ

²²

cτ

TT

ν
rr

GFED@ABC1,3
r1 aτ //

λ

66
GFED@ABC2,3

r2

µ
22 GFED@ABC3,3

r3ν
rr

Figure 7.10: Parallel composition of Markov reward chains with fast tran-
sitions

be the τ -distributors used for the τ -lumped processes in the assumption, re-
spectively. By Definition 7.2.8, Theorem 7.4.9, and Definition 7.4.3 for the
parallel composition of discontinuous Markov reward chains, we have that
W1⊗W2 is a τ -distributor for F1 ‖F2. The τ -lumped process corresponding
to W1 ⊗W2 is exactly F1 ‖ F2.

We next show the compositionality of τ -reduction. Let Π1 = R1L1 and
Π2 = R2L2 be the canonical product decompositions of Π1 = limt→∞ eF1t

and Π2 = limt→∞ eF2t, respectively. Put L = L1 ⊗ L2 and R = R1 ⊗ R2.
Then (L,R) is a canonical product decomposition of Π = Π1⊗Π2, as in the
proof of Theorem 7.4.7. This canonical product decomposition applied to
F1 ‖ F2 produces M1 ‖M2 as the τ -reduced process. ¥

In Figure 7.11a and Figure 7.11b we repeat the aggregated versions of the
Markov reward chains with fast transitions from Figure 7.10a and Fig-



7.4. Parallel Composition and Compositionality 153

a) ?>=<89:;1
1 r2

µ

¶¶
?>=<89:;2

r3

ν

SS
b) ?>=<89:;1

1 pr4+qr5

qξ

²²
?>=<89:;2

0

c) ?>=<89:;1

qξ

²²

1
r2+pr4+qr5

µ

66 ?>=<89:;3

qξ

²²

r3+pr4+qr5

ν

v v

?>=<89:;2
r2

µ

55 ?>=<89:;4
r3

ν
u u

Figure 7.11: Aggregated Markov reward chains with fast transitions

ure 7.10b. The Markov reward chain with fast transitions in 7.11c is the
parallel composition of the Markov reward chains with fast transitions in
7.11a and 7.11b with p = c

b+c and q = b
b+c . By Theorem 7.4.10, we have

that the Markov reward chain in 7.11c, is in fact the lumped version of the
parallel composition given in Figure 7.10c.

We define the parallel composition of two Markov reward chains with
silent transitions via the equivalence class of the parallel composition of the
representative Markov reward chains with fast transitions.

Definition 7.4.11 Let S1 = (σ1, S1,F1, ρ1) and S2 = (σ2, S2,F2, ρ2) be two
Markov reward chains with silent transitions. Then their parallel composi-
tion is defined as

S1 ‖ S2 = (σ1 ⊗ σ2, S1 ⊕ S2,F1 ⊕F2, ρ1 ⊗ 1 + 1 ⊗ ρ2),

where F1 ⊕ F2 denotes the equivalence class of F1 ⊕ F2 with respect to ∼,
for some F1 ∈ F1 and F2 ∈ F2. 2

The parallel composition of Markov reward chains with silent transitions
is well defined as the Kronecker sum respects the equivalence ∼. Next we
state the compositionality result for τ∼-lumping and τ∼-reduction. It is a
direct consequence of Theorem 7.4.10 for compositionality of τ -lumping and
τ -reduction, and compositionality of ordinary lumping for standard Markov
reward chain as a special case of Theorem 7.4.7.

Theorem 7.4.12 Let S1 and S2 be two Markov reward chains with silent
transitions. If S1

L1
; S1 and S2

L2
; S2, then S1 ‖ S2

L1⊗L2
; S1 ‖ S2. Also, if

S1
L1
;r M1 and S2

L2
;r M2, then S1 ‖ S2

L1⊗L2
; r M1 ‖M2. 2



154 Chapter 7. Aggregation of Extended Markovian Models

7.5 Summary

We consider three types of performance models. Markov reward chains
with fast transitions are our central model used for analyzing systems with
stochastic and instantaneous probabilistic transitions. Their limits are the
discontinuous Markov reward chains. Their quotients are the Markov reward
chains with silent transitions which can be used for the analysis of systems
with stochastic transitions and nondeterministic (internal) τ steps.

For each type of models, we present two aggregation methods: lumping
and reduction for discontinuous Markov reward chains, τ -lumping and τ -
reduction for Markov reward chains with fast transitions, and τ∼-lumping
and τ∼-reduction for Markov reward chains with silent transitions.

S1
L1 ///o/o/o/o

∈

S1

∈

S2
L2 ///o/o/o/o

∈

S2
∈

S1 ‖ S2
L1⊗L2 ///o/o/o/o

∈

S1 ‖ S2

∈

F1
L1 ///o/o/o/o

∞ ²²

F1

∞²²

F2
L2 ///o/o/o/o

∞ ²²

F2

∞²²

=⇒ F1 ‖ F2
L1⊗L2 ///o/o/o/o

∞ ²²

F1 ‖ F2

∞²²
D1

L1 // D1 D2
L2 // D2 D1 ‖ D2

L1⊗L2 // D1 ‖ D2

S1

r

L1

ÂÂÂ_
Â_

Â_
Â_

Â_
Â_

Â_
Â_

Â_

∈

S2

r

L2

ÂÂÂ_
Â_

Â_
Â_

Â_
Â_

Â_
Â_

Â_

∈

S1 ‖ S2

r

L1⊗L2

&&&f&f&f&f&f&f&f&f&f&f&f&f∈

F1

r ÂÂÂ_
Â_

Â_

∞ ²²

F2

r ÂÂÂ_
Â_

Â_

∞ ²²

=⇒ F1 ‖ F2

r &&&f
&f&f&f

∞ ²²
D1 r

// M1
L1 // M1 D2r

// M2
L2 // M2 D1 ‖ D2 r

// M1 ‖M2
L1⊗L2// M1 ‖M2

Figure 7.12: Summary compositionality results

In short, the contributions of this chapter are: (1) A definition of par-
allel composition of Markov rewards chains with stochastic discontinuity,
fast, and silent transitions. (2) Identification of preorder properties of the
aggregation methods for all types of models. (3) Compositionality theorems
for each type of models and each corresponding aggregation preorder, and
a continuity property of the parallel compositions. The results on compo-
sitionality are summarized by Figure 7.12 which is justified by the Theo-
rems 7.3.1–7.4.12, as well as by Proposition 7.2.10 and Proposition 7.2.17.

Next, we illustrate the features of the process theories developed so far
by specifying and analyzing the concurrent alternating bit protocol with real
timeouts and stochastically distributed lossy channels.



Chapter 8

Analyzing the Concurrent Alternating Bit

Protocol

In this chapter, we illustrate the theories and methods developed so far by
analyzing a version of the concurrent alternating bit protocol with lossy
channels. The protocol comprises real timeouts and generally-distributed
channels, which makes it suitable for specification in TCPdrst. For the pur-
pose of performance analysis, we choose the framework of the language χ
as it provides means for Markovian analysis and simulation for generally-
distributed delays from the same specification. To enable performance eval-
uation in discrete real time as well, we augment the environment with a
prototype extension that supports the analysis of models comprising imme-
diate probabilistic choices and deterministic delays. We refer to the model
as a discrete-time probabilistic reward graph and we develop two methods
for its analysis by translating it to a discrete-time Markov reward chain.

8.1 The Language χ

The language χ is a modeling language for control and analysis of industrial
systems (machines, manufacturing lines, warehouses, factories, etc.) [16]. It
has been successfully applied to a large number of industrial cases, such as
a car assembly line, a multi-product multi-process wafer fab [34], a fruit
juice blending and packaging plant [47], and process industry factories [17].
Initially, χ came equipped with features for the modeling of discrete-event
systems only, and was not supported by a formal semantics. Later, it was
redesigned and converted to a formal timed specification language [25]. At
present, χ can be characterized as a process algebra with data. In addition, it
was extended to handle both discrete-event and continuous aspects, allowing
for the modeling of hybrid systems [16].

155



156 Chapter 8. Aggregation of Extended Markovian Models

Originally, simulation was the only means to analyze χ models. For the
verification of functional requirements, however, simulation is not sufficient.
Although it can, for instance, reveal that a system has a deadlock or that
the system may exhibit a specific behavior, it cannot show that the sys-
tem is deadlock-free nor that it will persist having the specific behavior.
Therefore, a new approach has been taken, connecting χ to state-of-the-art
verification tools and techniques. Currently, a χ model can be compiled to
the input language of a number of model checkers, including SPIN [56, 93],
µCRL [21, 97] and UPPAAL [63, 24] (cf. Figure 1.11). The translated model
can subsequently be checked against the functional properties formulated in
the target setting.

Successful verification is usually succeeded by performance analysis and
design optimization. At present, performance analysis of a χ model can be
carried out either by simulation, or by analysis of the underlying continuous-
time Markov (reward) chain (cf. Figure 1.11). Simulation is a powerful
method for performance analysis, but its disadvantages in comparison to
analytical methods are well-known [15]. The approach based on Markov
chain turns χ into a powerful stochastic process algebra in the vein of [51, 55].
It is analytical, and builds on a vast and well-established theory. However,
the generation of a Markov chain from a χ model requires that all delays in
the system are exponentially distributed. This is a serious drawback since
in industrial systems, particularly in controllers, delays are often closer to
being deterministic. Although it is possible to approximate deterministic
delays by sequences of exponential delays, i.e. to model them by so-called
phase-type distributions [82], this approach suffers from the state explosion
problem. Many states are needed to correctly approximate these delays,
and the generated Markov chain becomes large due to the full interleaving
of stochastic transitions in parallel contexts.

In this chapter, we propose a model in which time delays are discrete
and deterministic, while random behavior is expressed in terms of immediate
probabilistic choices. This model is referred to as discrete-time probabilistic
reward graphs. We define a method for obtaining performance measures of
a discrete-time probabilistic reward graph by transforming it to a discrete-
time Markov reward chain [61]. We augment the χ environment so that for
a given χ specification, the corresponding discrete-time probabilistic reward
graph can be obtained automatically. Usually, in contrast to the Markov
chain approach, the discrete-time probabilistic reward graph generated from
a χ-model is considerably smaller (more than threefold for our case study).
In a discrete-time probabilistic reward graph, time itself does not decide
a choice and, as such, interleaving of timed transitions does not occur as



8.2. Discrete-Time Probabilistic Reward Graphs 157

in typical timed process algebras [10]. As an illustration, a case study is
discussed on the performance of a turntable drilling system. Although com-
pact, this system incorporates many complex modeling issues. The case
has been studied previously to illustrate the verification techniques of func-
tional requirements [25, 23]. We put the new performance results exploiting
discrete-time probabilistic reward graphs in perspective, by comparing them
to results from simulation and the approach exploiting Markov chains.

8.2 Discrete-Time Probabilistic Reward Graphs

In this section we introduce the notion of a discrete-time probabilistic re-
ward graph, and give, regarding performance, two equivalent Markovian
interpretations: one straightforward and general, the other more specific,
but computationally more efficient.

Discrete-time probabilistic reward graphs are transition systems with
two types of states: (1) probabilistic, which have finitely many probabilistic
outgoing transitions and (2) timed, which have only one outgoing transition.
This is formalized in the following definition.

