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Synopsis

he breakup of confined drops in shear flow between parallel plates is investigated as a function of
iscosity ratio and confinement ratio. Using a boundary-integral method for numerical simulations
nd a counter-rotating experimental device, critical capillary numbers in shear flow are obtained. It
s observed that different viscosity ratios yield different trends with increasing confinement ratio: a
ow viscosity ratio drop shows an increase in critical capillary number, at a viscosity ratio of unity
o major trend is seen, and the critical capillary number for a high viscosity ratio drop decreases
ignificantly. A generalized explanation for all viscosity ratios is that confinement affects the
rientation of the drop with respect to the direction of the local strain field. At moderate
onfinement ratios, the drop orients more toward the strain direction, where it experiences a
tronger flow and hence, the critical capillary number is decreased. As the drop gets more confined,
t aligns more in the flow direction. Hence, the drop experiences a weaker flow and thus,
dditionally stabilized by wall effects, it breaks at a higher critical capillary number. In principle,
his behavior is the same for all viscosity ratios, but transitions occur at different confinement
atios. Most of the breakup is of a binary nature, but ternary breakup can occur if the drop length
s larger than 6 undeformed drop radii, consistent with arguments based on the Rayleigh–Plateau
nstability. © 2010 The Society of Rheology. �DOI: 10.1122/1.3473924�

. INTRODUCTION

Breakup of drops is, together with coalescence, the most important mechanism in the
orphology development of blends �Tucker and Moldenaers �2002��. Assuming two

�
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1048 JANSSEN et al.
on-mixable fluids both with a Newtonian viscosity and an interfacial tension � acting
etween the drop and matrix phase, the two main parameters that determine the breakup
ehavior are the capillary number Ca and the viscosity ratio �. The capillary number is
efined as the ratio between the viscous stresses distorting, and the interfacial stresses
estoring the drop shape: Ca=�0R�̇ /�, with �0 the viscosity of the matrix fluid, R the
adius of the undeformed drop, and �̇ the shear rate. The viscosity ratio is the ratio of the
rop viscosity to the matrix viscosity: �=�1 /�0 with �1 the viscosity of the drop, or
ispersed phase. Depending on the flow type and viscosity ratio, a critical capillary
umber Cacrit exists above which the drop breaks up.

Ever since the pioneering work of Taylor �1932, 1934�, numerous studies have been
onducted to investigate the deformation of drops up to and including breakup, which
ave been reviewed multiple times �Rallison �1984�; Stone �1994�; Tucker and Mold-
naers �2002�; Cristini and Renardy �2006��. Of particular note is a systematic study in
hear flow of drop breakup as a function of viscosity ratio, conducted by Grace �1982�.
his data set is now known as the Grace curve where, for shear flow, a minimum in
ritical capillary number of around 0.4 is found for a viscosity ratio of 0.6. High viscosity
atio drops ���4� are impossible to break in simple shear flow, as these drops tumble in
he flow field, eventually reaching a steady state almost perfectly aligned with the flow
irection. Low viscosity ratio drops asymptotically approach a critical capillary number
f � with decreasing viscosity ratio, scaling as Cacrit��−2/3 according to a slender-body
heory �Hinch and Acrivos �1980��. A fit describing the Grace curve was made by de
ruijn �1989�. Using a four-roll mill, Bentley and Leal �1986� generated Grace-like
raphs for flow types ranging from simple shear to extensional flow. The critical capillary
umber was observed to decrease for all viscosity ratios, when the flow type changed
rom shear to extensional flow.

Recently, microfluidic devices have been given more attention �Stone et al. �2004�;
ristini and Tan �2004�; Van Puyvelde et al. �2008��. There, a third parameter besides the
apillary number and the viscosity ratio has to be taken into account: the effect of the
onfinement ratio, defined as the ratio between the drop diameter 2R and the wall sepa-
ation 2W. Investigating the breakup behavior of drops in shear flow, Vananroye et al.
2006� found that confined high viscosity ratio drops are easier to break, and confined
ow viscosity ratio drops are harder to break. This difference in behavior has remained a
it of a puzzle up until now, and is the focus of this paper.

