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Continuous time

vertex�reinforced jump processes

Burgess Davis�and Stanislav Volkovyz

December �� ����

Abstract

We study the continuous time integer valued process Xt� t � ��

which jumps to each of its two nearest neighbors at the rate of one

plus the total time the process has previously spent at that neighbor�

We show that the proportion of the time before t which this process

spends at integers j converges to positive random variables Vj � which

sum to one� and whose joint distribution is explicitly described� We

also show limt��max��s�t Xs� log t � ����	 � � �

� Introduction

This paper introduces and studies a continuous time right�continuous integer

valued stochastic process which jumps only to nearest neighbors� We call

this process� which was conceived by W� Werner� a vertex�reinforced jump
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process �VRJP� and for now designate it by Xt� t � �� Given fXs� s �
t�Xt 	 jg and putting A 	 � 


R t
� I�Xs 	 j � �� ds and B 	 � 


R s
� I�Xs 	

j 
 �� ds� the probability of a jump to j � � �j 
 �� at a time in �t� t 
 h�

equals Ah
 o�h� �respectively Bh
 o�h��� where both o�h� depend only on

A and B� Thus the time elapsed after t until the �rst jump from j has an

exponential distribution with rate A
B� and the probability the jump is to

j � � is A��A
B�� This determines VRJP in the sense that the generator

determines a Markov process� even though a VRJP is not a Markov process�

and as with Markov processes an initial distribution needs to be speci�ed

to complete its description� It is easy to construct VRJP� started� say� at

� from a sequence of i�i�d� exponential random variables of parameter ��

Other graphs may be considered� but in this paper we will stick to the

integers� We note that the �rst use of exponential variables in connection

with �discrete time� reinforced processes was made by Herman Rubin to

couple a generalized P
olya urn with a pure birth process �see Davis ��� and

Sellke �����

Of the discrete time reinforced random walks studied in the literature�

the two that seem most fundamental are the bond�reinforced random walk

�rst studied by Coppersmith and Diaconis in ���� the paper which originated

the subject� and the vertex�reinforced random walk �rst studied by Pemantle

in ���� and later by Pemantle and Volkov ��� and Volkov �����

The Coppersmith�Diaconis walk on the integers starts with weight one

on all the �bonds� �i� i 
 ��� and between times n and n 
 � jumps to one

of the two nearest neighbors with probabilities summing to � and propor�

tional to the weights of the bonds connecting the current state with these

neighbors� Coppersmith and Diaconis observed that these walks could be

realized as coupled P
olya urns� This approach proves almost sure recurrence

on Z� �see Davis ����� which here and elsewhere in this paper will mean that

every integer is almost surely visited at arbitrarily large times� Later� in

a series of intricate papers� a remarkably complete description of the limit�
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ing behavior of this and many related bond�reinforced walks was provided

by T
oth �see ����� Scaled properly �not
p
n� in the Coppersmith�Diaconis

case� they converge to various previously unknown processes� some of them

quite wild� Pemantle�s vertex�reinforced random walk on the integers is the

vertex�reinforced analog of the walk just described� Each integer initially

has weight one� and this weight is augmented by one each time it is visited�

This process jumps to one of its two nearest neighbors between times n and

n 
 �� the relative weights of the neighbors giving the probabilities of the

jumps� Not only is this walk not recurrent� but It was proved in Pemantle

and Volkov ��� that it eventually gets stuck on a �nite set of points� and with

a positive probability in exactly �ve states� This paragraph only scratches

the surface of the subject of discrete time reinforced walks� See Davis ����

Pemantle and Volkov ���� and T
oth ��� for more� including references to pa�

pers in biology and learning theory which use discrete time reinforced walks

as models� and a discussion of some processes which are limits of reinforced

walks which arose in other areas of probability� Both the walks described

above� and VRJPs� are close in spirit to P
olya urns� although only for the

Coppersmith�Diaconis walk is the connection explicit� Reinforced Brownian

motions have also been studied� See ��� for references�

This paper began as an attempt to decide whether VRJP on the integers

is recurrent� It is fairly easy to show that it does not get stuck in a �nite

number of states� but to show recurrence is a di�erent matter� In the fol�

lowing two theorems Xt� t � �� will stand for VRJP on the integers started

at �� We omit the quali�cation a�s� when it clearly must hold�

Theorem ��� � The limits Vi �	 limt�� �
t

R t
� I�Xs 	 i� ds exist for each

integer i� and are positive and sum to �� There are i�i�d� random variables

Ui� � � i �� or �� � i � �� each having the density f��x� given by

exp

�
��

�

�p
x� �p

x

���
p
��x�

�



such that if we put Wi equal to
Qi

k�� Uk if i � �� equal to
Q��

k�iUk if i � ��

and equal to � if i 	 �� then Vi 	Wi�
P�

i���Wi�

Theorem ��� Let � 	 ���� � � � � be the number explicitly given in equa�

tion ������� Then limt��max��s�tXs� log t 	 ��� � �����

Of course� symmetry gives the analog of Theorem ��� for minimum�

Thus VRRW on the integers started at � has range approximately a centered

interval� for all large t� Each of the two theorems just stated immediately

implies that VRJPs are recurrent�

� Vertex�reinforced jump processes on f�� �g

In exact analogy to the de�nition of Xt� t � �� in the previous section� we

can and do de�ne vertex�reinforced jump processes Y on any any connected

locally��nite graph� with the initial weight of each vertex v a positive number

av� perhaps di�erent from one� so that the weight of v at time t is here

L�t� v� �	 av

R t
� I�Ys 	 v� ds� We still call such a process a vertex�reinforced

jump process �VRJP��

In this section� we study only VRJP on f�� �g started at �� with initial
weight a at zero and b at one� and we use Zt� t � � to designate these