Definition 8.2.1 A discrete-time probabilistic reward graph is a tuple G =
(σ, S, 99K, 7−→, ρ), where

1. σ ∈ R1×|S| is an initial state probability row vector ;

2. S is the set of states partitioned as {Sp, St}, where Sp and St are the
sets of probabilistic and timed states, respectively;

3. 99K ⊆ Sp×(0, 1]×S is an (immediate) probabilistic transition relation;

4. 7−→ ⊆ St × N+ × S is a timed transition relation such that s
n7−→ s′

and s
m7−→ s′′ (in infix notation) implies n = m and s′ = s′′; and

5. ρ ∈ R|S|×1 is a state reward rate vector. 2

The interpretation of a discrete-time probabilistic reward graph is as follows.
In probabilistic states the process spends no time, and it jumps to a next
state chosen according to the probabilistic transition relation. In a timed
state the process spends as many time units as specified by the timed tran-
sition relation, and jumps to the unique subsequent state. The uniqueness
requirement is to support the time-determinism property [84, 11, 10]. A
reward is gained per time unit, as determined by the reward rate assigning
function. Although we allow reward rates to be assigned also to probabilistic



158 Chapter 8. Aggregation of Extended Markovian Models

states, the process actually gains no reward as it spends no time in them.
This statement will also be supported by the aggregation method used below
(cf. also Section 7.2).

We visualize a discrete-time probabilistic reward graph as in Figure 8.1a.
Here, states 1, 2, and 3 are timed, whereas states 4 and 5 are probabilistic.
The reward rates are put in sans-serif at the top right corner of each state;
the reward rate of the state i is ri, for 1 6 i 6 5.

a) ?>=<89:;4
r4

3
5

44W _ g

2
5

µµ

¼
¾
À
Â
!
#
%

?>=<89:;5
1 r5

1
3tt W_g

2
3

µµ

¼
¾
À
Â
!
#
%

?>=<89:;3
r3d

1

]]

?>=<89:;1
r1Y

2

RR

?>=<89:;2
r2

A
2

LL

b) ?>=<89:;4
r4

3
5

44

2
5

ºº

?>=<89:;5
1 r5

1
3

uu

2
3

²²

?>=<89:;3
r3

1
ee

?>=<89:;6
r1

1

OO

?>=<89:;7
r2

1

OO

?>=<89:;1
r1

1

OO

?>=<89:;2
r2 1

II

c) ?>=<89:;6
r1

1
2

¾¾

1
2

ºº

?>=<89:;3
r3

1
6

¥¥

5
6

¨¨

?>=<89:;7
r3

1

OO

?>=<89:;1
1
6

r1

1

OO

?>=<89:;2
5
6

r2

1

OO

Figure 8.1: a) A discrete-time probabilistic reward graph, b) its unfolding,
and c) aggregated unfolding

To obtain the performance measures of a discrete-time probabilistic re-
ward graph we exploit a relation with discrete-time Markov reward chains,
as the latter are well-established models for performance analysis. We show
how to represent a discrete-time probabilistic reward graph to an equivalent
discrete-time Markov reward chain, which is then analyzed, in the end to
interpret the results back to the discrete-time probabilistic reward graph
setting. The translation is performed in two steps: first the discrete-time
probabilistic reward graph is transformed to a transition system that can
be interpreted as a discrete-time Markov reward chain, and afterwards the
discrete-time Markov reward chain is adapted to truthfully represent the
semantics of the original process by an aggregation that eliminates the im-
mediate probabilistic transitions. We need to interchangeably treat discrete-
time Markov reward chains both as transition systems and in matrix terms.
First, we give the notion of a discrete-time Markov reward chain in terms
of transition systems.

Definition 8.2.2 A discrete-time Markov reward chain M = (σ, S,−→, ρ)
is a tuple where



8.2. Discrete-Time Probabilistic Reward Graphs 159

– σ ∈ R1×|S| is the initial state probability row vector;

– S is a finite set of states;

– −→⊆ Sp × (0, 1]× S is the probabilistic transition relation; and

– ρ ∈ R|S|×1 is the state reward vector. 2

Operationally, a discrete-time Markov reward chain is considered to wait
one time unit in a state, gain the reward for this state determined by the
reward vector ρ, and immediately jumps to another state with a probability
specified by the relation −→.

When required by the context, we will have occasion to represent a
discrete-time Markov reward chain as a pair (σ, P, ρ), where P is the prob-
ability transition matrix, i.e., the matrix representation of the probability
transition relation, and ρ is the state reward vector. It is known that P(n),
the transition probabilities after n > 0 time steps are given by P(n) = Pn.
Also, the long-run probability vector π ∈ R|S|, i.e., the average probability
that the process resides in a given state after the system stabilizes, satisfies
πP = π. For more details, we refer to the standard literature (e.g., [61, 37]).

The main idea behind the translation from a discrete-time probabilistic
reward graph G to a discrete-time Markov reward chain M is to represent
a timed transition of duration n of G as a sequence of n states in M, con-
nected by probabilistic transitions with probability 1, all having the same
reward. The immediate probabilistic transitions of G remain unchanged by
this transformation. Thus, the immediate probabilistic transitions of G are
wrongly transformed to probabilistic transitions of M that last one time unit.
We come back to this problem later. First, we give the naive transformation
to a discrete-time Markov reward chain, which we refer to as the unfolding
of a discrete-time probabilistic reward graph.

Definition 8.2.3 Let G = (σG, SG, 99K, 7−→, ρG) be a discrete-time proba-
bilistic reward graph with SG = {s1, . . . , sn}. Associate with every state
si ∈ SG a number mi ∈ N+ as follows: if si is a probabilistic state, then
mi = 1; if si is a timed state, then mi = m for the unique m such that
si

m7−→ sk, for some sk ∈ SG.
Then, the unfolding of G is the discrete-time Markov reward chain U =

(σU, SU,−→, ρU) where SU = { sij | 1 6 i 6 n, 1 6 j 6 mi } and

1. σU(si1) = σG(si) and σU(sij) = 0 for 1 < j 6 mi;

2. sij
1−→ sij+1 for 1 6 j 6 mi − 1, and simi

1−→ sk1 if si
m7−→ sk or

si1
p−→ sk1 if si

p99K sk; and



160 Chapter 8. Aggregation of Extended Markovian Models

3. ρU(sij) = ρG(si) for 1 < j 6 mi.

The set of probabilistic states of U is given by SU,p = {si1 | si ∈ SG,p} and
the set of timed states is given by SU,t = SU \ SU,p. The unfolding set of si

is given by US(si) = { sij | 1 6 j 6 mi }. The starting state of the unfolding
of si is given by us(US(si)) = si1. 2

Remark 8.2.4 The states of an unfolding of a discrete-time probabilis-
tic reward graph can be partitioned to probabilistic and timed states as
given by Definition 8.2.3. In the matrix representation of the unfolding
U = (σU, P, ρU), the transition matrix P induces two transition matrices Pt

and Pp. The transition matrix Pt represents the unfolded timed transitions
that originate from the timed states of SG,t, whereas Pp holds the trans-
lated immediate probabilistic transitions that originate from the probabilis-
tic states of SG,p. To obtain these matrices the transition matrix P is first
split to P = P ′

t + P ′
p according to the timed and probabilistic transitions,

respectively. The matrices P ′
t and P ′

p have to be adapted to transition ma-
trices by adding 1s on the diagonal of the zero rows, where the other type
of transitions are missing. 2

We illustrate the situation by an example.

Example 8.2.5 The unfolding of the discrete-time probabilistic reward
graph from Figure 8.1a is given by the discrete-time Markov reward chain
depicted in Figure 8.1b. The unfolded timed delays originating from states 1
and 2 introduce the new states 6 and 7, respectively. Here the timed states
are {1, 2, 3, 6, 7} and the probabilistic states are {4, 5}. The transition ma-
trix of the timed and probabilistic transitions are given by

Pt =




0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0




Pp =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
2
5 0 0 0 3

5 0 0
0 2

3 0 1
3 0 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1




.

2

As hinted above, the discrete-time Markov reward chain obtained by the
unfolding, in general, does not truthfully represent the semantics of the orig-
inal discrete-time probabilistic reward graph, in the sense that probabilistic
states are immediate in the discrete-time probabilistic reward graph, whereas



8.2. Discrete-Time Probabilistic Reward Graphs 161

they last one unit of time in the discrete-time Markov reward chain. For
example, in the discrete-time probabilistic reward graph from Figure 8.1a,
state 5 can be reached from state 1 with probability 1

2 after a delay of 2 time

units (via 1 27−→ 4
1/2
99K 5), whereas in the unfolded version this cannot be

done in less than 3 time units (that are required for a sojourn in the states 1,
6, and 4).

The solution to this problem is to eliminate the immediate probabilistic
states appropriately. The elimination is achieved by the reduction-based ag-
gregation method of Section 7.2, suitably adapted for the discrete-time set-
ting. Intuitively, in the new setting the method computes the accumulative
probability of reaching one timed state from another and adjusts the delays.
More specifically, the process of aggregation is as follows: In a unfolding
U = (σ, P, ρ) the transition probability matrix P is split to the transition
matrices of the timed and probabilistic transitions Pt and Pp, respectively.
Next, the Cesaro sum of the transition matrix induced by Pp, given by

Π = lim
n→∞

n∑

i=0

Pp + P 2
p + . . . + Pn

p

n
,

is computed and its canonical product decomposition (L, R) is found (cf.
Definition 7.2.13). The Cesaro sum plays the role of the ergodic projection
in Definition 8.2.6 for the discrete-time case [61]. It represents the ergodic
projection at one of the transition matrix Pp and it satisfies ΠP = PΠ =
Π [61]. Finally, the aggregated process is given by M = (σR, LPtR,Lρ) as
in Definition 7.2.14. We specify the aggregation method by the following
definition.

Definition 8.2.6 Let G be a discrete-time probabilistic reward graph and
U = (σ, P, ρ) be its unfolding where P induces Pt and Pp. The translation by
unfolding of G is the discrete-time Markov reward chain M = (σ, P , ρ), given
by σ = σR, P = LPR, and ρ = Lρ, where (L,R) is a canonical product
decomposition of the Cesaro sum of Pp. 2

The translation preserves the unfolding sets of the timed transitions of G
and their starting states. Only the probabilistic states are eliminated and
the transitions of the last states in the unfolding of the timed transitions
in U are adjusted in M. We note that the translation by unfolding has more
states than the original process in the order of the sum of the duration of
all timed transitions. We illustrate the translation by an example.



162 Chapter 8. Aggregation of Extended Markovian Models

Example 8.2.7 The discrete-time Markov reward chain in Figure 8.1c is
the aggregated chain of the one in Figure 8.1b. The aggregation eliminates
the probabilistic states 4 and 5 and splits the incoming timed transitions
from the states 6 and 3. The splitting is according to the accumulative
(trapping) probabilities of 4 and 5 to the timed states 1 and 2 (which actually
represent ergodic classes in the terminology of Section 7.1). Thus, in the
aggregated chain there are two outgoing transitions from the states 6 and 3
to 1 and 2 (instead of a single one in the unfolded chain). The aggregation
methods conforms to the Markovian semantics that after a delay of one
time unit there is an immediate probabilistic choice, which in the unfolded
discrete-time Markov reward chain is explicitly stated by the immediate
probabilistic transitions. It is straightforwardly checked that the discrete-
time Markov reward chain in Figure 8.1c models the same system as the
discrete-time probabilistic reward graph in Figure 8.1a when the discrete-
time probabilistic reward graph is observed in the states 1, 2, and 3. 2

Remark 8.2.8 An alternative and more evident, but possibly analytically
and computationally intractable approach would be to translate and analyze
discrete-time probabilistic reward graphs as semi-Markov reward chains [57].
It is not difficult to observe that discrete-time probabilistic reward graphs
resemble a very simple class of semi-Markov reward chains with deterministic
distributions. However, to obtain the form of a semi-Markov reward chain,
the aggregation by reduction still has to be applied to eliminate subsequent
probabilistic transitions and probabilistic transitions must be introduced
between subsequent timed transitions. Recently, a recurrence-relation-based
tailored analysis approach for discrete-time semi-Markov processes has been
proposed in [92]. 2

The following lemma gives an important property of the long-run probabil-
ity vector of the unfolding in terms of a relation between the states that
belong to the same unfolding set. The result supports the assignment of the
same reward to all states in an unfolding of a timed transition as in Defi-
nition 8.2.3. It also plays a role in the proof of an optimization technique
described below.