Minale �2008� recently extended the Maffettone–Minale model �Maffettone and Mi-
ale �1998�� to include the Shapira–Haber result �Shapira and Haber �1990��, which in
urn is an extension of Taylor’s small deformation theory, to describe confined drops.
espite the limitation that the model can only describe an ellipsoidal droplet shape, it
redicted an increase in Cacrit with increasing confinement ratio for ��1, minor effects
or �=1, and a drop in Cacrit with increasing confinement ratio for ��1. The results,
owever, did not line up accurately with experiments, and did not provide a physical
xplanation of the observed phenomena. Although the same trends were observed, the
ehavior was quantitatively different, as for example deviations from the unconfined case
ere only seen at the highest confinement ratios.
Recently, a modified version of the Hinch and Acrivos slender-body theory �Hinch and

crivos �1980�� for low viscosity ratio drops in shear flow has been proposed �Janssen et
l. �2010��, taking into account confinement effects. The main result of this analysis is
hat an extremely confined drop aligns more in the flow direction and becomes shorter,
hich leads to an increase of the critical capillary number with a factor of �3. The model,
owever, does not describe intermediate confinement ratios.
The objective of this paper is to investigate the dependency of the critical capillary
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1049BREAKUP OF VISCOUS DROPS IN CONFINEMENTS
umber on the viscosity and the confinement ratio in detail, covering a wide span of
iscosity ratios and confinement ratios, and to explain the observed differences between
he viscosity ratios. Experimental and numerical techniques will be used complementarily
o each other: an advantage of experiments is the ability to easily probe the low viscosity
atio regime, whereas simulations provide easier access to quantities such as drop length
nd orientation. The results from both methods overlap in a large window of viscosity
atios. In Sec. II, the numerical procedure and the experimental methods and materials are
utlined, after which the results are shown in Sec. III. Section IV contains an explanation
nd discussion for the differences in behavior between the viscosity ratios, and a criterion
or ternary breakup. Final conclusions are drawn in Sec. V.

I. METHODS

. Numerical procedure

Consider a Newtonian drop with an undeformed radius R in creeping flow conditions
n a Newtonian matrix between parallel walls, with the walls located at z= �W. Due to
he shear field, indicated by u�, the drop will deform and orient, which is generally
xpressed by means of the drop major axis L and the orientation angle 	. However, we
se the tip deflection t �schematically shown in Fig. 1� instead of 	 to quantify orienta-
ion, as motivated later in the paper. To simulate the deformation of a drop, a recently
eveloped 3D boundary-integral method is used which takes into account the presence of
he walls �Janssen and Anderson �2007, 2008��. In the numerical procedure, all length
cales are scaled with R, time with �̇, velocities with R�̇ and pressures with � /R. Due to
his scaling, the two parameters that characterize the flow problem, besides �, are the
onfinement ratio R /W, and the capillary number Ca=R�̇�0 /�.

The boundary-integral method gives the velocity u at the pole x0= �x0 ,y0 ,z0�T by

�� + 1�u�x0� = 2u��x0� −
1

4

�

S

f�x� · G�x,x0�dS�x� −
� − 1

4

�

S

u�x� · T�x,x0� · n�x�dS�x� ,

�1�

here the integration is over the drop surface S. The discontinuity in the normal stress
cross the interface is given by f, which reads in nondimensional form:

f�x� =
2

Ca
��x�n�x� , �2�

ith n the vector normal to the interface and � the local mean curvature.
The requirement that the velocity components should vanish at the wall is obeyed by

odifying the Green’s functions G and T to include the free-space result and a part with

