

From POOSL to UPPAAL : transformation and quantitative
analysis
Citation for published version (APA):
Xing, J., Theelen, B. D., Langerak, R., Pol, van de, J. C., Tretmans, J., & Voeten, J. P. M. (2010). From POOSL
to UPPAAL : transformation and quantitative analysis. In Proceedings of the 10th International Conference on
Application of Concurrency to System Design (ACSD 2010), 21-25 June 2010, Braga, Portugal (pp. 47-56).
IEEE Computer Society. https://doi.org/10.1109/ACSD.2010.21

DOI:
10.1109/ACSD.2010.21

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.1109/ACSD.2010.21
https://doi.org/10.1109/ACSD.2010.21
https://research.tue.nl/en/publications/c415579d-e7f1-4b01-a6fd-4fe7c19d1551

From POOSL to UPPAAL:
Transformation and Quantitative Analysis

Jiansheng Xing∗†,B.D. Theelen†,Rom Langerak∗,Jaco van de Pol∗,Jan Tretmans†,J.P.M. Voeten†‡
∗University of Twente, Faculty of EEMCS

7500 AE Enschede, The Netherlands
Email: {xingj,r.langerak,j.c.vandepol}@cs.utwente.nl

†Embedded Systems Institute
‡Eindhoven University of Technology, Department of Electrical Engineering

5600 MB Eindhoven, The Netherlands
Email: {bart.theelen,jan.tretmans}@esi.nl, j.p.m.voeten@tue.nl

Abstract—POOSL (Parallel Object-Oriented Specification
Language) is a powerful general purpose system-level modeling
language. In research on design space exploration of motion
control systems, POOSL has been used to construct models for
performance analysis. The considered motion control algorithms
are characterized by periodic execution. They are executed
by multiple processors, which are interconnected by Rapid
Input/Output (RapidIO) packet switches. Packet latencies as
worst-case latencies and average-case latencies are essential per-
formance criteria for motion control systems. However, POOSL
analysis merely allows for estimation results for these latency
metrics since it is primarily based on simulation. Because motion
control systems are time-critical and safety-critical, worst-case
latencies of packets are strict timing constraints. Therefore exact
worst-case latencies are to be determined. Motivated by this
requirement we propose to use model checking techniques. In this
paper we illustrate how a POOSL model of a (simplified) motion
control system can be transformed into an UPPAAL model
and we verify its functional behavior and worst-case latencies.
Moreover, we show that analysis of average-case latencies can
also be accomplished with assistance of the model checking tool
UPPAAL. 1

Index Terms—POOSL; UPPAAL; transformation; perfor-
mance; verification; quantitative analysis;

I. INTRODUCTION

Designing software/hardware systems requires dealing with
their increasing complexity within ever-shortening design
times. Usually, the design process involves considering alterna-
tive ideas and options for realizing the required functionality.
In the early phases of the design process, the choice for a
specific alternative may have a deep impact on the functional-
ity and performance of the final implementation. System-level
design methodologies can be applied to assist the designer
in taking well-founded design decisions. POOSL (Parallel
Object-Oriented Specification Language) [1] is a system-
level modeling language that supports such methodologies by
constructing and/or refining models. Based on the developed
models, POOSL supports functional and performance analysis

1This work has been supported by the EU FP7 under grant number ICT-
214755: Quasimodo.

by means of simulation2 and thus significantly reduces the
risk of expensive design-implementation iterations. POOSL
has been applied in many academic and industrial case studies
and proved to be effective, see for example [2]–[4].

Recently, POOSL was used to explore the design space of
motion control systems by constructing system models for per-
formance analysis. The considered motion control algorithms
are distributed over a multi-processor platform. The various
processors in this platform are inter-connected by a network
of packet switches that conform to the Rapid Input/Output
(RapidIO) standard [5]. Packets are generated by processors
to exchange messages with other processors on this network.
A packet switch receives packets via its input ports from
other packet switches (or processors), routes these packets
by its crossbar fabric to appropriate output ports, and then
sends those packets to other packet switches (or processors).
Each input/output port has its own buffer, which works in a
FIFO mode. The crossbar fabric is not buffered. Obviously,
the latencies through the RapidIO network are closely related
to the performance of the motion control system.

Motion control is characterized by feedback/feedforward
control strategies and periodic execution. The main research
challenge is how to map the considered motion control al-
gorithms on the multi-processor platform such that the pe-
riodic timing constraints are met (i.e., all packets arrive at
their destinations before the period ends). Packet latencies as
worst-case latencies and average-case latencies are essential
performance criteria for finding a feasible mapping. According
to the proposed approach, a POOSL model is constructed
first for a given mapping and then end-to-end latencies are
analyzed. Subsequently, a feasible mapping is found if the
end-to-end latencies satisfy the timing requirements; or else,
other mappings are explored until a feasible mapping is found.

POOSL analysis gives both average-case and worst-case
latencies. However, since it is based on simulation, the results
are estimation results. For average-case results, the accuracy
is indicated based on confidence intervals. However, such

2The theory underlying POOSL includes model checking techniques for
analyzing functionality and performance, but no tools are available yet for
actually doing that [1].

10th International Conference on Application of Concurrency to System Design

1550-4808/10 $26.00 © 2010 IEEE

DOI 10.1109/ACSD.2010.21

47

accuracy indication is not possible for worst-case metrics.
Because motion control applications are safety-critical and
time-critical, worst-case latencies are strict timing constraints.
Exact worst-case latencies are therefore demanded. Motivated
by this requirement, we propose to use model checking
approaches for analyzing the worst-case latencies. To this end,
we transform a POOSL model of a (simplified) motion control
system into an UPPAAL model to enable formal verification.
We then show that worst-case latencies and functional behavior
can indeed be verified with the obtained UPPAAL model. We
also propose a method for recording time (clock value) such
that estimated worst-case (best-case) latencies can be obtained
with UPPAAL simulator and then be used as a starting point
for determining the exact worst-case (best-case) latencies by
UPPAAL verification. Moreover, we show that the average-
case latencies for the (simplified) motion control system can
be derived from the obtained worst-case and best-case latency
results. Our experiments show that the performance results
verified with UPPAAL match the estimation results obtained
from the POOSL model.