Lemma 8.2.9 Let π be the long-run probability vector of the translation of
a discrete-time probabilistic reward graph G. Then for every state k ∈ SG,t

and i, j ∈ US(k) it holds that π[i] = π[j]. 2

Proof Let P be the transition probability matrix of the translation. As π
is the long-run probability vector, it holds that πP = π. Now, assume that



8.2. Discrete-Time Probabilistic Reward Graphs 163

i, j ∈ US(k), for some timed state k of G, are two subsequent states of the
unfolding sequence of some timed transition, i.e., i

1−→ j. Then, P [i, j] = 1
and P [i′, j] = 0 for every i′ 6= i, as there are no other incoming transitions
to j. Now, it can be observed that π[j] = πP (−,j) = π[i], where P (−,j)

denotes the j-th column of P . Hence π[i] = π[j], for any two subsequent
states in US(k), which completes the proof. ¥

Next, we investigate how to related the translation back to the original
process.

With the transformation of a discrete-time probabilistic reward graph
into a discrete-time Markov reward chain in place, we can use the standard
theory and tools to compute all common performance measures. As before,
our focus is on the expected reward rate after n time units or in the long-run.

If the resulting discrete-time Markov reward chain is ergodic, the ex-
pected reward at time step n is standardly computed as R(n) = σP(n)ρ and
the long-run reward as R∞ = πρ, where (σ, P, ρ) is the translated discrete-
time Markov reward chain, P(n) is its transition probability matrix, and π is
its long-run probability vector. In case the resulting process is not ergodic,
we can always partition the original discrete-time probabilistic reward graph
into subgraphs that produce ergodic processes and analyze them separately.
So, we do not consider the ergodicity condition as restrictive to our analy-
sis and from now on we assume that we work only with ergodic processes.
After determining the performance metric of the discrete-time Markov re-
ward chain we have to interpret the obtain result back in the discrete-time
probabilistic reward graph setting.

To give the backward relation between the discrete-time probabilistic re-
ward graph G and its translation M we use specially adapted distributor and
collector matrices. The idea is to fold back the unfolded timed transitions
and restore the effect of the probabilistic transitions in G by multiplying the
transition matrix of M with these matrices. In that way, we can obtain the
transition matrix and, consequently, the expected reward of G.

First, we define the folding collector matrix of the unfolding U of G as
the collector of the partition induced by the unfolding sets. Due to the
reduction-based aggregation, all probabilistic states have been eliminated
to obtain the translation M. So, the folding distributor and collector of U
have too many states, as they also account for the already eliminated prob-
abilistic transitions, and they have to be shrunk. Therefore, the rows and
columns corresponding to the eliminated probabilistic transitions are omit-
ted to obtain the folding distributor and collector of M.

The multiplication of the transition matrix of M with its folding collector



164 Chapter 8. Aggregation of Extended Markovian Models

produces the accumulative probability of residing in each unfolded timed
state of M per unfolding set. So, the probabilities of residing in a timed
state in the original process G can be extracted as the folded probability of
the starting timed state of every unfolded timed transition. This is carried
out by multiplying the folded transition matrix with a folding distributor
that extracts only the probabilities of the starting states of the unfolding
of each transition. The folding distributor and collector matrices of the
unfolding U and the translation M are defined as follows.

Definition 8.2.10 Let G be a discrete-time probabilistic reward graph, U
its unfolding, and M its translation. The folding collector matrix VU of U is
given by VU[i, j] = 1 iff j ∈ US(i) and VU[i, j] = 0 otherwise, for i, j ∈ SU.
The folding distributor UU is given by UU[i, j] = 1 iff j = us(US(i)) and
UU[i, j] = 0 otherwise. The folding distributor and collector matrix UM

and VM of M are obtained by omitting the rows and columns of UU and VU,
respectively, that correspond to the probabilistic states in SU, p. 2

The folding collector VM of the translation M has the following property
given as a corollary of Lemma 8.2.9.

Corollary 8.2.11 Let G be a discrete-time probabilistic reward graph and M
its translation. Let π be the long-run probability vector of M, V the folding
collector of M, and U some distributor corresponding to V . Then, π =
πV U . 2

Proof Pick i ∈ M. Let k be the state such that i ∈ US(k). Then,

(πV U)[i] =
∑

j∈US(k)

π[j]U [j, i] = π[i]
∑

j∈US(k)

U [j, i] = π[i] · 1 = π[i],

which completes the proof. ¥

Intuitively, the corollary states that folding the long-run probabilities of the
unfolded timed states in the translation can be done using the folding col-
lector and an arbitrary distributor. So, we can reconstruct the behavior of
the timed states in the original process G. However, the folding distribu-
tor and collector matrices cannot restore the behavior of the probabilistic
states. Recall that we used the canonical decomposition (L,R) of the Ce-
saro sum Π to obtain the translation M from the unfolding U. To properly
eliminate the effect of the probabilistic transitions the folding distributor UU

has to be multiplied by R to the right, obtaining RM = UUR, whereas the
folding collector VU is multiplied by L to the left obtaining LM = LVU. The



8.2. Discrete-Time Probabilistic Reward Graphs 165

matrices LM and RM no longer have the form of a distributor and collector
matrix.

Now, we have all prerequisites to define PG(n), the transition matrix
after n time steps of the discrete-time probabilistic reward graph G. It
is given by PG(n) = RMPM(n)LM. It should not be difficult to see from
Definition 8.2.3 and Definition 8.2.6 that we also have σM = σGRM and
ρM = LMρG. Then,

RM(n) = σMPM(n)ρM = σGUMPM(n)VMρG = σGPG(n)ρG = RG(n).

Similarly, we put πG = πMLM for the long-run probabilities. Then,

R∞
M = πMρM = πMLMρG = πGρG = R∞

G .

Remark 8.2.12 The translation of the discrete-time probabilistic reward
graph G can also be given directly by means of discrete-time Markov reward
chains with fast transitions, as the counterpart of the Markov reward chains
with fast transitions given in Section 7.1. Actually, we have implicitly used
such an interpretation as

PG(n) = RMPM(n)LM = UURLP′(n)RLVU = UUΠPU(n)ΠVU.

By recalling Definition 7.1.5 of the limit of a Markov reward chain with fast
transitions it is clear that we treat discrete-time probabilistic reward graphs
as folded limits of discrete-time Markov reward chains with fast transitions,
where the fast transitions model the immediate probabilistic choices. How-
ever, we believe that the transformation in two steps given in the current
setting is natural and contributes to the clarity of the presentation.

We also note that the lumping condition does not hold for LM and RM (as
hinted by their names), i.e., in general, LMRMPM(n)LM 6= PM(n)LM. As a
consequence, the possibility (and means) of computing PG(n) using PG(n−1)
is not immediately clear. Thus, in the current setting, for transient analysis
of a discrete-time probabilistic reward graphs we resort to computing the
bigger transition probability matrix PM(n) of its translation M and folding it
back using the specially adapted matrices LM and RM as elaborated above.2

We illustrate the situation by an example.

Example 8.2.13 The folding distributor and collector matrix of the un-
folding U in Figure 8.1b of the discrete-time probabilistic reward graph G in



166 Chapter 8. Aggregation of Extended Markovian Models

Figure 8.1a are given by

UU =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0




VU =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0




.

The canonical decomposition (L,R) of the Cesaro sum of the transition
matrix of the immediate probabilistic transitions is given by

L =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




R =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1
2

1
2 0 0 0

1
6

5
6 0 0 0

0 0 0 1 0
0 0 0 0 1




.

The folding distributor and collector matrices of the translation M depicted
in Figure 8.1c are given by

UM =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0




VM =




1 0 0
0 1 0
0 0 1
1 0 0
0 1 0




.

The adapted versions RM and LM of the folding distributor and collector
are given by:

RM =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1
2

1
2 0 0 0

1
6

5
6 0 0 0




LM =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0




,

where the states 6 and 7 have been renumbered to 4 and 5 in the matrix
representation.



8.2. Discrete-Time Probabilistic Reward Graphs 167

The initial probability vector σM and the reward vector ρM are given by

σM =
(
0 0 0 0 1

)
RM =

(
1
6

5
6 0 0 0

)
ρM = LM




r1

r2

r3

r4

r5




=




r1

r2

r3

r1

r2




.

The probability transition matrix of G after 1, 2, and 3 time units is given
by

PG(1)=




1 0 0 0 0
0 1 0 0 0
1
2

1
2 1 0 0

1
2

1
2 0 0 0

1
6

5
6 0 0 0




PG(2)=




1
6

5
6 0 0 0

0 0 1 0 0
1
2

1
2 0 0 0

1
12

5
12

1
2 0 0

1
36

5
36

5
6 0 0




PG(3)=




1
6

5
6 0 0 0

1
2

1
2 0 0 0

1
12

5
12

1
2 0 0

1
3

2
3 0 0 0

4
9

5
9 0 0 0




.

We can directly check the correspondence with the execution of the discrete-
time probabilistic reward graph depicted in Figure 8.1. Note that the process
never resides in the probabilistic states 4 and 5.

The long-run expected reward rate of the discrete-time probabilistic re-
ward graph depicted in Figure 8.1a is obtained from the long-run probability
vector πM of its translation of Figure 8.1c. This vector is

πG = πMLM =
(

1
11

3
11

3
11

1
11

3
11

)
LM =

(
2
11

6
11

3
11 0 0

)
.

Note that the long-run probability vector of G has 0s for the places of the
probabilistic states. The long-run expected reward rate of G is

R∞
G = πGρG =

(
2
11

6
11

3
11 0 0

)




r1

r2

r3

r4

r5




=
2
11

r1 +
6
11

r2 +
3
11

r3.

It is the same as the long-run probability vector of M, i.e.,

R∞
M = πMρM =

(
1
11

3
11

3
11

1
11

3
11

)




r1

r2

r3

r1

r2




=
2
11

r1 +
6
11

r2 +
3
11

r3.

2



168 Chapter 8. Aggregation of Extended Markovian Models

We can visualize the full process of obtaining the performance measures
of a discrete-time probabilistic reward graph by means of translation by
unfolding in the left branch in Figure 8.2.

Discrete-time
probabilistic reward graph

Translation by unfolding
kkkk

uukkkkk Translation by geometrization
SSSS

))SSSSS

Discrete-time
Markov reward chain

Transient analysis

²²
Long-run analysis

ZZZZZZZZZZZZ

,,ZZZZZZZZZZZZZ

Discrete-time
Markov reward chain

Long-run analysis

²²
Transient metrics Long-run metrics

Figure 8.2: Performance measuring for discrete-time probabilistic reward
graphs

The analysis of a discrete-time probabilistic reward graph by its trans-
lation to a discrete-time Markov reward chain using the approach described
above introduces extra states that are required for the unfolding of the timed
transitions. In the following section we give an optimized translation in case
of long-run analysis.