2Wx

z

L
t

u∞

IG. 1. Schematic representation of a highly deformed drop in a matrix fluid between two parallel plates
ocated at z= �W. Also shown are the definitions of the drop length L, the tip deflection t, and the prescribed
hear flow u�.
he additional contributions due to the presence of the walls:
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1050 JANSSEN et al.
G = G� + G2W, T = T� + T2W, �3�

here the free-space parts are given by

G��x,x0� =
I

�x̂�
+

x̂x̂

�x̂�3
, T��x,x0� = − 6

x̂x̂x̂

�x̂�5
, �4�

ith x̂=x−x0 and x= �x ,y ,z�T the field point. Definitions of the wall modifications are
erived by Jones �2004�. Fast and accurate computation of these wall-modified Green’s
unctions is done by subtracting slow-decaying terms �Staben et al. �2003��. More details
or the current implementation are worked out in Janssen and Anderson �2007, 2008�.

Furthermore, a remesh algorithm is employed to handle large deformations �Cristini et
l. �1998, 2001��. A non-singular contour integration is applied to handle the singularity
f the free-space Green’s functions at the drop interface, and a multi-time step scheme to
imit the number of Green’s functions that have to be computed �Bazhlekov et al. �2004��.

comparison of this model with experimental data was performed by Vananroye et al.
2008b� for a viscosity ratio of unity. It was shown that the numerical model is well
apable of predicting the shape, deformation, orientation, and breakup of confined drops
n shear flow.

. Experimental procedure

. Materials

The fluids used in the present work are a polyisobutylene �PIB� grade as the matrix
hase �Parapol, obtained from ExxonMobil Chemical, Houston, TX� and several grades
f polydimethyl siloxane �PDMS� as the drop phase �Rhodorsil and Silbione, obtained
rom Rhodia Chemicals, France�. These transparent materials all have a constant viscos-
ty under the experimental flow conditions, and since elasticity effects can be neglected,
hey are considered to behave as Newtonian liquids �Vinckier et al. �1996��. In addition,
he densities of the pure materials are nearly matching ��PIB=890 kg /m3 at 20 °C and

PDMS=970 kg /m3 at 20 °C� �Minale et al. �1997��. Table I presents the measured zero-
hear viscosities 
0 at 24 °C �ARES-LS from TA Instruments� and the activation ener-
ies Ea of the components. Furthermore, the viscosity ratios � of the several PDMS/PIB

TABLE I. Zero-shear viscosities at 24 °C and activation energies of the
blend components; viscosity ratios of the blends at 24 °C.

Grade

0 �24 °C�

�Pa s�
Ea

�kJ/mole�

� =

PDMS


PIB

�24 °C�

PIB Parapol 1300 101 64.4 Matrix
PDMS 200® fluid 0.99 12.6 0.01
PDMS Rhodorsil 47V12500 12.2 12.6 0.12
PDMS Silbione 70047V30000 30 12.6 0.30
PDMS Rhodorsil 47V100000 103 12.9 1.02
PDMS Rhodorsil 47V200000 200 12.6 1.98
PDMS Rhodorsil 47V500000 493 12.5 4.88
PDMS Rhodorsil 47V1000000 1142 12.7 11.3
ystems are summarized. The interfacial tension � of these systems, which was measured
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1051BREAKUP OF VISCOUS DROPS IN CONFINEMENTS
o be 2.8 mN/m �Sigillo et al. �1997��, is independent of the molecular weight of PDMS
ince only grades with relatively high molecular weights are used here �Kobayashi and
wen �1995��.

. Methods

Breakup studies are performed in a counter-rotating parallel plate flow cell �Paar-
hysica� which has been described in detail in Vananroye et al. �2006�. The device
onsists of two glass plates controlled by separate motors. This way, in counter-rotating
ode, a stagnation plane is created during flow, which facilitates microscopic observa-

ions. The entire setup is located in a thermostated room in which the temperature is
arefully monitored during the experiments. The matrix material is loaded in a glass cup
urrounding the bottom plate, and the gap is fixed at 1 mm. The degree of confinement is
aried by injecting drops with different sizes �diameter 2R ranging from 100 to 900 �m�
n the matrix fluid at radial positions far enough from the rotation center to ensure a
niform shear field. During deformation and breakup, a drop is observed by means of a
ild M5A stereo microscope and a Basler A301f camera in both the vorticity �y direction

n Fig. 1�, as well as the velocity gradient direction �z direction�. The Reynolds number,
hich can be written as Re=Ca2��W /�0

2, is in the order of 10−6 which justifies the
reeping flow assumption.