The rest of the paper is organized as follows. Section II
describes POOSL modeling. Section III presents a POOSL
model for the considered (simplified) motion control system.
UPPAAL modeling is discussed in section IV. The trans-
formation from the POOSL model to an UPPAAL model
is discussed in Section V. We present the verification and
performance analysis with the UPPAAL model in Section VI.
Section VII briefly compares the POOSL and UPPAAL models
and tools. Finally, conclusions are drawn in Section VIII.

II. MODELING A SYSTEM WITH POOSL

POOSL was originally defined in [6] as an object-oriented
extension of CCS [7]. Meanwhile, POOSL has been extended
with time in [8] and probabilities in [9] to become a very
expressive formal modeling language accompanied with sim-
ulation, analysis and synthesis techniques that scale to large
industrial design problems [1].

POOSL supports three types of objects: data, processes,
and clusters. Data models the passive components of a system
representing information that is generated, communicated, pro-
cessed and consumed by active components. The elementary
active components are modeled by processes while groups of
active components are modeled by clusters in a hierarchical
fashion.

The definition of data involves a name, a single inheritance
relation, instance variables, and instance methods [1]. The
instance variables specify the attributes of a data object.
The behavior of data objects, which is purely sequential, is
defined by (data) methods. Table I summarizes the syntax for
expressions used for specifying data methods.

Defining a process class involves specifying a name, instan-
tiation parameters and instance variables, a port interface and
message interface, instance methods, an initial method call and
an optional single inheritance relation [1]. The instantiation
parameters and instance variables are the attributes of a
process. The port interface lists the names of the ports via

TABLE I
POOSL DATA EXPRESSIONS

Expression E Description
c Constant
x Variable

self Reference Self
new(D) Data Object Creation

currentTime Current Model Time
x := E Assignment
E1;E2 Sequential Composition

E m(E1, ..., Ei) Data Method Call
E m̂(E1, ..., Ei) Superclass Data Method Call

if Ec then E1 else E2 fi Choice
while Ec do E od Loop

return E Return

which a process exchanges messages. The message interface
lists the signatures of all possible messages and includes for
each message the port name, the symbol ! or ? for message
send or receive respectively, a message name and a list of the
types of the message parameters. The primitives for specifying
process methods are listed in Table II.

TABLE II
POOSL PROCESS STATEMENTS

Statement S Description
m(E1, ..., Ei)(v1, ..., vj) Method Call

E Data Expression
S1; ...;Sn Sequential Composition

par S1 and ... Sn rap Parallel Composition
Ep!m(E1, ..., Ei){Ea} Message Send

Ep?m(v1, ..., vi|Ec){Ea} (Conditional) Message Reception
[E] S Guarded Execution

sel S1 or ... or Sn les Non-deterministic Selection
if Ec then S1 else S2 fi Deterministic Choice

while Ec do S od Loop
abort S1 with S2 Abort

interrupt S1 with S2 Interrupt
skip Empty Behavior

delay Et Time Synchronization

POOSL provides clusters to create a hierarchical structure
of processes (clusters). We omit further details since their
behaviors are equivalent to the parallel composition of their
constituents [9].

POOSL has a formal semantics, which is given in [9]. The
semantics of the data part is defined as a denotational seman-
tics. The semantics of the process part is given by a Plotkin-
style structural operational semantics and defines for each
POOSL model a timed probabilistic labeled transition system
of the form (C,Cs, A, {

a→ ⊆ C × D(C)|a ∈ A}, T, { t→ ⊆
C × C|t ∈ T+}). Here, C is the set of configurations (or
states). Cs ∈ C refers to the initial configuration reflecting
the start of an execution. A refers to the set of actions and T
refers to the time domain (which can be integer or real-valued).
There are two sets of labeled transition relations. The set
{ a→⊆ C×D(C)|a ∈ A} denotes the action transitions, where
D(C) is the set of distribution functions over C; D(C) = {π :
c → [0, 1]|

∑
c∈C π(c) = 1}. The action transitions originate

from the use of expressions in table I or statements in table

48

II, except for the delay-statement. The delay-statement implies
time transitions in the set { t→⊆ C × C|t ∈ T+}.

An important property of the semantics of POOSL is that
it relies on the two-phase execution model of [10], which
alternates a phase of (asynchronously) performing enabled
actions with a phase of advancing time. In other words, the
semantics conforms to the property of action urgency by
prioritizing performing actions over advancing time.

III. POOSL MODEL OF THE MOTION CONTROL SYSTEM

Before presenting the POOSL model for our case study, we
first explain some aspects of RapidIO packet switches, which
are the most important components for our analysis. RapidIO
is a data communication standard provisioned for intercon-
necting chips on a circuit board and circuit boards using a
backplane. The standard now has matured into a cost-effective,
switched based replacement for expensive proprietary busses
in high-performance embedded systems, such as networking
and communications equipment [5].

Figure 1 shows the architecture of a RapidIO packet switch
used in our case study. It has 8 input ports and 8 output
ports. Input/output ports are buffered using FIFO policy. Each
input/output buffer has 8 slots. The input/output buffers work
either at store-and-forward mode or cut-through forwarding
mode depending on the mode chosen. The crossbar switch
fabric is unbuffered. The packet switch is assumed to be
lossless as it includes link-level flow and error control. Packets
have 4 priority levels (from 0 to 3, where 0 and 3 denote
the lowest and highest priority respectively). Each input/output
port has an arbiter to decide whether a packet can be accepted
or not. Input arbiters accept a packet if and only if the packet
satisfies the following condition: packet priority ≥ buffer
occupancy - 4. On the other hand, output arbiters work in
a hierarchical way. They arbitrate on priority first and then
use a Round-Robin policy.