Note that the unfolded discrete-time Markov reward chain can have, in
general, substantially more states than the original discrete-time probabilis-
tic reward graph, as every delay of duration n introduces n− 1 new states.
This means that the translation by unfolding, although straightforward to
serve as a definition, leads to computations on large state spaces. In the
rest of this section, we optimize our method, using ‘geometrization’ of time
delays to obtain a discrete-time Markov reward chain of, at most, the size
of the original graph. This discrete-time Markov reward chain has the same
long-run expected reward rate as the one translated by unfolding. The main
idea is to replace discrete delays by geometrically distributed ones with the
same mean instead of unfolding them. First, we define the geometrization
of a discrete-time probabilistic reward graph.

Definition 8.2.14 Let G = (σ, S, 99K, 7−→, ρ) be a discrete-time probabilis-
tic reward graph. Then, the geometrization of G is the discrete-time Markov
reward chain W = (σ, S,−→, ρ), if

1. for each timed transition s
n7−→ s′ in G we have the two transitions

s
1/n−→s′ and s

(n−1)/n−→ s in M; and



8.2. Discrete-Time Probabilistic Reward Graphs 169

2. for each probabilistic transition s
p99K s′ in G we have s

p−→ s′ in M. 2

The geometrization of a timed transition in G replaces the transition by
two transitions in W such that they induce a geometric sojourn time in
the state with mean equal to the duration of the timed transition. As
before, to obtain the final discrete-time Markov reward chain it is required
to eliminate the probabilistic transitions by reduction-based aggregation.
However, the translation by geometrization is not adequate for transient
analysis as it does not truthfully depict the semantics of G. Still, we will
show that the long-run expected reward of the discrete-time Markov reward
chains obtained by translating the same discrete-time probabilistic reward
graph by unfolding and geometrization is the same. First, we illustrate the
translation by geometrization.

a) ?>=<89:;4
r4

3
5

44W _ g

2
5

µµ

¼
¾
À
Â
!
#
%

?>=<89:;5
1 r5

1
3tt W_g

2
3

µµ

¼
¾
À
Â
!
#
%

?>=<89:;3
r3d

1

]]

?>=<89:;1
r1Y

2

RR

?>=<89:;2
r2

A
2

LL

b) ?>=<89:;4
r4

3
5

44

2
5

µµ

?>=<89:;5
1 r5

1
3tt

2
3

µµ

?>=<89:;3
r3

1

]]

?>=<89:;1
r1

1
2

JJ

1
2

RR

?>=<89:;2
r2

1
2

JJ

1
2

LL

c) ?>=<89:;3
r3

1
6

±±

5
6

³³
?>=<89:;1

3
4

33
1
6

r1

1
4

// ?>=<89:;2
5
6

r2
1
2

QQ

1
2

TT

Figure 8.3: a) A discrete-time probabilistic reward graph, b) its
geometrization, and c) aggregated geometrization

Example 8.2.15 Consider again the discrete-time probabilistic reward
graph from Figure 8.1a, repeated in Figure 8.3a. Figure 8.3b depicts its
geometrization. For the same reasons as discussed above, the discrete-time
Markov reward chain obtained by geometrization still needs to be aggre-
gated. The result of the complete translation is depicted in Figure 8.3c. 2

The translation by geometrization is depicted by the right branch in Fig-
ure 8.2. To show that the two translations indeed commute, i.e., they give
rise to discrete-time Markov reward chains with the same long-run perfor-
mance measure, we need to find the relation between the resulting processes.



170 Chapter 8. Aggregation of Extended Markovian Models

Again, we turn to the matrix representation of a discrete-time Markov re-
ward chain and we relate the two methods by using the folding collector and
a special uniform distributor. The uniform distributor U is defined as the
distributor corresponding to the folding collector, in which the distribution
coefficients corresponding to the states in the same partitioning class are
equal. For example, the uniform distributor corresponding to the folding
collector VU in Example 8.2.13 of the unfolding U depicted in Figure 8.1b is
given by

U =




1
2 0 0 0 0 1

2 0
0 1

2 0 0 0 0 1
2

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0




.

It can be directly checked that the discrete-time Markov reward chain de-
picted in Figure 8.3b is obtained by multiplying the transition matrix of the
one depicted in Figure 8.1 with the uniform distributor U and the folding
collector V from Example 8.2.13.

One observes that this holds in general, because when a timed transition
si

m7−→ sj is unfolded to si1
1−→ . . .

1−→ sim
1−→ sj1, then the multiplication

of the transition probability matrix P by the uniform distributor U on the
left, and by the folding collector V on the right, transforms the sequence

into two transitions US(si)
1/m−→ US(sj) and US(si)

(m−1)/m−→ US(si). This
directly corresponds to geometrizing the delays of the original discrete-time
probabilistic reward graph as given by Definition 8.2.14, after the renaming
of US(s) to s. Thus, by folding the unfolding of a discrete-time probabilistic
reward graph using the uniform distributor, we obtain the geometrization
of the discrete-time probabilistic reward graph.

The following theorem states that the translations produce discrete-time
Markov reward chains with the same long-run expected reward race.

Theorem 8.2.16 Let G be a discrete-time probabilistic reward graph, M1

its translation by unfolding, and M2 its translation by geometrization. Then
R∞

M1
= R∞

M2
. 2

Proof Let the U = (σ, P, ρ) be the unfolding of G. Let Pt and Pp be the
transition matrices of the timed nad probabilistic transitions and (L1, R1)
be the canonical product decomposition of the Cesaro sum of Pp as given
by Definition 8.2.6.Then M1 = (σR1, L1PtR1, L1ρ) is the translation by
unfolding. Let (L2, R2) be the canonical product decomposition of UUPpVU



8.2. Discrete-Time Probabilistic Reward Graphs 171

required to give the translation by geometrization. Then

M2 = (σVUR2, L2UUPtVUR2, L2UUρ)

is the translation by geometrization.
First, we will show that πM1VM1 is the long-run probability vector of M2,

where VM1 is the folding collector of M1, and, then, as a consequence it will
follow that R∞

M1
= R∞

M2
. We note that this result is stronger than the

one stated by the theorem, as it gives the relation between the long-run
probability vectors of the translations by unfolding and geometrization.

Without loss of generality, we assume that G has k timed transitions,
` closed loops of probabilistic transitions, and m open loops or sequences
of probabilistic transitions. They correspond to t1 + . . . + tk trivial ergodic
classes of one element for the duration of the timed transitions t1, . . . , tk,
` ergodic classes with more than one element, and m transient states (cf. Sec-
tion 7.1). To alleviate the computations, again without loss of generality,
we assume a numbering of the states such that unfolding sets contain states
with consecutive indices, after which we place the closed loops, and finally,
the transient states.

For such a numbering, the matrices UM1 (the uniform distributor corre-
sponding to VM1), VM1 , L1, and R1, have the following form:

UM1 =




ut1 . . . 0 0 0 0
...

. . .
...

...
...

...
0 . . . utk 0 0 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1




VM1 =




1t1 . . . 0 0 0 0
...

. . .
...

...
...

...
...

0 . . . 1tk 0 0 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1




L1=




It1 . . . 0 0 0 0 0
...

. . .
...

...
...

...
...

0 . . . Itk 0 0 0 0
0 0 0 µ1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . µ` 0
0 0 0 0 0 0 0m




R1=




It1 . . . 0 0 0 0 0
...

. . .
...

...
...

...
...

0 . . . Itk 0 0 0 0
0 0 0 1E1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1E` 0
( δ10) . . . ( δk0) d1 . . . d` 0m




where ut1 , . . . , utk are uniformly distributed positive stochastic row vectors,
µ1, . . . , µ` are the ergodic probability row vectors of the ergodic classes,



172 Chapter 8. Aggregation of Extended Markovian Models

δ1, . . . , δk are the transient probability vectors of the first states in the un-
folding sequences, and

(
δi 0

)
is a square matrix where the first column is

δi for 1 6 i 6 k, and d1, . . . , dl are the transient probability vectors of the
ergodic classes.

The matrices UU, VU, L2, and R2 have the following form:

UU=




ut1 . . . 0 0 0 0 0
...

. . .
...

...
...

...
...

0 . . . utk 0 0 0 0
0 0 0 IE1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . IE` 0
0 0 0 0 0 0 Im




VU=




1t1 . . . 0 0 0 0 0
...

. . .
...

...
...

...
...

0 . . . 1tk 0 0 0 0
0 0 0 IE1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . IE` 0
0 0 0 0 0 0 Im




L2 =




1 . . . 0 0 0 0 0
...

. . .
...

...
...

...
...

0 . . . 1 0 0 0 0
0 0 0 µ1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . µ` 0
0 0 0 0 0 0 0m




R2 =




1 . . . 0 0 0 0 0
...

. . .
...

...
...

...
...

0 . . . 1 0 0 0 0
0 0 0 1E1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1El 0
δ1 . . . δk d1 . . . dl 0m




.

Next, we show that πM1VM1 is the long-run probability vector of the tran-
sition matrix UM1L1PtR1VM1 . By Corollary 8.2.11, applied for the uniform
distributor UM1 , and the fact that πM1 is the long-run probability vector of
LPtR we have that

πM1VM1UM1L1PtR1VM1 = πM1L1PtR1VM1 = πM1VM1 .

Now, to prove that πM2 = πM1VM1 it remains to show that UM1L1 = L2UU

and R1VM1 = VUR2. This is obtained by direct multiplication of the matrices
given above, which completes the proof that πM2 = πM1VM1 . Now, using this
result we have that

R∞
M1

= πM1L1ρ = πM1VM1UM1L1ρ = πVM1L2UUρ = πM2L2UUρ = R∞
M2

,

which completes the proof. ¥

We illustrate the result by an example.

Example 8.2.17 The long-run probability vector π′ of the translation by
geometrization in Figure 8.3c is π′ = ( 2

11
6
11

3
11 ). Its reward vector is ρ′ =

( r1 r2 r3 ), and so its long-run reward R′ = 2
11r1 + 6

11r2 + 3
11r3 coincides with

the R of the discrete-time Markov reward chain from Figure 8.1c. 2



8.3. The Concurrent Alternating Bit Protocol 173

8.3 The Concurrent Alternating Bit Protocol

In this section we specify the concurrent alternating bit protocol both in the
process theory TCPdrst and in the specification language χ. By restricting
to deterministic timed delays, we show how to analytically obtain transient
performance measures out of a χ-specification based on the proposal for long-
run analysis in [96]. In the general case, we exploit discrete-event simulation
in χ. For comparison, we perform Markovian analysis using an extension of
the χ toolset by turning all delays into exponential ones with mean values
equal to the duration of the timed delays.

The concurrent alternating bit protocol is used for communicating data
along an unreliable channel with a guarantee that no information is lost.
The protocol relies on retransmission of data. An overview of the concurrent
alternating bit protocol is depicted in Figure 8.4.