processes� Where it might be ambiguous which initial weights we are dealing

with on f�� �g� we will use a� b as a superscript� The initial position is always
� unless explicitly mentioned� Especially Pa�b and E a�b refer only to VRJP

started at �� At times we will need to consider random initial weights� and

we will use a similar convention�

We now recall some classical results about discrete parameter martin�

gales� Let f�� f�� � � � be a martingale with di�erence sequence d� 	 f��

di 	 fi � fi��� i � �� Doob�s maximal inequalities � ��� �p� ����� say

E

�
sup
n��

jfnj
�p

�
�

p

p� �

�p
sup
n��

E jfnjp� p � �� �����

�



If E f�n � � for each n� then di� i � �� is an orthogonal series and thus

E �fn�k � fn�
� 	

Pn�k
i�n�� E d�i � In addition� the almost sure convergence of

L��bounded and thus L��bounded martingales� together with the fact that

fn�i� i � �� is a martingale for each i� give with �����

E sup
k��

�fn�k � f��� 	 E sup
k��

��fn�k � fn�� lim
k��

�fn�k � fn��
�

� E � sup
k��

jfn�k � fnj� � ��
X
k��

E d�n�k

	 �� lim
k��

E �fn�k � fn�
�� �����

if supn E f�n ��� where f� �	 limi�� fi�

In the proof of the following lemma� and throughout the paper� we adopt

the usual convention that C� K etc� often stand for positive constants which

may change from line to line�

Lemma ��� Let f�� f�� � � ��fn be a martingale with di	erences d�� d�� � � � � dn

satisfying

max
��j�n

E
�
d�j j di� i � j

�
	 	 ��� �����

and let 
 � �� Then there is a constant K 	 K�	� 
� such that

P� max
��j�n

jfij � 
n� �
K

n�
�

Proof� This proof� which is probably known� is a close cousin to the standard

proof of complete convergence of averages of i�i�d� variables with �nite fourth

moments� We divide the n� terms of the expansion for �
Pn

i�� di�
� into four

groups� according to the power to which the di of the greatest i in that term

is raised� and then rearrange the sums of the terms in the groups�

So f�n 	 �
P
di�

� 	 I 
 II 
 III 
 IV � where

�I� 	 �
nX
i��

di

�
	i��X
j��

dj



A

�

�

�



�II� 	 �
nX
i��

d�i

�
	i��X
j��

dj



A

�

�

�III� 	 �
nX
i��

d�i

�
	i��X
j��

dj



A �

�IV � 	
nX
i��

d�i �

Now E di�
Pi��

j�� dj�
� 	 E �E �di j dj � j � i��

P
dj�

�� 	 E � 	 �� so E �I� 	

�� And by ������ E �d�k j di� i � k�� � C�	� 	 C� so E d�i �
Pi��

j�� dj�
� 	

E E �d�i j dj � j � i��
P
dj�

�� � C E �
P
dj�

� � C�i � �� � Cn� and so we get

E �II� � Cn��

Since E �jdij� j dj j � i� � C�	� 	 C by ����� we similarly get E d�i
Pi��

j�� dj �
C E jPi��

j�� dj j � C�E �
P
dj�

����� 	 Cn���� and so E �III� � Cn����

Finally� ����� implies E d�i � C� and so E �IV � � Cn�

Thus E f�n � Cn�� which together with the p 	 � case of ����� and

Markov�s inequality� gives Lemma ����

We recall that� to keep our notation brief� all VRJPs on f�� �g considered
in this section are started at �� We put

��t� 	 inffs � L�s� �� 	 tg�

so that under Pa�b� we have ��a� 	 ��

Lemma ��� For all t � a� E a�bL���t�� �� 	 b
a t�

A proof of this lemma is given via Laplace transforms in the appendix� We

now sketch a di�erent proof�

Proof of Lemma ���� We will show that y�t� �	 E a�bL���t�� �� satis�es

the di�erential equation y� 	 y�t� Since y�a�	b� this implies Lemma ����

If � is a positive number� L���t 
 ��� �� � L���t�� �� is the time spent at

� while the local time at � increases from t to t 
�� The probability of a

�



jump from � to � in this time interval� given L���t�� ��� is L���t�� ���
o���

as � � �� and the duration of the excursion to � resulting from this jump

has an exponential distribution with rate t between t and t
�� so that

lim
���

EL���t
��� ��� EL���t�� ��

�
	

EL���t�� ��

t
�

and our di�erential equation is satis�ed� It takes a little more work to show

that the expectation of the sum of the durations of all the excursions beyond

the �rst is o���� This argument is omitted�

We put mt 	 ma�b
t 	 La�b	�	t
��


t � if t � a� where the superscript means

that we are studying L���t�� ���t under Pa�b�

Corollary ��� The process mt� t � a� is a martingale�

Proof� This is immediate from Lemma ��� and the fact that given Zs� � �
s � ��t�� the process Zy�t� y � �� has the same distribution as VRJP on