. Definitions

. Critical capillary number

The critical capillary number is defined in this study as the lowest capillary number
ound at which an initially spherical drop breaks up. Alternative definitions are compli-
ated or require time-consuming procedures in both experiments and numerical simula-
ions. Complications include the significant influence of the deformation history on the
alue of Cacrit �Torza et al. �1972�; Tucker and Moldenaers �2002��, slow dynamics and
vershoots near critical situations �Janssen and Anderson �2007��, and multiple stationary
rop shapes near the critical capillary number �Bławzdziewicz et al. �2002, 2003�; Young
t al. �2008��. Additional problems to overcome in long experiments are the drift of the
rop out of the camera view, a small offset of the drop’s mass center out of the center
lane between the walls, and diffusion of small molecules which influences the interfacial
ension �Guido et al. �1999�; Shi et al. �2004�; Tufano et al. �2008, 2010��.

. Protocol

As mentioned above, in all cases discussed here, a spherical drop is initially placed
alfway between the walls. An experiment is started with a low capillary number at
hich the drop does not break up. Then, when the steady state is reached, the experiment

s interrupted and after retraction of the drop, flow is restarted at a slightly higher capil-
ary number �increase of 0.02 or lower�. This procedure is repeated until breakup occurs.

similar procedure is used for the simulations, with the option to run multiple simula-
ions in parallel. Typically a range of capillary numbers is simulated near the expected
acrit based on either experimental data or lower confinement ratios. In a second run, the
apillary number is further refined until the difference between the highest capillary
umber that leads to a steady state, and the lowest capillary number that leads to breakup

s small enough �in most cases 0.01�.



3

m
t
p
d
c

4

a
c
s
s
a
m
c
s

I

A

f
a
t
a
t
r
c
a

F
m
s

1052 JANSSEN et al.
. Ternary breakup

We define ternary breakup as a situation in which the drop breaks up into three or
ore, more or less equal-sized parts, contrary to binary breakup where the drop breaks in

wo parts, with or without much smaller satellite drops. Although the simulations are
erfectly symmetric, in most experimental situations one side of the drop has the ten-
ency to break off earlier due to the fact that the drop is not always positioned at the
enterline between the plates. This is still referred to as ternary breakup.

. Drop alignment

To quantify the alignment of the drop in the flow direction, we use the tip deflection,
s illustrated in Fig. 1. The orientation angle 	, which is normally used, did not provide
learly distinguishable results between different situations. As long as the drop is ellip-
oidal, the orientation angle is a well defined and intuitive parameter. However, the drop
hapes presented here, which are close to breakup, are far from ellipsoidal �see Fig. 1�. In
ddition, the drop length increases significantly with increasing confinement ratio, auto-
atically leading to a decrease in the orientation angle, which makes a quantitative

omparison between the results difficult. As will be shown, the tip deflection gave more
atisfying results.

II. EFFECT OF VISCOSITY RATIO AND CONFINEMENT ON Cacrit

. Unit viscosity ratio drops

In Fig. 2, numerical and experimental results for the critical capillary number as a
unction of the confinement ratio are shown for a viscosity ratio of unity �see also Janssen
nd Anderson �2007� and Vananroye et al. �2006��. Good agreement is obtained between
he experimental and numerical data. Due to an unidentified systematic error, we found in
ll data sets that the experiments gave a slightly higher critical capillary number, but
rends were found to be identical. For low confinement ratios, the bulk flow result is
ecovered �Cacrit=0.43�. Increasing the confinement ratio leads to a small decrease in the
ritical capillary number until a minimum in Cacrit is reached at a confinement ratio of

0 0.2 0.4 0.6 0.8 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

R/W

C
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it

λ = 1 E
λ = 1 N

IG. 2. Cacrit as a function of confinement ratio R /W for unit viscosity ratio drops. Symbols represent experi-
ental data �E�, while the full line represents the numerical results �N�. Ternary breakup is indicated with filled

ymbols for the experiments and with + for the simulations.
pproximately 0.5. Further increase in R /W leads to a small increase of the critical



c
t
b
a
m

B

A
d
p
e
r
a
r
c
i
c
c
5

C

A
e
r
r
i
t
l

F
e
s

1053BREAKUP OF VISCOUS DROPS IN CONFINEMENTS
apillary number. Contrary to unconfined flow, where binary breakup occurs, we observe
ernary breakup �indicated by the filled symbols in the experimental graphs and + sym-
ols for the numerical data� above a confinement ratio of approximately 0.7. In Figs. 5�a�
nd 5�b�, representative drop shapes are shown resulting from simulations and experi-
ents, respectively.

. High viscosity ratio drops

Numerical and experimental results for high viscosity ratio drops are shown in Fig. 3.
gain, the similarities in the experimental and numerical data are striking. A massive
ecrease in critical capillary number is observed with increasing confinement ratio, es-
ecially for the highest viscosity ratios �Vananroye et al. �2006��. Both simulations and
xperiments report breakup for viscosity ratios as high as �=10 at high confinement
atios, a phenomenon that does not occur in bulk shear flow. Ternary breakup is observed,
lthough only for R /W�0.8, which is at higher confinement ratios than for a viscosity
atio of unity �R /W�0.7�. For �=10, ternary breakup is not even observed at the highest
onfinement ratio investigated here. Between R /W=0.8 and R /W=0.9, the critical cap-
llary number marginally increases for �=2 and 5. We also note that the lowest critical
apillary number for all viscosity ratios seems to be about 0.4. For �=5, several numeri-
ally and experimentally obtained drop shapes at breakup are shown in Figs. 5�a� and
�b�, respectively.

. Low viscosity ratio drops

Critical capillary numbers for breakup of low viscosity ratio drops are shown in Fig. 4.
lthough there is only limited data from the simulations ��=0.3�, the match with the

xperiments is excellent. Contrary to the high viscosity ratio case �Fig. 3�, we now see a
elatively large increase of the critical capillary number with increasing confinement
atio. Also, ternary breakup occurs here at rather low confinement ratios. For low viscos-
ty ratios, the slender-body theory predicts a critical capillary number for confined drops
hat is �3 times higher than the unconfined case �Janssen et al. �2010��. Although this
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0.3
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IG. 3. Cacrit as a function of confinement ratio R /W for high viscosity ratio drops. Symbols represent
xperimental data �E�, while lines represent the numerical results �N�. Ternary breakup is indicated with filled
ymbols for the experiments and with + for the simulations.
imit is not reached in the simulations because boundary integral simulations for small �
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1054 JANSSEN et al.
re extremely time consuming, the critical capillary number at the highest experimental
onfinement ratios hovers around this ratio. However, with the uncertainty on the data, it
s impossible to judge whether a limit is truly reached and whether the limiting ratio is
xactly �3. Drop shapes are shown in Figs. 5�a� and 5�b� for simulations and experi-
ents, respectively, at �=0.3.