1 // ?>=<89:;S
3 //'& %$
Ã! "#K

4 // ?>=<89:;R
2 //

5
²²

GFED@ABCAR

8

OO

'& %$
Ã! "#L

7
oo GFED@ABCAS

6
oo

Figure 8.4: Scheme of the concurrent alternating bit protocol

The arrival process sends the data at port 1 to the sender process S.
The sender adds an alternating bit to the data and sends the package to
receiver R via the channel K using port 3. It keeps re-sending the same
package with a fixed time-out, waiting for the correct acknowledgement that
the data has been correctly received. The channel K has some probability
of failure and it transfers the data with a generally distributed delay to
the port 4. If the data is successfully received by R, then it is unpacked
and the data is sent to the exit process via port 2. The alternating bit
is sent as an acknowledgement back to the sender using the acknowledge-
ment sender AS. The receiver R communicates with AS using port 5. The
acknowledgement is sent via the unreliable channel L using port 6. Simi-
larly to S the acknowledgement process re-sends data after a fixed time-out.
The acknowledgement is communicated to the acknowledgement receiver
process AR. If the received acknowledgement is the one expected, then AR
informs the sender S that it can start with the transmission of the next data
package.



174 Chapter 8. Aggregation of Extended Markovian Models

We can specify the concurrent alternating bit protocol as below for a
data set D. We note that the process theory does not contain an explicit
probabilistic choice operator. To specify probabilistic behavior of the chan-
nel, we introduce time-outs to the channels K and L with duration tk and
t`, respectively, along the lines of Example 5.2.3. Thus, the messages are
sent via the channels K and L before the time-out expires with a delay dis-
tributed according to the conditional random variables 〈X | X < tk 〉 and
〈X | X < tk 〉, respectively, or they get lost with probability 1 − FX(tk),
and 1 − FY (t`), respectively. We note that to eliminate the nondeter-
ministic choice between s4 and r3 it must be that P (X = tk) = 0 and
P (Y = t`) = 0. The concurrent alternating bit protocol is specified as
θI(∂H(S ‖K ‖R ‖AS ‖ L ‖AR)) with

S = S0

Sb =
∑

d∈D

r1(d).σtp.s3(d, b).Td,b

Td,b = σts.s3(d, b).Td,b + r8(ack).S1-b

K =
∑

e∈D×{0,1}
r3(e).θi([X].i.s4(e).K + σtk.i.K)

R = R0

Rb =
∑

d∈D

r4(d, b).σtr.s5(ack).s2(d).R1-b +
∑

d∈D

r4(d, 1-b).Rb

AS = AS1

ASb = r5(ack).s6(1-b).AS1-b + σta.s6(b).ASb

L =
∑

b∈{0,1} r5(b).θi([Y ].i.s6(b).L + σt .̀i.L)

AR = AR0

ARb = r7(b).s8(ack).AR1-b + r7(1-b).ARb,

where the recursion variables are parameterized by d ∈ D and b ∈ {0, 1},
I = {r1(d), r2(d) | d ∈ D} ∪ {c3(d, b), c4(d, b) | b ∈ {0, 1}, d ∈ D} ∪

{c6(b), c7(b) | b ∈ {0, 1}} ∪ {c5(ack), c8(ack)}, and
H = {s3(d, b), s4(d, b), r3(d, b), r4(d, b) | b ∈ {0, 1}, d ∈ D} ∪

{r6(b), r7(b), s6(b), s7(b) | b ∈ {0, 1}} ∪
{r5(ack), r8(ack), s5(ack), s8(ack)}.

The deterministic timed delays with duration tp, ts, tk, tr, ta, and t` repre-
sent the processing time of the sender, the time-out of the sender, the time-
out of the data channel, the processing time of the receiver, the time-out



8.4. Specification and Analysis in χ 175

of the acknowledgement sender, and the time-out of the acknowledgement
channel. The internal action i enables the probabilistic choices induced by
the time-outs as discussed in Example 5.2.3.

8.4 Specification and Analysis in χ

We illustrate some features of the language χ by presenting the χ specifica-
tion of the sender process in Figure 8.5. Our example is based on the timed
χ version as defined in [25].

sender ( c1, c3, c8: chan ) =
|[ altbit: bool = false, data: nat, ack: bool
, tp: nat = 1, ts: nat = 10
| c1?data; delay tp; c3!<data,altbit>
; ( delay ts; c3!<data,altbit>
| c8?ack; altbit := not altbit
; c1?data; delay tp; c3!<data,altbit>

)*; deadlock
]|

Figure 8.5: The sender process in χ

The process sender communicates with the other processes via three
channels: c1,c3,c8 (see Figure 8.4). The alternating bit is defined as a
boolean variable and the data set is assumed to be the set of natural num-
bers. The sender waits for an arrival of a new data element, which it packs
in tp time units. Afterwards, a frame with the data and the alternating
bit is send via channel c3. Here, the process enters the iterative construct
represented by *(...) and it either resubmits the data every ts time units
or it waits for an acknowledgement at channel c8 from the acknowledgement
receiver process. If the acknowledgement is received before the time-out ex-
pires, the process flips the alternating bit, packs the new data in tp time
units, and sends it again via channel c3. Note that in the example, the
processing time tp = 1 and the time-out ts = 10 time units.

The standard semantics of (discrete-event) χ is in terms of timed tran-
sition systems [16, 11]. The main idea underlying the construction of a
discrete-time probabilistic reward graph from a timed transition system, as
proposed here, is to hide all actions, i.e., to rename them to the special
internal action τ , and then use the concept of timed branching bisimula-
tion [10, 94] to reduce the system while abstracting from its internal tran-



176 Chapter 8. Aggregation of Extended Markovian Models

sitions. If there is no real nondeterminism in the model, a timed transition
system without any action labeled transition is obtained, i.e., a discrete-time
probabilistic reward graph without probabilistic transitions. If there is one
or more nondeterministic transition left, then the system is underspecified.
In that case, the resolution of the remaining nondeterministic choices de-
pends on the environment, so its performance cannot be measured in the
standard way.

Since χ has no features to model probabilistic choice, the random behav-
ior of the data and acknowledgement channel is modeled in χ by a nondeter-
ministic choice. When the corresponding discrete-time probabilistic reward
graph is generated from the χ model these nondeterministic choices must be
appropriately replaced by probabilistic ones. For this we slightly adjust the
method described in the previous paragraph. Instead of hiding all actions,
the special actions used to indicate probabilistic branching remain visible.
After the minimization, the probabilities that were intentionally left out are
put as labels on the nondeterministic transitions. Again, if there is still non-
determinism remaining in the model, we cannot proceed with performance
analysis. Note that although the method is not always sound (in case of
multiple probabilistic transitions from the same state) as it requests ma-
nipulation on the resulting graph, it serves its purpose for this and similar
examples. Of course, another approach is to extend χ with an explicit prob-
abilistic choice operator (e.g. the one in [50]). However, this requires drastic
changes of the language and tools, and as such goes beyond the scope of this
thesis. Notably, the framework makes use of probabilistic choices, but only
for simulation purposes.

The χ language does not directly support reward specification either. We
take a similar approach as for the absence of a probabilistic choice, and add
rewards by manipulating the χ specification (again side-stepping changes
in χ). We add, for each reward criterion, an ever repeating parallel compo-
nent to the specification. The result is that in the timed transition system
yielded, every state has a self-loop labeled by a special action denoting the
reward rate of the state. These actions will not be hidden by branching
bisimulation reduction and, therefore, persist in the resulting discrete-time
probabilistic reward graph. As in the case for the probabilistic choice, a
systematic technique rendering the above can in principle be incorporated
into the χ environment.

The complete pipeline of generating discrete-time probabilistic reward
graphs from χ specifications is illustrated in Figure 8.6. Currently, we em-
ploy scripts tweaked into the χ environment that insert probabilities and
rewards, in order to automatically produce the desired discrete-time proba-



8.4. Specification and Analysis in χ 177

Figure 8.6: Generation of a discrete-time probabilistic reward graph from
a χ specification

bilistic reward graph from a given χ specification.
If we assume that the distributions of the channels in the concurrent

alternating bit protocol are deterministic, then we can obtain its discrete-
time probabilistic reward graph representation and subsequently calculate
its performance measures. First, we give in Fig. 8.7, the long-run utilization
of the data channel K. We assume that tp = tr = 1, ts = ta = 10, tk = 6,
t` = 2, that the distribution of the delay of the channel L is deterministic
at 6, i.e., P(X=6) = 1, and that the distribution of the delay of the chan-
nel K is deterministic at 2, i.e., P(Y =2) = 1. To obtain the utilization of
the data channel, we place reward 1 for every state in the unfolding of the
timed delays with duration 6, which is the delay of the data channel K.

We note that, although the surface is smooth in the long-run analysis,
if we observe the utilization at time step 200, we see that transient measure
is not at all stable as depicted in Figure 8.8.

When the channels are generally distributed we resort to discrete-event
simulation in χ for performance analysis. Figure 8.9 gives the utilization of
the data channel K, when the distribution of the delay of the data chan-
nel is uniform between 2 and 10 and the distribution of the delay of the
acknowledgement channel is uniform between 1 and 4. Thus, the uniform
distributions of the data and the acknowledgement channels have the mean
values of delay 6 and 2, respectively, as in the deterministic case.

For comparison, we also performed Markovian analysis, again by using
discrete event simulation, and the result is depicted in Figure 8.10. The
exponential delays were chosen of the same mean values as the corresponding
delays in the deterministic case.

Finally, to give a flavor of the results, we show the dependence of the



178 Chapter 8. Aggregation of Extended Markovian Models

0.0

0.5

1.0

Unreliability channel K

0.0

0.5

1.0

Unreliability channel L

0.60

0.62

0.64

0.66

Utilization
of chan. K

Figure 8.7: Long-run utilization of the data channel K

0.0

0.5

1.0

Unreliability channel K

0.0

0.5

1.0

Unreliability channel L

0.2

0.4

0.6

0.8

Utilization
of chan. K

Figure 8.8: Utilization at time step 200 of the data channel K

utilization of the channel K on the unreliability of the channel K at time
step 200 in Figure 8.11 for each approach. Here, the unreliability of the ac-
knowledgement channel L is fixed to 0.5. One sees that the long-run analysis
using discrete-time probabilistic reward graphs is close to the simulation re-



8.4. Specification and Analysis in χ 179

0.0

0.5

1.0

Unreliability channel K

0.0

0.5

1.0

Unreliability channel L

0.60

0.65

0.70

0.75

Utilization
of chan. K

Figure 8.9: Utilization at 200 of channel K with uniformly distributed
delays

0.0

0.5

1.0

Unreliability channel K

0.0

0.5

1.0

Unreliability channel L

0.4

0.5

0.6

0.7

Utilization
of chan. K

Figure 8.10: Utilization at 200 of channel K with exponentially distributed
delays

sults for the uniformly distributed channels. This is expected because they
have the same mean value. As noted in [96], the Markovian analysis always
underestimates the performance because the expected value of the maximum



180 Chapter 8. Aggregation of Extended Markovian Models

of two exponential delays is greater than maximum of the expected values
of both delays, which increases the average cycle length of the system.

´
´

´

´

´
´ ´

´

´

´

´

ó ó ó ó ó ó ó ó ó ó ó

á
á

á
á

á á á á á á á

ç
ç

ç
ç

ç
ç

ç
ç

ç ç
ç

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

Unreliability of channel K

U
til

iz
at

io
n

of
ch

an
ne

lK

ç Mark. anal.

á Simulation

ó DTPRG long-run

´ DTPRG at 200

Figure 8.11: Utilization of the channel K at time 200 for unreliability 0.5
of the channel L

8.5 Summary

We introduce a mathematical model, called discrete-time probabilistic re-
ward graphs, for the performance evaluation of systems featuring deter-
ministic delay and probabilistic choice. We extend the χ-environment to
a prototype that supports the new model, enabling an effective qualitative
and quantitative analysis of probabilistic timed systems within the same
framework. Then, we model the concurrent alternating bit protocol with
lossy channels that were deterministically, exponentially, and uniformly dis-
tributed.