f�� �g under Pt�L	�	t
��
�

Corollary ��� Both the limits limt��m
a�b
t � and limt��

La�b	t��

La�b	t��


almost surely

exist and are equal and positive�

Proof� Note that the right continuity of the paths of Zt� t � �� gives that if

L�t� �� 	 s� then

L���s�� ��

s
� L�t� ��

L�t� ��
� lim

r�s
L���r�� ��

s
	 lim

r�s
L���r�� ��

r
� �����

Thus� since limt��mt exists a�s��

lim
t��

La�b�t� ��

La�b�t� ��
exists a�s� �����

To complete the proof we will show that the latter limit is strictly positive

by showing that

lim
t��

La�b�t� ��

La�b�t� ��
exists a�s� �����

�



This is done by noting that if � is the time of the �rst jump to �� then�

conditioned on fZt� � � t � �g� the distribution of � � Zt�� � t � �� �i�e�

we just relabel � as � and � as ��� has the distribution of Zt� t � �� under

Pb�a�� � so that ����� follows from ������

Our treatment of the following lemma parallels that of Lemma ���� it is

proved in the appendix� and a di�erent proof is sketched in this section�

Lemma ��� For all r � a

E a�bL���r�� ��� 	 � b

a


ab� 
 b

a�
r��

Proof� We have L���r
dr�� �� 	 L���r��

�� where 
 is Bernoulli �L���r�� ��dr�

and � is exponential �r�� and 
 and � are independent given L���r�� ��� Thus�

noting 
� 	 
� we have

EL���r 
 dr�� ��� 	 EL���r�� ��� 
 �E fL���r 
 dr�� ��E �
 jL���r�� ���gE �

 E �� E E �
� jL���r�� ���
	 EL���r�� ��� 


�

r
EL���r�� ���dr 


�

r�
EL���r�� ��dr

	 EL���r�� ��� 

�

r
EL���r�� ���dr 


�b

ar
dr�

using Lemma ��� in the last line�

Thus EL���r�� ��� satis�es y� 	 �
ry


�b
ar � and y�a� 	 b�� and Lemma ���

follows�

Lemma ��� immediately gives the L� norm of the martingale ma�b
t � t � a�

is �nite� since

E a�b�mr�
� 	

ab� 
 b

a�
� b

ar�
� r � a� �����

The continuous version of ����� with mr playing the role of fn� along with

����� give� putting m� �	 limt��mt�

E a�b sup
s�a

�ms �m��� � �� sup
s�a

E �ms �ma�
� 	 �� sup

s�a
�Em�

s �m�
a� � ��

b

a�
�

�



which� together with ������ gives

E a�b sup
t��

�
L�t� ��

L�t� ��
�m�

��

� ��
b

a�
� �����

Also� we have�

Lemma ��� E a�b supy��
���log L	y��


L	y��


���� � C�a� b��

Proof� Since �log x�� � x�� x � �� ����� together with ����� and the contin�

uous version of ����� in the case p 	 � give� if r� 	 max�r� ���

E a�b sup
y��

��
log

L�y� ��

L�y� ��

��

�
� �

ab� 
 b

a�
� �����

Let � be the time of the �rst jump of Zt to �� Then� given � � the process
L	y����

L	y����
 � y � �� has the same distribution as L	y��


L	y��
 � y � �� under Pb���a� and

from this and ����� it is easy to conclude that

E a�b sup
y��

��
log

L�y� ��

L�y� ��

��

�

� C�a� b�� ������

since the interval � � y � � is easily handled� Together ����� and ������ give

Lemma ����

We use the superscript ����exp � to indicate we are starting VRJP on

f�� �g with a random initial weight of � plus an exponential ��� random

variable at one� and � at zero� so that the VRJP behaves like VRJP on

f�� �g with initial weights � at both zero and one� started at one� after the
�rst jump to zero� It is easy to conclude from Lemma ��� and the concavity

of log x that logmt� t � �� is a supermartingale under E ����exp �� satisfying

sup
t��

E ����exp �j logmtj� ��� ������

Furthermore� we will calculate in the appendix the number � � ����� de�ned

by

� 	 E ����exp � logm�� ������

�



Now E ����exp � logmt is non�increasing as t increases� and ������ implies this

convergence is dominated� so that

E ����exp � logmt � � as t��� ������

� VRJP on the nonnegative integers

In this section� Yt� t � �� exclusively stands for VRJP on f�� �� �� � � �g started
at �� with initial weights all �� and we use LY �t� k� to denote � 


R t
� I�Ys 	

k� ds� often omitting the superscript� We let Tn 	 infft � Yt 	 ng� We will
need the following� which is immediate from the construction of VRJP�

Restriction principle� VRJP observed only at the times when it stays on some

subset of consecutive integers A� behaves the same way as VRJP restricted

to the set A� Moreover� it is independent of either the path VRJP to the

right of A or the path of VRJP to the left of A�

More precisely� letWt� t � �� be a VRJP �initial weights are �� on any set

of consecutive integers� and let A be a subset of consecutive integers of those

integers� Let T 	 infft � � � Wt � Ag be a stopping time� and k 	WT � A

be the �port of entry�� Put �A�a� 	 supft � R t� I�Ws � A� ds 	 ag� Then
Ha �	W�	a
 is a VRJP on A started at k� If B represents the states to the

left or to the right of A� thenW�B	a
� a � �� is independent of W�A	a
� a � ��

Lemma ��� If n � �� P�Tn ��� 	 ��

Proof� Since
P�

i���L�t� i� � �� 	 t� if P�Tn � �� � � there must be a j�

� � j � n� such that P�L��� j� 	 �� L��� j 
 �� � �� � �� Now we use

the restriction principle on fj� j 
 �g� together with Corollary ���� with j

relabeled as zero and j 
 � relabeled as one� to get a contradiction�

Next we observe the following

��



Lemma ��� Let � � j � n� Then given L�Tn� i�� i � j
�� the distribution

of L�Tn� j��L�Tn� j 
 �� is the distribution of m����exp �
L	Tn�j��
�

Proof� Note that L�Tj��� j� has the distribution � 
 exp �� while of course

L�Tj��� j 
 �� 	 �� The rest of the argument follows from the restriction

principle applied to fj� j
�g� together with the observation that what hap�
pens on excursions of Yt to the right of j 
 � is not in�uenced by what

happens to Yt while it is on f�� �� �� � � � � j 
 �g�

The following proposition establishes the recurrence of VRJP on non�

negative integers�

Proposition ��� For all j � �� L��� j� 	� a�s�

Proof� Suppose that P�L��� j� ��� � � for some j� Then E ��L��� j� �

�� By restriction principle applied to fj� j 
 �� � � �g� and Lemma ���� this

expectation must be the same for all j � ��

We claim that E �m����exp �
t ��� � � for all t � �� We know that �see the

appendix�

�a�b��� 	 E exp���ma�b
t � 	 eb	a�

p
	��t���	�a�
�

Since
R�
� exp���ma�b

t �d� 	 �

ma�b
t

� we have

E
�

m����exp �
t

	

Z �

�
�����exp ����d�

	

Z �

�
d�

Z �

�
exp��u�du exp��u
 ���� �

q
���t� 
 ��
 ���

�

Z �

�
d�

Z �

�
du exp��� �u
 �����

p
��
 ���

	