. Drop length and orientation

In addition to the critical capillary number, the numerically obtained dimensionless
rop length L and tip deflection t of drops at the highest sub-critical capillary number are
hown in Figs. 6�a� and 6�b�, respectively, for several viscosity ratios. For the drop length
, a relatively constant value is observed at low confinement ratios. An increase in L is
een for all viscosity ratios at confinement ratios exceeding the one at which the minimal
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IG. 4. Cacrit as a function of confinement ratio R /W for low viscosity ratio drops. Symbols represent experi-
ental data �E�, while the line represents the numerical results at �=0.3 �N�. Ternary breakup is indicated with
lled symbols for the experiments and with + for the simulations. The dashed line represents the limiting critical
apillary number that is �3 times the unconfined one, based on the experimental data �Janssen et al. �2010��.
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IG. 5. Cacrit from �a� simulations and �b� experiments as a function of the confinement ratio R /W for �

0.3, 1, and 5, with several drop shapes just before breakup. Filled symbols indicate ternary breakup.
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1055BREAKUP OF VISCOUS DROPS IN CONFINEMENTS
acrit is found. This trend is seen for all viscosity ratios. The tip deflection shows an
ncrease, followed by a decrease, with the maximum deflection found at the confinement
atio corresponding to the minimal value of Cacrit.

V. MECHANISM FOR DROP BREAKUP IN CONFINEMENT

. Generalized behavior

In Sec. III, it was shown both experimentally and numerically that confinement causes
n increase in Cacrit at low viscosity ratios, at �=1 no major trend is seen, and Cacrit at
igh viscosity ratios is lowered significantly by confinement. In addition, we showed the
rends for the drop length and orientation, expressed by the tip deflection.

A generalized explanation, describing the behavior at all viscosity ratios in a uniform
ay, is schematically shown in Fig. 7 where the critical capillary number as function of

he confinement ratio is categorized in five regions. The main effect of confinement is a
hange in the orientation of the drop with respect to the direction of the strain field, which
s oriented under an angle of 45° with the velocity direction in bulk shear flow.

In region I, the effect of the confinement is insignificant �typically R /W�0.3�, the
nconfined behavior is found, and the original Grace curve is recovered �Grace �1982��.

In region II, at moderate degrees of confinement, the effect of confinement at sub-
ritical steady-state conditions is a suppression of the rotation of the drop toward the flow
irection: the tip deflection becomes larger. Thus, the drop, which is more aligned in the
training direction of the flow, experiences a stronger flow and the steady-state drop
eformation increases with increasing degree of confinement at a fixed capillary number
a. Hence, the confined drop reaches the critical breakup length at a lower capillary
umber than the unconfined one, and breakup occurs at lower Ca. The higher the con-
nement ratio, the larger the decrease in Cacrit. We do not expect that the walls have a
ignificant stabilizing effect at this confinement ratio, and hence the critical breakup
ength Lcrit is the same for confined and unconfined droplets in this region, also supported
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IG. 6. Numerical results for �a� the dimensionless drop length L and �b� the dimensionless tip deflection t at
he highest sub-critical capillary number as a function of the confinement ratio R /W for various viscosity ratios
. Filled symbols indicate ternary breakup.
y the data in Fig. 6.
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In region III, some sort of equilibrium between regions II and IV is reached. Here, the
rop reaches its maximum orientation toward the direction of the strain field, which
esults in a minimum in Cacrit as a function of confinement ratio, as seen in Fig. 7, as well
s a maximum in the tip deflection.

With increasing degree of confinement, region IV is entered. Due to the large confine-
ent ratio, the deformed drop cannot maintain its orientation toward the strain field

uring flow, as its orientation is limited by the presence of the walls. Hence, the drop
otates away from the strain direction, indicated by a lower tip deflection. This leads to a
eaker flow and the critical breakup length Lcrit is reached at higher capillary numbers:
acrit goes up. In addition, due to a stabilizing effect of the walls, Lcrit also increases, and

herefore Cacrit increases even more.
A long drop generated at sub-critical capillary numbers in region IV is typically not