For long-run analysis, the results are close, although there are still some
differences due to the low approximation of a deterministic delay with a sin-
gle exponential distribution. However, the transient behavior of the protocol
shows a substantially different behavior for differently distributed channels.



Chapter 9

Conclusions and Future Work

In the summary we answer the research questions posed in the introduction.

– What is the relationship between discrete real and generally-distributed
stochastic time in process theories?

We attacked this problem from two angles. First, we developed a process
algebra that comprises timed delays in a racing context, which are capable of
breaking down the execution of stochastic delays in race condition semantics
to unit timed delays. These delays provide explicit information about the
expiration of the winning and the losing delays of the race. Then, we used
them to derive discrete stochastic delays by means of recursive equations.
In this way we can analyze the interaction between real and stochastic time
per one time unit.

Afterwards, we developed a stochastic process algebra from scratch that
follows the guidelines set by the timed setting. Here, we had to adjust
standard timed delays to the new setting as the race condition does not
comply with time additivity. We introduced context-sensitive interpolation,
a new restricted notion of time additivity as its interpretation in the presence
of the race condition.

The former approach to modeling stochastic time is more convenient
from a theoretical point of view. However, the semantics of the stochastic
delays requires infinite racing timed transition schemes. The latter approach
manipulates finite objects, but every new feature, e.g., delayable action pre-
fix or passage of time, has to be introduced as a separate construct. In
return, the theory gets quite involved with introduction of new concepts.

– Is it possible, and if so, how, to (conservatively) extend timed process
theories with stochastic time?

181



182 Chapter 9. Aggregation of Extended Markovian Models

Again, we give two diametrical views on the matter. One way to conserva-
tively extend timed process theories is to enrich the timed delays with prob-
abilistic features in such a way that stochastic delays can be derived. Then,
stochastic time is introduced in the theory as a derived concept, whereas
the restrictions of the ‘probabilistic’ timed delays model the purely timed
behavior. As discussed above, such an approach handles the execution of
the stochastic delay per unit of time, leading to infinite transition systems.

When considering timed delays in a stochastic setting we have to investi-
gate whether the fundamental properties of time can be preserved. This is a
prerequisite for a conservative extension as the equations valid in the timed
setting must also be valid in the stochastic counterpart. Here, we could not
support time additivity and we had to resort to a more restricted notion of
context-sensitive interpolation. This new concept allows interpolation of a
timed delay only in the context of a compositional operator, like the alterna-
tive or parallel composition. When looking at strong bisimulation relations,
we can come up with normal forms on which the two notions will coincide.

– Reversely, is it possible, and if so, how, to embed (discrete) real time
in generally-distributed process theories?

The central notion in the stochastic setting was the race condition. We have
introduced two notions dependent on the name of the delay. We embedded
timed delays as independent Dirac stochastic delays. The dependence played
an important role as the embedded timed delays must not be dependent on
a stochastic delay, in which case they become generally-distributed as well.
Again, there is no support for time additivity and we had to settle for
context-sensitive interpolation.

– What is the effect of replacing timed delays by stochastic ones and
what are the consequences of such a generalization?

A major consequence of replacing timed delays by stochastic ones is that
the total order of the expiration of the delays is lost. This is because the
standard race condition semantics models processes that race (compete) for
a resource and, in general, every outcome of the race is possible.

To support this generalization we introduced the concept of partial races,
i.e., the situation where the order of execution of the stochastic delays is im-
posed by the racing context. In combination with context-sensitive interpo-
lation the modeler has all the support to safely extend timed specifications
with stochastic time. Still, the process is not automatic as the decision must
be made by the designer.



183

– Is it possible to show that the abstraction using the weak behavioral
equivalence in Markovian process theories (and other modeling for-
malisms) is performance preserving and is such an approach composi-
tional?

To treat intermediate performance models comprising exponential distri-
butions, probabilistic choices, and nondeterministic (silent) transitions as
stochastic processes we provide three extensions of Markov reward chains.
For elimination of the fast and silent transitions we provide two aggregation
methods that are used in different settings. Remarkably, if all fast and silent
transitions are eliminated, both aggregations produce equivalent processes.
We also show compositionality with respect to the parallel composition and
the preorders induced by the aggregation methods.

– Can we do performance analysis using discrete-time delays and prob-
abilistic choices?

Such models naturally translate to discrete-time Markov reward chains,
which can then be analyzed using standard techniques. Here, we provide
means to also reflect the performance measures back to the original process.
For long-run analysis we develop a translation that does not increase the
number of states, as the original translation transforms a timed delay into
a series of transitions with probability one on the side of the discrete-time
Markov reward chains.

As future work, it is interesting to introduce the hiding operator that
produces internal transitions and to develop a notion of branching or weak
bisimulation in that setting. This should pave the way for bigger case studies
in Internet protocol verification and analysis as detailed performance spec-
ification is viable by using both generally distributed stochastic delays and
standard timeouts. We can also exploit existing real-time specification as the
theory is sufficiently flexible to allow extension of real-time with stochastic
time, while retaining any imposed ordering of the original delays.

In the Markovian domain, further work can focus on the analysis of
models that combine stochastic transitions and (non-internal) action labeled
transitions, so that in addition to interleaving, synchronization can also be
expressed.

Finally, a full-blown extension of the χ language to fully support the de-
veloped theory is viable, relieving the script-based short-cuts taken presently
to intervene in the tool environment. We foresee that this can be achieved
by introducing a probabilistic choice operator, and by facilitating the as-
signment of rewards in the toolset.





Bibliography

[1] L. Aceto. Some of my favourite results in classic process algebra. Bul-
letin of the EATCS, 81:90–108, 2003.

[2] R. P. Agaev and P. Y. Chebotarev. On determining the eigenprojection
and components of a matrix. Automated Remote Control, 63:1537–1545,
2002.

[3] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Frances-
chinis. Modelling with Generalized Stochastic Petri Nets. Wiley, 1995.

[4] M. Ajmone Marsan, A. Bianco, L. Ciminiera, R. Sisto, and A. Valen-
zano. A LOTOS extension for the performance analysis of distributed
systems. IEEE/ACM Transactions on Networking, 2(2):151–165, 1994.

[5] H. H. Ammar, Y. F. Huang, and R. W. Liu. Hierarchical models for
systems reliability, maintainability, and availability. IEEE Transactions
on Circuits and Systems, 34(6):629–638, 1987.

[6] N. W. A. Arends. A systems engineering specification formalism. PhD
thesis, Eindhoven University of Technology, 1996.

[7] J. C. M. Baeten. A brief history of process algebra. Theoretical Com-
puter Science, 335:131 – 146, 2005.

[8] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equa-
tional Theories of Communicating Processes. Cambridge University
Press, 2009. To appear.

[9] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. On the consis-
tency of Koomen’s fair abstraction rule. Theoretical Computer Science,
51(1):129–176, 1987.

[10] J. C. M. Baeten, J. A. Bergstra, and M. A. Reniers. Discrete time
process algebra with silent step. In Proof, language, and interaction:

185



186 BIBLIOGRAPHY

essays in honour of Robin Milner, pages 535–569. MIT Press, Cam-
bridge, MA, USA, 2000.

[11] J. C. M. Baeten and C. A. Middelburg. Process Algebra with Timing.
Monographs in Theoretical Computer Science. Springer, 2002.

[12] J. C. M. Baeten and M. A. Reniers. Timed process algebra (with a
focus on explicit termination and relative timing). In Proceedings of
SFM 2004, volume 3185 of Lecture Notes of Computer Science, pages
59–97. Springer, 2004.

[13] J. C. M. Baeten and W.P. Weijland. Process Algebra. Number 18 in
Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 1990.

[14] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Model
checking meets performance evaluation. SIGMETRICS Performance
Evaluation Review, 32(4):10–15, 2005.

[15] J. Banks, J. S. Carson II, B. L. Nelson, and D. M. Nicol. Discrete-event
system simulation. Prentice Hall, 2000.

[16] D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. H.
Schiffelers. Syntax and consistent equation semantics of hybrid Chi.
Journal of Logic and Algebraic Programming, 68:129–210, 2006.

[17] D. A. van Beek, A. van der Ham, and J. E. Rooda. Modelling and
control of process industry batch production systems. In 15th Triennial
World Congress of the International Federation of Automatic Control,
Barcelona, Spain, 2002.

[18] J. A. Bergstra. On the design rationale of ACP style process algebras.
Electronic Notes in Theoretical Computer Science, 162:79–85, 2006.

[19] J. A. Bergstra, A. Ponse, and Scott A. Smolka, editors. Handbook of
Process Algebra. Elsevier, 2001.

[20] M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concur-
rent processes with nondeterminism, priorities, probabilities and time.
Theoretical Computer Science, 202(1–2):1–54, 1998.

[21] S. Blom, W. Fokkink, J. F. Groote, I. van Langevelde, B. Lisser, and
J. C. van de Pol. µCRL: A toolset for analysing algebraic specifications.
In Proceedings of CAV 2001, volume 2102 of Lecture Notes in Computer
Science, pages 250–254, 2001.



BIBLIOGRAPHY 187

[22] H. C. Bohnenkamp, P. R. D’Argenio, H. Hermanns, and J.-P. Katoen.
MODEST: A compositional modeling formalism for hard and softly
timed systems. IEEE Transactions on Software Engineering, 32:812–
830, 2006.

[23] E. Bortnik, N. Trčka, A. J. Wijs, S. P. Luttik, J. M. van de Mortel-
Fronczak, J. C. M. Baeten, W. J. Fokkink, and J. E. Rooda. Analyzing
a χ model of a turntable system using Spin, CADP and UPPAAL.
Journal of Logic and Algebraic Programming, 65:51–104, 2005.

[24] E. M. Bortnik, D. A. van Beek, J. M. van de Mortel-Fronczak, and
J. E. Rooda. Verification of timed Chi models using UPPAAL. In
Proceddings of ICINCO’05, pages 486–492, Barcelona, 2005.

[25] V. Bos and J. J. T. Kleijn. Formal Specification and Analysis of Indus-
trial Systems. PhD thesis, Eindhoven University of Technology, 2002.

[26] M. Bravetti. Specification and Analysis of Stochastic Real-time Systems.
PhD thesis, Università di Bologna, 2002.

[27] M. Bravetti, M. Bernardo, and R. Gorrieri. From EMPA to GSMPA:
Allowing for general distributions. In Proceedings of PAPM’97, pages
17–33, Enschede, 1997.

[28] M. Bravetti and P. R. D’Argenio. Tutte le algebre insieme – concepts,
discussions and relations of stochastic process algebras with general
distributions. In Validation of Stochastic Systems, pages 44–88. Lecture
Notes of Computer Science 2925, 2004.

[29] J. Bryans, H. Bowman, and J. Derrick. Model checking stochastic
automata. ACM Transactions on Computational Logic, 4(4):452–492,
2003.

[30] P. Buchholz. Exact and ordinary lumpability in finite Markov chains.
Journal of Applied Probability, 31:59–75, 1994.

[31] P. Buchholz. Markovian process algebra: composition and equivalence.
In Proceedings of PAPM 94, pages 11–30, Erlangen, Germany, 1994.
Universität Erlangen-Nürnberg.

[32] P. Buchholz. Structured analysis techniques for large Markov chains.
In Proceedings of SMCTools 2006, volume 201 of ACM International
Conference Proceedings Series, pages 2–10, Pisa, Italy, 2006.