Z �

�

exp���p��
 ��p
��
 �

d� 	 ��

On the other hand� if P�L��� j� ��� � ��

E

�
�

L��� j � ��
� �

L��� j�

�

��



	 E

�
E

�
�

L��� j � ��
� �

L��� j�
jL��� j� 	 t

��
� ��

since by restriction principle� after relabeling j � � as one and j as zero�

E

�
�

L��� j � ��
� �

L��� j�
jL��� j� 	 t

�
	

�

t
E ����exp �

�
t

L���t�� ��
� �

�

	
�

t

�
E

�

m����exp �
t

� �

�
� ��

yielding a contradiction�

Now let Rt
i 	

L	t�i

L	t�i��
 and Rn

i �	 RTn
i � The notational ambiguity will

not cause trouble� For i � � put Zi 	 limt��Rt
i� Recall that � is de�ned

in ������ and calculated in ������� Put both Rt�� and Z�� equal to ��

Lemma ��� The following hold�

i� Zi� i � �� are i�i�d�� E logZi 	 �� and the density of Z��i is the function

f��x� given in the statement of Theorem 
�
�

ii�
P�

k��

Qk��
i��� Z

��
i �� a�s�

iii� E �logRn
j jL�Tn� i�� j 
 � � i � n� � �� � � j � n�

Proof� The �rst two statements of i�� and iii� follow from Lemma ���� the

de�nition of �� and� in the case of iii�� ������� For the last statement of i�

see formula ������ in the appendix� And ii� follows almost immediately from

i� and the SLLN� which enables the bounding of the terms of the sum by a

geometric series�

Next we state the main result of this section� the almost sure convergence�

in l�� of the empirical occupational time distribution� Put

pk 	

Qk��
i��� Z

��
iP�

k��

Qk��
i��� Z

��
i

�

Theorem ��� The following holds�

lim
t��

�X
k��

����L�t� k�� �

t
� pk

���� 	 � a�s�

��



Before proving Theorem ��� we sketch for motivation a short proof of a

weaker result� We have

L�t� k� 	 L�t� ��
k��Y
j���

�Rt
j�
�� 	�  tk� k � ��

Putting !k 	
Qk��

i��� Z
��
i � the de�nition of Zi gives

lim
t��

 tk
 tk��

	
!k

!k��
a�s�� k � ��

Now if n is �xed and atk� � � k � n� t � �� and bk� � � k � n are positive

numbers such that

lim
t��

atk
atk��

	
bk
bk��

�

then

lim
t��

atkPn
i�� a

t
i

	
bkPn
i�� bi

� � � k � n�

which shows

lim
t��

L�k� t�Pn
i�� L�i� t�

	
!kPn
i��!i

�

The last equality together with Proposition ��� implies that if � � k � n

lim
t��

L�k� t�� �Pn
i���L�i� t�� ��

	
!kPn
i��!i

�

a junior version of Theorem ���� since
P�

i���L�i� t� � �� 	 t�

The following lemma is a more precise version of the simple fact about

sequences just used�

Lemma ��� Let ai and bi� � � i � n� be positive numbers� and let 
 � ��

Put A 	
Pn

i�� ai and B 	
Pn

i�� bi� Then

nX
i��

jai � bij
ai

� 
 implies
nX
i��

����aiA � bi
B

���� � �


�� 

�

��



Proof� The hypotheses imply jA�Bj � 
A� and so

nX
i��

����aiA � bi
B

���� 	
nX
i��

����ai�B �A� 
 �ai � bi�A

AB

���� � jB �Aj
B




P jbi � aij
B

�



�� 







�� 

�

Now since L�Tn� n� 	 �� we have� recalling RTn
n�i is shortened to Rn

n�i�

that logL�Tn� n � k� 	
Pk

i�� logR
n
n�i� Put �

n
i 	 E �logRn

n�i jRn
n�j � � �

j � i�� � � i � n� and Dn
i 	 logRn

n�i � �n
i � �Sometimes we drop the

superscript�� Then Lemma ��� iii� implies

�n
i � � a�s�� � � i � n� ������

and of course Dn
i � � � i � n� is a martingale di�erence sequence� Further�

more� Lemma ��� and ������ imply E �j logRn
n�ij� jRn

n�j� � � j � i� � C�

� � i � n� which in turn implies

E �D�
i jRn

n�j � � � j � i� � C� � � i � n�

where the C is absolute� especially it does not depend on i or n�

Thus for any 
 � �� according to Lemma ����

P�j
nX
i��

Dij � 
n� �
C�
�

n�
� ������

which with ������ implies P�
Pn

i��Di
�i � ��� 
�n� � C�
��n�� or equiv�

alently�

P�logL�Tn� �� � ��� 
�n� �
C�
�

n�
� ������

This inequality� Borel�Cantelli� and the fact that L�Tn� ��� � � Tn� imply

P�lim inf
n�� log Tn�n � �� 	 �� ������

��



or equivalently

lim sup
t��

max��s�tXs

log t
� ��� a�s� ������

In the following� if a � b are not necessarily integers� we use
Pb

i�a ri to

designate the sum of those ri for all i satisfying a � i � b� We let � be a

�xed number between � and � satisfying � log � � �
� � which guarantees

�	n��



en��
� ��n where � �	 e
 log ��

�

� � �� ������

The proof of Theorem ��� will be completed by establishing the following

two limits� We have

sup
t�Tn

n	��

X
i��

������
L�t� i�� �Pn	��



j�� �L�t� j� � ��
� pi

������� � as n�� ������

and

n��X
i�n	��



L�Tn��� i�

en��
� � as n��� ������

To see that ������ and ������ imply Theorem ���� observe that to prove

Theorem ���� it su"ces to prove

sup
Tn�t�Tn��

n��X
k��

����� L�t� k�� �Pn��
j�� �L�t� j� � ��

� pk

������ � as n��

since L�Tn��� k� 	 � if k � n 
 �� and
P�

k�� pk 	 �� Now ������ obviously

implies

sup
Tn�t�Tn��

n	��

X
k��

������
L�t� k� � �Pn	��



j�� �L�t� j� � ��
� pk

������� � as n���

Furthermore� if n � ��

sup
Tn�t�Tn��

n��X
k�n	��



����� L�t� k� � �Pn��
j�� �L�t� j� � ��

� pk

�����
��



� sup
Tn�t�Tn��

n��X
k�n	��



����� L�t� k� � �Pn��
j�� �L�t� j� � ��

�����

n��X

k�n	��


pk

�
Pn��

k�n	��

 L�Tn� k�

Tn



�X
k�n	��



pk�

The second sum here clearly approaches � as n � �� and since Tn � en��

for large enough n� by ������ and ������� ������ gives that the �rst does also�

We �rst prove ������� then ������� Using Lemma ��� and Corollary ���

we have� for � � j � n�

EL�Tn� j� 	 E E �L�Tn� j� jL�Tn� j 
 ���

	 ELn�Tn� j 
 ��E

�
L�Tn� j�

L�Tn� j 
 ��
jL�Tn� j 
 ��

�

	 EL�Tn� j 
 ��E ����exp �mL	Tn�j��


	 EL�Tn� j 
 ��E ����exp �m� 	 �EL�Tn� j 
 ���

Together with EL�Tn� n� 	 � this gives EL�Tn� k� 	 �n�k� � � k � n�

Thus

�X
n��

n��X
k�n	��



EL�k� Tn���

en��
���

using ������� and ������ follows�

Next we prove ������� We observe

sup
t�Tn

n	��

X
i��

������
L�t� i�� �Pn	��



j�� �L�t� j� � ��
� L�t� i�Pn	��



j�� L�t� j�

������
� sup

t�Tn

n��� �� 
 �Pn	��


j�� �L�t� j� � ��

� ������

which follows immediately by putting the di�erence of the quotients on the

LHS of ������ over a common denominator� Since
Pn	��



j�� L�t� j� � � �
Tdn	��

e� if t � Tn� where d
e is the greatest integer function� ������ shows
that that suprema to the right of the inequality in ������ approaches � as