Fig. 1. RapidIO Packet Switch Architecture

Figure 2 depicts a POOSL model of a system consisting of
2 RapidIO switches (Switch1, Switch2) which interconnect

4 processor nodes (N1 to N4). This model is a simplified
version of the real motion control system with 10 RapidIO
switches for which a bigger POOSL model exists as well.
This paper considers this smaller example to focus on the
key aspects of transforming POOSL models into UPPAAL
models. The nodes in figure 2 represent processors on which
certain parts of the motion control algorithms are executed.
This means that we have abstracted from the original motion
control application model (containing about 1500 concurrent
activities in POOSL) by using abstract packet generators in
the processor node models. In the POOSL model of figure 2,
the nodes can generate packets according to fixed or random
patterns (the latter being a probabilistic abstraction of the
original motion control application model). In this paper, we
only consider fixed patterns because the standard version of
UPPAAL does not support probabilistic behavior. Future work
includes an investigation of translating probabilistic behavior
expressed in POOSL into UPPAAL-PRO models [11].

Next to the processes Switch1, Switch2, N1, N2, N3 and
N4, the POOSL model also contains a Monitor process. This
Monitor non-intrusively collects individual packet latencies
to calculate the minimum, maximum and average packet
latencies as well as their variances. The switches and nodes
are interconnected by channels c1 to c6, while nodes N1 to
N4 communicate with Monitor via channel m. In this paper,
we consider a configuration where nodes N1 and N2 send
packets to Switch1, which appropriately routes and forwards
these packets to Switch2. Switch2 forwards these packets to
their destination nodes N3 or N4.

Fig. 2. POOSL Model of the (simplified) Motion Control System

Nodes N1 to N4 are instances of process class Node (see
figure 3), which is responsible for generating and receiving
packets. The generation and reception of packets is modeled
in (independent) concurrent activities that are created by the
initially called method initialize of class Node using the par-
statement of table II. The reception of packets (which are
instances of a data class Packet) is captured in method accept-
Packets while the generation and sending of fixed patterns of
new packets is specified with methods generateFixedBurstIm-
puls, generateFixedBurstInterval and sendPackets. Section V
discusses this packet generation and sending behavior in more
detail.

Switch1 and Switch2 are instances of process class
RIOSwitch, which is depicted in figure 4. They capture the
behavior of routing and forwarding packets. For each of the

49

Fig. 3. POOSL Process Class Node

8 input ports, a concurrent input handler is created during
the initial method call init. In addition, 8 output handlers are
created. The behavior of each of these handlers is specified
in a separate method. For example, handleInputPort1 handles
the packets received at input port ip1 and handleOutputPort1
captures sending packets to output port op1. Method schedule-
ForOutput specifies the actual arbitration of packets destined
for a specific output port and hence, one such activity is
being created for each of the 8 output ports during the initial
method call init. Therefore, each switch includes a total of 24
concurrent activities. For each switch, its 24 concurrent ac-
tivities operate on the shared instance variables routingCache
and scheduler. Variable routingCache is an instance of data
class RoutingCache and is used to store routing information.
Variable scheduler is an instance of data class RIOScheduler
and it implements the concrete output arbitration. Section V
discusses the input and output handlers in more detail.

IV. MODELING A SYSTEM WITH UPPAAL

UPPAAL is a tool for modeling, validation and verification
of real-time systems. It is based on the theory of timed
automata (TA) [12] and its modeling language offers additional
features such as bounded integer variables and urgency [13].
The query language of UPPAAL, used to specify properties
to be checked, is a subset of CTL (computation tree logic)
[14], [15]. UPPAAL is appropriate for systems that can be
modeled as a collection of non-deterministic processes with
finite control structures and real-valued clocks, communicating
through channels and/or shared data variables. In this section,
we briefly discuss the basic concepts and definitions needed
in this paper.

A timed automaton is a finite-state machine extended with
clock variables. It uses a dense-time model where a clock
variable evaluates to a real number. All the clocks progress
synchronously. A system is modeled as a network of several

Fig. 4. POOSL Process Class RIOSwitch

such timed automata in parallel. The state of a system is
defined by the locations of all automata, the clock constraints,
and the values of the discrete variables. Every automaton
may fire an edge (sometimes called a transition) separately or
synchronize with another automaton, leading to a new state.
We refer the reader to [13] for a more thorough description
of the timed automata used in UPPAAL.

We present the basic definitions of the syntax and semantics
for timed automata in UPPAAL using the following notations:
C is a set of real-valued variables standing for clocks and
B(C) is the set of Boolean combinations of clock constraints
of the form x ./ n or x− y ./ n, where x, y ∈ C, n ∈ N and
./ ∈ {<,≤,=,≥, >}. A timed automaton is a finite directed
graph annotated with conditions over, and resets of non-
negative real valued clocks. Syntactically, a timed automaton
is a tuple (L, l0, C,A,E, I), where L is a set of locations,
l0 ∈ L is the initial location, C is the set of clocks, A is a set
of actions, co-actions (i.e., complementary actions, see below)
and the internal action τ . The set E ⊆ L×A×B(C)×2C×L
is a set of edges between locations annotated with an action,
a guard and a set of clocks to be reset. Finally, I : L→ B(C)
assigns invariants to locations.