188 BIBLIOGRAPHY

[33] P. Buchholz and P. Kemper. Kronecker based matrix representations
for large Markov chains. In Validation of Stochastic Systems, volume
2925 of Lecture Notes in Computer Science, pages 256–295, 2004.

[34] E. J. J. van Campen. Design of a Multi-Process Multi-Product Wafer
Fab. PhD thesis, Eindhoven University of Technology, 2000.

[35] S. Cattani, R. Segala, M. Kwiatkowska, and G. Norman. Stochastic
transition systems for continuous state spaces and non-determinism. In
Proceedings of FoSSaCS’05, volume 3441, pages 125–139. Lecture Notes
of Computer Science, 2005.

[36] L. Cheung, N. Lynch, R. Segala, and F. Vaandrager. Switched PIOA:
Parallel composition via distributed scheduling. Theoretical Com-
pututer Science, 365(1-2):83–108, 2006.

[37] K. L. Chung. Markov Chains with Stationary Probabilities. Springer,
1967.

[38] G. Ciardo, J. Muppala, and K. S. Trivedi. On the solution of GSPN
reward models. Performance Evaluation, 12:237–253, 1991.

[39] M. Coderch, A. S. Willsky, S. S. Sastry, and D. A. Castanon. Hierarchi-
cal aggregation of singularly perturbed finite state Markov processes.
Stochastics, 8:259–289, 1983.

[40] P. R. D’Argenio. From stochastic automata to timed automata: Ab-
stracting probability in a compositional manner. In Proceedings of
WAIT 2003, Buenos Aires, 2003.

[41] P. R. D’Argenio and J.-P. Katoen. A theory of stochastic systems, part
I: Stochastic automata. Information and Computation, 203(1):1–38,
2005.

[42] P. R. D’Argenio and J.-P. Katoen. A theory of stochastic systems, part
II: Process algebra. Information and Computation, 203(1):39–74, 2005.

[43] F. Delebecque. A reduction process for perturbed Markov chains. SIAM
Journal of Applied Mathematics, 2:325–330, 1983.

[44] F. Delebecque and J. P. Quadrat. Optimal control of Markov chains
admitting strong and weak interactions. Automatica, 17:281–296, 1981.



BIBLIOGRAPHY 189

[45] W. Doeblin. Sur l’équation matricielle A(t + s) = A(t) ·A(s) et
ses applications aux probabilités en chaine. Bulletin des Sciences
Mathématiques, 62:21–32, 1938.

[46] J. L. Doob. Stochastic Processes. Wiley, 1953.

[47] J. J. H. Fey. Design of a Fruit Juice Blending and Packaging Plant.
PhD thesis, Eindhoven University of Technology, 2000.

[48] P. W. Glynn. A GSMP formalism for discrete event systems. Proceed-
ings of the IEEE, 77(1):14–23, 1989.

[49] A. Graham. Kronecker Products and Matrix Calculus With Applica-
tions. Ellis Horwood, 1981.

[50] H. A. Hansson. Time and Probability in Formal Design of Distributed
Systems. Elsevier, 1994.

[51] H. Hermanns. Interactive Markov Chains: The Quest for Quantified
Quality, volume 2428 of Lecture Notes in Computer Science. Springer,
2002.

[52] H. Hermanns, V. Mertsiotakis, and M. Rettelbach. Performance analy-
sis of distributed systems using TIPP. In Proceedings of UKPEW’94,
pages 131–144. University of Edinburgh, 1994.

[53] E. Hille and R. S. Phillips. Functional Analysis and Semi-Groups. AMS,
1957.

[54] J. Hillston. The nature of synchronisation. In Proceedings of PAPM
’94, pages 51–70, Erlangen, Germany, 1994.

[55] J. Hillston. A Compositional Approach to Performance Modelling.
Cambridge University Press, 1996.

[56] G. J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997. Special issue on Formal
Methods in Software Practice.

[57] R. A. Howard. Dynamic Probabilistic Systems. Wiley, 1971.

[58] A. Jensen. Markoff chains as an aid in the study of Markoff processes.
Skandinavisk Aktuarietidskrift, 36:87–91, 1953.



190 BIBLIOGRAPHY

[59] B. Jonsson, Yi Wang, and K.G. Larsen. Probabilistic extensions of
process algebras. In [19], pages 685–710.

[60] J. P. Katoen and P. R. D’Argenio. General distributions in process alge-
bra. In Lectures on formal methods and performance analysis, Lecture
Notes in Computer Science, pages 375–429. 2001.

[61] J. G. Kemeny and J. L. Snell. Finite Markov chains. Springer, 1976.

[62] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic
symbolic model checker. In Proceedings of TOOLS 2002, pages 200–
204. Springer, 2002.

[63] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Interna-
tional Journal on Software Tools for Technology Transfer, 1:134–152,
1997.

[64] N. López and M. Núñez. NMSPA: A non-Markovian model for sto-
chastic processes. In Proceedings of ICDS 2000, pages 33–40. IEEE,
2000.

[65] N. López and M. Núñez. Weak stochastic bisimulation for non-
Markovian processes. In Proceedings of ICTAC’05, volume 3722 of
Lecture Notes of Computer Science, pages 454–468. Springer, 2005.

[66] J. Markovski and E. P. de Vink. Embedding real-time in stochastic
process algebras. In Proceedings of EPEW 2006, volume 4054, pages
47–62. Lecture Notes of Computer Science, 2006.

[67] J. Markovski and E. P. de Vink. Embedding real time in stochastic
process algebras. Technical Report CS 06/15, Eindhoven University of
Technology, 2006.

[68] J. Markovski and E. P. de Vink. Real-time in stochastic process alge-
bra: Keeping track of winners and losers. Technical Report CS 07/13,
Eindhoven University of Technology, 2007.

[69] J. Markovski and E. P. de Vink. Real-time process algebra with sto-
chastic delays. In Proceedings of ACSD 2007, pages 177–186. IEEE,
2007.

[70] J. Markovski and E. P. de Vink. Discrete real-time and stochastic-
time process algebra for performance analysis of distributed systems.
Technical Report CS 08/10, Eindhoven University of Technology, 2008.



BIBLIOGRAPHY 191

[71] J. Markovski and E.P. de Vink. Discrete real-time and stochastic-time
process algebra for performance analysis of distributed systems. In
Proceedings of ACSD’08. IEEE, 2008. To appear.

[72] J. Markovski and E.P. de Vink. Extending timed process algebra with
discrete stochastic time. In Proceedings of AMAST’08. Lecture Notes
of Computer Science, 2008. To appear.

[73] J. Markovski, A. Sokolova, N. Trčka, and E. P. de Vink. Composi-
tionality for Markov chains with fast transitions. Technical Report CS
07/17, Eindhoven University of Technology, 2007.

[74] J. Markovski, A. Sokolova, N. Trčka, and E. P. de Vink. Composition-
ality for Markov reward chains with fast transitions. In Proceedings of
EPEW’07, volume 4748 of Lecture Notes of Computer Science, pages
18–32, 2007.

[75] J. Markovski and N. Trčka. Lumping Markov chains with silent steps.
In Proceedings of QEST’06, pages 221–230, Riverside, CA, USA, 2006.
IEEE Computer Society.

[76] J. Markovski and N. Trčka. Lumping Markov chains with silent steps.
Technical Report CS 06/13, Eindhoven University of Technology, 2006.

[77] J. Markovski and N. Trčka. Aggregation methods for Markov reward
chains with fast and silent transitions. Technical Report CS 07/08,
Eindhoven University of Technology, 2007.

[78] J. Markovski and N. Trčka. Aggregation methods for Markov reward
chains with fast and silent transitions. In Proceedings of MMB2008:
Measurement, Modeling and Evaluation of Computer and Communica-
tion Systems, pages 93–108. VDE Verlag, 2008.

[79] D. Miller and A. Tiu. A proof theory for generic judgments. ACM
Transaction on Computational Logic, 6(4):749–783, 2005.

[80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer, 1980.

[81] U. Montanari and M. Pistore. Formal Methods for Mobile Computing,
volume 3465 of Lecture Notes in Computer Science, chapter History-
Dependent Automata: An Introduction, pages 1–28. Springer Berlin /
Heidelberg, 2005.



192 BIBLIOGRAPHY

[82] M. F. Neuts. Matrix-geometric solutions in stochastic models, an algo-
rithmic approach. John Hopkins University Press, 1981.

[83] V. Nicola. Lumping in Markov reward processes. IBM Research Report
RC 14719, IBM, 1989.

[84] X. Nicollin and J. Sifakis. An overview and synthesis of timed process
algebras. In Real-Time: Theory in Practice, volume 600 of Lecture
Notes of Computer Science, pages 526–548. Springer, 1992.

[85] W. van Niftrik. Context-sensitive interpolation. Master thesis, Eind-
hoven University of Technology, 2008.

[86] B. Plateau and K. Atif. Stochastic automata network of modeling paral-
lel systems. IEEE Transactions on Software Engineering, 17(10):1093–
1108, 1991.

[87] C. Priami. Stochastic π-calculus with general distributions. In Proceed-
ings of PAPM’96, pages 41–57, Torino, 1996.

[88] R. R. H. Schiffelers and K. L. Man. Formal Specification and Analysis
of Hybrid Systems. PhD thesis, Eindhoven University of Technology,
2006.

[89] A. Sokolova and E. P. de Vink. On relational properties of lumpability.
In Proceedings of 4th PROGRESS symposium on Embedded Systems,
Utrecht, The Netherlands, 2003.

[90] J. Sproston. Validation of Stochastic Systems, volume 2925 of Lecture
Notes of Computer Science, chapter Model Checking for Probabilistic
Timed Systems, pages 189–229. Springer, 2004.

[91] W. J. Stewart. Introduction to the numerical solution of Markov chains.
Princeton University Press, New Jersey, USA, 1994.

[92] A. T. Tai, K. S. Tso, and W. H. Sanders. A recurrence-relation-based
reward model for performability evaluation of embedded systems. In
Proceedings of DSN’08. IEEE, 2008.

[93] N. Trčka. Verifying χ models of industrial systems in Spin. In Pro-
ceedings of ICFEM 2006, volume 4260 of Lecture Notes in Computer
Science, pages 132–148. Springer, 2006.

[94] N. Trčka. Silent Steps in Transition Systems and Markov Chains. PhD
thesis, Eindhoven University of Technology, 2007.



BIBLIOGRAPHY 193

[95] N. Trčka, S. Georgievska, J. Markovski, S. Andova, and E. P. de Vink.
Performance analysis of χ models using discrete-time probabilistic re-
ward graphs. In Proceedings of WODES’08. IEEE, 2008. To appear.

[96] N. Trčka, S. Georgievska, J. Markovski, S. Andova, and E. P. de Vink.
Performance analysis of χ models using discrete-time probabilistic re-
ward graphs. Technical Report CS 08/02, Eindhoven University of
Technology, 2008.

[97] A. Wijs. From χt to µCRL: Combining performance and functional
analysis. In Proceedings of ICECCS’05, pages 184–193, Washington,
DC, USA, 2005. IEEE Computer Society.

[98] S.-H. Wu, S. A. Smolka, and E. Stark. Composition and behaviors of
probabilistic I/O automata. Theoretical Computer Science, 176(1–2):1–
38, 1997.

[99] W. Yi. CCS + time = an interleaving model for real-time systems.
In Proceedings of ICALP’91, volume 510 of Lecture Notes of Computer
Science, pages 217–228. Springer, 1991.