��



n � �� and thus the suprema to the left does� This implies that the

following inequality is equivalent to �������

sup
t�Tn

n	��

X
i��

������
L�t� i�Pn	��



j�� L�t� j�
� pi

������� � as n��� ������

To prove ������� we rewrite it as

sup
t�Tn

n	��

X
k��

������
Qk��

i����R
t
i�
��Pn	��



j��

Qj��
i����R

t
i�
��

�
Qk��

i��� Z
��
iPn	��



j��

Qj��
i��� Z

��
i

������� �

as n��� and we note that using Lemma ���� to prove ������ it su"ces to

prove

sup
t�Tn

n	��

X
k��

�����
Qk��

i����R
t
i�
�� �Qk��

i��� Z
��
iQk��

i��� Z
��
i

������ � as n��

which reduces to

sup
t�Tn

n	��

X
k��

��������
k��Y
i���

�
� 


Zi �Rt
i

Rt
i

�������� � as n��� ������

Now j��Qm
i���� 
 ai�j � exp�

Pm
i�� jaij� � � � �#jaij if #jaij � ���� and so

������ follows from

n 
 sup
t�Tn

n	��

X
k��

�����Zi �Rt
i

Rt
i

������ � as n��� ������

The initial n in ������ is an upper bound �if n is large� for the number of

summands k in ������� k 	 �� �� � � � � n�� � ��� Now exactly as we proved

������� we have

P

�

n��X
i��

Di 
�i � ��� �n�

�
�

C

n�
������

Also� Lemma ��� and ������� or even the weaker version of ������ with �

replaced by zero� imply

P� inf

n�k�n

kX
i�
n

Di 
�i � ������� � ��n�� �
C

n�
� ������

��



Together ������ and ������ give

P� inf

n���k�n

kX
i��

Di 
�i � ����n�� �
C

n�
�

or� equivalently�

P�L�Tn� i� � e���
n� � � i � n��� �� 
 �� � �� C

n�
� ������

Let Gi 	 Gn
i 	 fL�Tn� i� � e���
ng� Then ������ may be restated as

P

�
	n	��

���

i��

Gc
i



A �

C

n�
� ������

where the superscript c denotes complement�

Now conditioned on L�Tn� i� and L�Tn� i 
 ��� the distribution of Yt�

t � Tn� restricted to fi� i 
 �g has the distribution of the two state walk of
Section �� Zt� t � �� under PL	Tn�i��
�L	Tn�i
 if we relabel i
 � as � and i as

�� Thus ����� implies

E supt�Tn�Zi �Rt
i�
�I�Gi���

	 E E
�
supt�Tn�Zi �Rt

i�
� jL�Tn� i
 ��� L�Tn� i�

�
I�Gi���

� E
��L�Tn� i�
L�Tn� i
 ���

I�Gi��� � �� �e����
n�� ERn
i 	 �� e����
n�

������

using Corollary ��� and the fact that Rn
i has the distribution of mL	Tn�i��


under P����exp �� so ERn
i 	 E ����exp �m� 	 ��

Thus�

E supt�Tn
���Zi�Rt

i

Rt
i

��� I�Gi��� �
h
E supt�Tn�Zi �Rt

i�
�I�Gi���

i �
�

�
h
E supt��

�
	Rt

i

�

i �
� � Ce����
n�

������

using ������� That E supt�Tn�R
t
i�
�� is �nite follows from the restriction

principle and the fact that supt���Rt
i�
�� has the same distribution as sups��ms

��



under P ���� using the continuous version of Lemma ��� and the sentence

which includes ������ Finally� to complete the proof of ������ and thus

������� we have� for large enough n�

fn sup
t�Tn

n	��

X
i��

�����Zi �Rt
i

Rt
i

����� � e����
ng �
�
	n	��

�

i��

Gc
i



A

S n	��

�
i��

f sup
t�Tn

�����Zi �Rt
i

Rt
i

����� I�Gi��� � n��e�����
ng ������

And

P

�
	n	��

�

i��

�
sup
t�Tn

�����Zi �Rt
i

Rt
i

����� I�Gi��� � n��e�����
n
�

A

�
n	��

X
i��

P

�
sup
t�Tn

�����Zi �Rt
i

Rt
i

����� I�Gi��� � n��e�����
n
�

�
n	��

X
i��

ne����
n E sup
t�Tn

�����Zi �Rt
i

Rt
i

����� I�Gi��� � Cn�e�����
n �
C

n�
�

using ������� And this inequality� together with ������ and ������ and Borel�

Cantelli� establish �������

The next theorem is a one�sided version of Theorem ����

Theorem ��	 The following holds�

lim
t��

max��s�tXs

log t
	 ��� a�s� ������

Proof� We will show that given 
 � �� there is a constant C�
� such that

P
�
Tn � en	��



�
�

C�
�

n�
n � �� ������

This inequality together with Borel�Cantelli shows lim supn�� log Tn�n �
�� which implies