table in bulk conditions, but due to the stabilizing effect of the walls and the weak
rientation of the drop relative to the direction of the strain field, this steady-state elon-
ated shape can be obtained under confinement �Migler �2001��. The long drop eventu-
lly breaks up in three or more equally sized drops �ternary breakup�. In this case, effects
imilar to Rayleigh disturbances start to play a role �Lord Rayleigh �1879��. The exact
etails of the breakup mechanism are beyond the scope of this work, but it is worthy to
ote that ternary breakup usually occurs as the drop is retracting from the overshoot �see,
or example, transient data in Sibillo et al. �2006�, Janssen and Anderson �2007�, and
ananroye et al. �2008a��. In Sec. IV B, a simple scaling argument is presented for the
inimal dimensionless drop length required to have ternary breakup. Torza et al. �1972�

howed that by increasing the shear rate from a sub-critical level to a value well above
he critical one, they could generate large satellite drops, which could also be considered
ernary breakup. In principle, this is a situation where a step in shear rates is made to a
apillary number that is much larger than Cacrit. A more systematic experimental charac-
erization of breakup at high capillary numbers was conducted by Zhao �2007�.

Region V is a hypothetical situation, since it is very difficult to reach experimentally

R/W

I

II

III
IV V

Ca
crit

L
tip deflection

IG. 7. Schematic representation of the effect of the confinement ratio R /W on Cacrit. The five regions �I–V�
re explained in the text. Trends for the drop length L and tip deflection t at the highest sub-critical Ca are
hown. Transitions are shifted to higher confinement ratios with increasing viscosity ratio, as indicated by the
rrows.
s well as computationally. It is included to indicate that the alignment and stretching of
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drop cannot continue indefinitely, since other physical effects start to play a role. We
xpect that the asymptotic region found by Janssen et al. �2010� should be reached here,
here Cacrit is �3 times the unconfined Cacrit. This theory, however, is only defined for

ow viscosity ratios and does not consider additional stabilizing effects of the walls. It is
herefore unknown for which range of viscosity ratios and confinement ratios the
symptotic theory is valid.

It is now postulated that all viscosity ratios show the same behavior for these five
egions, except that the viscosity ratio introduces a shift over the horizontal confinement
atio axis, indicated by the arrows in Fig. 7.

As was shown in Fig. 3, a moderately confined drop with a high viscosity ratio
especially �=5 and �=10� initially shows a strong decrease in Cacrit, corresponding to
egion II in Fig. 7. Also the critical breakup length and tip deflection presented in Fig. 6
or high viscosity ratios initially follow the trends suggested in region II in Fig. 7. For
hese viscosity ratios, a small increase in Cacrit �region IV� is seen at very high confine-
ent ratios where the critical tip deflection indeed decreases and the critical length

ncreases, as seen in Fig. 6. Remarkably, the minimum Cacrit is again about 0.4 for �
2 and �=5. In the data shown in Figs. 3 and 5�a�, the high viscosity ratio drops indeed

eem to show an increase in Cacrit, but only at the highest confinement ratios under
nvestigation �R /W=0.9 and 0.95�, and this increase in Cacrit is virtually non-existent at
=10. It is not entirely known at this point what the behavior of an over-confined drop is

R /W�1�, and whether it is significantly different compared to more moderate confine-
ent ratios. Sibillo et al. �2006� presented one result for R /W=2 with �=1, which

howed complicated, multi-stage breakup behavior. Examining the images, one could
rgue that this is also ternary breakup, with the middle drop in the second stage also
reaking up into three smaller drops.

A low viscosity ratio drop, on the other hand �see Fig. 4�, only shows an increase in
acrit with increasing degree of confinement. Hence, under these conditions of viscosity

atio, only regions IV and V are entered. The data in Fig. 6 confirm that above the critical
onfinement ratio �R /W�0.3�, a low viscosity ratio drop shows an increase in critical
rop length, and a decrease in tip deflection, as was suggested for region IV.

At intermediate viscosity ratios �see, e.g., Fig. 2�, all trends suggested in Fig. 7 are
resent. At moderate confinement ratios �0.3�R /W�0.5� Cacrit slightly decreases, as
uggested in region II. The results in Fig. 6 also show a constant critical breakup length
n this region. The suggested increase in tip deflection is also weakly present. Around
/W=0.5, region III is entered, where a minimum in Cacrit of 0.4 as function of the
egree of confinement is found. Finally, under more severe confined conditions, Cacrit and

crit increase, while the tip deflection decreases, corresponding to the trends shown in
egion IV.

. Criterion for ternary breakup

We now present a simple scaling argument for the minimal length of a drop to show
ernary breakup. The data in Fig. 6�a� suggest a minimum length around 6 undeformed
rop radii. Assume that the ternary breakup is a result of a wave forming on the drop
urface, which has a wavelength � large enough to grow �Lord Rayleigh �1879�; Tomo-
ika �1935��. This implies that the wavelength has to be larger than the circumference of
he cross section 2
r, where r is the local radius. We also assume, in a crude approxi-
ation, that the drop is cylindrical, so that the volume V is 
Lr2= �4
 /3�R3. To obtain

ernary breakup, we need to have at least two wavelengths � over the drop length L. After

escaling L and r with R, we arrive at



w
b
b
w
v
e
a
r
c
b
e
o
g
M
w

V

n
c
a
c
c
i
c
e
a
w
s
v
b
v
o
o
t
b
d
a

A

N
N
d

1058 JANSSEN et al.
L/R � 	8


�3

2/3

= 5.95, �5�

hich qualitatively agrees with the value of 6 suggested earlier. The drop length L has to
e at least larger than 6 undeformed drop radii R for the possibility to have ternary
reakup, but a drop length larger than 6 does not automatically lead to ternary breakup,
hich may be obvious from the drop lengths reported in Fig. 6�a�, which are stable
alues for sub-critical situations. In this case, the shear flow is most likely stabilizing the
longated drop against growth of instabilities by convecting waves in opposite directions,
nd the walls might also have a stabilizing effect �Son et al. �2003��. One other additional
emark about the ternary breakup is that during transient behavior, a drop at the largest
onfinement ratio first shows an overshoot in L, then it partially retracts and the three
lobs are formed, and finally, it breaks up. So the values for stable, sub-critical values are
ven lower than the maximum L reached prior to breakup �typical overshoot is in the
rder of 20%–30%�. This analysis ignored the fact that the wavelength with the largest
rowth speed is a function of the viscosity and confinement ratio �Tomotika �1935�;
ikami and Mason �1975�; Son et al. �2003��. However, this is not relevant here since
e only looked for the minimum wavelength required.

. CONCLUSIONS

We have investigated droplet breakup in confined shear flow, both experimentally and
umerically. In low viscosity ratio situations, it is more difficult to break a drop in
onfinement than in bulk due to the fact that the drop aligns more in the direction of flow
nd hence experiences a weaker flow. In addition, the walls stabilize the drop shape
ausing it to be more elongated at the moment of breakup. At high viscosity ratios, a
onfined drop is easier to break than an unconfined one, as the confined drop orients more
n the direction of the strain field. Hence, it experiences a stronger flow and reaches the
ritical breakup length at a lower capillary number. When the drop and the matrix are
qui-viscous, a combination of this behavior is seen: at intermediate confinement ratios,
small reduction in the critical capillary number is seen similar to a highly viscous drop,
hile at high confinement ratios, an increase in critical capillary number is observed,

imilar to a low viscosity ratio drop. This increase is actually also present for a high
iscosity ratio drop but only at very large confinement ratios. We conclude that the
reakup behavior of a confined drop is actually similar for all viscosity ratios, but the
iscosity ratio shifts the behavior over the confinement axis and changes the magnitude
f the effects. In all cases, the effect of confinement on the breakup depends on the
rientation of the drop with respect to the local strain field and the stabilizing effects of
he walls. This is schematically summarized in Fig. 7. In addition, ternary breakup could
e observed for all viscosity ratios when the drop becomes longer than 6 undeformed
rop radii, a value support by an argument based on the Rayleigh–Plateau instability,
lthough this criterion by itself is not sufficient to ensure ternary breakup.
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