Curriculum Vitae

Jasen Markovski was born on the 18th of May 1978 in Skopje, Macedonia
(former Yugoslavia). He studied computer science at the Institute of Infor-
matics, Faculty of Natural Sciences and Mathematics, University of Skopje,
Macedonia, and obtained the degree of Graduated Engineer in Informatics
in October 2001. In May 2004 he obtained a M.Sc. degree in Informatics
from the same institution. In August 2004 he became a Ph.D. student at
the Formal Methods Group, Department of Mathematics and Computer
Science, Eindhoven University of Technology, The Netherlands.

195





Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks for
Intelligent Data Analysis: theoretical and
experimental aspects. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Spec-
ification and Analysis of Industrial Sys-
tems. Faculty of Mathematics and Com-
puter Science and Faculty of Mechanical
Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understand-
ing Legacy Software Systems. Faculty of
Natural Sciences, Mathematics and Com-
puter Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in
Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2002-04

R.J. Willemen. School Timetable Con-
struction: Algorithms and Complexity.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Ver-
ification of Probabilistic, Real-time and
Parametric Systems. Faculty of Sci-
ence, Mathematics and Computer Science,
KUN. 2002-06

N. van Vugt. Models of Molecular Com-
puting. Faculty of Mathematics and Nat-
ural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius:
Guiding and Cost-Optimality in Model
Checking of Timed and Hybrid Systems.
Faculty of Science, Mathematics and Com-
puter Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin
Packing. Faculty of Mathematics and Nat-
ural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Fil-
tering: Concepts and Algorithms. Faculty
of Mathematics and Natural Sciences, UL.
2002-10

M.B. van der Zwaag. Models and Log-
ics for Process Algebra. Faculty of Natural
Sciences, Mathematics, and Computer Sci-
ence, UvA. 2002-11

J.I. den Hartog. Probabilistic Exten-
sions of Semantical Models. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2002-12

L. Moonen. Exploring Software Systems.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolution-
ary Computation to Constraint Satisfac-
tion and Data Mining. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Stor-
age for Video on Demand. Faculty
of Mathematics and Computer Science,
TU/e. 2003-01

M. de Jonge. To Reuse or To Be
Reused: Techniques for component compo-
sition and construction. Faculty of Natural
Sciences, Mathematics, and Computer Sci-
ence, UvA. 2003-02

J.M.W. Visser. Generic Traversal over
Typed Source Code Representations. Fac-
ulty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Veri-
fication in Process Algebras with Data and
Timing. Faculty of Mathematics and Com-
puter Science, TU/e. 2003-05



S.V. Nedea. Analysis and Simulations of
Catalytic Reactions. Faculty of Mathemat-
ics and Computer Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of
Tertiary Storage. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2003-07

H.P. Benz. Casual Multimedia Process
Annotation – CoMPAs. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2003-08

D. Distefano. On Modelchecking the Dy-
namics of Object-based Software: a Foun-
dational Approach. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2003-09

M.H. ter Beek. Team Automata – A
Formal Approach to the Modeling of Col-
laboration Between System Components.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Func-
tional Approach to Software Components.
Faculty of Mathematics and Computer Sci-
ence, UU. 2003-11

W.P.A.J. Michiels. Performance Ra-
tios for the Differencing Method. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and
Terms and Their Use in Interactive Theo-
rem Proving. Faculty of Mathematics and
Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Com-
puting – Splicing and Membrane systems.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-03

S. Maneth. Models of Tree Translation.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-04

Y. Qian. Data Synchronization and
Browsing for Home Environments. Fac-
ulty of Mathematics and Computer Science

and Faculty of Industrial Design, TU/e.
2004-05

F. Bartels. On Generalised Coinduction
and Probabilistic Specification Formats.
Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analy-
sis: a Type-Theoretical Formalization and
Applications. Faculty of Science, Mathe-
matics and Computer Science, KUN. 2004-
07

E.H. Gerding. Autonomous Agents in
Bargaining Games: An Evolutionary In-
vestigation of Fundamentals, Strategies,
and Business Applications. Faculty of
Technology Management, TU/e. 2004-08

N. Goga. Control and Selection Tech-
niques for the Automated Testing of Reac-
tive Systems. Faculty of Mathematics and
Computer Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic:
Representations, Algorithms and Proofs.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2004-10

A. Löh. Exploring Generic Haskell. Fac-
ulty of Mathematics and Computer Sci-
ence, UU. 2004-11

I.C.M. Flinsenberg. Route Planning
Algorithms for Car Navigation. Faculty
of Mathematics and Computer Science,
TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Me-
dia Processing Using Conditionally Guar-
anteed Budgets. Faculty of Mathematics
and Computer Science, TU/e. 2004-13

J. Pang. Formal Verification of Distrib-
uted Systems. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based
Economics. Faculty of Technology Man-
agement, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position
Estimation Using a Single Base Station.



Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-16

S.M. Orzan. On Distributed Verification
and Verified Distribution. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2004-17

M.M. Schrage. Proxima - A
Presentation-oriented Editor for Struc-
tured Documents. Faculty of Mathematics
and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quanti-
tative Prediction of Quality Attributes for
Component-Based Software Architectures.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Su-
pervisory Machine Control by Predictive-
Reactive Scheduling. Faculty of Mechani-
cal Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof Sys-
tem for Multithreaded Java -Theory and
Tool Support- . Faculty of Mathematics
and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodel-
ing in Bone Tissue. Faculty of Biomedical
Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con-
trol - Expression and Enforcement. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-
free Parallel Algorithms. Faculty of Math-
ematics and Computing Sciences, RUG.
2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. Ionita. Scenario-Based System
Architecting - A Systematic Approach to

Developing Future-Proof System Architec-
tures. Faculty of Mathematics and Com-
puting Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Tech-
niques in Security and Fault-Tolerance.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2005-07

I. Kurtev. Adaptability of Model Trans-
formations. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network
Reliability. Faculty of Science, UU. 2005-
09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite
Populations in Dynamic Environments.
Faculty of Biomedical Engineering, TU/e.
2005-11

J. Eggermont. Data Mining using Ge-
netic Programming: Classification and
Symbolic Regression. Faculty of Mathe-
matics and Natural Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error
Messages. Faculty of Science, UU. 2005-
13

G.F. Frehse. Compositional Verification
of Hybrid Systems using Simulation Rela-
tions. Faculty of Science, Mathematics and
Computer Science, RU. 2005-14

M.R. Mousavi. Structuring Structural
Operational Semantics. Faculty of Math-
ematics and Computer Science, TU/e.
2005-15

A. Sokolova. Coalgebraic Analysis of
Probabilistic Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with



Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transformation
of Source Code by Parsing and Rewriting.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction
and Replication of Processes with Data.
Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor networks:
energy-efficient attack and defense. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Secu-
rity Protocols. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Faculty
of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of Hy-
brid Systems. Faculty of Mathematics and
Computer Science and Faculty of Mechan-
ical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications
of UML Models: Tool Support and Com-
positionality. Faculty of Mathematics and
Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applications.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewrit-
ing. Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in
tool-assisted verification of JML programs.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecu-
lar Simulations. Faculty of Biomedical En-
gineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.
Faculty of Mathematics and Natural Sci-
ences, UL. 2006-10

G. Russello. Separation and Adaptation
of Concerns in a Shared Data Space. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-11

L. Cheung. Reconciling Nondeterminis-
tic and Probabilistic Choices. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty
of Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Faculty
of Mathematics and Computer Science,
TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Science,
Mathematics and Computer Science, RU.
2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-17

B. Gebremichael. Expressivity of Timed
Automata Models. Faculty of Science,
Mathematics and Computer Science, RU.
2006-18



L.C.M. van Gool. Formalising Interface
Specifications. Faculty of Mathematics and
Computer Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Channels
for Exogenous Coordination of Distributed
Systems: Semantics, Implementation and
Composition. Faculty of Mathematics and
Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-
urable Network-on-Chip for streaming DSP
applications. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2007-02

M. van Veelen. Considerations on Mod-
eling for Early Detection of Abnormalities
in Locally Autonomous Distributed Sys-
tems. Faculty of Mathematics and Com-
puting Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty of
Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and Cov-
erage. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Mathe-
matics and Computer Science, RU. 2007-
06

M.W.A. Streppel. Multifunctional Geo-
metric Data Structures. Faculty of Math-
ematics and Computer Science, TU/e.
2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics and
Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information
in Software Development Processes. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2007-11

R. Boumen. Integration and Test plans
for Complex Manufacturing Systems. Fac-
ulty of Mechanical Engineering, TU/e.
2007-12

A.J. Wijs. What to do Next?: Analysing
and Optimising System Behaviour in
Time. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series of
Empirical Studies about the UML. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Delivery.
Faculty of Natural Sciences, Mathematics,
and Computer Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Electri-
cal Engineering, Mathematics, and Com-
puter Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of Math-
ematics and Computer Science, TU/e.
2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty



of Mathematics and Computer Science,
TU/e. 2007-18

M.A. Abam. New Data Structures and
Algorithms for Mobile Data. Faculty
of Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale: Un-
derstanding the Electronic Voting Contro-
versy. Faculty of Science, Mathematics
and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automaton
Proofs in PVS. Faculty of Science, Math-
ematics and Computer Science, RU. 2008-
02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated System to
Manage Crosscutting Concerns in Source
Code. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2008-04

N.C.W.M. Braspenning. Model-based
Integration and Testing of High-tech Multi-
disciplinary Systems. Faculty of Mechani-
cal Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Parsing, and
Assimilation of Language Conglomerates.
Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verification of
Optimistic Fair Exchange Protocols. Fac-
ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing Ma-
chines. Faculty of Mechanical Engineering,
TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coal-
gebras. Faculty of Science, Mathematics
and Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Experi-
mental Study of Geometric Networks. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Specifi-
cations Using Context-Sensitive Wildcards.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2008-13

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Science,
Mathematics and Computer Science, RU.
2008-14

P.E.A. Dürr. Resource-based Verification
for Robust Composition of Aspects. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-15

E.M. Bortnik. Formal Methods in Sup-
port of SMC Design. Faculty of Mechani-
cal Engineering, TU/e. 2008-16

R.H. Mak. Design and Performance
Analysis of Data-Independent Stream
Processing Systems. Faculty of Mathemat-
ics and Computer Science, TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of Math-
ematics and Computer Science, TU/e.
2008-18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Faculty
of Mathematics and Computer Science,
TU/e. 2008-19

J.R. Calam. Testing Reactive Systems
with Data - Enumerative Methods and
Constraint Solving. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2008-20



BIBLIOGRAPHY 203

E. Mumford. Drawing Graphs for Car-
tographic Applications. Faculty of Math-
ematics and Computer Science, TU/e.
2008-21

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Experimental As-
pects of Pattern Evaluation. Faculty of
Mathematics and Natural Sciences, UL.
2008-22

R. Brijder. Models of Natural Computa-
tion: Gene Assembly and Membrane Sys-
tems. Faculty of Mathematics and Natural
Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-
ing and Its Certification. Faculty of Math-
ematics and Computer Science, TU/e.
2008-24

U. Khadim. Process Algebras for Hybrid
Systems: Comparison and Development.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2008-25

J. Markovski. Real and Stochastic Time
in Process Algebras for Performance Eval-
uation. Faculty of Mathematics and Com-
puter Science, TU/e. 2008-26


	Summary
	Contents
	1. Introduction
	2. Race condition
	3. Process theory TCPdrst
	4. Equational theory
	5. Proces theory DTCPdrst/rec
	6. Extending real time with 
	7. Aggregation methods for Markov reward chains with fast and silent transitions
	8. Analyzing the concurrent alternating bit protocol
	9. Conclusions and future work