lim inf
t��

max��s�tXs

log t
� ����

��



and which� with ������� gives �������

We know E ����exp � logmt decreases to �� Let K 	 E ����exp � logm��

Let 	 � �� and let the integer N satisfy

E ����exp � logme����N � �� 
 	��� ������

Here and below we use the notation of the proof of Theorem ����

Now ������ implies �iI�Gi��� � �� 
 	��� � � i � n� and so on the

intersection of the Gi� � � i � n�

nX
i��

�i 	

nX
i��

�i 

nX

i�
n��

�i� � K�n

nX

i�
n��

�i�

Thus if n � N �

nX
i��

�iI

�
	n	��

���

i��

Gi



A � K�n
 ���� ��n
 ���� 
 	�� ������

	� nf��� 	��

where f��� 	� 	 K� 
 ��� ���� 
 	��
!���n��

Lemma ��� gives

P

�
sup

��k�n

kX
i��

Di � 	n

�
�

C�	�

n�
�

and so

P

�
	 sup

��k�n

kX
i��

Di 
�i � nf��� 	� 
 n	 �

n	��

���
i��

Gi



A �

C�	�

n�

when n � N � Together with ������� this gives that if n � N �

P

�
kX

i��

Di 
�i � nf��� 	� 
 n	� � � k � n

�
� �� C

n�
�

so that

P�logL�Tn� i� � nf��� 	� 
 n	� � � i � n� � �� C

n�
�

��



Since
Pn��

i�� �L�Tn� i�� �� 	 Tn� we get

P
�
Tn � C�ne

n�f	
��
��

�
� �� C

n�
� n � N�

Now if we choose � and 	 so small that f��� 	� 
 	 � � 
 
� this implies

�������

� VRJP on the integers�

We begin this section by describing the random variables Vi of Theorem ����

Then we prove Theorem ��� and use it and Theorem ��� to prove Theo�

rem ���� Let X 	 Xt� t � �� be a VRJP on the integers started at �� Let

X�
s � s � �� be X restricted to the nonnegative integers� and let X�

s � s � ��

be X restricted to the non�positive integers� Then both X� and ��X��

are VRJP�s on the nonnegative integers� Let Z�
i � i � � be the variables

de�ned for X� exactly as the variables Zi were de�ned for Yt� t � �� in Sec�

tion �� and let Z�i be the analogous variables for X�� Then by Theorem ���

fZ�
i � � � i � �� Z�i � � � i � �g are i�i�d� random variables� each having

the density function given in the statement of Theorem ���� as shown in the

appendix�

Put

Wk 	

�����
����

Qk
i���Z

�
i �

��� k � ��

�� k 	 ��Qk
i���Z

�
i �

��� k � ��

and put W 	
P�

i���Wi� and Vk 	 Wi�W � We now prove Theorem ����

with Vi as just constructed�

Let ��t� 	
R t
� I�Xs 	 �� ds� ��t� 	

R t
� I�Xs � �� ds� and ��t� 	

R t
� I�Xs �

�� ds� Then

��t� 
 ��t� 
 ��t� 	 t� ������

��



and using the restriction principle we get both

lim
t��

R t
� I�Xs 	 j� ds

��t� 
 ��t�
	

WjP�
i��Wi

� j � �� ������

and

lim
t��

R t
� I�Xs 	 j� ds

��t� 
 ��t�
	

WjP�
i��W�i

� j � �� ������

Let $��t�� $��t�� and $��t� stand for ��t��t� ��t��t� and ��t��t respectively� Then