The semantics of a timed automaton is defined as a labeled
transition system (S, s0,→), where S ⊆ L×RC is the set of
states, s0 = (l0, u0) is the initial state, and →⊆ S × {R≤0 ∪
A} × S is the transition relation such that:

• (l, u)→ (l, u+ d) if ∀d′ : 0 ≤ d′ ≤ d⇒ u+ d′ ∈ I(l)

50

• (l, u) → (l′, u′) if there exists e = (l, a, g, r, l′) ∈
E such that u ∈ g, u′ = [r 7→ 0]u and u′ ∈ I(l′)

where for d ∈ R≥0, u + d maps each clock x in C to the
value u(x) + d, and [r 7→ 0]u denotes the clock valuation
which maps each clock in r to 0 and agrees with u over C\r.

An UPPAAL model is defined as the parallel composition of
a collection of timed automata. Semantically, such a network
again describes a timed transition system obtained from those
of the components by requiring synchronization on delay
transitions and requiring discrete transitions to synchronize
on complementary actions. Three types of synchronization are
supported: binary synchronization, broadcast synchronization,
and urgent synchronization. Suppose c is the channel name.
For binary synchronization, an edge labeled c! synchronizes
with another labeled c?. In broadcast synchronization, a sender
c! can synchronize with an arbitrary number of receivers c?
. For urgent synchronization, delay must not occur if it is
enabled.

Finally, we remark that the flavor of timed automata in
UPPAAL allows the use of data variables with finite domains,
including finite records of Integers and Booleans and finite
(multi-dimensional) arrays of data variables as well as urgent
channels and locations [13]. It is also possible to declare
functions for which the syntax follows the C/C++/Java style,
and most control-flow constructs of C are supported. Functions
are evaluated atomically and must be deterministic [16]. The
next section illustrates how these features have been used to
transform the POOSL model in figure 2 into an UPPAAL
model.

V. TRANSFORMATION FROM POOSL TO UPPAAL

From the behavior point of view, POOSL has two parts: the
process part covering the behavior of processes and clusters
is based on a timed and probabilistic extension of CCS, while
the data part (covering data objects) is based on the concepts
of traditional object-oriented languages. In this section, we
first focus on general transformation patterns matching the
expressions and statements in table I for data part and table II
for process part. Then these patterns are applied to transform
the POOSL model of figure 2 into an UPPAAL model.

A. Transformation Patterns
The following transformation patterns illustrate how typical

POOSL constructs are transformed into UPPAAL code (or
timed automata).

1) Data Objects & Expressions: Data objects are specified
using expressions in table I. It is fairly easy to do data object
transformation as most expressions are also supported by
UPPAAL. Dynamic object creation, and current model time
are not directly supported. However, dynamic object creation
can be abstracted away by a declaration in advance and current
model time can be modeled by reference to a global clock.
Now we give an example, the creation of an array with 8
elements inputQueues := new(Array) size(8) is transformed
into an UPPAAL array declaration Packet inputQueues[8]
which can then store 8 packets (Packet is a predefined structure

for storing packets). Note that UPPAAL requires indication of
the type of items stored in the array while for POOSL, the
array can contain arbitrary objects. More sophisticated POOSL
data objects can be translated into a combination of UPPAAL
records and arrays of variables (as long as the involved data
structures are finite and fairly static).

2) Processes & Statements: For process object transforma-
tion, we highlight the following patterns.

While processes in a POOSL model are easily identifiable
from the component structure diagram like the one in figure 2
(since they are created statically), par-statement denotes dy-
namic creation of additional parallelism by means of concur-
rent activities within processes. In case the maximum number
n of such activities is known in advance, one can translate each
of the activities into a separate UPPAAL timed automaton.
This should be performed for all processes. However, activities
of different processes in POOSL can sometimes be united into
a single UPPAAL timed automata when there is clear one-
to-one synchronization relation between such activities. We
illustrate this in sections V-C2 and V-C3.

The POOSL statement Ep!m(E1, ..., Ei){Ea} denotes
sending a message m through a port Ep with
parameters E1, ..., Ei. The complementary statement
Ep?m(v1, ..., vi|Ec){Eb} specifies receiving a message
m from a port Ep, where the parameters E1, ..., Ei of a
matching sending statement are bound to variables v1, ..., vi.
In case the message send and receive statements refer to the
same channel, the message names m match and the number
of parameters/variables i match, then synchronization will
indeed take place (and the parameters are passed) at the
moment condition Ec (which may depend on the parameter
values and other variables within the sending and receiving
processes) evaluates to true. The optional expressions Ea

and Eb are evaluated atomically after the message is actually
sent/received.

We transform the passing of messages between processes
in POOSL into synchronization between timed automata in
UPPAAL. The sending and receiving statements are captured
using complementary actions ! and ? on a unique channel.
The parameters E1, ..., En of the sending statement are trans-
formed into UPPAAL expressions or functions. The variables
v1, ..., vi of the receiving statement are transformed into cor-
responding shared variables in the UPPAAL model and are
assigned the values of the previously mentioned expressions
or functions. The atomic expression Ea is captured as part
of the update in the edge of the sending timed automaton.
Similarly, expression Eb is captured as update in the edge of
the receiving timed automaton. Finally, the condition Ec is
transformed into a guard of the receiving timed automaton.
Figure 5 illustrates this approach for the example where
sending statement c!m(p, q, r){r := 3} matches with receiving
statement c?m(x, y, z|x >= 1). This transformation pattern
has proven sufficient for translating the message passing
actions in the POOSL model of figure 2.

The passage of time in a POOSL model originates from the
use of statement delay Et, where Et evaluates to a positive

51

Fig. 5. Sending and Receiving Message Timed Automata

Real or Integer value. In case Et evaluates to an Integer,
this statement can be transformed into a time transition in
UPPAAL. For instance, delay a (where a is an Integer) is
translated to the timed automaton in figure 6. Here, c denotes
a local clock. The synchronization parSync is added to enforce
the start of this time transition. This pattern is used in several
timed automata (as shown in figure 9,10,11).

Fig. 6. Delay Timed Automation

Since time transitions in UPPAAL are selected non-
deterministically, we need to enforce that all such transitions
run simultaneously whenever they are enabled. Therefore, we
propose to use the timed automaton in figure 7. When a request
for broadcast synchronization through signal reqSync arrives,
this timed automaton will initiate a broadcast synchronization
signal parSync to start all enabled time transitions. reqSync
signals are generated when system starts (as shown in figure
8) or whenever a concurrent activity finishes (as shown in
figure 9,10,11).

Fig. 7. Synchronization Timed Automaton

POOSL follows an action urgency policy, which means that
time can only advance if there are no actions ready to be
performed. In UPPAAL such actions are modeled as updates
on edges. We enforce action urgency by putting them on
the edges immediately before/after time transitions. Moreover,
when necessary, a location is labeled as committed or urgent
to enforce that time does not advance there.

B. Data part transformation
The POOSL model in figure 2 uses various data classes.

RIOPacket, RIOQueue, RoutingCache and RIOScheduler are
the most important ones. We briefly sketch the transformation
for these data classes.

1) RIOPacket: RIOPacket is a simple data structure that
contains information about an individual packet. The methods
for RIOPacket allow accessing the instance variables without
further complex operations on them. Such data classes can be
easily transformed into an UPPAAL struct, for which access
of its member variables comes for free. The UPPAAL struct
modeling RIOPacket is named Packet.

2) RIOQueue: RIOQueue is a specialization of the more
general data class Queue, which can be used to model bounded
and unbounded queues with FIFO or LIFO queuing policies.
The POOSL model in figure 2 only includes FIFO queues of
bounded capacity (8 RIOPackets). So, the transformation to
UPPAAL of RIOQueue can be based on an array of size 8 that
stores Packets. RIOQueue has methods to handle the access
of RIOPackets. For example, the method accepts checks the
condition packet priority ≥ buffer occupancy - 4 of whether
a new packet to arrive can be added to a RIOQueue (see
also section III). Another method reorders the packets in
a RIOQueue in correspondence to their priority levels. To
capture these more complex behaviors, functions have been
defined in the UPPAAL model that captures the same behavior.

3) RoutingCache: RoutingCache is transformed into a two-
dimensional array of routing information in UPPAAL. The
routing information consists of a struct with 4 member vari-
ables: switch, source, destination, and localPort. In addition,
UPPAAL functions are provided to access the routing infor-
mation. For example, function getLocalPort(int switch, int
source, int destination) finds the local output port for a packet
in a specific switch with given source and destination.

4) RIOScheduler: RIOScheduler is a complex data struc-
ture storing all relevant information (including all input
and output queues) referring to the output arbitration for a
switch. This data structure and its accompanying behavior can
be transformed straightforwardly into UPPAAL by defining
almost the same UPPAAL functions for each method of
RIOScheduler. The main difference of these functions with the
corresponding methods in POOSL model is that some extra
information must be provided to specify the involved switch,
routing table and matrix for Round-Robin arbitration.

C. Process part transformation
We first identify all active concurrent activities in the

POOSL model of figure 2 to enable specifying timed automata
in UPPAAL for each of them. Although each switch in the
POOSL model contains 24 activities, only a few of them
are actually active as a consequence of how the 2 switches
interact with each other and the nodes. In fact, there are 2
input activities, 2 scheduling activities and 2 output activities
within each RIOSwitch active. Moreover, there is one packet
generation activity and one sending activity for Node1 and
Node2, and one receiving activity for Node3 and Node4. For
simplicity, we only show the transformation for some typical
activities.

1) Packet generation activity: The POOSL model splits
generation of packets from actually sending them. Methods
generateFixedBurstImpuls and generateFixedBurstInterval im-
plement the generation of a fixed sequence of packets that
are stored into a FIFO queue sendQueue for sending. The
packets are sent from this queue by method sendPackets. The
timed automaton in figure 8 models the behavior of gener-
ateFixedBurstImpuls (POOSL code is shown at the bottom
part of figure 3). The timed automaton starts when receiv-
ing the binary synchronization reqStart signal. It then calls

52

function generatePacket() to generate a burst of predefined
packets. Subsequently a reqSync signal is raised to ask for
broadcast synchronization of all timed automata, after which it
returns to the initial location waiting for next reqStart signal.
The transformation of method generateFixedBurstInterval is
omitted due to space limitation.

Fig. 8. Impuls Generation Activity Timed Automaton

2) Sending activity & input handler: We illustrate trans-
forming the sending of packets by a node and the input han-
dling of packets received by a switch with the communication
over channel c1 in figure 2, which connects the output of node
N1 to the input port ip1 of Switch1. The input handler for port
ip1 of a RIOSwitch is specified by method HandleInputPort1
shown in the bottom part of figure 4. Since channel c1 is only
used for sending packets (specified by method sendPackets)
by Node1 to the concurrent input handler specified by Han-
dleInputPort1, we can unite the combined behavior into one
timed automaton. Method HandleInputPort1() first specifies
receiving a packet p in case the condition that p still fits into
the input queue for port ip1 is satisfied. After setting the output
port to which the packet should be forwarded, two concurrent
activities are created with the par-statement. The first activity
further deals with accepting and storing packet p, whereas
the second activity enables receiving the next packet. For the
parameter settings of the POOSL model that we consider in
this paper, packets are never actually received concurrently.
The completion of receiving p involves delaying for the time
it takes to transmit the packet over the link connected to port
ip1 (which depends on the packet size and link rate) and
actually storing the packet into the input queue (which, for the
parameter settings that we consider, is done when the packet
has arrived completely to ensure store-and-forward operation).

Fig. 9. Sending Activity and Input Handler Timed Automaton

The combined sending of a packet by node N1 and the
reception of that packet as just described is captured by the
timed automaton in figure 9. When broadcast synchronization
signal parSync arrives, if the sending queue of node N1 is not
empty (sendQueueNotEmpty(0)==true) and the first packet
to send can be accepted by the input queue for port ip1
(AcceptSend(0,0,0)==true), the timed automaton delays for

the appropriate amount of time determined by updateDelay().
This delay equals the packet transmission time over the link
to port ip1. Function inputSend2Switch(0,0,0) is subsequently
executed to move the packet from the sending queue of N1 to
the input queue of port ip1. Finally, broadcast synchronization
signal reqSync is initiated to request for synchronization of all
timed automata.

3) Output handler & input handler: As the output port
op1 of Switch2 is connected to the input port of node N3,
the output activity of Switch2 specified by method Handle-
OutputPort1 and the input activity acceptPackets of N3 can
be united into one activity. This activity is modeled with the
timed automaton of figure 10. When a broadcast synchro-
nization signal parSync arrives, if output queue for port op1
of Switch2 is not empty (outputQueuenotEmpty(1,0)==true),
the timed automata delays for an amount of time corre-
sponding to the transmission time over the link between
output port op1 and the input port of N3 (determined by
updateDelay()). Subsequently, function output(1,0) is exe-
cuted to delete the transmitted packet from the output queue
for port op1 of Switch2. When the clock value corre-
sponding to this packet is larger than the current candidate
worst-case latency (burstC[currentPacket.number] > worstLa-
tency[currentPacket.number]), a binary synchronization signal
calcLatencyW is raised to update the candidate worst-case
latency. Notice that this part of the timed automaton captures
part of the quantitative analysis capabilities, which are dis-
cussed in more detail in section VI. Finally, the broadcast
synchronization signal reqSync is raised to request for syn-
chronization as above and the number x of received packets
is incremented.

Fig. 10. Output handler and input handler Timed Automaton

4) Transfer activity: The transfer activity refers to the
actual scheduling of packets from input buffers to a specific
output buffer (namely output arbitration). In the POOSL
model, this behavior is executed for each output port of a
RIOSwitch and it is specified by method scheduleForOutput
(see section III). As before, we use separate timed automata
in UPPAAL for each of these concurrent activities that are
actually active. Figure 11 depicts the timed automaton for the
transfer activity in Switch1 corresponding to output port op4.
When a broadcast synchronization signal parSync arrives, if a
packet can be transferred to the output queue for port op4 of
Switch1 (packetTransferPossibleForOutput(0,3)==true), this
timed automaton executes three functions (initiatePacketTrans-

53

ferForOutput(0,3), transferPacketForOutput(0,3), and finish-
PacketTransferforOutput(0,3)) to handle the actual transfer.
Finally, it initiates a broadcast synchronization reqSync signal
as above.

Fig. 11. Transfer Activity Timed Automaton

VI. VERIFICATION AND ANALYSIS

The POOSL model in figure 2 contains a Monitor to analyze
various properties of the model. Such a reflexive approach
to functional and performance analysis is also used in the
UPPAAL model. Functional analysis can be done by model
checking, whereas, performance analysis will be done by
UPPAAL simulator. Common use of the UPPAAL simulator
is for the user to go through a trace (saved or imported from
the verifier) to see if certain states are reachable. In this paper,
we investigate the potential of using the simulator quantitative
analysis. This section first presents how the functionality and
worst-case latency can be verified. Then we show that further
quantitative analysis is possible with UPPAAL simulator by
introducing an approach to record time (clock value).

A. Verification

1) Functional Behavior Verification: Model checking
techniques have mainly been applied to verify the functional
behavior of systems. Such analysis is not always conclusive
when simulation-based techniques are used, as in the case of
POOSL, for properties like absence of deadlock. UPPAAL
is however a very suitable tool for such verification. Con-
sidering absence of deadlock as a key functional property
for the RapidIO network modeled in sections III and V, we
constructed the timed automaton in figure 12 to verify this
property. Here, x denotes the number of received packets and
nextPacketNumber denotes the number of generated packets. A
self-loop is used to prevent the deadlock from end of operation.
The urgent channel endSync guarantees that this transition is
taken immediately when the guard (x == nextPacketNumber)
is satisfied. Absence of deadlock is expressed as A[] not
deadlock.

Fig. 12. Deadlock Free Timed Automaton

2) Worst-case Latency Verification: The worst-case la-
tency of interest in this paper is defined as the largest latency
for transferring individual packets through the RapidIO net-
work. The timed automaton in figure 13 cooperates with the
timed automaton in figure 10 to verify this worst-case latency
metric. To this end, worstLatency[index] refers to a candidate
worst-case latency for the packet with a specified index and
burstC[index] refers to the clock for this packet. The binary
synchronization signal calcLatencyW is raised when a packet
has arrived at an output port of Switch2, see figure 10. Using
this approach, the worst-case latency can be specified as a
reachability property E <> WorstVerification.Violation, where
the latter part refers to the right-hand location in figure 13.
If this property is not satisfied, then worstLatency[index] is
a valid upper bound for the latency. To verify this, worst-
Latency[index] must be set to a specific value. It is obvious
that the smallest upper bound for the latency (i.e., the worst-
case latency) can be found iteratively by increasing the value
of worstLatency[index] until this property is not satisfied.
Section VI-B2 presents a novel approach to determine an
initial value for worstLatency[index]. The proposed iterative
approach follows the traditional way for modeling checking
tools. A model checking approach that gives exact quantitative
results without the need to iterate over a number of verification
runs is an interesting research problem and will be considered
as future work.

Fig. 13. Worst-case Latency Verification Timed Automaton

B. Quantitative Analysis
In the POOSL model of figure 2, the Monitor collects packet

latencies to analyze performance metrics. We propose to use
a similar approach for UPPAAL. However, UPPAAL does not
support recording time directly. We therefore introduce the
following approach to record time such that quantitative timing
analysis is possible with UPPAAL simulator.

1) Recording Time: The technique for recording time is
illustrated by the timed automaton in figure 14. It uses the
binary search algorithm of [17] to find the value of a clock c
and record it into a variable t. The initial values for l and h
should be set based on the expectation that c is within [low,
high].

2) Advanced Worst-case Latency Analysis: Using the
timed automaton for recording time, we first show how worst-
case latencies can be analyzed. The timed automaton in figure
15 presents the main idea. From the timed automaton in figure
10, a packet is sent to output op1 of Switch2. In case the
corresponding clock value for this packet is larger than the
current candidate worst-case latency, the binary synchroniza-
tion signal calcLatencyW is raised to start the timed automaton
in figure 15 which records the new latency as the new

54

Fig. 14. Recording of Time

candidate worst-case latency. This approach allows evaluating
the worst-case latency by means of simulating the UPPAAL
model. This gives an approximation for the worst-case latency,
which can subsequently be used as initial candidate for the
iterative verification approach discussed in section VI-A2. This
combined approach advances the overall verification process
considerably.

Fig. 15. Worst-case Latency Analysis Timed Automaton

Given different bursts of packets, we run a number of
experiments to analyze the effectiveness of our approach.
Table III presents the results and compares them with the
approximate worst-case latencies obtained from simulating
the POOSL model. We remark that the timing values of the
POOSL model are scaled up by a factor 10 in the UPPAAL
model to accommodate for using Real-valued time in the
POOSL model. In the table, “Num” refers to the number of
packets that is being handled by the RapidIO network. The
more packets in the system, the more they have to wait for
passing through the various queues and hence, the larger the
latencies are. We can see that the UPPAAL results match with
the POOSL results.

TABLE III
WORST-CASE LATENCY COMPARISON: UPPAAL VS. POOSL

Num 4 8 12 16 20 24 28 32
UPPAAL 40 60 80 100 120 140 160 180
POOSL 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

3) Average-case Latency Analysis: The approach pre-
sented in the previous section can also be used for analyzing
the best-case latency. Given approximate results for the worst-
case and best-case latency obtained by UPPAAL simulation,
the question rises whether the average-case latency can be
analyzed similarly as well. Given the fairly clear way of

how the packets are generated, a natural conjecture is that
the average-case latency is the average of the worst-case and
best-case latencies: average-case latency = (total worst-case
latencies + total best-case latencies)/(2*(number of packets)).
We illustrate this approach of computing the average-case
latency by considering the situation where nodes N1 and N2
both generate a burst of 5 packets. Table IV gives the resulting
average-case latency where the packet with index “Index” has
the listed worst-case and best-case latencies.

TABLE IV
AVERAGE-CASE LATENCY ANALYSIS

Index 0 1 2 3 4 5 6 7 8 9
Worst 30 40 50 60 70 30 40 50 60 70
Best 15 20 25 30 35 15 20 25 30 35

Average 37.5

For several different settings, experiments have been run
to find the average-case latency. The results are shown in
table V. “Num” refers again to the number of packets that
is being handled by the system. We can see that the average-
case latencies obtained from the UPPAAL model match well
with the results from the POOSL model. These experiments
show that our conjecture seems valid for the given way of
how the packets are generated. The experiments also confirmed
that the results obtained by POOSL are indeed quite accurate
estimations, both for the worst/best-case latency as well as for
the average-case latency.

TABLE V
AVERAGE-CASE LATENCY COMPARISON: UPPAAL VS. POOSL

Num 4 8 12 16 20 24 28
UPPAAL 26.2 33.7 41.2 48.7 56.2 63.7 71.3
POOSL 2.62 3.37 4.12 4.87 5.62 6.38 7.12

VII. COMPARISON OF MODELS AND TOOLS

Compared with the UPPAAL model, the POOSL model
is more understandable. Moreover, POOSL is object-oriented
which eases expressing the system architecture as shown in
figure 2. UPPAAL does not provide any means to get such a
hierarchical view. On the other hand, UPPAAL gives a more
intuitive picture of all concurrent processes in the system.

Compared with POOSL, the simulation power of UPPAAL
is weak. It takes about 2 to 3 seconds for a single run of
the POOSL model (for a burst of 14 packets), whereas it
takes about 30 seconds using UPPAAL simulator for the same
setting. For large models, the POOSL tool called rotalumis [1]
is especially developed for high-speed execution. Simulating
100 bursts of hundreds of packets in the system only takes
about 2 seconds. UPPAAL simulator cannot handle such large
models. For this case study, it can handle at most 6 bursts of
32 packets in the system (the main problem is the amount of
memory needed). The reason is that the UPPAAL simulator
is primarily designed for going through trace (especially for
counter example generation) and has not yet been optimized

55

for simulation. This paper provides a novel method to do
quantitative analysis with UPPAAL simulator. It shows that
UPPAAL simulator certainly has potential for doing quantita-
tive analysis. However, the capabilities are at an elementary
level. More research is needed to explore its true potential and
to extend its capabilities. First a more efficient technique for
recording time is needed. Second, a more powerful simulation
engine which conforms to the verification engine will be a
key research problem. Other efforts for performance analysis
with UPPAAL can also be found in the literature [18], [19].
However, the orientation is to use extended priced/weighted
timed automata for optimal scheduling problems. Instead of
using UPPAAL simulator to do quantitative analysis, they
interpret such problems as cost-optimal reachability problems
and use another branch UPPAAL-CORA [20] to solve them.

VIII. CONCLUSIONS AND FUTURE WORK

The exact worst-case packet latency is an important metric
for motion control applications that run on multiple processors
interconnected by a RapidIO network. Although a POOSL
model has been developed of this system, it cannot give
exact performance results since POOSL analysis is based on
simulation. We therefore propose a model checking approach
using UPPAAL for this problem. To this end, we show that
transforming a POOSL model into an UPPAAL model is
feasible and how this can be done. We illustrate the advantage
of using UPPAAL by verifying that the system is deadlock-
free (which is an essential functional property of the system).
Moreover, we explain how the exact worst-case latency can be
determined by means of model checking. Unfortunately, this
approach is rather time consuming due to its iterative manner.
Hence, we propose an alternative approach to approximate
worst-case latency. To this end, we introduce a method to
record time such that quantitative analysis for worst-case
latencies (as well as best-case latencies) is possible by simu-
lation with UPPAAL. In addition, we show that average-case
latency for the particular system configuration under study can
be obtained as the average of the best-case and worst-case
latencies. Several experiments have been conducted to confirm
that the simulation results obtained with the POOSL model are
indeed quite accurate both for the worst/best-case latency and
average-case latency. The deficiency of the proposed method
for quantitative analysis is that the UPPAAL simulator cannot
handle large models.

Future work includes focus on a larger, more realistic case
study to see if more abstractions can be made to obtain
a UPPAAL model that can still be verified efficiently. We
anticipate that by focusing on a specific performance metric
such as the worst-case latency by omitting non-related details,
larger models for more realistic systems can be handled.
Next to this direction, we intend to elaborate our research
on transforming POOSL into UPPAAL at a more semantical
level by means of additional transformation patterns.

REFERENCES

[1] B. Theelen, O. Florescu, M. Geilen, J. Huang, P. van der Putten, and
J. Voeten, “Software/hardware engineering with the parallel object-

oriented specification language,” in MEMOCODE ’07: Proceedings of
the 5th IEEE/ACM International Conference on Formal Methods and
Models for Codesign. Washington, DC, USA: IEEE Computer Society,
2007, pp. 139–148.

[2] B. Theelen, J. Voeten, and R. Kramer, “Performance modelling of a
network processor using poosl,” Comput. Netw., vol. 41, no. 5, pp. 667–
684, 2003.

[3] B. Theelen, “Performance modelling for system-level design,” Ph.D.
dissertation, Eindhoven University of Technology, 2004.

[4] F. van Wijk, J. Voeten, and A. ten Berg, “An abstract modeling approach
towards system-level design-space exploration,” System Specification
and Design Languages, vol. 22, pp. 267–282, 2003.

[5] G. Shippen, “A technical overview of rapidio,” http://www.eetasia.com/
ART 8800487921 499491 NP 7644b706.HTM, Nov. 2007.

[6] P. van der Putten and J. Voeten, “Specification of reactive hard-
ware/software systems,” Ph.D. dissertation, Eindhoven University of
Technology, 1997.

[7] R. Milner, Communication and Concurrency. Prentice Hall, 1989.
[8] M. Geilen, “Formal techniques for verification of complex real-time

systems,” Ph.D. dissertation, Eindhoven University of Technology, 2002.
[9] L. van Bokhoven, “Constructive tool design for formal languages:

From semantics to executing models,” Ph.D. dissertation, Eindhoven
University of Technology, 2002.

[10] X. Nicollin and J. Sifakis, “An overview and synthesis on timed process
algebras,” in In A. K. G. Larsen, editor, Proceedings of the 3rd Workshop
on Computer-Aided Verification. Aalborg, Denmark: Springer-Verlag,
1991, pp. 376–398.

[11] A. David, A. Haugstad, and K. Larsen, “Uppaal-pro,” http://www.cs.aau.
dk/∼arild/uppaal-probabilistic.

[12] R. Alur and D. Dill, “Automata for modeling real-time systems,” in
Proceedings of the seventeenth international colloquium on Automata,
languages and programming. New York, NY, USA: Springer-Verlag
New York, Inc., 1990, pp. 322–335.

[13] G. Behrmann, A. David, and K. Larsen, “A tutorial on uppaal,” pp. 200–
237, 2004. [Online]. Available: www.cs.aau.dk/∼adavid/publications/
21-tutorial.pdf

[14] J.-P. Queille and J. Sifakis, “Specification and verification of concurrent
systems in cesar,” in Proceedings of the 5th Colloquium on International
Symposium on Programming. London, UK: Springer-Verlag, 1982, pp.
337–351.

[15] G. Logothetis and K. Schneider, “Symbolic model checking of real-
time systems,” International Syposium on Temporal Representation and
Reasoning, vol. 0, p. 0214, 2001.

[16] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson,
W. Yi, and M. Hendriks, “Uppaal 4.0,” in Third International Confer-
ence on the Quantitative Evaluation of SysTems (QEST 2006), 11-14
September 2006, Riverside, CA, USA. IEEE Computer Society, 2006,
pp. 125–126.

[17] D. Knuth, The Art of Computer Programming, Volume 3: Sorting and
Searching, 3rd ed. Addison-Wesley, 1997.

[18] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, “Optimal schedul-
ing using priced timed automata,” SIGMETRICS Perform. Eval. Rev.,
vol. 32, no. 4, pp. 34–40, 2005.

[19] K. G. Larsen, “Quantitative verification and validation of embedded
systems,” in Proceedings of of 3rd IEEE International Symposium on
Theoretical Aspects of Software Engineering, TASE09, Tianjin, China,
2009, to appear.

[20] G. Behrmann and K. G. Larsen, “Uppaal-cora,” http://www.cs.aau.dk/
∼behrmann/cora/.

56