������ and the versions of ������ and ������ for j 	 � give the following three

equations�
$��t� 
 $��t� 
 $��t� 	 ��

limt��
$��t�

$��t� 
 $��t�
	 W��X

i��

Wi

�

limt��
$��t�

$��t� 
 $��t�
	 W��X

i��

W�i
�

������

Thus
limt��$��t� 	 W��W�

limt��$��t� 	
�X
i��

Wi�W�

limt��$��t� 	
�X
i��

W�i�W�

������

The equations ������� ������� and ������ imply Theorem ����

Proof of Theorem ���� From ������ and the restriction principle we have

lim
t��

max��s�tXs

log���t� 
 ��t��
	 ��� a�s� ������

Equations ������ together with ������ prove Theorem ����

��



� Appendix

To describe the distribution of L���t�� ��� de�ned in Section � immedi�

ately before Lemma ���� we will calculate its Laplace transform �a�b��� t� 	

E a�be�	L	�	t
��
� � � �� Further we will omit the superscript a�b unless it

makes our arguments ambiguous�

Denote w�t� �	 L���t�� �� and observe that

w�t
 dt� 	 w�t� 
 
�

where 
 is a Bernoulli �w�t�dt� random variable and � is an exponential �t�

random variable� which� given w and t� are independent of anything� Hence

���� t
 dt� 	 E �e�	w�	��� 	 E
h
e�	w E �e�	�� jw�

i
������

The inner conditional expectation is easy to compute�

E �e�	�� jw� 	 ��� w dt�� � 
 w dt� E �e�	��

	 ��� w dt� 
 w dt� t

�
 t
	 �� w dt

�

�
 t

Plugging this into ������ yields

���� t
 dt�� ���� t� 	 � �

�
 t
E �we�	w� dt�

whence� since E �w�t�e�	w	t
 j t� 	 ������ t�����
��

�t
	

�

�
 t

 ��
��

�

The natural boundary conditions are

���� a� 	 e�	b�

���� 
� 	 ��

Solving this �see Section ���� we obtain

�a�b��� t� 	 eb�a�
p
	���	t�a��� ������

��



Though we are not able to invert Laplace transform ������ for every t� it

still gives us Lemmas ��� and ���

E a�bw�t� 	
b

a

 t�

E a�b �w�t��� 	
b�t� � a� 
 t�ab�

a�

by di�erentiating �a�b��� t� once and twice at � 	 ��

Next� we want to calculate explicitly the distribution of 	 �	 m���� 	

limt��
w	t

t which exists by Corollary ���� By interchanging the integration

and the limit we obtain

E ���e�	� 	 lim
t���

������t� t� 	 e��
p
���	�

Using Laplace transform� we can� for example� compute moments of 	�

E 	 	 �� E 	� 	 �� E 	� 	 �� E 	� 	 ��� E 	� 	 ���� � � � �

The inversion of E ���e�	� requires an integration on a complex plane� We

omit these calculations� presenting only the result� The density of the dis�

tribution of 	 	 m���� for x � � is

f��x� 	
�

��

Z ��

��
e��

p��i	��e�i	x d� 	
e��

�

�
	x�x��


p
��x�

������

�one can quite easily verify that its Laplace transform coincides with e��
p
���	��

This density is also the density of m����exp �� � and is the density f� of Theo�

rem ���� Moreover� we can present the formula for c�d�f� of 	�

F��x� 	 �� %

�
�p
x
�px

�

 e�

�
�� %

�
�p
x


p
x

��
� x � �

where %�
� is a c�d�f� of a normal zero�one distribution�
To calculate � in ������ observe thatm����exp �� has the same distribution

as ��m���� 	 ��	� Consequently�

� 	

Z �

�
log�x�f��� dx 	

Z �

�
log x 
 exp���

x
� � �

�x�p
��x

dx 	 ������ � � � ������

��



��� Solution of the equation ��x���x � �x� y���y 	 �

This equation is a linear PDE to which we can apply a standard technique�

We will look for a solution in the area where x � � and y � � with a

boundary condition

��x� a� 	 e�bx

Let v�x� y� 	 ��y� x
y� be a column vector� then the equation is equiv�

alent to

v 
 r� 	 ��

where 
 denotes a scalar product and r� is a gradient of �� Thus� ��x� y�

must be constant along the solutions of the equation &z 	 v� where z 	 �x� y��

Solving the system ��
� &x 	 �x

&y 	 x
 y

we obtain x�t� 	 C�e
�t� y�t� 	 C�e

t � �
�C�e

�t� Hence� �C�C� 	 x�x 
 �y��

and any solution ��x� y� to the PDE must be a function of one argument

x�x
 �y��

If this curve �x�t�� y�t�� intersects the horizontal line y 	 a at point

'x � �� then x�x
 �y� 	 'x�'x
 �a� and 'x 	 �a
px�x
 �y� 
 a� �we took

a positive sign at the square root since 'x must be non�negative�� On the

other hand� ��'x� a� 	 e��xb� therefore

��x� y� 	 ��'x� a� 	 eb
�
a�
p

x	x��y
�a�
�
�

References

��� Benaim� M�� Ledoux� M�� and Raimond� O� ������ Self interacting dif�

fusions� Preprint�

��



��� Coppersmith� D� and Diaconis� P� ������� Random walks with reinforce�

ment� Unpublished manuscript�

��� Davis� B� ������� Reinforced random walk� Prob� Th� Rel� Fields 
��

pp� ��� ( ����

��� Davis� B� ������� Reinforced and perturbed random walks� Random

walks� Bolyai Soc� Math� Stud�� �� Budapest� pp� ��� ( ����

��� Doob� J�L� ������ Stochastic processes� JohnWiley and Sons� New York�

��� Pemantle� R� ������� Phase transition in reinforced random walk and

RWRE on trees� Ann� Probab� ��� pp� ���� ( �����

��� Pemantle� R� and Volkov� S� ������� Vertex�reinforced random walk on

Z has �nite range� Ann� Probab� �	� pp� ���� ( �����

��� Sellke� T� ������ Reinforced RandomWalk on the d�dimensional Integer

Lattice� Technical Report ����
�� Department of Statistics� Purdue

University�

��� T
oth� B� ������ Self�interacting random motions ( a survey� Random

walks� Bolyai Soc� Math� Stud�� �� Budapest� pp� ��� ( ����

���� Volkov� S� ������ Vertex�Reinforced Random Walk on Arbitrary

Graphs Ann� Probab� to appear�

��


