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Summary

For several decades silica-based optical fibres have been used for telecommunication and

sensor purposes. The single-mode fibre is frequently employed in long-distance networks,

whereas the multi-mode fibre is the preferred means of signal transport in campus and

in-building networks. Because of the huge bandwidth of optical fibres in comparison to

its electrical wireless and copper-based counterparts, the demand for optical fibres keeps

increasing. In a competitive market, fibre manufacturers aim to produce ever better fibres

that are as cheap and easy to employ as possible.

As fibre research, development and manufacturing is a mature discipline, improvements

in fibre design can only be achieved through the construction of robust, accurate and

efficient numerical fibre models for the computation of those quantities that determine the

behaviour of the fibre. We have developed a modular software code, based on Maxwell’s

equations, to compute these quantities in a vectorial full-wave way for both single-mode

and multi-mode optical fibres. Key is the refractive-index profile, or, more specifically,

the dopant profile, as it defines the propagation, splicing and bending-loss characteristics

of the fibre. For the single-mode fibre, the fibre quantities that we have concentrated on

are dispersion, dispersion slope, mode-field diameter, effective area, bending loss, effective

and theoretical cut-off wavelength and MAC-value.

We highlight one fibre quantity in particular, viz. the computation of the bending

loss in a single-mode fibre. Many approximate modelling techniques have been developed

to estimate this loss in a fast way. Our numerical scheme, however, is the first rigorous

one, as we have performed a vectorial full-wave analysis of the bent optical fibre. In this

context, triple integrals involving products of Bessel functions with large, complex order

and argument appear. Due to cancellations in the pertaining computation, a high relative

accuracy is needed for the computation of each product. As a result, it takes weeks

on a contemporary computer to compute the bending loss as a function of the radius

of curvature. We have used the vectorial full-wave bending-loss results to determine the

most appropriate approximate method. Subsequently, we have extended that approximate

method to compute the bending losses of higher-order modes, since the required effective

cut-off wavelength depends on the bending loss of the first higher-order mode. The selected
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approximate method has been used in the ensuing bending-loss calculations.

Since the fibre properties are often conflicting, it is a challenging task to adapt the ra-

dial dopant profile to meet a set of predefined design goals. A design goal is a combination

of desired values for (some of) the aforementioned fibre quantities, and can mathemati-

cally be translated into a cost function. The minimisation of this cost function provides

us with the optimal dopant profile for that specific set. For the single-mode fibre, we have

performed this minimisation for piecewise-linear profiles, by employing various global and

gradient-based local optimisation strategies to speed up the design step considerably. Fre-

quently, these optimisation strategies lead to counter-intuitive dopant profile designs that

could not have been contrived otherwise. We have selected a deliberate mix of several

optimisation routines and have compared their performances. Perhaps the most impor-

tant conclusion is that there still appears to be room for improvement in the design of the

radial dopant profile of commercially available fibres.

For the multi-mode fibre, vectorial full-wave optimisation is not feasible yet because of

the long computation times for the large number of propagating modes. Still, our numer-

ical scheme allows for a manual fine-tuning of the popular power-law profile to minimise

differential mode delay. Further, we have included mode coupling and differential mode

attenuation in our model to obtain intensity patterns that match closely with measure-

ments. We have also analysed the influence of profile variations, e.g. on-axis dips and

kinks, on the intensity pattern.

A selective excitation of different mode groups in a multi-mode fibre, offers the possi-

bility to create several independent transmission channels, and thus a higher information

capacity. Recently, the feasibility of this so-called mode group diversity multiplexing tech-

nique has been demonstrated. Simulations provide us with a means to better understand

its operation and possibly increase its efficiency. The channel separation may be enhanced

by employing a lens between the fibre and the detector, which is called mode-selective spa-

tial filtering. Our numerical simulations of a mode group diversity multiplexing link, with

and without mode-selective spatial filtering, are in agreement with the measurements.

The above discussion makes clear that the developed software code has a wide range of

applicability. Moreover, it is built in a modular way and thus extensions, like the inclusion

of more fibre quantities or different profile dopants, are straightforward.
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Chapter 1

Introduction

1.1 The field of fibre optics

High-definition television, the internet, dike surveillance, and endoscopy. Just a short

selection out of the numerous applications in which optical fibres can fulfill key roles.

Of course, all these applications are subject to the ever increasing demands of the end-

consumers, which often comes down to words like better, faster and cheaper. As a result,

the field of fibre optics, which is the branch of research that deals with the design and

utilisation of optical fibres, has become a major field of applied research over the past

decades.

Fibre-optic telecommunication systems and sensor systems form two important ap-

plication categories in the field of fibre optics. For telecommunication, optical fibres are

especially designed to achieve large bandwidths, while keeping the transmission losses at

bay. For sensor systems, small parameter changes in the fibre properties can be a measure

for, for example, ruptures or temperature changes in the surrounding material. Obviously,

all these applications put different constraints on the specifications of the employed optical

fibre. An optical fibre is made of glass and/or plastic. By adding dopants to these base

components, a refractive-index profile is created that is characteristic for the fibre, and

allows light to be guided along its core.

In the design and manufacturing process of an optical fibre, the computer has become

an indispensable tool. As a consequence of improved control over the production process,

the match between a given design of the optical fibre and the actual fabricated product

has improved considerably. As fibre optics is a mature field of research and current fibres

are already quite good, improvements can only be achieved through the construction of

fibre models and an efficient and meticulous computation of those quantities that specify

the fibre.
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1.2 Computational electromagnetics

In the late 1960s, the optical fibre has first been considered as a practical medium for

communication, as difficulties regarding its attenuation proved bridgeable. Soon, several

methods were developed to analyse the propagation of electromagnetic waves along these

inhomogeneous cylindrical open waveguides. Initially, the main challenge was to treat the

inhomogeneities in the radial direction, under the assumption that this inhomogeneous

region was surrounded by a homogeneous medium and that the waveguide was circularly

symmetric.

Mathematically, this problem can be described by Maxwell’s equations, which form

a system of coupled first-order partial differential equations. By a careful elimination

of field components, one can arrive at a system of four first-order differential equations,

or equivalently a pair of coupled second-order differential equations, or a single fourth-

order ordinary differential equation. However, because of limited computer resources,

initially one had to resort to approximate techniques for the evaluation of the propagation

characteristics. Accurate numerical schemes to solve the differential equations were first

introduced by Dil and Blok [19] in 1973, and have been expanded upon by Vassell [110] a

year later.

With the advent of fast digital computers, universal software packages that, for exam-

ple, are based on the finite-element method [81, 85], the finite-difference method [84, 119],

or an integral-equation method [5] have become popular. Also approximate solution

methods for Maxwell’s equations, like ray asymptotics [91] and the weak-guidance ap-

proximation [33, 109], are frequently used to simplify and speed up the computations.

Unfortunately, approximations are limited by inaccuracies and restricted to a certain al-

beit wide class of problems. Chiang [11] has written a review paper covering frequently

used methods that are used for the analysis of optical fibres.

In view of the number of different and often conflicting specifications that the opti-

cal fibre should meet, the employed numerical method should be accurate, efficient and

flexible. In particular one would like to employ a method that can be extended in a mod-

ular way, such that fibre specifications can easily be augmented. Further, the numerical

scheme should be powerful enough to explain and predict experimentally observed wave

phenomena. Additionally, it should lend itself to preventing any undesirable behaviour

through a proper design of the refractive-index profile.

Nevertheless, the design process remains a cumbersome task as the odds for directly

finding a feasible refractive-index profile that meets all set requirements turn out to be

negligible. As a result, the parameters that define the profile should be carefully chosen

and tuned, a task that has therefore often been assigned to an experienced (expensive)

designer. Optimisation routines may offer a solution, as they search for the best parameter
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settings to meet a set of pre-defined specifications. It is desirable that these routines are as

time-efficient as possible. Thus far, genuine optimisation methods have hardly ever been

applied to the design of optical fibres. The article by Bingle et al. [9] shows an initial

impetus for our profile optimisation. A few other articles describe optimisation results in

the field of fibre optics [26, 49, 51], but those are concerned with fibre Bragg gratings and

photonic-crystal fibres.

While optimisation schemes can be applied for the design of the next generation of

optical fibres, other techniques exist to achieve an increase in bandwidth of existing fibres.

In particular, this is an issue for the multi-mode fibre, which primarily suffers from band-

width limitations introduced by differential mode delay, i.e. a pulse spreads due to (small)

differences in the group velocity of the propagating modes [36]. This is the main reason

why these fibres are only used in short-range networks [53]. Diversity multiplexing tech-

niques, like, for example, wavelength division multiplexing and time division multiplexing

[48], are efficient methods to increase the information capacity of fibres.

Another promising multiplexing technique concerning the multi-mode fibre is called

mode group diversity multiplexing [53]. Here, the idea is that for the right launching

conditions, clusters of modes may be excited that are effectively confined spatially to

annuli in the cross-sectional plane, and thus may be regarded as separate channels. By

combining this technique with mode-selective spatial filtering, which consists of placing a

properly designed lens at the fibre’s end, up to five stable channels can be attained [102].

1.2.1 Selected research topics

From the discussion above, we have extracted several important contemporary problems

on which this thesis will focus. For these problems, an adequate model of the optical fibre,

and a robust numerical scheme to analyse the pertaining model are essential. Maxwell’s

equations form the basis for this scheme. Cast into the more convenient Marcuvitz-

Schwinger equations [60], which consist of a coupled system of four differential equations,

Dil and Blok [19] were the first to perform a numerical integration of this system in

the radial direction. Along the lines of their work, we have implemented a vectorial

full-wave modelling code. This code forms the cornerstone for the subsequent numerical

computation of some typical fibre quantities.

In our numerical scheme, we distinguish between the single-mode fibre and the multi-

mode fibre, for which different fibre quantities are of importance. For the former, we

concentrate on the following quantities: dispersion, dispersion slope, mode-field diameter,

effective area, bending loss, effective and theoretical cut-off wavelength and the MAC-value

[69, 105]. For the multi-mode fibre, differential mode delay, differential mode attenuation,

and mode coupling are considered as the most important quantities [36, 118].
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We highlight one quantity in more detail, viz. the bending loss in a single-mode fibre.

Many approximate modelling techniques have been developed to estimate the bending loss

as a function of radius of curvature [22, 58, 108, 115]. Our numerical scheme, however, is

the first rigorous one, and is intended to select the most appropriate approximate method.

Subsequently, that approximate method has been extended to compute the bending losses

of higher-order modes. Since the effective cut-off wavelength and indirectly the MAC-

value are related to the bending loss of the first higher-order mode, these quantities are

evaluated in approximate form as well.

On the basis of our inventory of fibre quantities, we have performed a refractive-index

profile optimisation. Since the computation of the fibre quantities of a multi-mode fibre

simply takes too long on contemporary computers, the full profile optimisation is limited

to single-mode fibres. For the multi-mode power-law profile [89] only the optimum value of

the power-law exponent g has been determined. For the single-mode fibre, we have chosen

to discretise the profile in piecewise-linear segments. The endpoints of the line segments

serve as the free optimisation parameters, which are key in any optimisation scheme.

Although many different schemes are available, by and large, they can be subdivided into

two categories, viz. statistically oriented optimisers and deterministic methods based on

gradient information. For both methods, the cost function is pivotal, as it is the means

to cast pre-set design goals in terms of the fibre quantities into a mathematical formula.

The minimisation of the cost function, possibly with the aid of gradient information, is

the aim of all these schemes.

As a last challenge, we have investigated certain wave phenomena that typically occur

in multi-mode fibres. Differential mode delay, differential mode attenuation, and mode

coupling are such phenomena. Not only do they affect the intensity pattern at the fibre’s

end, they also determine the bandwidth of the fibre. The differential mode delay has been

computed for all modes, following the work by Bingle and de Hon [8]. The model allows

for optimisation of the refractive index power-law profile to minimise differential mode

delay and thus to maximise the bandwidth. Differential mode attenuation and mode

coupling are introduced by an empirical formula [118] and via a set of coupled power

equations, respectively [59]. In addition, we demonstrate the influence of an offset and/or

tilted launching (position) on the intensity pattern at the fibre’s end. Also, the effects

of possible manufacturing defects in the fibre’s refractive-index profile on the intensity

pattern, based on the “108-fiber model” [40, 114], are shown.

Lastly, the mode group diversity multiplexing technique is discussed and experimen-

tally obtained near-field patterns are compared with simulated ones. The launching condi-

tions are optimised, and mode-selective spatial filtering is simulated to achieve a maximum

number of separate channels.
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1.3 Outline of the thesis

In Chapter 2, we introduce our optical waveguide model. On the basis of this model, we

derive expressions for the electromagnetic fields. To this end, Maxwell’s equations, which

form the basis for all subsequent computations, are cast in the form of the Marcuvitz-

Schwinger equations, which involve transverse field components only. By enforcing proper

boundary conditions, the propagation coefficients of the modes propagating along the

optical fibre are obtained. Next to this exact vectorial full-wave approach, we briefly

touch upon the more popular but approximate weak-guidance approximation.

Once the foundation of our numerical scheme is laid, we introduce important fibre

quantities, which typically characterise the optical fibre. Chapter 3 deals with their nu-

merical computation. To keep the discussion tractable, we have subdivided this chapter

in two parts, namely the numerical computation of the characteristics for the single-mode

fibre and the one for the multi-mode fibre, respectively.

In Chapter 4, we focus on one of the fibre quantities in particular, viz. the bending

loss. However, before we analyse the bent optical fibre, we derive electromagnetic field

expressions for the bent slab waveguide, which is its two-dimensional equivalent. As an

intermediate step, we compute the electromagnetic fields inside a perfectly conducting

curved pipe. Through the use of the Lorentz’ reciprocity theorem, we compute the vec-

torial full-wave bending losses in the bent fibre. These are compared with the bending

losses that result from two frequently used scalar approximations. Subsequently, the best

scalar approximation is extended to deal with higher-order modes, which is used in the

computation of the effective cut-off wavelength and the MAC-value.

The refractive-index profile optimisation for the single-mode fibre is performed in

Chapter 5. We compare globally oriented optimisation schemes with gradient-based de-

terministic ones. Further, we elaborate on the numerical computation of the pertaining

gradients and demonstrate the difference between exact and (finite-difference) approxi-

mate gradient computations. Also the influence of the initial profile, the choice of the

optimisation parameters and an optimised profile sensitivity analysis are treated in detail.

Chapter 6 deals with wave propagation along multi-mode fibre transmission links. We

show the influence of an excitation with a radial offset and/or angular tilt on the intensity

pattern at the fibre’s end and produce patterns for the worst profile defects out of the

“108-fiber model”. Further, we simulate intensity patterns for the mode group diversity

multiplexing technique and demonstrate the effect of mode-selective spatial filtering.

In the final chapter of this thesis, Chapter 7, the main conclusions are presented.

Further research topics and recommendations for future development areas are addressed

as well.





Chapter 2

Formulation of the problem

To analyse the propagation of light along the optical fibre, we have chosen to derive expres-

sions for the electromagnetic fields by following early work of Dil and Blok [19]. Starting

from Maxwell’s equations, we arrive at a smaller system of coupled partial differential

equations eliminating the longitudinal field components, i.e. the components along the

waveguide. This system is referred to as the Marcuvitz-Schwinger equations [60]. We shall

derive the Marcuvitz-Schwinger equations for a general system of orthogonal curvilinear

coordinates, thus allowing for the analysis of both straight cylindrical waveguide struc-

tures and bent toroidal waveguide structures. Subsequently, we will discuss the numerical

implementation and the limitations of the thus acquired numerical scheme.

As a last step, we briefly touch upon a widely used approximation, i.e. the weak-

guidance approximation [33, 91]. This approximation will be compared with our exact

reference method to compute the bending loss in Chapter 4. Further, it will serve as a

basis for those occasions were full-wave methods prove too complex and as a means to

provide physical interpretations.

2.1 The optical fibre model

The optical fibre is treated as a cylindrical open waveguide structure. A model is shown

in Figure 2.1, where we have assumed circular symmetry. Hence, we neglect imperfec-

tions such as longitudinally varying ellipticity or corrugation. Such imperfections will be

accounted for in Section 3.2 through a mode-coupling model. There, we will also address

the influence of possible loss mechanisms, which are neglected elsewhere, by introducing

a heuristic loss model. The shaded cross-sectional areas denote, from dark to light, the

core, cladding and coating region(s). The coating may be surrounded by a jacket, although

that is of no interest in our field analysis, as no power reaches this interface. Moreover,

as long as sharp bends are absent in geometry of the fibre, we may omit the coating as
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x

y

z

r

ψ

Figure 2.1: Model of the optical fibre. From dark to light, the shaded cross-sectional areas denote

the core, cladding and coating region, respectively.

well from our model for the same reason. Therefore, we shall assume that the cladding is

homogeneous and of infinite extent.

The core region, on the other hand, is considered to be radially inhomogeneous. Hence,

the so-called refractive-index profile n(r) may vary arbitrarily with respect to the radial

coordinate r. By way of illustration, let us briefly consider two frequently encountered

profiles in optics, namely the step-index profile and the power-law profile. The step-

index profile consists, as the name already indicates, of a homogeneous core region, i.e.

n(r) =nco, whereas the refractive-index profile of the power-law profile is given by [27]

n(r) = nco

√

1 − 2∆(r/a)g, (2.1)

where a denotes the core radius and typically the power-law exponent g≥ 1. The relative

refractive-index difference ∆ is given by [42]

∆ =
(

n2
co − n2

cl

)

/2n2
co, (2.2)

where ncl denotes the refractive index of the (innermost) cladding. To allow for wave

guidance, nco = max[n(r)]>ncl. For the power-law profile defined by Eq. (2.1), this implies

that nco =n(0).

As we will explain in more detail in Section 3.1.2, the refractive index is also a function

of wavelength λ. As a consequence, the Kramers-Kronig relations [54] apply, and the

refractive index n∈ C, where the imaginary part corresponds to the absorption loss in the

optical fibre. In [4] it is shown that for all optical fibre wavelengths this imaginary part

may safely be neglected.

To measure the refractive-index profile, many measurement techniques have been intro-

duced and implemented in commercial instruments [21, 27]. However, these instruments

may use different wavelengths, and unfortunately, many articles fail to state the wave-

length at which their profile has been defined.

To avoid confusion, we adhere to the standard measurement methods set by the ITU

[42] in G.650–G.652. For multi-mode fibres, the reference test method for the numerical
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aperture (NA), defined through NA =
√

n2
co − n2

cl, is the far-field light distribution. The

NA is to be measured at a wavelength of 850 nm, and therefore we assume that the

refractive-index difference ∆ in Eq. (2.2) is defined at this wavelength as well.

The refracted near-field technique [27], a frequently employed alternative certified test

method, is commonly used to measure the refractive-index profile of single-mode fibres.

The employed light source is typically a laser with a wavelength ranging from 630 nm to

850 nm [32, 80, 116]. Since a He–Ne laser with a wavelength of 632.8 nm is often used,

we assume that for single-mode fibres ∆ is defined at that wavelength, unless explicitly

stated otherwise.

For both the step-index profile and the (infinite) parabolic one, which is a power-

law profile with power-law exponent g= 2, Maxwell’s equations can be solved in closed

form [73, 89]. It is therefore not surprising that the first approach to tackle an arbitrary

refractive-index profile appearing in the literature consists of a composition of successive

step-index profiles, the so-called staircase approximation [13, 64]. Examples of other dis-

cretisation methods to tackle the Maxwell’s equations for a fibre with an arbitrary profile

include the perturbation method [89] and the finite-element method [72]. The extension

to a numerical scheme that follows the exact shape of the arbitrary profile was first intro-

duced by Dil and Blok, and is known as the direct integration method [19]. In this method,

Maxwell’s equations are first transformed into a matrix-type system of differential equa-

tions, the so-called Marcuvitz-Schwinger equations. Subsequently, these equations are

solved numerically by a direct integration along the radial coordinate, while taking the

non-uniform profile into account. It is this method that we have employed to compute

the propagation characteristics of the electromagnetic fields along the optical fibre.

2.2 The Marcuvitz-Schwinger equations

To derive the Marcuvitz-Schwinger equations for a general curvilinear coordinate system,

we start from Maxwell’s equations. In the space-time domain, they are given by

∇× E(r, t) + ∂tB(r, t) = −K(r, t), (2.3a)

−∇× H(r, t) + ∂tD(r, t) = −J (r, t), (2.3b)

where the script indicates an arbitrary time dependence and the boldface denotes the

vectorial nature of the field quantities

E electric field strength
[

Vm−1
]

, H magnetic field strength
[

Am−1
]

,

B magnetic flux density
[

Vsm−2
]

, D electric flux density
[

Asm−2
]

,

K magnetic current density
[

Vm−2
]

, J electric current density
[

Am−2
]

.
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The position in space is denoted by the position vector r with respect to a fixed reference

frame, and t is the time coordinate.

We consider time harmonic fields with an exp(jωt) time factor, where the angular

frequency ω is real and positive. Maxwell’s equations in the frequency domain read

∇× E(r, ω) + jωB(r, ω) = −K(r, ω), (2.4a)

−∇× H(r, ω) + jωD(r, ω) = −J(r, ω). (2.4b)

Keeping the optical fibre configuration in the back of our mind, we assume that the

material inside the waveguide is linear, time-invariant, isotropic, and inhomogeneous in

the radial direction. Then, the constitutive relations are given by

D = ε(r, ω)E = ε0εr(r, ω)E, (2.5a)

B = µ(r, ω)H = µ0µr(r, ω)H = µ0H, (2.5b)

where the scalar functions µ and ε denote the permeability and permittivity of the medium,

respectively. Further, µ0 = 4π10−7 VsA−1m−1 and ε0 = (µ0c
2
0)

−1
AsV−1m−1, with c0 denot-

ing the speed of light in vacuum. The substitution of the constitutive relations in Eq. (2.4)

yields

∇× E(r, ω) + jωµH(r, ω) = −K(r, ω), (2.6a)

−∇× H(r, ω) + jωεE(r, ω) = −J(r, ω). (2.6b)

Next, let us eliminate the longitudinal components of the field. To keep the deriva-

tion as general as possible, we introduce general curvilinear coordinates. Although the

coordinate systems which we will encounter are orthogonal, the derivation is given, for

transparency, in tensor notation, and is therefore also valid for non-orthogonal coordinate

systems. For those, unfamiliar with tensor calculus, the Marcuvitz-Schwinger equations

have been derived for orthogonal coordinate systems by employing the well-known scale

factors hi [3], where i= {1, 2, 3}, in Appendix B.

In our tensor notation, we introduce a convention in which lowercase Roman subscripts

and superscripts take the values 1, 2, 3, and Greek subscripts and superscripts take the

values 1, 2. Consequently, the curl of a vector v is written as [96]

∇× v =
(

∂ivj − vkΓ
k
ji

)

ηijkck = (∂ivj)η
ijkck, (2.7)

where {ck} defines a set of covariant basis vectors. The associated set of contravariant ba-

sis vectors is denoted as
{

ck
}

. These sets of basis vectors are related through cp · cq = δqp,

where δqp denotes the Kronecker delta . The contravariant components of the fully asym-

metric permutation tensor are given by

ηijk = g−
1
2 ǫijk, (2.8)
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where ǫijk denotes the Levi-Civita symbol. Further, g= det (gpq), where the metric tensor

is defined through an inner product

gpq = gqp = 〈cp, cq〉 . (2.9)

The symmetry in the Christoffel symbol Γkji = Γkij has been used to eliminate the symbol

in the second step in Eq. (2.7). Hence, Maxwell’s equations of Eq. (2.6) may be written,

by raising and lowering indices, as

(∂iEj) η
ijkck + jωµHkck = −Kkck, (2.10a)

− (∂iHj) η
ijkck + jωεEkck = −Jkck. (2.10b)

The longitudinal constituent of the electric field, which we will denote by the index 3, is

obtained upon dot-multiplying both sides of Eq. (2.10b) by g3mcm, i.e.

E3 = (jωε)−1 g3m

(

ηijm∂iHj − Jm
)

. (2.11)

The transverse constituents, on the other hand, are obtained by dot-multiplying Eq. (2.10a)

by (c3 × cn)= η3nλc
λ, which yields

∂3En − ∂nE3 + jωµη3nλH
λ = −η3nλK

λ, (2.12)

where we have used ηijλη3nλ = δi3δ
j
n − δinδ

j
3. To eliminate the longitudinal constituent, we

substitute Eq (2.11) in Eq (2.12). Since n= 3 leads to the trivial identity (0 = 0), we

replace the index n by κ, which gives us

∂3Eκ − ∂κ
[

(jωε)−1 (g3mη
ijm∂iHj − J3

)]

+ jωµη3κλH
λ = −η3κλK

λ. (2.13)

After using standard tensor arithmetic, we arrive at

−∂3Eκ = jωµ
[

Vσκµ + k−2ε∂κε
−1
(

g33η
µσ3 + g3ιη

µσι
)

∂µ
]

Hσ + VσκµKeff
σ , (2.14)

where k=ω
√
µε denotes the wavenumber of the pertaining medium and

Keff
σ =

[

Kσ − (jω)−1 ηακ3gσα∂κε
−1J3

]

and Vσκµ = g33gκµη
µσ3. (2.15)

By duality, we may replace {Ek, Hk, ε, µ, Jk, Kk} by {Hk,−Ek, µ, ε,Kk,−Jk}, which

leads to

−∂3Hλ = −jωε
[

Wτ
λν + k−2µ∂λµ

−1
(

g33η
ντ3 + g3ςη

ντς
)

∂ν
]

Eτ −Wτ
λνJ

eff
τ , (2.16)

where

Jeff
τ =

[

Jτ + (jω)−1 ηβλ3gτβ∂λµ
−1K3

]

and Wτ
λν = g33gλνη

ντ3. (2.17)
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Next, we cast the differential equations of Eq. (2.14) and Eq. (2.16) in matrix form and

impose that c3 is orthogonal to c1 and c2, i.e. gς3 = g3ς = 0. As a result, we obtain the

following elegant form [75]

−∂3

(

Eκ

Hλ

)

=

(

0 jωµ [Uκµ + Tκµ (ε)]

jωε [Uλν + Tλν (µ)] 0

)(

ǫν3τEτ

ǫµσ3Hσ

)

+

(

Uκµǫµσ3Keff
σ

Uλνǫν3τJeff
τ

)

,

(2.18)

where

Uκµ = g−
1
2 g33gκµ and Tκµ(x) = k−2x∂κx

−1g−
1
2 g33∂µ. (2.19)

The longitudinal components E3 and H3 follow from Eq. (2.11) and are given by

E3 = (jωε)−1 g33

(

ηµν3∂µHν − J3
)

,

H3 = (jωµ)−1 g33

(

ηµ3ν∂µEν −K3
)

.
(2.20)

The differential equations of Eq. (2.18), which are expressed in terms of field components

transverse to the longitudinal direction, are referred to as the Marcuvitz-Schwinger equa-

tions. Further, note that the right-hand side of both Eqs. (2.18) and (2.20) only contain

operators that are independent of the longitudinal direction.

The Marcuvitz-Schwinger equations are not yet related to any waveguide structure, as

they have to be supplemented with appropriate boundary conditions.

2.2.1 Boundary conditions

At the interface between two media, say 1 and 2, with different material properties, the

following general boundary conditions hold, for a normal n pointing into medium 2 [83]

n × (E2 − E1) = −Ks, n · (B2 − B1) = ρs,k,

n × (H2 − H1) = Js, n · (D2 − D1) = ρs,j.
(2.21)

The subscripts 1 and 2 denote the limits of the fields on opposite sides of the interface in

region 1 and 2, respectively. Further, Ks and Js are the respective magnetic and electric

surface current densities flowing along and tangential to the interface. Similarly, ρs,j and

ρs,k denote the electric and magnetic surface charge densities. The presence of surface

current and charge densities cause the pertaining electromagnetic field components to be

discontinuous across the interface.

At any interface of the optical fibre in Figure 2.1, the boundary conditions simplify

as surface charges and currents are absent throughout. Focusing on the core/cladding



2.3 Electromagnetic field solutions 13

interface, we impose that the tangential electric and magnetic field components must be

continuous there.

Further, from energy considerations, we require that the electromagnetic fields remain

bounded throughout. This implies that the fields must decay in the cladding of the optical

fibre, while remaining finite at the core centre. All boundary conditions have to be satisfied

to obtain physically meaningful results.

2.3 Electromagnetic field solutions

In the preceding sections, we set the basis for the computation of the electromagnetic fields

in circularly cylindrical waveguides. Now, we will carry out the modal analysis for the

straight optical fibre. On the basis of the model discussed in Section 2.1, and with an eye

towards the constitutive relations of Eq. (2.5), we distinguish between the inhomogeneous

core and homogeneous cladding region, i.e.

µ(r, ω) = µ0 and ε(r, ω) = ε0εr(r, ω) =

{

ε0εr(r, ω) for r <a,

ε0εr,cl(ω) for r≥ a,
(2.22)

where a is the core radius. The relative permittivity εr is related to the refractive-index

profile of Eq. (2.1) by

εr(r, ω) = n2(r, ω). (2.23)

Upon imposing boundary conditions at the core/cladding interface at r= a, we obtain

a characteristic equation for modal, i.e. source-free, field solutions, which provides the

criterion for matching the electromagnetic field in the core to that in the cladding.

The Marcuvitz-Schwinger equations, which are given by Eq. (2.18) and Eq. (2.20), are

especially well-suited for computing the field solutions in the core region. For the cladding

region, on the other hand, field solutions can be derived analytically, and the use of the

Marcuvitz-Schwinger equations is not essential. Since we are interested in the modal field

solutions, we have to omit the source terms in the Marcuvitz-Schwinger equations.

In view of the geometry of the fibre, it is convenient to use cylindrical coordinates

and regard the radial coordinate as the longitudinal constituent. Therefore, we introduce

(covariant) basis vectors {c1, c2, c3}= {ruψ,uz,ur} with the corresponding (contravariant)

coordinates {x1, x2, x3}= {ψ, z, r}. As a consequence, the metric tensor of Eq. (2.9) reads

gpq = diag(r2, 1, 1), and hence the (covariant) electric and magnetic field components are

given by {E1, E2, E3}= {rEψ, Ez, Er} and {H1, H2, H3}= {rHψ, Hz, Hr}, respectively.

Owing to the invariance in the ψ- and z-directions of the refractive-index profile, we
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consider electromagnetic fields of the following form

(

Ek(ψ, z, ρ)

Hk(ψ, z, ρ)

)

=
∞
∑

m=−∞

(

ek,m(ρ)

hk,m(ρ)

)

exp (jmψ) exp
(

−jω̂ζa−1z
)

, (2.24)

where k= {1, 2, 3}. Further, we have introduced a normalised frequency and a normalised

radial coordinate, i.e.

ω̂ = ωac−1
0 and ρ = ra−1, (2.25)

respectively. Note that this wave propagates in the positive z-direction, as we have as-

sumed an exp(jωt) time factor. To exploit the periodicity in the ψ-direction, we have

employed a Fourier series with azimuthal index m, where m∈ Z. The computation of

the unknown normalised propagation coefficient ζ forms the main challenge of the subse-

quent sections. As soon as all modal propagation coefficients are determined, the modal

field amplitudes associated with a specific excitation can be computed, which renders full

knowledge of the electromagnetic field inside the optical fibre.

For lossless straight fibres, the modal propagation coefficients are real and positive.

However, we will demonstrate that in the case of a bent fibre ζ becomes complex with

Re(ζ)>ncl.

2.3.1 The core region

To obtain electromagnetic field solutions in the core region, and more specifically at the

core/cladding interface, we substitute Eq. (2.24) in the source-free Marcuvitz-Schwinger

equations given by Eq. (2.18). We extract a single azimuthal component by multiplying

both sides of the equation by exp(−jℓψ) and subsequently integrating over a period of

length 2π. This yields a coupled system of differential equations for the radial dependence

of the fields, which can be solved separately, owing to the Kronecker delta δℓ,m, for each

azimuthal index ℓ [18], i.e.

− dρf̂ = ρ−1

(

0 jZ0ε
−1
r MJ

−jZ−1
0 MJ 0

)

f̂ , (2.26)

with f̂ = (ρeψ, ez, ρhψ, hz)
T , where T indicates transposition, and Z0 =

√

µ0/ε0 denotes the

free-space plane-wave impedance. The matrices, written in Sans serif style, are given by

M =

(

ω̂εrρ
2 −m2/ω̂ mζ

mζ −ω̂(ζ2 − εr)

)

, J =

(

0 1

−1 0

)

, (2.27)

where m denotes the azimuthal index. To arrive at Eq. (2.26), we have used the metric

tensor for a cylindrical coordinate system. Note that the transverse operator Tκµ(ε) in
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Eq. (2.19) only contains derivatives of ε with respect to the transverse coordinates z and ψ.

Since εr is independent of these coordinates, the choice x3 = r implies that the transverse

derivatives are absent.

The next step is to determine an initial field vector to commence with the numerical

integration of Eq. (2.26). As we wish to incorporate an inhomogeneous core region in

our numerical scheme, it seems logical to define the initial field vector at the core centre.

However, we infer from Eq. (2.26) that ρ= 0 is a singular point of the differential equation.

To circumvent this difficulty, we would have to start the integration at some point ρ= ρ0

bounded away from zero. To this end, we first scale the electromagnetic field components

of f̂ in a convenient way, i.e.

f̂ = (ρeψ, ez, ρhψ, hz)
T = ρ|m| (−jZ0p1,−jZ0p2, q1, q2)

T . (2.28)

Consequently, we may rewrite Eq. (2.26) as follows

dρf = ρ−1A(ρ)f , (2.29)

where the field vector is given by f = (p2, q1, q2, p1)
T , and

A(ρ) =











−|m| ω̂(ζ2 − εr)/εr mζ/εr 0

ω̂ρ2εr −m2/ω̂ −|m| 0 −mζ
mζ 0 −|m| ω̂(ζ2 − εr)

0 −mζ/εr ω̂ρ2 −m2/ω̂εr −|m|











. (2.30)

We demand that the electromagnetic energy remains finite. An asymptotic analysis shows

that the corresponding field vector f must remain regular for ρ ↓ 0, and that its amplitude

is bounded away from zero there. Hence, we may write a Taylor expansion about ρ= 0

f(ρ) = f(0) + ρf ′(0) +O(ρ2), (2.31a)

A(ρ) = A(0) + ρA′(0) +O(ρ2), (2.31b)

where the prime indicates differentiation to ρ. Upon substitution of Eq. (2.31) in Eq. (2.29),

we readily obtain

f ′(0) +O(ρ) = ρ−1A(0)f(0) + A(0)f ′(0) + A′(0)f(0) +O(ρ), (2.32)

from which we infer that

A(0)f(0) = 0, (2.33a)

f ′(0) = [I − A(0)]−1A′(0)f(0), (2.33b)

where I denotes the 4 by 4 identity matrix. The existence of the inverse of [I − A(0)] in

Eq. (2.33b) can be proven through construction. Further, note that the rank[A(0)] = 2.
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As a consequence, Eq. (2.33a) has two independent solutions, which we will denote as

f1 and f2, respectively. The corresponding derivatives are given by f ′1 and f ′2. Evidently,

the two-dimensional orthogonal complement of the null-space of A(0) is the span of the

solutions of Eq. (2.29) that are singular at ρ= 0. A complete set of solutions to Eq. (2.33)

is given by

(f1, f2) =











1 ζ

−mω̂−1 0

ζ εr,0

0 −mω̂−1











, (f ′1, f
′
2) = D











0 ζ

0 0

0 −εr,0
0 −mω̂−1











, (2.34)

where

D = − m∂ρεr,0
(1 + 2m)εr,0

, (2.35)

in which εr,0 = εr(0, ω) denotes the permittivity at the fibre axis and ∂ρεr,0 its derivative.

Consequently, two independent field vector solutions f1(ρi) and f2(ρi) at ρ= ρi in the

waveguide core are determined by a numerical integration of Eq. (2.29) from ρ= ρ0 to

ρ= ρi, with ρ0 small, starting from the initial field vectors f1(ρ0) = f1 + ρ0f
′
1 and f2(ρ0) =

f2+ρ0f
′
2. As we wish to impose the boundary conditions at the core/cladding interface, we

take ρi = 1. An adaptive Adams method has been used to perform the actual numerical

integration of this initial-value problem [37, 78].

2.3.2 The cladding region

In our model, the cladding region is considered to be of infinite extent, consisting of a

homogeneous medium εr,cl, as defined by Eq. (2.22). Owing to this homogeneity, the

electromagnetic field solutions can be derived analytically in terms of modified Bessel

functions from Eq. (2.26). Since the electromagnetic fields should carry finite energy, the

fields have to decay and/or radiate away from the fibre. Hence, the solutions can be

expressed in terms of modified Bessel functions of the second kind. Upon introducing the

variable

w = ω̂(ζ2 − εr,cl)
1/2, (2.36)

and a similar scaling as in Eq. (2.28)

f̂ = (ρeψ, ez, ρhψ, hz)
T = K|m| (−jZ0p1,−jZ0p2, q1, q2)

T , (2.37)

the pertaining two independent field vector solutions are given by

[f3(ρ), f4(ρ)] = −jZ−1
0











1 0

v1εr,cl v2

0 1

v2 v1











, with











v1 =
ω̂ρ
w
K ′

|m|

K|m|
,

v2 = −mω̂ζ
w2 ,

(2.38)
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where f = (p2, q1, q2, p1)
T , and K|m| =K|m|(wρ) and K ′

|m| =K ′
|m|(wρ) denotes the modified

Bessel function of the second kind and its derivative with respect to its argument, respec-

tively.

For the sake of completeness, we note that the radial electromagnetic field components

follow from Eq. (2.20) and throughout may be expressed in terms of the transverse field

constituents, i.e.

Er = (ω̂εr)
−1 Z0

(

ρ−1mHz + ω̂ζHψ

)

,

Hr = − (ω̂Z0)
−1 (ρ−1mEz + ω̂ζEψ

)

.
(2.39)

2.3.3 The characteristic equation

The total field vector in the core region is a linear combination of the field vectors f1 and f2.

In the cladding, the total field vector is a linear combination of f3 and f4. Mathematically,

this implies that

f(ρ) = C1f1(ρ) + C2f2(ρ) for ρ < 1, (2.40a)

f(ρ) = C3f3(ρ) + C4f4(ρ) for ρ > 1, (2.40b)

where Ci, with i= 1, . . . , 4, are arbitrary constant coefficients. Upon applying the bound-

ary conditions at the core/cladding interface at ρ= 1, i.e. the transverse (to the boundary)

electromagnetic field components must be continuous, we arrive at the following equality

[f1(ρ) f2(ρ) f3(ρ) f4(ρ)]











ρ|m|C1

ρ|m|C2

−K|m|C3

−K|m|C4











∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ=1

= 0. (2.41)

Non-trivial solutions are obtained by solving the characteristic equation

C(ζ) = det [f1(ρ) f2(ρ) f3(ρ) f4(ρ)]|ρ=1 = 0, (2.42)

which yields the desired normalised modal propagation coefficients ζmn, where m denotes

the azimuthal index and n the radial index. A Van Wijngaarden–Dekker–Brent root-

finding scheme [78] is employed to find all propagation coefficients in a fast and highly

accurate way. The corresponding eigenvector follows from Eq. (2.41). The subsequent

substitution in Eq. (2.40) gives us the total transverse field vector for all values of ρ. Then,

the modal electromagnetic field components are determined from Eqs. (2.24), (2.28) and

(2.39). As a last step, each mode is normalised such that it carries unit power (e.g. see

Eq. (3.14)).
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In Figure 2.2, the propagation coefficients for step-index profiles and parabolic-index

profiles, with a small refractive-index difference ∆ = 0.3 % (upper), a moderate one of

∆ = 2 % (middle) and an extremely large one of ∆ = 15 % (lower), are set against the

frequently used normalised frequency [89]

V = ω̂ (εr,0 − εr,cl)
1/2 . (2.43)

Since V is a non-linear function of wavelength through the permittivity (see Eq. (3.8))

and ω̂= 2πaλ−1, we have chosen a fixed λ= 1550 nm. To vary V , we have gradually

increased the core radius a of the fibre. The refractive index differences are defined at

λ= 632.8 nm.

Observe that for small contrasts, some modes are (nearly) degenerate. This degeneracy

forms the basis of the so-called weak-guidance approximation, which we will discuss in

Section 2.5. Further, we would like to point out that a refractive-index profile difference

of ∆ = 15 % is unusual among the available fibres nowadays, which have typical differences

up to about ∆ = 2 %.

For all of the figures in Figure 2.2, the fundamental mode, HE11, is described by the

leftmost dispersion curves. Despite the fact that these curves all appear to approach the

V -axis, the fundamental mode is never really cut off. The designation HEmn stands for

a hybrid mode for which Hz is dominant compared to Ez [36]. Hybrid modes EHmn, on

the other hand, have complementary properties and can propagate along the optical fibre

as well. Further, we distinguish between transverse electric (TE) and transverse magnetic

(TM) modes, for which Ez = 0, Hz 6= 0 and Hz = 0, Ez 6= 0, respectively. Both modes only

exist for m= 0, since then Eq. (2.26) decouples into two sets of differential equations for

which either Hz = 0 or Ez = 0. As a consequence, m≥ 1 holds for hybrid modes. For

completeness, we mention that transverse electromagnetic (TEM) modes, for which both

Hz = 0 and Ez = 0, do not occur in optical fibres.

2.4 Numerical considerations for short wavelengths

A pivotal aspect in the proposed computation of the electromagnetic fields in an optical

fibre is formed by the numerical integration of a system of differential equations for the

core region. However, at each integration step, inevitably, round-off errors are introduced

due to the finite precision arithmetic of the computer [37]. To attain a high accuracy, a

small adaptive step size is required. Due to the large number of integration steps, the total

round-off error gradually increases. Especially for multi-mode fibres with large core radii,

or conversely for short wavelengths, this error eventually imposes a limit on the accuracy

of the numerical integration.



2.4 Numerical considerations for short wavelengths 19

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Normalised frequency VNormalised frequency V

Step-index profile ∆ = 0.3% Parabolic-index profile ∆ = 0.3%

(ζ
2
−
ε r

,c
l
)/

(ε
r
,0
−
ε r

,c
l
)

(ζ
2
−
ε r

,c
l
)/

(ε
r
,0
−
ε r

,c
l
)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Normalised frequency VNormalised frequency V

Step-index profile ∆ = 2% Parabolic-index profile ∆ = 2%

(ζ
2
−
ε r

,c
l
)/

(ε
r
,0
−
ε r

,c
l
)

(ζ
2
−
ε r

,c
l
)/

(ε
r
,0
−
ε r

,c
l
)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Normalised frequency VNormalised frequency V

Step-index profile ∆ = 15% Parabolic-index profile ∆ = 15%

(ζ
2
−
ε r

,c
l
)/

(ε
r
,0
−
ε r

,c
l
)

(ζ
2
−
ε r

,c
l
)/

(ε
r
,0
−
ε r

,c
l
)

Figure 2.2: Normalised propagation coefficients (ζ2 − εr,cl)/(εr,0 − εr,cl) of the modes propagating

in a fibre with a step-index profile (left) and a parabolic-index profile (right), set against the

normalised frequency V of Eq. (2.43). The upper figures are the results for a refractive-index

difference of ∆=0.3%, the middle ones correspond to ∆=2% , whereas the lower ones are

generated with ∆=15%.

It turns out that integration with an adaptive Adams method from the fibre axis

towards the core/cladding transition is limited to core radii up to about 30λ with double

precision arithmetic. To stretch this range, we have added the second-order derivative of

the field vectors at the fibre axis in Eq. (2.33), i.e.

f ′′(0) = [I − 1/2A(0)]−1
[

1/2A′′(0) + A′(0)[I − A(0)]−1A′(0)
]

f(0), (2.44)
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to Eq. (2.31), which reads

f(ρ) = f(0) + ρf ′(0) + 1/2ρ2f ′′(0) +O(ρ3). (2.45)

The second-order derivatives of the initial vectors are given by

(f ′′1 , f
′′
2 ) = G











−u2 −ζH
2ω̂εr,0 +mu2ω̂−1 2ω̂ζεr,0

−u2ζ m
(

∂2
ρεr,0 +D∂ρεr,0

)

− u2εr,0

2ω̂ζ mHω̂−1 + 2ω̂εr,0











, (2.46)

where

G = (2m+ 2)−1 and H = u2 +mε−1
r,0∂

2
ρεr,0 +Dε−1

r,0(2 + 3m)∂ρεr,0, (2.47)

with D given by Eq. (2.35), u= ω̂(εr,0 − ζ2)1/2, and ∂2
ρεr,0 denotes the second-order deriv-

ative with respect to ρ at the fibre axis. This reduces the number of integration steps

since the starting point of integration, ρ= ρ0, may be increased. In combination with an

integration of the field solutions from both the fibre axis and the core/cladding transition

towards half the core radius, we arrive at a maximal core radius of about 36λ.

Inspired by an article of Sung [95], we have employed extended precision arithmetic,

with which we can increase the range of accurate results to core radii of up to 49λ. Since

the system of differential equations tends to become slightly stiff for higher-order modes

propagating close to the core/cladding transition, the backward differentiation formula

(BDF) [78] is used for numerical integration at those intervals where the Adams method

fails. A drawback of extended precision arithmetic forms the computation time, which

may increase drastically depending on the used compiler and computer.

2.5 Weak-guidance approximation

The concept behind the weak-guidance approximation (WGA) was first introduced by

Snyder in 1969 [91], and shortly thereafter, named as such by Gloge [33]. A complete

overview and a further generalisation to arbitrary refractive-index profiles was given in

the late 1970s by Snyder and Young [90]. The approximation consists of two simultaneous

assumptions for the refractive-index difference ∆ and the normalised frequency V , i.e.
{

∆ = (n2
co − n2

cl) /2n
2
co ≪ 1,

V = ω̂ (εr,0 − εr,cl)
1/2 ∼ 1 or more.

(2.48)

Under these assumptions, the longitudinal z-components of the electromagnetic field be-

come negligible, and consequently, the cumbersome exact vectorial calculations can be

replaced by scalar ones [109].
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We employ the Cartesian field components Ex and Ey that are transverse with respect

to the fibre axis. Similar to Eq. (2.24), these components are expanded into modes, e.g.

Ex =
∞
∑

ℓ=−∞

Φℓ(ρ) exp (jℓψ) exp
(

−jω̂ζa−1z
)

. (2.49)

A similar expression holds for Ey. Under the assumption of weak guidance, the transverse

field Et satisfies the following scalar wave equation

∇2
t,nEt + ω̂2

[

εr(ρ) − ζ2
]

Et = 0, (2.50)

where ∇t,n = a∇t denotes a normalised Laplacian with respect to the transverse coordi-

nates. Note that we have replaced the azimuthal index m of Eq. (2.24) by ℓ. Obviously,

these indices correspond to different modes, as Cartesian transverse components {Ex, Ey}
are different from cylindrical polar coordinates {Er, Eψ}. The modes in a weakly guiding

fibre are known as linearly polarised (LPℓn) modes, where n denotes the radial index [33].

Upon substituting Eq. (2.49) in Eq. (2.50), we obtain a second-order differential equa-

tion for the scalar Φℓ(ρ), i.e.

{

ρ∂ρρ∂ρ + ω̂2ρ2
[

εr(ρ) − ζ2
]

− ℓ2
}

Φℓ(ρ) = 0. (2.51)

This equation can be solved analytically for piecewise-constant refractive-index profiles

in terms of (modified) Bessel functions, analogous to the exact vectorial calculations.

For non-uniform index profiles, again, one could resort to approximate methods, like the

staircase approximation [13, 64] or the finite-element method [72]. But also here we have

opted for an exact method, similar to the one outlined in the previous section. More

specifically, we solve the second-order differential equation of Eq. (2.51) in the core region

numerically and in the cladding region analytically. Next, we connect the pertaining field

vectors at the core/cladding interface by employing boundary conditions, and obtain a

characteristic equation, which may be solved to yield the desired propagation coefficient.

Let us start with the numerical scheme for the core region. We rewrite the second-order

differential equation of Eq. (2.51) into a system of two first-order differential equations

by introducing χ= ρ∂ρΦ. In view of Eq. (2.28), we employ {Φ, χ}= ρ|ℓ| {gα, gβ}= ρ|ℓ| g,

which results in

dρg = ρ−1B(ρ)g, where B(ρ) =

(

−|ℓ| 1

ℓ2 − ω̂2ρ2 [εr(ρ) − ζ2] −|ℓ|

)

. (2.52)

This is the 2 by 2 system counterpart of Eq. (2.29). The initial field vector at ρ= ρ0,

with ρ0 small, which is the starting point of the numerical integration of the differential



22 Formulation of the problem

equations follows from a Taylor expansion about ρ= 0. By equating equal orders of ρ, we

obtain

g1 =

(

1

|ℓ|

)

, g′
1 = 0, (2.53)

so that g1(ρ0) =g1 + ρ0g
′
1.

Bounded analytical field solutions for the homogeneous cladding region εr,cl follow

directly from Eq. (2.51), i.e.

g2 = ρ−|ℓ|

(

K|ℓ| (wρ)

wρK ′
|ℓ| (wρ)

)

, (2.54)

where w is defined by Eq. (2.36). Consequently, the core and cladding field vectors can

now be represented by

g(ρ) = C1g1(ρ) for ρ < 1,

g(ρ) = C2g2(ρ) for ρ > 1,
(2.55)

where Ci, with i = 1, 2, denote arbitrary constant coefficients. Since the field vector

solutions must be continuous at the core/cladding interface, we arrive at the equality

[g1(ρ) g2(ρ)]

(

C1

C2

)∣

∣

∣

∣

∣

ρ=1

= 0, (2.56)

and consequently, the characteristic equation for a weakly guiding fibre is given by

Cwga(ζ) = det [g1(ρ) g2(ρ)]|ρ=1 = 0. (2.57)

The propagation coefficient ζℓn for which this equation holds corresponds to an LPℓn mode,

where ℓ is the azimuthal index and n the radial index. In Figure 2.3, the propagation

coefficients for a step-index profile and a parabolic-index profile, with a small (weakly

guiding) contrast ∆ = 0.3 %, are set against the normalised frequency V of Eq. (2.43).

The refractive-index difference is defined at λ= 632.8 nm, whereas the simulations are

performed at the wavelength λ= 1550 nm. To vary V , we gradually increase the core

radius a of the fibre.

Note that these propagation coefficients are similar to the ones in the two upper graphs

in Figure 2.2, i.e. the weak-guidance case. The number of degenerate vectorial modes is

readily obtained if we relate the LP modes with indices {ℓ, n} to the vectorial modes with

indices {m,n}, i.e.

ℓ =











1 for TE and TM modes (m = 0),

m+ 1 for EH modes (m ≥ 1),

m− 1 for HE modes (m ≥ 1).

(2.58)
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Figure 2.3: Normalised propagation coefficients (ζ2 − εr,cl)/(εr,0 − εr,cl) of the modes propagating

along a weakly-guiding step-index fibre (left) and weakly-guiding parabolic-index fibre (right) as

a function of the normalised frequency V of Eq. (2.43).

In comparison with the vectorial full-wave approach of the previous section the com-

putation of the LP modes is less time consuming, as the system consists of 2 by 2 matrices

instead of 4 by 4 ones. In Appendix E, we have performed a computation time and ac-

curacy analysis of both approaches. There, it is demonstrated that the relative accuracy

of the propagation coefficient is fair, namely of O(10−6), with respect to the exact one

for a weakly guiding fibre in the WGA, and therefore one often decides in favour of this

simpler approach. On the other hand, the difference in computation time between both

approaches is only a factor of 1.5. Hence, as we would like the field solutions to satisfy

Maxwell’s equations, all computations are performed by the vectorial full-wave approach,

unless stated otherwise.

In the following, the WGA is used to compute the macrobending losses and the results

are compared with the ones determined using a vectorial full-wave approach. Further, we

employ the WGA to perform those computations for which full-wave computations become

too complex, e.g. the computation of the effective cut-off wavelength and differential mode

attenuation.





Chapter 3

Fibre characteristics

We will discuss the most significant quantities that characterise the optical fibre. We

distinguish between the single-mode fibre (SMF) and the multi-mode fibre (MMF), for

which alternative sets of quantities are considered to be of importance. For the single-mode

fibre, we discuss the following fibre quantities:

• dispersion,

• dispersion slope,

• mode-field diameter and effective area,

• macro- and microbending losses,

• MAC-value1, theoretical and effective cut-off wavelength.

For the multi-mode fibre, the dominant quantities are

• differential mode delay,

• inter- and intra-group coupling,

• differential mode attenuation.

For all quantities, we will discuss the underlying numerical computations. The foun-

dation for these computations has been laid in Chapter 2.

1The MAC-value was first introduced by Chung [12] without commenting on the designation “MAC”.
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3.1 Single-mode fibre characteristics

For single-mode fibres, the fundamental properties of the fibre quantities are demonstrated

on the basis of three frequently used step-index single-mode fibres, i.e. a conventional

single-mode fibre (CSF), a dispersion-shifted fibre (DSF), and a dispersion compensat-

ing fibre (DCF). As the names already indicate, these fibres differ by their dispersion

characteristics. In particular, the dispersion characteristic of the DCF is shifted down-

ward in frequency with respect to that of the DSF, while the characteristic of the CSF is

shifted upward. Obviously, we could have opted for single-mode fibres with more refined

refractive-index profiles. However, the elementary step-index profile serves our purposes

equally well.

The computed values of the fibre quantities will be used in our optimisation scheme

in Chapter 5 to attain an optimised refractive-index profile.

3.1.1 Dispersion

As an electromagnetic pulse propagates along a single-mode optical fibre, generally, its

shape will be distorted [2]. From an optimal transmission point of view, a distorted

pulse is undesirable since it could lead to an increase of the bit-error rate. For example,

pulse broadening may be such that the overlap with adjacent pulses renders the signal

meaningless.

To control pulse distortion, we aim at a model which includes all types of dispersion,

starting with one of the most tangible, i.e. the chromatic dispersion. This distortion effect

is caused by the finite, albeit small spectral width ∆ω of the light source, e.g. a laser or

an LED, which illuminates the fibre. Since the propagation coefficient β(ω̂) = ω̂ζa−1 (see

Eq. (2.24)) of the propagating mode depends on the wavelength, it will endure a similar

small variation ∆β as well. This variation can be made explicit, if we expand β(ω) in a

Taylor series about the centre frequency of the light source ω0, i.e.

β(ω) =
∞
∑

n=0

dnβ(ω0)

dωn
(ω − ω0)

n. (3.1)

The first-order term (n= 1) is known as the group delay time per unit length, which is

the reciprocal of the group velocity vg, i.e.

v−1
g ,

dβ

dω
=

1

c0

(

ζ + ω̂
dζ

dω̂

)

, (3.2)

where c0 denotes the speed of light in vacuum. The light pulse propagates at the group

velocity along the fibre. The second-order term, which is the actual chromatic dispersion,

is responsible for pulse spreading, and thus a distortion of the pulse. Although chromatic
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dispersion occurs in both SMFs and MMFs, it is the dominant effect in SMFs, whereas it

is mostly regarded as a side effect in MMFs. Mathematically, it is defined as

D , −2πc0
λ

d2β

dω2
= − ω̂2

2πac0

(

2
dζ

dω̂
+ ω̂

d2ζ

dω̂2

)

, (3.3)

where λ= 2πa/ω̂. Chromatic dispersion is a combination of two dispersion effects, namely

material and waveguide dispersion [89]. The first encompasses the wavelength dependence

of the material medium, as defined by Eq. (2.22). The second one refers to the effect

that the propagation coefficient is wavelength dependent even in the absence of material

dispersion. Material dispersion is included in Eq. (3.3) via the so-called Sellmeier equation,

which will be discussed in Section 3.1.2. The total chromatic dispersion follows from

repeated direct differentiation of ζ with respect to frequency.

Typical chromatic dispersion plots of three distinct step-index single-mode fibres, the

conventional single-mode fibre (CSF), the dispersion-shifted fibre (DSF) and the dispersion

compensating fibre (DCF), are shown in Figure 3.1. In Table 3.1, the specifications
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Figure 3.1: Chromatic dispersion of a CSF, DSF and DCF where waveguide dispersion is included

via the Sellmeier equation of Eq. (3.8), with XF =0 in Eq. (3.9).

for these fibres are listed explicitly. The refractive-index difference ∆ is defined at a

wavelength of 632.8 nm, as discussed in Section 2.1. Observe that a decrease in the core

radius and a simultaneous increase of the refractive-index difference lower the dispersion

over the entire wavelength range.

The wavelength, λD, at which D(λD) = 0 is called the zero-dispersion wavelength. The

CSF has a typical λD of about 1310 nm, which corresponds to the optical telecommuni-
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Table 3.1: Specifications for the CSF, DSF and DCF.

CSF DSF DCF

Core radius a(µm) 4.1 2.3 1.5

Refractive-index difference ∆(%) 0.27 0.75 2.0

Zero-dispersion wavelength λD (nm) 1315 1514 -

cation window. The DSF, on the other hand, which owes its name to the shift in λD,

has by definition a λD close to 1550 nm [42]. However, zero dispersion is not always a

desirable effect. For example, to transmit ultrashort pulses, near-zero dispersion is often

not recommended as it enhances non-linear phenomena (see Section 3.1.3). In that case,

a link of CSFs and DCFs, where the first have a positive and the last a negative disper-

sion at λ= 1550 nm, can be used to let the dispersion effects cancel, without introducing

unwanted non-linear effects [27].

Further, we mention polarisation-mode dispersion (PMD) as a limiting factor for the

transmission capacity of the single-mode fibre, as it distorts a pulse as well. As an ex-

ample, let us consider the fundamental mode, which consist of two degenerate modes of

propagation, distinguishable by their polarisation. Due to random birefringence in the

fibre, for example induced by external stresses or by the manufacturing process, the prop-

agation coefficients of these modes will fluctuate along the fibre in different ways. As a

consequence, the pulse will be distorted [35].

Numerical computation

Mathematical expressions for the group velocity and the dispersion have been given in

Eq. (3.2) and Eq. (3.3), respectively. Key quantities are the derivatives of the normalised

propagation coefficient ζ with respect to ω̂. To compute these derivatives, let us recall

the characteristic function C(ζ) of Eq. (2.42). Since C(ζ) = 0 holds for all ω̂, its derivative

with respect to ω̂ results in

dC(ζ)

dω̂
= 0 ⇒ dζ

dω̂
= −∂ω̂C

∂ζC
, (3.4)

where

∂αC = det [∂αf1(ρ) f2(ρ) f3(ρ) f4(ρ)]|ρ=1 + det [f1(ρ) ∂αf2(ρ) f3(ρ) f4(ρ)]|ρ=1

+ det [f1(ρ) f2(ρ) ∂αf3(ρ) f4(ρ)]|ρ=1 + det [f1(ρ) f2(ρ) f3(ρ) ∂αf4(ρ)]|ρ=1 ,
(3.5)

in which α is either ζ or ω̂. To determine ∂αf1 and ∂αf2 at the core/cladding interface

(ρ= 1), we differentiate the system of first-order differential equations in Eq. (2.29) with
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respect to α. As a result, we arrive at the following expanded system

dρ







f

∂ω̂f

∂ζf






= ρ−1







A 0 0

∂ω̂A A 0

∂ζA 0 A













f

∂ω̂f

∂ζf






. (3.6)

The partial derivatives of the matrix A and of the initial vectors f1(ρ0) and f2(ρ0) are

readily determined from Eqs. (2.30) and (2.34). Numerical integration of this coupled

system yields two independent field vectors at ρ= 1, which provides two of the elements

required for the computation of Eq. (3.5). Further, note that the matrix ∂ω̂A contains

the derivative ∂ω̂εr, as the material is dispersive. This derivative is computed from the

Sellmeier equation, which we will discuss in Section 3.1.2. The derivatives of the cladding

field vectors ∂αf3 and ∂αf4 at ρ= 1 are obtained from a direct differentiation with respect

to α of the field vectors in Eq. (2.38). This completes the calculation of ∂αC, and as a

result of dζ/dω̂ in Eq. (3.4).

An extension to higher-order derivatives of ζ with respect to ω̂ follows directly from

Eq. (3.4) by repeated differentiations. To compute the chromatic dispersion in Eq. (3.3),

the second-order derivative is required, which is in terms of the characteristic function

C(ζ) given by

d2ζ

dω̂2
= −

(∂ω̂C)2 ∂2
ζC− 2∂2

ω̂ζC∂ω̂C∂ζC+ (∂ζC)2 ∂2
ω̂C

(∂ζC)3 . (3.7)

The pertaining second-order derivatives of C(ζ) are obtained by expanding Eq. (3.5) ac-

cordingly, which yields second-order derivatives of the field vectors as well, in particular

∂2
ω̂f , ∂

2
ζ f and ∂2

ω̂ζf . For the core region, these vectors are obtained by expanding the system

of Eq. (3.6). For the cladding region, the derivatives of the field vectors are again derived

analytically.

The same derivation holds for the case of a weakly guiding fibre, with the characteristic

equation given by Eq. (2.57). An accuracy comparison of the chromatic dispersion between

the exact method and the weak-guidance approximation is discussed in Appendix E.

3.1.2 The Sellmeier equation

To model the dispersion properties of the media in the optical fibre, a lot of dispersion

formulae exist that incorporate the wavelength dependence of the refractive index [4].

In general, these empirical equations are only valid in the spectral range of glass where

material absorption is negligible, i.e. 0.4µm<λ< 2.3µm, and have varying degrees of

precision. We employ the so-called Sellmeier equation, which is favourable for its excellent

data fitting properties of measured refractive indices. As a result, it has an overall accuracy
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of ±6 · 10−5 over the spectral range of interest. The Sellmeier equation reads

εr(ρ, ω) = n2(ρ, ω) = 1 +
3
∑

i=1

biλ
2
(

λ2 − λ2
i

)−1
= 1 +

3
∑

i=1

biω̂
2
i υ

−1, (3.8)

where υ= ω̂2
i −ω̂2. Further, bi and λi denote the Sellmeier parameters, which are functions

of dopant concentrations, and λi = 2πa/ω̂i.

Since the available dopants are numerous, a proportional number of Sellmeier parame-

ters exist [48]. To have enough degrees of freedom to alter the refractive-index profile over

a wide range, we have opted for ternary GeO2/F/SiO2 doped PCVD (Plasma-Activated

Chemical Vapour Deposition)-silica fibres. For these dopants the Sellmeier parameters

are given by [38]

bi(X
Ge, XF) = b0i +XGedbGe

i +XFdbFi , (3.9a)

λi(X
Ge, XF) = λ0

i +XGedλGe
i +XFdλF

i , (3.9b)

where b0i and λ0
i denote the zero-order Sellmeier coefficients for pure silica, and where dbGe

i ,

dλGe
i , dbFi , dλ

F
i are the material specific first-order variation terms. Their values are listed

in Table 3.2. The advantage of this approach lies in the possibility to alter specific doping

Table 3.2: The Sellmeier parameters for Germanium and Fluor.

i b0i dbGe
i dbFi λ0

i dλGe
i dλF

i

1 0.697668 0.031510 -3.234366 0.070861 0.001677 -1.108703

2 0.407339 0.267302 0.164911 0.113600 0.032138 0.752919

3 0.889883 -0.012950 1.369490 9.784231 0.318034 2.906858

concentrations, viz. the Fluorine (F) mole fraction XF and the Germanium (GeO2) mole

fraction XGe, independently. An increase in GeO2 increases the refractive index, whereas

an increase in Fluorine decreases it, as is shown in Figure 3.2. Moreover, Fluorine does not

introduce absorption bands near operating optical wavelengths, and suppresses unwanted

water content.

In our model, we have assumed that XF is piecewise constant in the core and cladding

region, while XGe(ρ) may vary arbitrarily in the core region, but must be constant in

the cladding. If one wishes to use different dopants than the ones we have chosen, only

the Sellmeier parameters of Eq. (3.9), with their corresponding coefficients, need to be

changed, as Eq. (3.8) remains valid.

First-order derivatives of the permittivity profile with respect to ρ and ω̂, which occur
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Figure 3.2: The relative permittivity as a function of the wavelength computed by the Sellmeier

equation for different dopant concentrations.

in Eq. (2.35), Eq. (2.47) and Eq. (3.6), are now, with the aid of Eq. (3.8), easily derived

∂ρεr =
3
∑

i=1

ω̂iυ
−1
[

ω̂idρbi − 2υ−1biω̂
2dρω̂i

]

, ∂ω̂εr =
3
∑

i=1

2biω̂
2
i ω̂υ

−2. (3.10)

To validate the implementation of the Sellmeier equation for PCVD fibres in our nu-

merical code, we have computed the dispersion via Eq. (3.3) for a depressed cladding

PCVD single-mode fibre specified by Hermann and Wiechert [38], and have compared our

results with their measured data and computed values. The refractive-index difference

profile at λ= 632.8 nm for this fibre is plotted in Figure 3.3. The corresponding amounts

of Germanium and Fluorine mole fractions are shown in Figure 3.4. In the core region
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Figure 3.3: Refractive-index difference profile

given at λ=632.8 nm.
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Figure 3.4: Fluorine (XF) and Germanium

(XGe) concentrations as a function of radius.

(r< 3.5µm), XGe 6= 0 and XF = 0, in the cladding region up to r= 30µm, XGe = 0 and
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XF 6= 0, and in the remainder of the cladding XGe =XF = 0. In comparison to a step-

index single-mode fibre without depression, the depressed cladding fibre is favourable for

its enhanced mode confinement, and, as a result, for its high bend tolerance.

Recall that it was stated in Section 2.1 that the cladding region has to be homogeneous

throughout to limit the numerical integration of the system in Eq. (2.29). Since the

profile is not homogeneous until r= 30µm, we have to integrate the system fibre up to

this boundary, instead of up to the actual core/cladding interface at r= 3.5µm. At the

employed wavelengths, this does not pose problems for our numerical integration scheme.

Therefore, we have not included the depressed cladding fibre as a separate case in our

program. However, if one wishes to avoid the additional numerical integration over the

region 3.5µm<r< 30µm, one can make use of the piecewise homogeneity of this region,

as it yields solutions in terms of Bessel functions with known arguments. These solutions

have to be connected to the fields at both interfaces such that the continuity conditions

hold, resulting in an eigenvalue problem with zero eigenvalues, similar to the approach

discussed for the staircase approximation [13, 64].

The dispersion results are shown in Figure 3.5. The computed values obtained by

Eq. (3.3) and [38] coincide, while the dispersion measurements are somewhat off. Accord-

ing to Hermann and Wiechert, this difference may be due to insufficient measurement

resolution in the preform characterisation step. Although the use of the Sellmeier model

seems fully justified, the Sellmeier parameters may be replaced by more accurate ones in

the future.
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Figure 3.5: Dispersion plot for the depressed cladding fibre of Figure 3.3. Squares and dots,

respectively, correspond to measured and computed values in [38]. The solid line shows our

results.
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3.1.3 Dispersion slope

The dispersion slope, which corresponds to the third-order term in the series in Eq. (3.1),

is defined as [59]

S ,
d2D

dλ2
=

ω̂3

(2πa)2 c0

(

4
dζ

dω̂
+ 5ω̂

d2ζ

dω̂2
+ ω̂2 d

3ζ

dω̂3

)

. (3.11)

For frequencies near the zero-dispersion wavelength λD, the inclusion of the third-order

term is necessary, as the second-order term in the series vanishes (D≈ 0). For an ultrashort

pulse, which has a large spectral width, the third-order term has to be taken into account

as well even when D 6= 0, since the term (ω− ω0)
3 in the expansion in Eq. (3.1) is not yet

negligible.

In [2], it has been proven that a large value of the dispersion slope introduces rapid

undesirable fluctuations in the trailing edge of the transmitted electromagnetic pulse, and

should therefore be avoided as well. In Figure 3.6, the dispersion slopes for the three fibres

in Table 3.1 are shown.
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Figure 3.6: Dispersion slope of the CSF, DSF and DCF specified in Table 3.1.

Numerical computation

The dispersion slope S, given by Eq. (3.11), is obtained by a straightforward extension

of the method introduced in Section 3.1.1. There, we have discussed the computation

of the first-order and second-order derivatives of the normalised propagation coefficient
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with respect to ω̂. To compute the dispersion slope, the computation of the third-order

derivative remains, i.e.

d3ζ

dω̂3
= − (∂ζC)−1

[

∂3
ω̂C+

(

dζ

dω̂

)3

∂3
ζC+ 3

(

dζ

dω̂

)2

∂3
ω̂ζ2C

+ 3

(

dζ

dω̂

)

∂3
ω̂2ζC+ 3

(

dζ

dω̂

)(

d2ζ

dω̂2

)

∂2
ζC+ 3

(

d2ζ

dω̂2

)

∂2
ω̂ζC

]

. (3.12)

As a consequence, Eq. (3.5) has to be extended accordingly. This, in turn, implies that

the system of differential equations of Eq. (3.6) becomes larger and third-order derivatives

of the matrix A, and the initial and cladding field vectors have to be derived.

In Appendix E, we have performed an accuracy comparison of the dispersion slope

between the exact method and the weak-guidance approximation.

3.1.4 Mode-field diameter and effective area

In single-mode fibres, the mode-field diameter (MFD) is of greater importance than the

core diameter [69]. This quantity essentially specifies the transverse extent of the funda-

mental mode field, corresponding to what one might think of as the spot size. A mismatch

in MFD between two connected fibres affects the splice loss. Further, also estimates for

cut-off wavelength, backscattering characteristics, microbending and macrobending losses

can be obtained from the MFD. Usually, the MFD is given at the optical operating wave-

lengths of 1310 nm and 1550 nm. As there are several definitions of the MFD, we limit

ourselves to the two that are most commonly used, i.e. the near-field rms MFD dI and

the far-field rms MFD dII , which are given by

d2
I = 8a2

∫

A∞

S(ρ)ρ3dρdψ

∫

A∞

S(ρ)ρdρdψ
, d2

II = 32a2

∫

A∞

S(ρ)ρdρdψ

∫

A∞

[dρS(ρ)]2

S(ρ)
ρdρdψ

, (3.13)

where A∞ denotes the infinite cross-section of the fibre and

S(ρ) =
1

2
[E(ρ, ω) × H∗(ρ, ω)] · uz, (3.14)

is the z-component of the complex Poynting vector, where the asterisk denotes complex

conjugation. The Petermann-1 (wI) and the Petermann-2 (wII) spot sizes are related to

Eq. (3.13) by dI = 2wI and dII = 2wII , respectively.

The evaluation of the electromagnetic field components needed to compute the Poynt-

ing vector has been discussed in Section 2.3. The subsequent integration over the core



3.1 Single-mode fibre characteristics 35

region is performed numerically by a Gauss-Legendre quadrature rule in the radial di-

rection. The integration over the cladding region, on the other hand, is performed ana-

lytically, with the exception of the denominator of the MFD dII , for which we employ a

Gauss-Laguerre quadrature rule. The analytic solutions to the pertaining integrations are

given in Appendix F.3.

Further, we point out that the computation of [dρS(ρ)]2 in the denominator of the MFD

dII can cause numerical difficulties as this definition is designed for analytical refractive-

index profiles. For continuous piecewise-linear profiles, the Poynting vector S(ρ) contains

kinks, and, hence, its derivative with respect to ρ is discontinuous. Furthermore, for

discontinuous profiles, e.g. the step-index profile, squares of delta functions occur, which

makes the subsequent integration over A∞ impossible. Since the MFD dII is prescribed

in the specifications of an optical fibre, we have computed this quantity by neglecting

the presence of any delta functions. Fortunately, for small-contrast fibres, the amplitudes

of the pertaining discontinuities, and, as a result, of the delta functions are very small.

From a mathematical point of view, the MFD dI is better suited since delta functions are

absent.

The effective (cross-sectional) area Aeff of an optical single-mode fibre is defined as

Aeff = a2

(∫

A∞

S(ρ)ρdρdψ

)2

∫

A∞

S2(ρ)ρdρdψ
, (3.15)

and is, via a correction factor, directly related to the MFD dII [68]. It is key in system

designs that are prone to exhibit the non-linear Kerr effect [48], since the pertaining

refractive index n is related to Aeff by

n = n0 + n2P/Aeff, (3.16)

where n0 corresponds to the regular refractive index of the material, defined by Eq. (2.1),

n2 is a non-linear refractive index coefficient, and P denotes the modal power. For silica

single-mode fibres n2 varies from 2.2 to 3.4×10−8 µm2/W. The non-linear Kerr effect

gives rise to so-called self-phase modulation [48]. The change in the refractive index

seems very small. However, for very long interaction lengths, high signal powers, or a

small Aeff, the accumulated effects become significant. Moreover, non-linear Raman and

Brillouin scattering increases for decreasing Aeff [2]. Large-effective-area fibres (LEAF)

are especially designed to reduce these non-linear effects.

In Table 3.3, we compare the MFDs dI and dII , and the effective area for the three fibres

of Table 3.1. For completeness, we have added the normalised power of the fundamental

mode in the core and cladding region. Although all values are computed at an operating

wavelength of λ= 1550 nm, keep in mind that ∆ is still defined at λ= 632.8 nm.
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Table 3.3: The MFDs dI and dII , the effective area Aeff, and the normalised power of the

fundamental mode for the three fibres of Table 3.1 at an operating wavelength of λ=1550 nm.

CSF DSF DCF

MFD dI (µm) 12.4 7.6 4.5

MFD dII(µm) 11.6 7.0 4.2

Aeff (µm2) 101 36 13

Normalised Pcore 0.66 0.61 0.66

Normalised Pclad 0.34 0.39 0.34

3.1.5 Macro- and microbending losses

Bending losses (or radiative losses) occur whenever a fibre is bent with a locally finite

radius of curvature R. We distinguish between two bending regimes, i.e. macroscopic

bends for which R ≫ a, where a denotes the core radius, and random microscopic bends.

The first loss mechanism is mostly encountered during the (in-house) deployment and

installation process of the optical fibre, whereas the second one arises primarily during

the manufacturing process.

Macrobending losses, or simply bending losses, increase faster than exponentially as the

radius of curvature decreases [58]. In particular, higher-order modes that propagate close

to the core/cladding interface lose their power rapidly as they fail to take even the slightest

bends. Bending losses are reduced if we employ a large refractive-index difference ∆ with

a small core radius, which ensures that the modes are well confined. However, in that

case the dispersion and MFD characteristics alter, as has been shown in the Sections 3.1.1

and 3.1.4, respectively. In the fibre design process, one has to balance these factors to

obtain an optimal refractive-index profile to achieve a given objective, e.g. long-distance

communication. An optimisation procedure for the refractive-index profile is discussed in

Chapter 5.

The power attenuation coefficient, which is the measure for the bending loss, is directly

related to the imaginary part of the normalised propagation coefficient ζ. For example, if

we consider wave propagation along the z-direction, the z-dependence of the electromag-

netic fields can, in accordance with Eq. (2.24), be written as

{Ek, Hk} ∼ exp(−jω̂ζ ′a−1z) exp(−ω̂ζ ′′a−1z) = exp(−jβz) exp(−αz), (3.17)

where ζ = ζ ′ − jζ ′′, with α≥ 0 and β > 0. The power attenuation (or bending-loss) coef-

ficient per unit length reads 2α, accordingly. To keep the values for α tractable, we will

employ a logarithmic scale and express the bending losses in dB/m. In Chapter 4, we

introduce a full-wave approach to compute these bending losses exactly.
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Microbending losses are due to small-scale fluctuations in the radius of curvature of

the fibre axis. They can be caused, for instance, by minor irregularities in the drum

on which the fibre is wound under tension. Further, nonuniform lateral stresses during

the cabling of the fibre or the deployment in the ground can introduce microbends. As

possible higher-order modes are prone to leakage radiation, the slightest perturbations

already cause significant power losses.

3.1.6 MAC-value

To characterise the macro- and microbending sensitivity of a single mode optical fibre,

the MAC-value turns out to be a proper measure [12, 105]. This dimensionless quantity

is defined as

MAC = dII/λce, (3.18)

where the MFD dII is given by Eq. (3.13) at a wavelength of λ= 1550 nm, and λce is the

so-called effective fibre cut-off wavelength of the first higher-order mode. This wavelength

terminates the region for which the fibre is “effectively” in single-mode operation. In

comparison with the theoretical cut-off wavelength λc, below which ideally the first higher-

order mode exists, the effective one is always smaller even up to values of 100 to 200 nm.

This is caused by the fact that the electromagnetic field of the first higher-order mode,

near cut off, extends far into the cladding region. Consequently, due to macro- and

microbends, as well as the presence of (absorbing) coatings, it will attenuate rapidly. As a

consequence, the transmission system can be operated at λce, thus enhancing fundamental

mode confinement.

For modelling purposes, the computation of the effective cut-off wavelength is far

more complicated than computing the theoretical one. However, the theoretical cut-off

wavelength is impossible to measure, and no simple ratio factor between practical and

theoretical values can be applied. Therefore, we will discuss the numerical computation

of both cut-off wavelengths briefly in the following sections.

Theoretical cut-off wavelength

The theoretical cut-off wavelength λc of the first higher-order mode is an important trans-

mission parameter, as it separates the single-mode regime from the multi-mode regime.

It is defined as the first wavelength at which the propagation coefficient ζ equals the min-

imum refractive-index value of the pertaining profile. For a step-index single-mode fibre,

the normalised cut-off frequency is given by ω̂c≈ 1.7/(nco

√
∆) [69], and, consequently,

λc = 2πa/ω̂c ≈ 3.7anco

√
∆. (3.19)
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Again, we assume that the refractive-index profile is defined at λ= 632.8 nm (see Sec-

tion 2.1). Since n(λ), the specification of the refractive-index profile at a different wave-

length results in a different value for λc.

In practice, the change from multi-mode to single-mode operation does not occur at

a single wavelength, but is a gradual transition. Moreover, for wavelengths just below λc,

one can not really speak of mode propagation for the first higher-order mode, since still

most of its power is present in the cladding, and therefore the mode already attenuates

rapidly for the slightest bend or imperfection in the fibre. Hence, the effective cut-off

wavelength is a more appropriate design parameter.

Effective cut-off wavelength

The International Telecommunication Union (ITU), the former CCITT, defines the ef-

fective (fibre) cut-off wavelength (λce) as follows [42] : “The effective cut-off wavelength

is the wavelength greater than which the ratio between the total power and the funda-

mental mode power has decreased to less than 0.1 dB in a quasi straight two metre fibre

with one single loop with a radius of curvature R= 14 cm.” The configuration is shown in

Figure 3.7.

R

Figure 3.7: Configuration of a two metre fibre with one single loop of R=14 cm to obtain λce.

Depending on the refractive-index profile, the first-higher order mode is not necessarily

the TE01 or TM01 mode, as in the case of the step-index or parabolic-index profile (see

Figure 2.2). To overcome this difficulty, and to simplify matters, we resort to the LP

modes introduced in Section 2.5, which together with the HE21 mode are combined into

the LP11 mode. Although its has not been proven that this is always the first higher-order

LP mode, the author is not aware of a profile for which it is not. However, to be safe, we

first compute the theoretical cut-off wavelengths of the lowest higher-order modes, and we

then check to which LP mode the first higher-order mode belongs. Finally, we compute

the differences between these theoretical cut-off wavelengths to determine whether there

exists an LP mode close to the first higher-order one, which then evidently has to be taken

into account as well.

For the moment, let us assume that the first higher-order mode is indeed the LP11

mode as suggested in [69]. Next, the launching conditions of the fibre are utilised in such
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a way that both the fundamental mode (LP01) and the first higher-order mode (LP11)

are excited with comparable power. This can be achieved in practice, for example, by

splicing a single-mode fibre with a multi-mode fibre [66]. Under this restriction, the input

power of the second-order mode is twice as large as that of the fundamental one, since we

excite four and two degenerate modes, respectively, i.e. P11(0) = 2P01(0). Hence, the level

difference at the input is

10 log

(

P01(0)

P11(0)

)

≈ −3.0 dB. (3.20)

At the fibre end, the LP11 mode is considered to be fully attenuated due to the in-

troduction of an additional loop of R= 3 cm, whereas the fundamental mode attenuation

is negligible since this mode is confined, i.e. P01(L) =P01(0). Then, according to the

definition above, we obtain the following level difference at L= 2 m

10 log

(

P01(L) + P11(L)

P01(L)

)

= 0.1 dB, ⇒ 10 log

(

P01(L)

P11(L)

)

≈ 16.3 dB. (3.21)

With the aid of Eq. (3.20), the attenuation of the LP11 mode is given by

αLP11
= 10 log

(

P11(0)

P11(L)

)

≈ 19.3 dB/turn ≈ 22 dB/m. (3.22)

Hence, the wavelength at which the bending loss of the LP11 mode equals 22 dB/m is the

desired λce. A Van Wijngaarden–Dekker–Brent root-finding scheme [78] is used to obtain

this wavelength, by decreasing λ steadily from the theoretical cut-off wavelength onwards.

It takes about ten seconds to determine the effective cut-off wavelength to a relative

accuracy of 10−5. Note that if unexpectedly the LP02 mode is the first higher-order mode

instead of the LP11 mode, then P02(0) =P01(0), and, consequently, αLP02
≈ 18.6 dB/m. In

Section 4.2, we describe an accurate procedure for computing the bending losses of all LP

modes with arbitrary refractive-index profiles.

In Table 3.4, we compare the theoretical and effective wavelength for the three fibres of

Table 3.1. With the aid of Eq. (3.18) and Table 3.3, we have computed the corresponding

MAC-values at a wavelength of 1550 nm as well.

According to the definition of λce set by the ITU, the loop has a radius of curvature of

R= 14 cm. However, as soon as the fibre is bent, stress causes the refractive index of the

fibre to change. These stress-induced changes in the refractive index are taken into account

by introducing an effective radius of curvature Reff. It has been found experimentally

that 1.28R<Reff< 1.325R [22, 67, 82]. For an intermediate effective radius of curvature

Reff = 1.3R= 18.2 cm, the effective cut-off wavelength and the corresponding MAC-value

have been added to Table 3.4 as well. Note that the MAC-value is rather insensitive to a

change in the radius of curvature.
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Table 3.4: Theoretical and effective cut-off wavelengths and the corresponding MAC-values for

the fibres specified in Table 3.1.

CSF DSF DCF

λc (nm) (Eq. (3.19)) 1152 1081 1166

λce (nm) (R=14 cm) 1023 1019 1121

λce (nm) (Reff=18.2 cm) 1036 1024 1142

MAC-value (R=14 cm) 11.4 6.9 3.7

MAC-value (Reff=18.2 cm) 11.2 6.8 3.7

To measure λce, ITU recommends two transmitted-power techniques as reference test

methods, i.e. the bending method and the power step method. In [94], a complete overview

of these methods is discussed. The derivation above holds for the bending method, but

can be used as a stepping stone for the power-step method as well. A validation of

the computed values of λce with existing literature, and the forthcoming MAC-value, is

performed in Section 4.6. The details of the pertaining computation are discussed there

as well.

3.2 Multi-mode fibre characteristics

Primarily, the multi-mode fibre is employed within short distance communication net-

works, e.g. within premises or local area networks (LANs). Typical operating wavelengths

are 850 nm and 1300 nm. Owing to its large core diameter, low loss connections and simple

fibre–to–fibre or fibre–to–transceiver alignments are possible. Therefore, installation costs

can be kept low in comparison with the critical alignment required for single-mode fibres.

On the other hand, the large core diameter allows for many modes to propagate along the

optical fibre. This introduces some undesirable effects that limit the capacity to transmit

information at a high speed. Some of these effects can be computed accurately, others

can only be approximated. We will discuss the most important effects and their numeri-

cal computation for the special case of a frequently employed multi-mode refractive-index

profile, viz. the graded-index power-law profile (see Eq. (2.1)). This is a power-law profile

with a finite power-law exponent g.

3.2.1 Differential mode delay

When a multi-mode fibre (MMF) is excited by a light source or a single-mode fibre, many

modes will propagate along the fibre. Each mode has a distinct propagation coefficient
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β(ω̂), and, consequently, its own group velocity vg, given by Eq. (3.2), at which it transfers

power. As a result, power arrives at the receiver end at (slightly) different times, which

causes an input pulse to spread. The effect is known as differential mode delay (DMD) and

also as intermodal dispersion, since, in essence, it is a dispersion effect. Fortunately, by

choosing a proper value for the power-law exponent g in the power-law profile in Eq. (2.1),

DMD can be reduced considerably.

To show the effect of the refractive-index profile on the DMD, we employ a step-

index single-mode fibre pigtail to excite the multi-mode fibre at a given radial offset.

In Figure 3.8, the DMD measurement procedure, as described in the standard [97], is

shown schematically for several radial offset positions of the pigtail. Depending on these

Figure 3.8: The DMD measurement set-up, where a Gaussian time pulse is launched into an

SMF pigtail. Possible SMF pigtail positions at the end-face of an MMF are shown. In turn,

subsets of modes are excited in the MMF. At the fibre end the total instantaneous output power

is measured as a function of time.

positions, various subsets of modes are excited in the MMF. The modal power at the

launch spot in combination with the group velocity vg of each mode, determines the DMD

plot at the fibre end (z=L).

For the moment, let us assume that there is neither power transfer among modes

nor power absorption. These subjects will be covered in the upcoming sections. For

the excitation of the SMF pigtail, we consider a time pulse Φ(t), with a Gaussian power

distribution, of the following form [36]

Φ(t) = Φ(t0) exp
[

− 8 ln(2) (t− t0)
2 /t2w

]

(3.23)

where tw is the full width of the pulse at 25 % of the maximum power amplitude and

t0 = z/vg denotes the mean arrival time of the pulse. According to [97], the MFD dII of

the SMF pigtail must be in the range

8.7λ − 2.89 ≤ dII ≤ 8.7λ − 1.89, (3.24)
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where λ is given in micrometres. Further, we have opted for a pulse of tw = 56.6 ps and

an MMF with length L= 500 m. At optical wavelengths, we may neglect the influence of

the chromatic dispersion D since [27]

D ≪ πc0t
2
w/
[

2 ln(4)λ2L
]

. (3.25)

In Figure 3.9, the DMD simulations for an MMF with various power-law profiles are plot-

ted. The employed MMF has a core radius a= 31.25µm, an NA = 0.275, and is operated

at λ= 850 nm. The employed SMF pigtail has a core radius a= 1.9µm and an NA = 0.133,

to achieve an MFD dII = 5µm within the range in Eq. (3.24) at the operating wavelength.

The power-law exponents g of the pertaining power profiles read from left to right g= 1.98,
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Figure 3.9: DMD simulations for a power-law profile with power-law exponents g=1.98 (a),

g=2.06 (b), and g=2.14 (c).

g= 2.06, and g= 2.14, respectively. The azimuthal index ranges from m= 0 to m= 33.

From Figure 3.9, we observe that there exists an optimal g which minimises the travel-

time drift for various probe offsets. For the MMF under consideration, the optimum is

obviously about g= 2.06. Hence, the travel time of each pulse, propagated by a group of

modes, will be nearly the same. This condition translates into a smaller bit-error rate and

a higher transmission rate.

Further, note that for radial offsets near the core/cladding interface the pulse spreads

considerably. This pulse spreading is a result of the slope discontinuity in the refractive-

index profile at the core/cladding interface, which especially affects the delay times of

the higher-order modes [74]. Fortunately, in practice, these modes are attenuated due to

macro- and microbending losses.

To perform the numerical DMD simulation, it suffices to compute the excited modal

amplitudes and the corresponding modal group velocities. The latter are obtained from

Eq. (3.2), which implies that we have to solve the characteristic equation of Eq. (2.42)

to obtain all propagation coefficients ζ for each azimuthal index m. The excited modal

amplitudes, on the other hand, are computed via overlap integrals [69]. To facilitate
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computations, we normalise the modal fields, which are orthogonal, such that the power

carried by each mode, integrated over an infinite cross-section of the fibre A∞, equals one,

i.e.
1

2

∫

A∞

Re [Em′n′(ρ, ψ) × H∗
mn(ρ, ψ)] · uz dA = δm′,m δn′,n, (3.26)

where dA denotes an area element, δm′,m is the Kronecker delta, and where m,n are

the azimuthal and radial index, respectively, in accordance with the definitions given in

Section 2.3. Consequently, the modal amplitudes are determined via an overlap integral

at the plane z= 0, i.e. [69]

Amn =
1

2

∫

A∞

Re [Ei(ρ
′′, ψ′′) × H∗

mn(ρ, ψ)] · uz dA, (3.27)

where the label i corresponds to the electric field of the SMF pigtail at the interface

with the MMF. The configuration is shown schematically in Figure 3.10. For the DMD

q’’ r’r
y’

y

x

y

y

r’’
y’’

z=0

r0
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x

Figure 3.10: Coordinate systems for the computation of the overlap integral in Eq. (3.27).

simulations the angular tilt of the pigtail with respect to the MMF is θ′′ = 0. Non-zero

angular tilts are encountered in Chapter 6 to excite several mode groups more selectively.

The computation of Eq. (3.27) is discussed extensively in Appendix F.2 for both angular

tilt and radial offset excitations.

As we have assumed that there is neither power loss nor power coupling among the

modes propagating along the MMF, a modal amplitude and its corresponding modal

group velocity enters into Eq. (3.23) as Φ(t0) and t0 = L/vg, respectively. Addition of all

Gaussian power distributions yields the DMD results at z=L.

As a last remark, we mention that, in principle, one would have to solve a scattering

problem at the interface z= 0 to determine the modal amplitudes. To complicate matters,

the actual interface is seldom perfect and varies from case to case. However, the refractive-

index difference between both fibres (and possible index matching gel) is so small that
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scattering is negligible. Hence, it is justified to project the SMF field onto the modal fields

of the MMF [69].

3.2.2 Inter- and intra-group coupling

Fibre deformations, like microbends and deformations due to externally exerted traction

on the fibre, will cause a power exchange between propagating modes with similar prop-

agation coefficients. We distinguish between power mixing among degenerate modes, i.e.

intra-group coupling, and among non-degenerate modes, i.e. inter-group coupling [47].

At distances up to several kilometres, intra-group coupling is dominant due to the

degeneracy of the modes. For very short distances, say up to several decimetres, we

may assume that no form of coupling is relevant. Since, in practice, MMFs are typi-

cally employed in premises and LAN applications, long distances do not frequently occur.

Therefore, we have opted for a model in which we can simulate the effect of either full

intra-group coupling or no coupling at all. The latter case has already been discussed in

the previous section.

To simulate intra-group coupling, we employ a set of coupled power equations, which

describe the power exchange among the modes [59]

dPµ
dz

= −2αµPµ +
∑

ν

hµν(Pν − Pµ), (3.28)

where Pµ and 2αµ are the power and the attenuation coefficient, defined in Eq. (3.17), of

the corresponding mode µ, respectively. The elements in the coupling matrix hµν are a

measure of the probability per unit length of a transition occurring between modes µ and

ν. In the absence of inter-group coupling, a proper choice of degenerate mode groups exists

to diagonalise the matrix hµν , which renders a thorough investigation of the pertaining

elements unnecessary [59].

As argued in [47], we may assume that degenerate modes have equal power for fibre

lengths of L>V 2/(600H1), where V is given by Eq. (2.43) and H1 = 0.015 ∼ 0.02(m−1).

In Section 2.5, we have already encountered degenerate modes for the case of a weakly

guiding fibre, namely the LPℓn modes. Among the LP modes, the modes with principal

mode number M = 2n + ℓ − 1, with M integer, form a so-called principal mode group

(PMG), since they are nearly degenerate [36]. For the MMF of Figure 3.9(b), the first

five PMGs, which are denoted by their principal mode number M , and the corresponding

propagation coefficients ζ are given in Table 3.5.

Upon regarding ζ, the degeneracy of the modes in each PMG becomes evident. How-

ever, it turns out that this degeneracy only occurs for power-law refractive-index profiles.

When we introduce a dip at the fibre centre, and a kink at r= a/2, as will be discussed

in Chapter 6, the propagation coefficients ζp apply in Table 3.5.
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Table 3.5: Propagation coefficients ζ of the modes for various PMGs with corresponding prin-

cipal mode numbers M for a power-law refractive-index profile. The propagation coefficients ζp

correspond to the same power-law profile, albeit supplemented with a dip at the fibre centre and

a kink at r= a/2.

M LP mode {ℓ, n} Waveguide mode {m,n} ζ ζp

1 LP01 HE11 1.4787513 1.4749222

2 LP11 TE01 1.4779648 1.4743078

TM01 1.4779648 1.4743069

HE21 1.4779644 1.4743075

3 LP02 HE12 1.4771657 1.4733463

LP21 EH11 1.4771720 1.4735630

HE31 1.4771712 1.4735624

4 LP12 TE02 1.4763665 1.4726986

TM02 1.4763665 1.4726976

HE22 1.4763661 1.4726980

LP31 HE41 1.4763736 1.4743770

EH21 1.4763749 1.4743782

5 LP03 HE13 1.4755605 1.4717625

LP22 HE32 1.4755640 1.4719786

EH12 1.4755649 1.4719538

LP41 HE51 1.4755726 1.4735824

EH31 1.4755744 1.4735841

We observe that we can no longer speak of any form of degeneracy in a PMG, and,

hence, the power may no longer be equalised among its modes to simulate intra-group

coupling. The degeneracy within the individual LP modes, however, seems to remain

valid. Unfortunately, for larger values of M , this degeneracy starts to break. Therefore,

we introduce a maximum relative difference between the propagation coefficients ζmax to

decide whether modes are degenerate, and subsequently mix the power uniformly among

them. With reference to Table 3.5, we take ζmax = 7 · 10−5. For the sake of simplicity, we

dub these mode groups DMGs, where the capital D refers to the degeneracy of the modes

in such a mode group.

Since the modal amplitudes Amn at z= 0 are known from Eq. (3.27), the average
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amplitude of each mode in a DMG reads

∣

∣ADMG
mn

∣

∣

ave
=

√

∑

m,n |ADMG
mn |2

NDMG
, (3.29)

where NDMG denotes the number of modes in a DMG. The phase of ADMG
m,n is chosen

randomly, with a uniform distribution within [0, 2π), as it couples in a random fashion

with the other modes within the group [36].

If we regard the indices µ and ν of the coupling matrix hµν in Eq. (3.28) in terms

of DMGs, the matrix diagonalises for the case of intra-group coupling (in the absence of

inter-group coupling), and hence Pµ(z) =Pµ(0) exp(−2αµz). In Chapter 6, we will show

the effects of intra-group coupling and we will compare simulations of the intensity pattern

at various distances z = L with measurements. The reader should keep in mind that the

full coupling as described by Eq. (3.29) only holds for fibre lengths L>V 2/(600H1). For

the MMF in Figure 3.9(b) this implies that L> 73 m.

3.2.3 Differential mode attenuation

In a multi-mode optical fibre, conventional loss mechanisms like material absorption,

Rayleigh scattering and loss on reflection at the core/cladding interface cause the prop-

agating modes to attenuate [89]. Since this attenuation is different for each mode, the

effect is known as differential mode attenuation (DMA). For example, the loss, due to a

nonuniform fibre boundary, influences the modes near cut-off more than the lower-order

modes as they extend further into the cladding. In general, lower-order modes do not nec-

essarily have the lowest attenuation, although as long as the numerical aperture is small

enough or the wavelength is long, scattering is weak and the DMA gradually increases as

a function of the mode order [118].

To derive a loss model that incorporates all these conventional loss mechanisms is by no

means a trivial task. Especially, since such a model will inevitably involve some parameters

that are difficult to measure. Since multi-mode fibres are used at long wavelengths in the

850 nm and 1300 nm telecommunication windows, the DMA should be increasing as a

function of mode order, as stated above. Therefore, we have opted for an empirically

matched formula to compute the DMA that can be easily matched to a measured DMA

of a (silica) fibre. The DMA is incorporated in the power attenuation coefficient 2α

introduced in Eq (3.17), and is for a individual PMG κ given by [118]

2ακ(λ) = 2ακ,0(λ) + 2ακ,0(λ)Iρ

[

η

(

κ− 1

MPMG

)2g/(g+2)
]

, (3.30)

where ρ= 9, η= 7.35, Iρ denotes the modified Bessel function of order ρ, and 2ακ,0 is the

intrinsic fibre attenuation at a specific wavelength λ, which is assumed to be equal for all
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propagating modes. Further, MPMG denotes the total number of PMGs, while g is the
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Figure 3.11: Normalised modal attenuation coefficient according to Eq. (3.30) as a function of

the normalised principal mode group (PMG) with ακ,0 = 2.0 dB/km.

power-law exponent of the power-law profile. In Figure 3.11, we have plotted the DMA

as a function of the normalised PMG. Although this formula is given for PMGs, we do

not expect considerable differences in its form if we employ the DMGs (with or without

employing intra-group mode coupling) instead. Also, the values for ρ and η apply, strictly

speaking, only to power-law fibres, but also here we do not expect significant differences in

the values for small deviations of the exact power-law profile, e.g. a kink or a dip. Observe

that indeed the higher-order mode groups are attenuated more than the lower-order ones.





Chapter 4

Macrobending loss

It is well known that radiation (bending) losses occur whenever an optical fibre is bent. As

a consequence, the propagating modes attenuate, which is an undesirable effect in many

telecommunication applications, e.g. fiber-to-the-home [55]. Therefore, it is important to

be able to design fibres in such a way that they are relatively insensitive to bending.

Several authors have derived theoretical expressions of the attenuation coefficient for

weakly guiding fibres. The methods presented in [22, 82, 108] are based on the scalar wave

equation of the equivalent straight waveguide. In [89], an electric-current contrast source

is introduced to compute the bending losses. All these methods rely on the assumption

that the radius of curvature of the bend is very large with respect to the core radius of the

fibre. However, in practice, it appears that these approximate expressions are not always

accurate enough.

Owing to the significant increase in the speed of computers, a vectorial full-wave analy-

sis of the bent fibre can now be performed. However, since this analysis is quite complex,

we begin, for tutorial reasons, with the equivalent 2-D problem first, i.e. the bent slab

waveguide. Next, we gradually change the geometry, while addressing the occurring prob-

lems in each configuration, to make the final analysis of the bent optical fibre geometry

more tractable. Further, we will give a succinct derivation of the available approximations

to derive the bending loss in the bent fibre. These serve as a reference to compare our

full-wave results with.

4.1 The bent slab waveguide: full-wave analysis

Before we analyse the bent optical fibre, we first compute the bending losses for a bent slab

waveguide, which is the fibre’s 2-D equivalent. This, to introduce the Bessel function of

complex order and argument, which is a pivotal aspect that occurs in radiation problems

with open bent configurations. In the literature, both exact and approximate methods
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exist to compute the bending losses of a slab waveguide [18, 39, 57, 109]. We adopt an

exact method, based on the approach outlined in Section 2.3, to obtain the electromagnetic

field components. We compare the computed bending loss values with [18], as there 10

digits of accuracy are given.

The bent slab configuration is shown in Figure 4.1. The radius of curvature is de-

noted by R and the slab thickness equals a. We adopt a cylindrical coordinate system

{x1, x2, x3}= {φ, z, r} in which we distinguish between three regions. In regions 1 and

x
R a+ /2R a- /2

f

r

2

1

3

y

z

Figure 4.1: Configuration of the bent slab. Region 2 has an arbitrary index profile.

3, the refractive index n1 =n3 =ncl is considered to be constant, whereas it may vary

arbitrarily in the radial direction in region 2, i.e. n2 =n(r). Since the structure still

has to serve as a waveguide, we demand that max(n2)>ncl somewhere in the interval

R− a/2>r>R+ a/2. Further, we consider all media to be lossless. The configuration is

invariant in the z-direction. We will consider field solutions that are independent of z, i.e.

∂z = 0. We introduce (covariant) basis vectors {c1, c2, c3}= {ruφ,uz,ur}, consistent with

our cylindrical coordinate system, and corresponding (covariant) electromagnetic field

components {E1, E2, E3}= {rEφ, Ez, Er} and {H1, H2, H3}= {rHφ, Hz, Hr}. With refer-

ence to Eq. (2.24) and [57], we cast the electromagnetic field components in the following

form
(

Ek(ρ, φ)

Hk(ρ, φ)

)

=

(

ek(ρ)

hk(ρ)

)

exp (−jω̂ζρcφ) , (4.1)

where the normalised frequency ω̂ and the normalised radial coordinate ρ are given by

Eq. (2.25), and where ρc =R/a denotes a normalised radius of curvature. It is important

to note that the propagation coefficient ζ ∈ C, and that its imaginary part accounts for

the loss (see Eq. (3.17)).

To obtain the propagation coefficients of the propagating modes, we substitute the

expressions of Eq. (4.1) in the Marcuvitz-Schwinger equations of Eq. (2.18), and define a
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favourable rescaling of the fields, viz. {e1, e2}= jZ0{ρcap1, p2} and {h1, h2}= {ρcaq1, q2}.
Owing to the z-independence, this yields two independent systems of differential equations,

viz.

dρ

(

p1

q2

)

= ω̂ρ−1

(

0 ρ−1
c

[

(ζρc/n)2 − ρ2
]

ρcn
2 0

)(

p1

q2

)

, (4.2)

and

dρ

(

p2

q1

)

= ω̂ρ−1

(

0 ρc

ρ−1
c n2

[

(ζρc/n)2 − ρ2
]

0

)(

p2

q1

)

, (4.3)

which correspond to transverse magnetic (TM) and transverse electric (TE) modes with

respect to the radial direction, respectively. The radial field components readily follow

from Eq. (2.20)

{e3, h3} = ρ−1ρcζ{−Z0n
−2q2, Z

−1
0 p2}. (4.4)

Since the media are homogeneous in the regions 1 and 3, both systems may be solved

analytically there. However, for region 2, where n2 =n(ρ), we perform a numerical inte-

gration either simply from ρ= ρc − 1/2 to ρ= ρc + 1/2, or from both boundaries towards

an arbitrary intermediate point ρi. The integration is performed by an adaptive Adams

method [37].

For convenience, we restrict ourselves to the TE-case, as the TM-case is analogous.

Therefore, we substitute the second first-order differential equation in Eq. (4.3) in the first

one, which eliminates q1. Upon introducing the variable z= ω̂nρ, we arrive at Bessel’s

differential equation
[

z∂zz∂z + z2 − (ω̂ζρc)
2] p2 = 0. (4.5)

After imposing boundary conditions at ρ= 0 and infinity, we obtain the following trans-

verse field components for regions 1 and 3,

p2 =

{

AJω̂ζρc
(z) in region 1,

BH
(2)
ω̂ζρc

(z) in region 3,
q1 = ρ−1

c ρn

{

AJ ′
ω̂ζρc

(z) in region 1,

BH
′(2)
ω̂ζρc

(z) in region 3,
(4.6)

where q1 is determined through the substitution of p2 in Eq. (4.3). The functions Jν(z) and

H
(2)
ν (z) denote Bessel functions of the first and third kind, respectively. Their arguments,

z= ω̂nclρ, are real-valued, while their orders, ν= ω̂ζρc, are complex. The prime indicates

a derivative with respect to the argument of the pertaining Bessel function.

These expressions serve as the boundary field solutions for our numerical integration

scheme. By imposing the continuity of the transverse electromagnetic field components at

the common interface ρi (see Section 2.2.1), we end up with the following linear equation

(

p−2 (ρi) p+
2 (ρi)

q−1 (ρi) q+
1 (ρi)

)(

A

B

)

= 0, (4.7)
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where the – and + signs correspond to the value of the pertaining field components

approaching ρi from below or from above, respectively. Non-trivial solutions of Eq. (4.7)

only exist if the determinant vanishes, which leads to a characteristic equation for the

normalised complex propagation coefficient ζ. The search for ζ in the complex plane is

performed using Muller’s method [78], which requires a proper initial value of ζ to initiate

the search. Therefore, we start the search from the propagation coefficient for the straight

slab waveguide, for which ζ ∈ R, and trace out the locus of the propagation coefficients

through the complex plane while gradually decreasing the radius of curvature.

Note that for large radii of curvature, the ratio between the imaginary and the real

part of the propagation coefficient is very small, since there is little loss. However, this

loss accumulates for increasing propagation distances ρcφ. Therefore, a highly accurate

computation of ζ is essential. Moreover, the radius of curvature is very large with respect

to the wavelength, i.e. ρc≫ 1. As a consequence, we need to compute Bessel functions

of large complex order and argument. This computation is anything but straightforward,

and is treated in Appendix C. There it is shown that we can compute the Bessel functions

to a relative accuracy of at least 10−11, and, therefore, the integration with the adaptive

Adams method of the systems in Eqs. (4.2) and (4.3) has been performed to the same

relative accuracy.

To verify our code, and in particular our Bessel function subroutines, we have computed

the bending loss of a propagating TE mode as a function of R and compared our results

with the ones of de Hon and Bingle [18] and Vassallo [109]. The results are shown in

Figure 4.2 for a bent slab with a 90◦ bend, where λ= 1µm, a= 4µm ncl = 1.500 and

n2 = 1.503. In [18], reference values of the bending loss, which are based on a modal

angle-formulism, are given up to 10 digits of accuracy, which are met with our method as

well. In Figures 4.3(a) and 4.3(b), we have plotted the magnitude of the Poynting vector

and the electric field component Ez for the pertaining TE-polarised wave at R= 5 mm.

The radiation loss is clearly observable as power is leaking away into the outer region.

4.2 The bent optical fibre: scalar analysis

As an intermediate step towards the vectorial full-wave analysis of the bent optical fibre,

we first consider its scalar counterpart, which will be used as a reference to compare our

full-wave results with. For the scalar analysis of a bent dielectric waveguide, the concept

of an equivalent straight waveguide is often used. The basic idea consists in converting

Maxwell’s equations within a local curvilinear coordinate system {φ, ψ, r} to equivalent

equations in a rectified Cartesian coordinate system {φ, z, x} by introducing an equivalent

permittivity profile, as shown in Figure 4.4. We introduce a radial distance from the fibre
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Figure 4.3: Magnitude of the Poynting vector (a) and the field component Ez (b) for R=5mm.

axis, r= ρa= (x2 + z2)1/2, where again a denotes the core radius. Since modes propagate

along the φ-direction, we assume that the fields have an exp(−jω̂ζρcφ) dependence, where

ζ = (β − jα′)/R denotes an as yet unknown complex normalised propagation coefficient,

with an imaginary part that accounts for the loss.

Under the assumption of weak guidance, the transverse field components in the rectified

waveguide obey a two-dimensional scalar wave equation [109], which follows directly from

Eq. (2.50) by the substitution of an equivalent permittivity profile εr(r)→ εr(r)(1+2X/ρc),
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Figure 4.4: Coordinate system for the equivalent straight waveguide.

i.e.
{

∂2
X + ∂2

Z + ω̂2
[

εr (1 + 2X/ρc) − ζ2
str

]}

ψ(X,Z) = 0, (4.8)

where X =x/a and Z = z/a denote normalised coordinates and ζstr is a known normalised

propagation coefficient corresponding to an LPℓn mode of the straight fibre (see Sec-

tion 2.5).

First, let us consider the case of an infinite cladding, i.e. b→∞. Then the half space

x>a corresponds to the homogeneous circularly cylindrical region enclosing the waveguide

with εr = εr,cl. For this region, Eq. (4.8) can be solved by using a Fourier representation

for the z-dependence of the fields

ψ̃(X, ξ) =a

∞
∫

Z=−∞

ψ(X,Z) exp (jω̂ξZ) dZ, (4.9a)

ψ(X,Z) =
ω̂

2πa

∞
∫

ξ=−∞

ψ̃(X, ξ) exp(−jω̂ξZ)dξ. (4.9b)

The solution is given in terms of Airy functions [1, 22]

ψ̃(X, ξ) = G(ξ)Bi(χ) +H(ξ)Ai(χ), (4.10)

where ξ denotes the wavenumber corresponding to the normalised variable Z, G(ξ) and

H(ξ) are yet unknown amplitude functions, and where

χ(X, ξ) =

(

ω̂ρc
√
εr,cl

2

)2/3(
γ2

εr,cl
− 2X

ρc

)

, (4.11)

with γ2 = ζ2
str − εr,cl + ξ2. To ensure that the fields satisfy the radiation condition in the

infinite cladding, we choose H(ξ) =−jG(ξ).

To determine G(ξ) for the individual LPℓn modes, one demands that ψ̃(1, ξ) is equal

to the unperturbed LPℓn cladding field Kℓ(wρ) cos(ℓθ) at X = 1, where Kℓ denotes an ℓ-th
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order modified Bessel function of the second kind and w= ω̂ (ζ2
str − εr,cl)

1/2
, i.e. [108]

ψ̃(1, ξ) = G(ξ) {Bi [χ (1, ξ)] − jAi [χ (1, ξ)]}

= a

∞
∫

Z=−∞

Kℓ

[

w(1 + Z2)1/2
]

cos(ℓθ) exp (jω̂ξZ) dZ

= Sℓ(ξ),

(4.12)

where

Sℓ(ξ) = aπ (ω̂γ)−1 cosh(ℓφ) exp (−ω̂γ) , (4.13)

with coshφ= ω̂γ/w. Upon imposing the condition ρc≫ 1, we observe that the argument

χ of the Airy functions in Eq. (4.11) is large and positive. By employing their large-

argument expansions [1], we can distinguish between forward and backward evanescent

fields in the cladding region before the caustic is reached. This leads to

Bi(χ) ≃ π−1/2χ−1/4 exp

(

2

3
χ3/2

)

,

Ai(χ) ≃ 1

2
π−1/2χ−1/4 exp

(

−2

3
χ3/2

)

,

(4.14)

respectively. This is schematically shown in Figure 4.5, where we have plotted the behav-

iour of the Airy functions as a function of X near the caustic Xct. The caustic, which

X

1 B

er,cl er,coat

Xct

Ai

Bi

Figure 4.5: Schematic plot of the behaviour of the Airy functions as a function of X before and

after the caustic Xct, where X = B = b/a denotes a possible cladding/coating transition

corresponds to χ (Xct, 0) = 0, is readily given by [82]

Xct =
ρc (ζ

2
str − εr,cl)

2ζ2
str

. (4.15)

In this region, Ai(χ) is negligible with respect to Bi(χ), and therefore it follows from

Eq. (4.12) that

G(ξ) ≃ Sℓ(ξ)

Bi [χ (1, ξ)]
. (4.16)
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Vassallo [107] has formulated the induced perturbation, δζ, on the (unperturbed) prop-

agation coefficient ζstr for large radii of curvature in terms of the amplitude of the perturbed

backward field on the fibre axis ψBW (0, 0), i.e.

ζstrδζ =
π∂ℓXψBW (0, 0)

Pℓwℓ(ω̂ρc)2
, (4.17)

where Pℓ denotes the modal power of a propagating LPℓn mode throughout a cross-

sectional plane of the straight fibre, and ∂ℓX is the ℓ-th derivative of ψBW with respect to

X. As the field has to be continuous at ρ= 1, we adopt the following real-valued form of

the LP fields

ψℓ(ρ, θ) =







ψ(ρ)
ψ(1)

Kℓ(w) cos(ℓθ) for ρ < 1,

Kℓ(wρ) cos(ℓθ) for ρ > 1,
(4.18)

where ψ(ρ) is determined via the procedure discussed in Section 2.5. As a result

Pℓ = ηℓa
2π







K2
ℓ (w)

1
∫

ρ=0

[

ψ(ρ)

ψ(1)

]2

ρdρ+
1

2

[

Kℓ+1(w)Kℓ−1(w) −K2
ℓ (w)

]







, (4.19)

where ηℓ = 2 for ℓ= 0 and ηℓ = 1 for ℓ 6= 0. The perturbed backward evanescent field follows

from Eq. (4.12) and Eq. (4.16) as

ψBW (X,Z) =
ω̂

πja

∞
∫

ξ=0

Sℓ(ξ)
Ai [χ (X, ξ)]

Bi [χ (1, ξ)]
exp(−jω̂ξZ)dξ. (4.20)

Substituting Eq. (4.19) and Eq. (4.20) in Eq. (4.17), results in an expression for the in-

duced perturbation on the normalised propagation coefficient ζstr. With reference to Sec-

tion 3.1.5, the power attenuation (bending-loss) coefficient per unit length is α= 2ω̂α′/a.

Hence, the bending loss per unit length for an LPℓn mode may be approximated by

α = −2 Im

[

aπ∂ℓXψBW (0, 0)

Pℓwℓω̂ζstr

]

=
2 (−w)−ℓ

Pℓζstr

(

2ω̂2ζ2
str

ρc

)ℓ/3
∞
∫

ξ=0

Sℓ(ξ)
Ai(ℓ) [χ (0, ξ)]

Bi [χ (1, ξ)]
dξ, (4.21)

where Ai(ℓ)(χ) is the ℓ-th derivative with respect to χ. For a step-index profile with ℓ= 0,

Eq. (4.21) reduces to [22]

α =
2u2

ω̂aζstrV 2K2
1(w)

∞
∫

ξ=0

γ−1 exp (−ω̂γ) Ai [χ (0, ξ)]

Bi [χ (1, ξ)]
dξ, (4.22)

where u= ω̂ (εr,co − ζ2
str)

1/2
and V = ω̂ (εr,co − εr,cl)

1/2. When the Airy functions are re-

placed by their leading-order asymptotic expansions for large arguments of Eq. (4.14),
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and under the hypothesis that ξ2 ≪ ζ2
str − εr,cl, which is automatically satisfied if ρc≫ 1

[108], the integration over ξ can be performed analytically. This results in the following

simplified bending-loss formula

α =
u2

2aV 2K2
1(w)

√

π

w3ρc
exp

(

− 2w3ρc
3ω̂2n2

cl

)

. (4.23)

Other authors, who developed various approaches to deriving bending-loss formulae, ulti-

mately arrived for a step-index profile at Eq. (4.23) [57, 82, 89, 108, 115]. In Section 4.5,

the approximate expressions of Eqs. (4.21) through (4.23) are compared with vectorial

full-wave (VFW) results. Further, we have used Eq. (4.21), i.e. the most accurate albeit

the most complicated of the approximate expressions, to compute the effective cut-off

wavelength, discussed in Section 3.1.6.

Next, let us include additional cladding and coating layers in the derivation above

[22, 112]. For one added coating layer at X = b/a=B, see Figure 4.4, Eq. (4.21) can be

generalised to

α =
2

Pℓζstr
(−w)−ℓ

(

2ω̂2ζ2
str

ρc

)ℓ/3
∞
∫

ξ=0

Sℓ(ξ)
Ai(ℓ) [χ (0, ξ)]

Bi [χ (1, ξ)]
R23dξ, (4.24)

where

R23 = − (Bi [χ] Ai′ [χ] − Ai [χ] Bi′ [χ]) (Bi′ [χ3] Ai [χ3] − Ai′ [χ3] Bi [χ3])

(Ai′ [χ] Bi [χ3] − Bi′ [χ3] Ai [χ])
2
+ (Ai′ [χ3] Ai [χ] − Ai′ [χ] Ai [χ3])

2 , (4.25)

with χ=χ (B, ξ). Further, χ3 =χ (B, ξ) with γ2 = ζ2
str − εr,coat + ξ2.

This allows for simulations by which reflections at the cladding/coating interface are

taken into account as well, which causes oscillations in the bending loss. For large radii

of curvature, i.e. those ρc for which [82]

ρc > 2Bζ2/
(

ζ2
str − εr,cl

)

, (4.26)

which corresponds to χ (B, 0) = 0, the field that is reflected at the pertaining interface

is evanescent, and consequently, these oscillations are absent. This implies that for the

evaluation of the effective cut-off wavelength, which involves a large radius of curvature,

Reff = 18.2 cm, the additional layers do not have to be taken into account as long as

Eq. (4.26) holds. For very small radii of curvature, the amplitude of the oscillations

decreases, as the caustic moves away from the cladding/coating interface towards the

core/cladding interface.



58 Macrobending loss

4.3 The idealised curved pipe: full-wave analysis

As a next step towards performing the full-wave analysis of the bent optical fibre, we derive

field solutions for an idealised curved pipe. This provides us with a computational scheme

to tackle the core region of the fibre later on, while avoiding the difficulty of radiation.

We assume that the pipe is perfectly conducting (idealised), and hence attenuation due

to leakage of conduction currents in the guide walls is absent. With the bent fibre in

mind, we assume that the pipe is filled with a radially inhomogeneous medium. To obtain

field solutions within the pipe, we follow the approach outlined in Section 2.3 for the core

region. Hence, we employ a numerical integration of the pertaining Marcuvitz-Schwinger

equations from bounded regular solutions at the core centre towards the waveguide wall.

We employ a toroidal coordinate system {x1, x2, x3}= {φ, ψ, r} as it conforms nicely

to the curved shape of the geometry. The configuration is shown in Figure 4.6. The cor-

R

r
yf

z

a x

n

D

Figure 4.6: Toroidal coordinate system conforming to the bent pipe as well as the bent fibre.

responding (covariant) basis vectors are given by {c1, c2, c3}= {(R + r cosψ)uφ, ruψ,ur}.
As a consequence, the metric tensor of Eq. (2.9) reads gpq = diag

[

(R + r cosψ)2 , r2, 1
]

, and

hence the (covariant) electric and magnetic field components are defined as {E1, E2, E3} =

{(R + r cosψ)Eφ, rEψ, Er} and {H1, H2, H3}= {(R + r cosψ)Hφ, rHψ, Hr}, respectively.

In accordance with Eq. (2.24) and Eq. (4.1), we assume electromagnetic field components

of the following form

(

Ek(φ, ψ, ρ)

Hk(φ, ψ, ρ)

)

=
∞
∑

m=−∞

(

ek,m(ρ)

hk,m(ρ)

)

exp (−jω̂ζρcφ) exp(−jmψ), (4.27)

where k∈ {1, 2, 3}, and where the normalised frequency ω̂ and the normalised radial

coordinate ρ are given by Eq. (2.25). These components are substituted in the Marcuvitz-

Schwinger equations of Eq. (2.18). The resulting equation is multiplied on both sides of

the equality sign by exp(jℓψ) and subsequently integrated over a single period of ψ. As
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a consequence, we lose the summation on the left-hand side, owing to appearance of the

Kronecker delta δℓ,m. The integrals that occur on the right-hand side are evaluated in

closed form in Appendix F.1. We arrive at the following coupled system of differential

equations

−dρ
(

eκ;ℓ

hλ;ℓ

)

= ρ−1

∞
∑

m=−∞

(

0 jω̂Z0Bκλ

−jω̂Z−1
0 εrBλκ 0

)(

eκ;m

hλ;m

)

, (4.28)

where B is a tensor with elements

B11 =
mζρc
ω̂n2 G, B12 = ρcδℓ,m +

ρ
2 (δℓ+1,m + δℓ,m+1) −

(

ρcζ
n

)2

G,

B21 =
mℓ− (ω̂nρ)2

(ω̂n)2 G, B22 = −ℓζρc
ω̂n2G,

(4.29)

with

G =
(

ρ2
c − ρ2

)−1/2
ξ
|ℓ−m|
+ , ξ+ = −ρ

(

ρc +
√

ρ2
c − ρ2

)−1

. (4.30)

To account for the boundary conditions at ρ= 0, where the field must remain finite, we

first scale the electromagnetic field components, i.e.

{e1, e2} = jZ0ρ
|ℓ| {ω̂ρcp2,−p1} , {h1, h2} = ρ|ℓ| {ω̂ρcq1, q2} . (4.31)

Subsequent substitution in Eq. (4.28) gives

dρfℓ = −ρ−1

(

|ℓ|fℓ +
∞
∑

m=−∞

ρ|m|−|ℓ|Aℓ,mfm

)

. (4.32)

where f = {p1, p2, q1, q2},

Aℓ,m =

(

0 ω̂S

ω̂n2JSJ 0

)

, S =

(

−ω̂ρcB21 −B22

B11 B12/ω̂ρc

)

, (4.33)

and J is given by Eq. (2.27). Due to the toroidal coordinate system, this system of

differential equations is no longer separable for each azimuthal index m, i.e. all Fourier

constituents are coupled. If we truncate the pertaining Fourier series at m=M , the

general solution of Eq. (4.32) may be expressed as a linear combination of 4(2M + 1)

independent solutions. To obtain the solutions that remain bounded at the core centre,

which will be the initial vectors for the numerical integration, we expand the vectors fℓ,

fm and the dyad Aℓ,m about ρ= 0 in terms of a Taylor series. Consequently, Eq. (4.32) is

written in the form

dρ

[

ραf
(α)
ℓ (0)

]

= −ρα−1|ℓ|f (α)
ℓ (0) −

M
∑

m=−M

ργ+β+|m|−|ℓ|−1 α!

γ!β!
A

(γ)
ℓ,m(0)f (β)

m (0), (4.34)
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where {α, β, γ} are non-negative integers. The superscript indices between parentheses

denote the order of the derivative with respect to ρ.

To simplify the derivation below, we assume that dρn(0) = 0. The independent initial

field vectors are found by equating equal orders of ρ in Eq. (4.34). Through construction,

it turns out that there are 2(2M + 1) independent solutions that remain bounded at the

core centre. These solutions occur in pairs for each ℓ, i.e.

(

fℓ,1(0), fℓ,2(0)
)

= δℓ,m











0 0

0 −1

1 0

0 0











for m = 0, (4.35)

and

(

fℓ,1(0), fℓ,2(0)
)

= δℓ,m















−|m| 0

0 −1

ζ2 − n2 mζ
|m|

mζ |m|















+
δ|m|,mℓ−m2

2ρc|m|















0 0
mζ
|m| 1

n2 0

0 0















for m 6= 0. (4.36)

These initial vectors are used as the starting values for the numerical integration of

Eq. (4.32) to ρ= 1. This gives us 2(2M+1) independent field solutions at the guide walls.

Note that the contribution of the second term on the right-hand side in Eq. (4.36) vanishes

as ρc→∞, which results in a set of uncoupled initial vectors, similar to the ones for the

straight fibre.

Next, we invoke the boundary conditions at the perfectly conducting waveguide wall,

which state that the tangential electric field components to the surface must be zero. With

reference to Eq. (4.31), we deduce that p1 = p2 = 0 for each m and ℓ. As a consequence,

the characteristic equation is that the determinant of a 2(2M + 1) × 2(2M + 1) matrix

has to vanish, which provides the conditions for the propagation coefficients.

To test the numerical integration in the core region, we compare our normalised propa-

gation coefficients ζ with the ones obtained via a first-order approximation [57] for various

radii of curvature R of an empty circularly cylindrical waveguide. As noted before, the

system of differential equations decouples as R→∞, and consequently the modes present

in the straight circular pipe must appear. The normalised propagation coefficients of the

propagating modes are shown in Figure 4.7.

In a straight pipe, the modes under consideration are TE01 and TM11. The former is

frequently used for long-distance communications at high frequency owing to its low at-

tenuation. As expected, the first-order approximation improves as the radius of curvature

increases.
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Figure 4.7: Normalised propagation coefficients ζ of the propagating modes in a bent pipe with

λ=1.0 µm, a=0.4 µm, and n2 =1.5. The numerical integration of Eq. (4.35) is compared with

a first-order approximation given by Lewin et al. [57]. In a straight pipe, the modes under

consideration are TE01 and TM11.

4.4 The bent optical fibre: full-wave analysis

We perform the vectorial full-wave (VFW) analysis of the bent fibre, which is valid for all

radii of curvature. Similar to the curved pipe, it is convenient to employ the toroidal coor-

dinate system {φ, ψ, r} of Figure 4.6, since it properly conforms to the shape of the fibre.

As the bent fibre is an open waveguide structure, in contrast to the perfectly conducting

pipe, we distinguish an interior and an exterior region of the fibre. Field solutions for the

former region are determined by the numerical scheme derived for the bent pipe, i.e. by

the numerical integration of a system of ordinary differential equations from the core cen-

tre towards the interface ∂D. This implies that the interior region is allowed to be radially

inhomogeneous. However, the numerical integration of an initial-value problem eventually

encounters accuracy and stability limitations. It turns out that a stable integration all

the way up to the cladding/coating interface cannot be guaranteed with double precision

arithmetic. This concurs with the discussion in Section 2.4. Therefore, we regard the

core/cladding interface as the upper limit of our numerical integration. As a result, the

homogeneous cladding region, which is assumed to be of infinite extent, corresponds to

the exterior region, whereas the radially inhomogeneous core region corresponds to the

interior one.

We have to keep in mind that the inclusion of a coating may introduce significant

oscillations in the bending loss versus wavelength or radius of curvature. Fortunately,
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these effects can be studied in an ad hoc fashion [82]. Further, in our full-wave model,

we neglect the effects of imperfections in the fibre itself as well as the induced stress and

strain.

4.4.1 Interaction integral at the fibre surface

Having described the formulism for the interior region on the basis of the curved pipe, the

next step is to determine 2(2M+1) independent field solutions in the exterior region, which

have to be matched at the core/cladding interface to the interior ones. The matching is

complicated by the fact that the electromagnetic fields propagating along the bent fibre

are non-periodic in the φ-direction due to radiation. Therefore, it is necessary to view

the φ-direction as a complex Riemann surface, having an infinite number of sheets [23].

However, for most of our observations we may restrict φ to the finite interval −π <φ≤π.

To achieve the matching at the core/cladding interface, we consider two electromag-

netic states, viz. state A and state B. State B is the actual state in a configuration

consisting of the fibre core surrounded by a homogeneous cladding, as shown in Fig-

ure 4.6. It is in this state that we perform the numerical integration of the system of

differential equations in the interior region. To obtain field solutions in the exterior region

that satisfy the radiation condition, we introduce an auxiliary state A. For this state, we

consider a homogeneous configuration with a refractive index equal to that of the homoge-

neous cladding n(ρ) =ncl. To generate the auxiliary wavefield, we introduce ring sources

on an imaginary torus within the interior region, as is shown in Figure 4.8. In the next

sections, we will elaborate on this choice and will determine the wavefield generated by a

single ring source and an array of them.

D

n
y’

Figure 4.8: Electromagnetic state A in which ring sources are deployed in a homogeneous back-

ground medium of n(ρ)=ncl.

To connect the states, we apply the reciprocity theorem to the exterior region. Since

the states A and B are both source-free in their exterior regions, we arrive at a vanishing
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interaction integral at the interface ∂D, i.e.

∫

∂D

(

EB × HA − EA × HB
)

· n dA = 0, (4.37)

where the normal unit vector n=ur. In accordance with Eq. (4.27), we assume that states

A and B depend on φ through exp(±jω̂ζρcφ), respectively, i.e. they correspond to waves

that propagate in opposite φ-directions [18, 56]. As a result, the integrand in Eq. (4.37)

no longer depends on φ, and hence, only an integral with respect to the ψ-coordinate

remains.

We employ Muller’s method [78] in the search for a complex propagation coefficient

ζ such that Eq. (4.37) holds. At this value of ζ, the field mismatch between the states

should vanish, since any field mismatch would indicate the presence of equivalent boundary

surface sources, which for a genuine modal field solution should be absent. As this search

is quite cumbersome, especially if one wishes to find several propagation coefficients, the

initial guess should be as good as possible, otherwise Muller’s method will fail. Similar

to the discussion for the bent slab waveguide in Section 4.1, we start our search from the

known propagation coefficients of the straight fibre. Subsequently, we trace out the locus of

the propagation coefficients in the complex plane step by step, while decreasing the radius

of curvature in a gradual way. The approximate bending-loss formulae of Eqs. (4.21) and

(4.23) can provide us with proper initial values of ζ as well. It will be demonstrated that

a gradual change in radius of curvature results in a gradual change in the value of the

complex propagation coefficient.

4.4.2 Wavefield excitation by an array of modulated ring sources

To generate 2(2M+1) independent field solutions in the exterior region of state A, we place

ring sources, like the one of Figure 4.9, parallel to the fibre axis in a ring-like fashion, as

shown in Figure 4.8. These ring sources are either all electric or magnetic and are located

z

f

x

rs

Figure 4.9: Electric or magnetic ring source located in a homogeneous medium with n(ρ)=ncl.

in a homogenous background medium with n(ρ) =ncl. Since Maxwell’s equations decouple

in cylindrical coordinates, closed-form integral representations for the fields, generated by
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the φ-directed sources can readily be constructed. Owing to the duality between the two

types of sources, the respective field solutions are linearly independent. Hence, each type

of source must provide us with 2M + 1 independent field solutions. To achieve this, we

place an equal number of ring sources and modulate them with an azimuthal exp(jm′ψ′)

dependence [45]. Here, ψ′ denotes the angle with respect to the horizontal in the transverse

plane at which the current loop is located, and m′ = {−M, ...,M}. Further, we assume

that the sources have an exponential phase factor of exp(jω̂ζρcφ) along the φ-direction,

to generate a wavefield with the same behaviour.

The introduction of ring sources directed along the φ-direction is based on an analysis

of the straight fibre, whose coordinate system is shown in Figure 2.1. Inspired by the

multifilament current model introduced by Leviatan and Boag [56], we have employed

magnetic and electric line sources along the z-direction, the equivalent of φ-directed sources

in the bent fibre case, to obtain 2M+1 independent field solutions for each type of source.

These line sources are placed in an equally-spaced ring-like fashion in the azimuthal ψ-

direction within the interior region. They generate the wavefield in the exterior region

in the equivalent state A of the straight fibre configuration, which we denote Astr. The

electromagnetic fields generated in the equivalent state B of the straight fibre, Bstr, are

derived by the procedure outlined in Section 2.3.1

The interaction integral in Eq. (4.37) is applied to connect the fields of both equivalent

states of the straight fibre at the core/cladding interface ∂D, where we have assumed that

the states Astr and Bstr depend on z through exp(±jω̂ζa−1z), respectively. As a result,

only an integral with respect to ψ remains, which we have solved with a Gauss-Legendre

quadrature rule. We have compared the accuracy of the obtained propagation coefficients

with the corresponding exact values for a multi-mode fibre and proven that differences are

marginal (10−9) as long as sufficient line sources are employed. The number of used line

sources 2M + 1 is related to the highest azimuthal index m, i.e. at least M ≥ m. The

radial position of the line sources, which we have varied between 0.3<ρ< 0.7, does neither

influence the accuracy of the computed propagation coefficients nor the convergence to

this value [56]. As the results for the straight fibre configuration with z-directed line

sources look promising, we have chosen for the equivalent φ-directed sources in the bent

fibre case.

For the bent fibre configuration, it turns out that the radial position of the ring sources

is much more critical from a convergence point of view than that for the straight fibre

case. If the various ring sources are placed too close to the fibre axis, the fields excited

by a full spread of angular harmonics (−M ≤m≤M) become nearly dependent at ∂D.

As a consequence, instability looms and computation times increase considerably. On the

other hand, if we move the rings toward ∂D, aliasing of higher-order angular harmonics
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may only be avoided through finer sampling. Although 2M + 1 independent ring sources

would suffice to compute the unknown independent field solutions, the use of additional

sources helps to reduce aliasing. For a chosen balance between robustness, suppression

of aliasing and the number of auxiliary sources, there exists an “optimal” ρ= ρs for the

position of the ring sources. In Appendix D, we present a more in-depth analysis of these

counteracting phenomena for a scalar-wave straight open-waveguide scenario.

4.4.3 Field solutions for a single ring source

To derive a closed-form expression for the field generated by a single ring source, it is

convenient to employ a cylindrical coordinate system {x1, x2, x3}= {φ, z, rs}, with corre-

sponding (covariant) basis vectors {c1, c2, c3}= {rsuφ,uz,urs}, as shown in Figure 4.9.

The conversion into the toroidal coordinate system is performed in a subsequent stage.

Since the derivation is similar for both types of ring sources, we will limit ourselves to the

case of an electric ring source. Its electric current distribution is given by

J1 = A(ψ′) exp(jω̂ζρcφ)δ(ρs − ρ′s)δ(Z − Z ′)rs, (4.38)

where ρs = rs/R, Z = z/a are normalised coordinates, and ρ′s and Z ′ denote the source

location in the ρs and Z-direction, respectively. For convenience, we have included the

azimuthal exp(jm′ψ′) modulation in the amplitude factor A(ψ′). To exploit the invariance

of the source-free auxiliary configuration in the z-direction, we employ a Fourier integral

representation with respect to the Z-direction. In view of Eq. (4.9), the electromagnetic

field components may be written as
(

Ek(φ, Z, ρs)

Hk(φ, Z, ρs)

)

=
ω̂

2πa
exp(jω̂ζρcφ)

∞
∫

ξ=−∞

(

ẽk(ξ, ρs)

h̃k(ξ, ρs)

)

exp(−jω̂ξZ)dξ, (4.39)

where the tilde indicates that the specific quantity is a spectral domain term, and where

k ∈ {1, 2, 3}. Consequently, for the partial derivatives, we have ∂Z →−jω̂ξ and ∂φ→ jω̂ζρc.

Again, the Marcuvitz-Schwinger equations given by Eq. (2.18), in their curvilinear form,

provide us with a system of first-order differential equations. A more convenient form

is obtained by introducing new variables according to {ẽ1, ẽ2}= jZ0{ρcap̃2,−p̃1} and

{h̃1, h̃2}= {ρcaq̃1, q̃2}, which yields

∂ρs
f̃ = ρcρ

−1
s

[(

0 ω̂n−2
cl S

ω̂JSJ 0

)

f̃ +

(

0

m̃

)]

, (4.40)

where f̃ = (p̃1, p̃2, q̃1, q̃2)= (p̃, q̃). The matrix S is given by

S =

(

ξ2 − n2
cl ζξ

ζξ ζ2 − (ρsncl)
2

)

, (4.41)
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and

m̃ =

(

0

−A(ψ′) exp(jω̂ξZ ′)δ(ρs − ρ′s)ρsa

)

. (4.42)

For convenience, Eq. (4.40) is rewritten as

∂ρs
f̃ = ρcρ

−1
s

(

Af̃ + ũ
)

. (4.43)

There exists a pair of independent interior field solutions (ρs< 1) for which p̃ and q̃

remain bounded as ρr ↓ 0, denoted by p̃i and q̃i. Likewise, there is a pair of independent

exterior field solutions (ρs> 1) for which both p̃ and q̃ decay exponentially or algebraically

depending on the value of ξ. These solutions are denoted by p̃e and q̃e. Hence, we may

regard these source-free regions separately and connect the corresponding field vectors at

the ring source’s location (ρs = 1).

Field vectors in the source-free regions

Let us start with the computation of the exterior field solutions, viz. solutions outside the

ring source with ρs> 1. In view of the cylindrical geometry, we know that the solution

will involve Bessel functions [18]. Therefore, we rewrite Eq. (4.40) in Bessel’s (modified)

differential equation for both p̃e and q̃e in the following way

[ρs∂ρs
ρs∂ρs

− (x2 + ν2)] p̃e1 = 0, if q̃e = {q̃e1,1, 0}, (4.44a)

[ρs∂ρs
ρs∂ρs

− (x2 + ν2)] q̃e2 = 0, if p̃e = {0, p̃e2,2}, (4.44b)

where ν= ω̂ζρc and x= ω̂ρsρcγ with

γ =
√

ξ2 − n2
cl, with

{

Im(γ) < 0,

Re(γ) > 0 if Im(γ) = 0.
(4.45)

Both second-order differential equations give us independent exterior field vectors. In

matrix form, they are given by

(

f̃ e1 , f̃
e
2

)

=











Kν(x) 0

ζξγ−2Kν(x) −ρsγ−1K ′
ν(x)

ρsn
2γ−1K ′

ν(x) −ζξγ−2Kν(x)

0 Kν(x)











(

Ce
1 0

0 Ce
2

)

, (4.46)

where f̃ e = {p̃e, q̃e}, and Ce
1 , C

e
2 are constants that remain to be determined. Further,

Kν(x) denotes the modified Bessel function of the second kind and the prime indicates

a derivative with respect to its argument. For convenience, we introduce an exterior
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radial impedance matrix Z̃e(ρ), which is defined by P̃e = Z̃eQ̃e, where P̃e = {p̃e1, p̃e2} and

Q̃e = {q̃e1, q̃e2} follow from Eq (4.46). As a result, the impedance matrix reads

Z̃e =
1

Leνn
2

(

−γ2 −ζξ
−ζξ γ−2(Le2ν n

2 − ζ2ξ2)

)

, where Leν = −ρsγ
K ′
ν(x)

Kν(x)
. (4.47)

In a similar way, we obtain an interior impedance Z̃i matrix for the region inside

the ring source. Replacing the modified Bessel functions of the second kind Kν(x) by

those of the first kind Iν(x) in Eq. (4.46) results in the interior counterpart {f̃ i1, f̃ i2}. As

a consequence, the interior impedance Z̃i matrix for the region inside the ring source is,

with the introduction of the variables P̃i = Z̃iQ̃i, where P̃i = {p̃i1, p̃i2} and Q̃i = {q̃i1, q̃i2},
directly found as

Z̃i =
1

Liνn
2

(

−γ2 −ζξ
−ζξ γ−2(Li2ν n

2 − ζ2ξ2)

)

, where Liν = −ρsγ
I ′ν(x)

Iν(x)
. (4.48)

As a result, the total interior and exterior field vectors are given by

f̃ i(ρs) =
[

Ci
1f̃
i
1(ρs) + Ci

2f̃
i
2(ρs)

]

for ρs < 1, (4.49a)

f̃ e(ρs) =
[

Ce
1 f̃
e
1 (ρs) + Ce

2 f̃
e
2 (ρs)

]

for ρs > 1. (4.49b)

The next step is to connect these field vectors at ρs = 1, where the ring source is located.

Field matching at the ring source

So far, we have obtained two pairs of independent (interior and exterior) solutions, which

have been added in Eq. (4.49). In terms of the impedance matrices, they can be written

as follows

f̃ i =

(

Z̃iQ̃i

Q̃i

)

ci, f̃ e =

(

Z̃eQ̃e

Q̃e

)

ce, (4.50)

where (ci)
T

= (Ci
1, C

i
2) and (ce)T = (Ce

1 , C
e
2). To determine the unknown amplitude vectors

ci and ce, we integrate the differential equation of Eq. (4.43) across the ring source radius

and take the limit of approaching the ring source radius from both the interior and exterior

regions. As a result, we integrate the delta function in the source distribution ũ to a finite

result, i.e.

f̃ e(ρ′s) − f̃ i(ρ′s) = lim
h→0

ρ′s+h
∫

ρs=ρ′s−h

ρcρ
−1
s ũdρs =

(

ũK

ũJ

)

, (4.51)

where ũK and ũJ correspond to a magnetic and electric source distribution, respectively.

By substituting Eq. (4.42), the source distributions can be made explicit

ũK =

(

0

0

)

, ũJ =

(

0

−A(ψ′) exp(jω̂ξZ ′)ρca

)

, (4.52)
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which indicates how the discontinuity at ρs = 1 of the interior and exterior field vectors is

matched to the source strength. With the aid of Eq. (4.50), the left-hand side of Eq. (4.51)

can be rewritten as follows

f̃ e(ρ′s) − f̃ i(ρ′s) =

(

−Z̃i(ρ′s) Z̃e(ρ′s)

−I I

)(

Q̃i(ρ′s) 0

0 Q̃e(ρ′s)

)(

ci

ce

)

, (4.53)

where I denotes the 2 × 2 identity matrix. Consequently, the amplitude vectors ci and ce

can be expressed in terms of the electric and magnetic source distributions, i.e.

(

ci

ce

)

=







[

Q̃i(ρ′s)
]−1 [

Z̃e(ρ′s) − Z̃i(ρ′s)
]−1 [

ũK − Z̃e(ρ′s)ũJ

]

[

Q̃e(ρ′s)
]−1 [

Z̃e(ρ′s) − Z̃i(ρ′s)
]−1 [

ũK − Z̃i(ρ
′
s)ũJ

]






, (4.54)

which are next substituted in Eq. (4.50). This yields the following exterior field solution

f̃ e(ρs) =

(

ÃeũK + C̃eũJ

B̃eũK + D̃eũJ

)

, (4.55)

with

Ãe =

(

x′Kν(x)I
′
ν(x

′) 0

ζξγ−2 (xK ′
ν(x)Iν(x

′) + x′Kν(x)I
′
ν(x

′)) −xK ′
ν(x)Iν(x

′)

)

,

B̃e =





1
ω̂ρcγ

2 (xx′n2
clK

′
ν(x)I

′
ν(x

′) + (νξ)2Kν(x)Iν(x
′)) −νξKν(x)Iν(x

′)

−νξKν(x)Iν(x
′) ω̂ρcγ

2Kν(x)Iν(x
′)



 ,

C̃e = n−2
cl JB̃eJ, D̃e = −JÃeJ, (4.56)

where x′ = ω̂ρ′sρcγ. In deriving Eq. (4.56), we have used the Wronskian relation [1]

Kν(x
′)I ′ν(x

′) −K ′
ν(x

′)Iν(x
′) = Kν(x

′)Iν+1(x
′) +Kν+1(x

′)Iν(x
′) = (x′)

−1
. (4.57)

The substitution of the electric and magnetic source distribution vectors ũ of Eq. (4.52)

gives

f̃ e(ξ, ρs) = A(ψ′)ω̂ρ2
ca











ζξn−2
cl Kν(x)Iν(x

′)

ρsρ
′
sK

′
ν(x)I

′
ν(x

′) + (ζξ/γncl)
2Kν(x)Iν(x

′)

ζξγ−1 [ρsK
′
ν(x)Iν(x

′) + ρ′sKν(x)I
′
ν(x

′)]

−ρ′sγKν(x)I
′
ν(x

′)











exp(jω̂ξZ ′). (4.58)

Similarly, we obtain the interior field solution as

f̃ i(ρs) =

(

ÃiũK + C̃
i
ũJ

B̃iũK + D̃iũJ

)

, (4.59)
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with

Ãi =

(

x′Iν(x)K
′
ν(x

′) 0

ζξγ−2 (xI ′ν(x)Kν(x
′) + x′Iν(x)K

′
ν(x

′)) −xI ′ν(x)Kν(x
′)

)

,

B̃i =





1
ω̂ρcγ

2 (xx′n2
clI

′
ν(x)K

′
ν(x

′) + (νξ)2Iν(x)Kν(x
′)) −νξIν(x)Kν(x

′)

−νξIν(x)Kν(x
′) ω̂ρcγ

2Iν(x)Kν(x
′)



 ,

C̃
i
= n−2

cl JB̃iJ, D̃i = −JÃiJ, (4.60)

which, after substituting the electric and magnetic distribution vectors ũ of Eq. (4.52),

results in

f̃ i(ξ, ρs) = A(ψ′)ω̂ρ2
ca











ζξn−2
cl Iν(x)Kν(x

′)

ρsρ
′
sI

′
ν(x)K

′
ν(x

′) + (ζξ/γncl)
2Iν(x)Kν(x

′)

ζξγ−1 [ρsI
′
ν(x)Kν(x

′) + ρ′sIν(x)K
′
ν(x

′)]

−ρ′sγIν(x)K ′
ν(x

′)











exp(jω̂ξZ ′). (4.61)

To obtain the field vectors in the spatial domain, expressed in normalised cylindrical

coordinates {φ, Z, ρs}, we apply the inverse Fourier transformation of Eq. (4.39).

Transformation from the cylindrical to the toroidal coordinate system

In conformity with the geometry of the fibre, we translate our problem from the cylindrical

(cyl) to the toroidal (tor) coordinate system {φ, ψ, ρ} (see Figure 4.6) via

ρs = ρ−1
c (ρc + ρ cosψ) , Z = ρ sinψ,

ρ′s = ρ−1
c (ρc + ρ′ cosψ′) , Z ′ = ρ′ sinψ′.

(4.62)

In particular, the field vectors are transformed by the following matrix











p1

p2

q1

q2











tor

= a











ρ cosψ 0 −jξZρ−1
s n−2

cl −jζZρ−1
s n−2

cl

0 a−1 0 0

0 0 a−1 0

−jζZρ−1
s jξZρ−1

s 0 ρ cosψ





















p1

p2

q1

q2











cyl

, (4.63)

where we have used the fact that J3 =M3 = 0, and where we have employed the same

conversion of the electromagnetic field components as stated above Eq. (4.40). This results

in the following respective exterior (ρs>ρ
′
s) and interior (ρs<ρ

′
s) field solution vectors
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generated by an electric ring source excitation:

Fe(φ, ψ, ρ) =
A(ψ′)ω̂2ρ2

c

2π
exp(jω̂ζρcφ)

∞
∫

ξ=−∞

exp [−jω̂ξ (ρ sinψ − ρ′ sinψ′)]

×











ζaγ−1
[

ξn−2
cl L

eIν(x
′) − jZρ′sρ

−1
s Kν(x)I

′
ν(x

′)
]

ρsρ
′
sK

′
ν(x)I

′
ν(x

′) + (ζξ/γncl)
2Kν(x)Iν(x

′)

ζξγ−1 [ρsK
′
ν(x)Iν(x

′) + ρ′sKν(x)I
′
ν(x

′)]

jζ2ξZaγ−2ρ−1
s Kν(x)Iν(x

′) − ρ′saL
eI ′ν(x

′)











dξ, (4.64)

Fi(φ, ψ, ρ) =
A(ψ′)ω̂2ρ2

c

2π
exp(jω̂ζρcφ)

∞
∫

ξ=−∞

exp [−jω̂ξ (ρ sinψ − ρ′ sinψ′)]

×











ζaγ−1
[

ξn−2
cl L

iKν(x
′) − jZρ′sρ

−1
s Iν(x)K

′
ν(x

′)
]

ρsρ
′
sI

′
ν(x)K

′
ν(x

′) + (ζξ/γncl)
2Iν(x)Kν(x

′)

ζξγ−1 [ρsI
′
ν(x)Kν(x

′) + ρ′sIν(x)K
′
ν(x

′)]

jζ2ξZaγ−2ρ−1
s Iν(x)Kν(x

′) − ρ′saL
iK ′

ν(x
′)











dξ, (4.65)

where

Li = γρ cosψIν(x) − jξZI ′ν(x), and Le = γρ cosψKν(x) − jξZK ′
ν(x). (4.66)

To connect the electromagnetic field vectors of both states at either side of the fibre

surface ∂D via the interaction integral of Eq. (4.37), the form of the field representation

for this state should be similar to the one of state B in Eq. (4.27), i.e.

F(φ, ψ, ρ) =
M
∑

m=−M

fm(ρ) exp(jω̂ζρcφ) exp(jmψ), (4.67)

where we have already truncated the angular Fourier series, and included the φ-dependence

corresponding to state A. We multiply these vectors with exp (−jℓψ), and integrate over

a single period of ψ, which introduces the Kronecker delta δℓ,m on the left-hand side. The

ρ-dependence of the field vectors is then found as

fℓ(ρ) = A(ψ′)

(

ω̂ρc
2π

)2
π
∫

ψ=−π

∞
∫

ξ=−∞











·
·
·
·











exp [jω̂ξ (ρ′ sinψ′ − ρ sinψ)] exp(−jℓψ) dξdψ,

(4.68)

where the dots represent the vector elements in either Eq. (4.64) or Eq. (4.65) for ρs>ρ
′
s

and ρs<ρ
′
s, respectively.
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The integration over ψ is performed by a Gauss-Legendre quadrature rule, whereas

the one over ξ is performed by a 20-41 points Gauss-Kronrod rule. Further, note that the

modified Bessel functions of large complex order and argument, which are evaluated by

a Gauss-Kronrod quadrature rule as well, occur in the inner integrand. Their numerical

computation is discussed in Appendix C. As a result, the total computation consists

of a triple integral and is therefore time-consuming. Fortunately, we can accelerate the

computation to make computation times reasonable by a proper choice of the location of

the ring sources and a deformation of the integration path.

Acceleration of the numerical computation

To evaluate the integral over ξ, we deform the integration path in the complex ξ-plane

in such a way that convergence is exponential, as shown in Figure 4.10. The location

Im( )x

Re( )xncl-ncl

Im( )x

Re( )xncl-ncl

Im( )x

Re( )xncl-ncl

a

b

c

Figure 4.10: Deformed integration paths in the complex ξ-plane.

of the branch points at ξ=±ncl, and the branch cuts, which are rendered as hatched

lines, follow directly from the square root definition of γ in Eq. (4.45) [23]. However,

computation times depend highly on the difference between ρ and ρ′, as the pertaining

tails of the integral increase as the difference decreases. This becomes clear if we take a

closer look at the product of modified Bessel functions in the four-dimensional vector and

the exponential containing the integration variable ξ in Eq. (4.68). For large arguments,
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the product of Bessel functions for ρs>ρ
′
s behaves as [1]

Iν(x
′)Kν(x) ∼ exp[−ω̂γ(ρ cosψ − ρ′ cosψ′)] (4xx′)

−1/2
, (4.69)

which implies that we have a considerable exponential decay if we integrate along path a○

in Figure 4.10, as long as (ρ′ cosψ′ − ρ cosψ) is not too small. A similar line of reasoning

holds for (ρ sinψ − ρ′ sinψ′), where we integrate along one of the deformed paths b○ or

c○, for (ρ sinψ − ρ′ sinψ′) ≷ 0, respectively.

Now, how do we define too small? To give an answer to this question, we have to

look at the bigger picture, i.e. to which accuracy do we wish to acquire the propagation

coefficient ζ. Obviously, for large radii of curvature the imaginary part of ζ is many orders

of magnitude smaller than the real part, which requires a high relative precision in the

quadrature. As we start our search in the complex ζ-plane from the analytically known

propagation coefficients of the straight fibre, which are real-valued, and gradually proceed

into the plane, we opt for a relative precision of at least 10−8. This implies that the outer

integral over ψ in Eq. (4.68) should at least be computed to that accuracy. Consequently,

the inner integrals are to be computed with an even higher accuracy. For smaller radii of

curvature, we may slightly relax the required accuracy in all quadratures.

To limit the length of the tails to about |ξ|= 6ncl, the decay of the integrand has to

be at least in the same order of magnitude as the required precision at the tail ends. We

integrate along path b○ or c○ if |ρ sinψ − ρ′ sinψ′|> 0.2, otherwise path a○ is used.

Integration along the steepest-descent path will probably reduce computation time.

However, that contour of integration would partially be located on the lower Riemann

sheet in the complex ξ-plane. On this sheet, the computation of the product of modified

Bessel function through their integral representations are fraught with difficulties which

we sought to avoid.

A further acceleration is achieved by making use of the symmetry in the integral along

ψ. Note that a change in the integration variables ψ→−ψ and ξ→−ξ, results in the

same integrand, though supplemented with a minus sign for the first and third field vector

elements. This implies that we only need to evaluate the inner integrals for the region

0≤ψ≤π.

Field solutions for a magnetic ring source

Until now we have obtained 2M +1 independent field solutions. Since we need 2(2M +1)

solutions to realise the interconnection at the fibre surface, we employ an array of magnetic

ring sources as well. A similar derivation has been performed as for the electric case.

The components of the four-dimensional vector in Eq. (4.68) are related to those for the
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magnetic case via

[f (1) , f (2) , f (3) , f (4)]Tmagn = jZ−1
0

[

−f (4) , f (3) , n2
clf (2) ,−n2

clf (1)
]T

elec
. (4.70)

This leads to an additional set of 2M + 1 independent field solutions.

Modulation of an array of ring sources

To generate a wavefield which is rich enough to give us 2M + 1 independent field solu-

tions, we have to employ at least 2M + 1 ring sources. More ring sources may reduce the

susceptibility to aliasing of the wavefield (cf. Appendix D). We have employed an array

of N ′ ring sources, located on a circle about the core centre with a radius ρ′ and evenly

distributed at angles ψ′ = 2πn′/N ′, where n′ = 0, 1, ..., N ′−1, as shown in Figure 4.8. Fur-

ther, we modulate each ring source by factors (N ′)−1 exp(jm′ψ′), with m′ = {−M, ...,M},
through the amplitude factor A(ψ′) in Eq. (4.68). These considerations hold for both

types of sources.

4.5 The bent optical fibre: scalar analysis versus full-

wave analysis

Our method is valid for arbitrary refractive-index profiles. However, to provide a validation

with results available in literature, we have carried out computations for a weakly-guiding

step-index and parabolic-index single-mode fibre.

Step-index profile

The respective refractive indices in the step-index optical fibre of the core and cladding are

nco = 1.45 and ncl = 1.447. Our comparison consists of the computation of the bending-loss

for various radii of curvature R, at a representative wavelength of λ= 1.3µm. For this

configuration, the results of our vectorial full-wave (VFW) method are compared with the

ones obtained by Eq. (4.22) and Eq. (4.23). This is shown in Figure 4.11(a).

Obviously, Eq. (4.23) overestimates the bending losses for all radii of curvature. On

the other hand, the losses computed by Eq. (4.22) are in quite good agreement with the

full-vectorial results for radii of curvature R> 4 mm. The somewhat chaotic behaviour

for R< 4 mm, is caused by the fact that for certain ζ the denominator in the integrand

in Eq. (4.22) vanishes, due to the presence of the Airy function Bi [χ (a, ζ)]. For bending

radii below 4 mm, both approximate formulae overestimate, rather than underestimate

the losses, which is good news from a design point of view.
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Figure 4.11: (a) Bending losses in a step-index fibre as a function of the radius of curvature.

The approximations of Eq. (4.22) and Eq. (4.23) are set against the full-vectorial results. (b)

The location of the propagation coefficient ζ in the complex plane. The solid disc indicates the

result for R=4mm.

Only the imaginary part of the propagation coefficient ζ is needed to obtain the bend-

ing loss. All information regarding the real part of ζ is lost in the approximate bending-

loss formulae. To give an indication, we have plotted the location of the propagation

coefficients for different values of the radius of curvature in the complex ζ-plane in Fig-

ure 4.11(b). Observe the gradual change of the propagation coefficients for a gradually

decreasing radius of curvature.

Since the field solutions of the exterior domain involve triple integrals, which have to be

computed to at least eight significant digits to obtain meaningful results, the computation

of a converged value of ζ takes two to three days on a Pentium IV, 2.6 GHz. To limit

computation times, the truncation of the Fourier series in ψ has to be as tight as possible.

For ρs = 0.58 and R≥ 2 mm, M = 6 suffices for an acceptable convergence, i.e ζ remains

unchanged for larger values of M . Obviously, for smaller radii of curvature, M should be

increased and computation time will increase accordingly.

As discussed in Section 4.4.1, the initial estimate for ζ, used in Muller’s method,

has to be as close to the actual one as possible. For large radii of curvature, we use the

approximate bending-loss formulae to obtain an accurate initial estimate, but as the radius

decreases, extrapolation of previous values of ζ proves to be more precise. Evidently, if

we use the VFW method to compute the loss of higher-order modes, the number of zeros

in the complex ζ-plane will increase accordingly, and an accurate initial guess has to be

obtained via a cautious extrapolation from the exact straight-fibre propagation coefficient.

Altogether, it has taken about five weeks to perform the computations of all full-vectorial

results shown in Figure 4.11. Thus, although the proposed method provides reliable insight
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into which of the numerous bending-loss formulae to use, it is in its present implementation

not suitable for design purposes.

In Figure 4.12, the intensity patterns for a cross section of a straight fibre (R=∞) and

a bent fibre with R= 1 cm are shown. Observe the centrifugal shift of the peak amplitude.

R =∞ R= 1 cm

Figure 4.12: Intensity patterns for a cross section of the fibre with R=∞ (left) and R=1 cm

(right). The white circle denotes the core/cladding interface.

Parabolic-index profile

Next, we compute the bending losses in a parabolic-index single-mode fibre. We consider

a parabolic refractive-index profile in the core region, which is given by Eq. (2.1) as

n(r) = nco

√

1 − 2∆ρ2, (4.71)

where nco = 1.45, ncl = 1.447, and therefore ∆≈ 0.2 %, at λ= 1.3µm. The results are

compared with the ones obtained by the scalar approximation of Eq. (4.21), which holds

for arbitrary refractive-index profiles in the core and are shown in Figure 4.13.

Further, we have computed the bending loss for the equivalent step-index (ESI) fibre

by Eq. (4.22), where nco is varied such that we obtain the same propagation coefficient

as the one for the parabolic-index fibre, i.e. ζ ≈ 1.44763. This yields for the ESI fibre the

values nco ≈ 1.44887 and ncl = 1.447. The ESI losses are plotted in Figure 4.13 as well.

In comparison to the case of the step-index fibre of Figure 4.11, the bending losses

are much higher. This is a result of the parabolic refractive-index profile, which provides

a weaker confinement of the modal field in the core region. As a consequence, the fibre

loses its power more easily through radiation. Note that the solid disc, which indicates

the point at which the approximation deviates from the VFW results, is now located at

about R= 8 mm. The power loss at this point is about equal to loss in the step-index
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Figure 4.13: (a) Bending losses in a parabolic-index fibre as a function of the radius of curvature.

The approximation of Eq. (4.21) and the ESI computed by Eq. (4.22) are set against the full-

vectorial results. (b) The location of the propagation coefficient ζ in the complex plane. The solid

disc indicates the result for R=8mm.

fibre, i.e. Im(ν)≈−5 · 10−1. The bending losses computed for the simplified ESI fibre

slightly overestimate the actual losses.

In Figure 4.14, intensity patterns for the parabolic-index fibre are plotted for a straight

and a curved fibre with R= 1 cm. We observe that, in comparison to the step-index fibre

case in Figure 4.12, the power loss for the parabolic-index is indeed higher. Again, we

observe the centrifugal shift of the peak amplitude.

R=∞ R= 1 cm

Figure 4.14: Intensity patterns for a cross section of a parabolic-index fibre with R=∞ (left)

and R=1 cm (right). The white circle denotes the core/cladding interface.
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4.6 Validation of the effective cut-off wavelength

The validation of the computation of the effective cut-off wavelength, discussed in Sec-

tion 3.1.6, is not an as trivial a task as it might seem. Reference papers are available,

although only one of those [46] uses the standardised bending method, and gives proper

fibre characteristics, viz. a complete specification of the refractive-index profile. Moreover,

the core radius and the numerical aperture (NA) supplied by the manufacturer can be off

by a few percent due to manufacturing inaccuracies.

For a step-index York SM600 fibre, fabricated by York Technology (nowadays Fibercore

Ltd.), an effective cut-off wavelength of λce = 568 nm has been measured by the bending

method by Kaur et al. [46]. Also, accurately measured values for the core radius and the

NA are given. In Table 4.1, we have distinguished between these measured values (meas)

and the ones supplied by the manufacturer (man). For both we have computed λce at the

effective radius of curvature Reff = 18.2 cm.

Table 4.1: Cut-off wavelengths for various specification of the step-index York SM600 fibre [46]

that has a measured effective cut-off wavelength of λce=568 nm. Supplied values by the manu-

facturer and measured ones are denoted by the abbreviations (man) and (meas), respectively.

Core radius (µm) NA at 633 nm λce

2.45 (man) 0.09 (meas) 538.8

2.45 (man) 0.10 (man) 597.8

2.6 (meas) 0.09 (meas) 567.5

2.6 (meas) 0.10 (man) 630.5

Evidently, a relatively small difference in core radius and NA causes a significant

difference in λce. Hence, the importance of a meticulous specification of the refractive-

index profile to properly compare simulation results with measurements. With pleasure,

we observe that simulations on the basis of measured values for the core radius and NA

give an effective cut-off wavelength that is very close to the measured value of λce = 568 nm

(to less than 0.1 %). Therefore, we may conclude that the proposed computation of λce

provides us with a good estimate of the actual effective cut-off wavelength.





Chapter 5

Profile optimisation

Often, desired optical fibre properties are conflicting, e.g. minimum dispersion and dis-

persion slope are at odds with minimum bending losses. In addition, one would like to

keep the mode-field diameter fixed. From a design point of view, it is a challenging task to

adapt the refractive-index profile of an optical fibre to meet the specific demands. Fortu-

nately, computer-based optimisation schemes can speed up this design step considerably.

In other fields of research such schemes often lead to counter-intuitive designs that could

not have been contrived otherwise [88].

Usually, an optimisation problem is formulated in terms of the minimisation of a cost

function. In our case, this function is expressed in terms of the fibre quantities introduced

in Chapter 3. The specific form of the cost function is important, since it not only de-

termines the relative importance of the individual fibre quantities, but it also influences

the rate of convergence to a minimum. Likewise, the choice and the number of optimi-

sation parameters, viz. the parameters that define the refractive-index profile, influence

the efficiency and the result of the search substantially. Although many algorithms are

available to perform the optimisation, by and large, they can be subdivided into two cate-

gories, viz. global stochastic techniques and local deterministic methods based on gradient

information.

Deterministic gradient-based optimisers, e.g. Newton algorithms [25, 31], are usually

much more efficient than stochastic ones. However, a careful initial (refractive-index

profile) guess is of vital importance as the minimisation process may otherwise end up in

a local minimum instead of in the desired global one. Further, we have to compute the

gradients of the objective function with respect to all optimisation parameters at each

iteration step in an efficient way. These gradients can be estimated by means of a finite-

difference approximation, although the optimisation is faster if the actual gradients in

terms of Fréchet derivatives are used.

Stochastically oriented optimisation techniques, on the other hand, are generally geared
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towards finding the global minimum and only require cost-function evaluations. A major

drawback forms the computation time, which can be extremely long, and therefore severely

hampers a flexible design process. Also the initialisation of these routines is delicate, as

various control parameters have to be set carefully. Genetic algorithms, particle swarm

techniques, differential evolution (DE) methods and simulated annealing (SA) are typical

examples that belong to this class of optimisers [34, 50, 92].

We have performed profile optimisations with two deterministic gradient-based opti-

misers viz. a modified-Newton (MN) algorithm E04KDF [71] and a quasi-Newton (QN)

algorithm [24, 25], and two global ones, viz. the DE [63] scheme and SA [34] scheme. The

choice of the latter two schemes is adopted from two articles by Mishra [62, 63], which

give benchmark results for stochastic optimisation routines for a large number of test

functions. There, the DE scheme comes out best, whereas the SA scheme performs only

moderately well. Nevertheless, these benchmark results strongly depend on the employed

test function, and there is no guarantee that one optimisation routine will perform better

than the other for our cost function. Therefore, and for reasons of comparison, we have

chosen to employ both schemes.

The greater part of this chapter deals with an efficient numerical computation of the

gradients for the Newton algorithms, derived in terms of Fréchet derivatives. It is only

in Section 5.4 that the stochastic optimisers come into play when we initialise them and

perform a comparison with the optimised profiles obtained by the gradient-based opti-

misation schemes. For manufacturing purposes, the sensitivity of some of the obtained

optimised profiles has been analysed in Section 5.5.4.

Finally, we wish to emphasise that it has not been our intent to write an optimisation

routine that performs the refractive-index profile optimisation ourselves. This choice was

especially influenced by the circumstance that available optimisation routines are quite

sophisticated and yield satisfactory solutions.

5.1 Optimisation parameters and cost function

An essential step in any optimisation scheme is the identification of proper optimisation

parameters. As it is our desire to optimise the refractive-index profile of an optical fibre to

realise a set design goal, we want to retain an optimum flexibility as to its shape. For the

discretisation of the profile in the core region, we have chosen a continuous concatenation

of piecewise-linear segments. The endpoints of these linear segments serve as the free

optimisation parameters. This restriction is sensible, since in practice, piecewise-linear

profiles are relatively easy to manufacture.

At each sample point we allow for a horizontal and a vertical variation except for
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the on-axis one where we allow for a vertical variation only. This implies that the total

number of optimisation parameters, N , is odd. Each possible variation is denoted by

an optimisation parameter xn, with n= 1, . . . , N . Since upward and downward refractive

index variations are achieved by adding Germanium and Fluor to the Silica, respectively

(see Section 3.1.2), each dopant can, in principle, be seen as an optimisation parameter.

To keep the total number of parameters limited, we consider the Fluor concentration, XF,

to be constant between two adjacent sample points. Of course, this constant value sets

the maximum possible depth of a trench in the refractive-index profile. Hence, for vertical

variations, solely the Germanium concentration, XGe, at a sample point is considered as

an optimisation parameter. In Figure 5.1(a), we have plotted an arbitrary Germanium

concentration profile with four sample points as a function of the normalised radial coor-

dinate ρ= r/a, where a is the core radius. The sample points are denoted by solid dots,

which correspond to seven optimisation parameters.
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Figure 5.1: Optimisation parameters xn (b) and their relation to the Germanium concentration

profile defining variables (a).

Another possibility is to regard the permittivity as the vertical optimisation parameter,

instead of its dopant building blocks. Recall that both physical quantities are (mildly

non-linearly) related through the Sellmeier equation of Eq. (3.8). By choosing for the

permittivity, we are not restricted to the dopants that are currently used, thus generalising

the overall optimisation. Moreover, in the literature, the refractive-index profile, which

is the square root of the permittivity profile, is the standard. On the other hand, if one

uses different dopants to create the same permittivity profile, this profile is only valid

for the pertaining wavelength, since the parameters in the Sellmeier equation change and

consequently the frequency characteristics of the fibre change as well. Moreover, since

the permittivity profile is defined at a wavelength of λ= 632.8 nm (see Section 2.1), and

designed with linear segments at that specific wavelength, the conversion to the desired

optimisation wavelength requires additional computation time since we have to acquire

the dopant concentrations first. Therefore, we prefer the profile optimisation of a dopant,
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which is in our case the Germanium concentration profile. To underpin this preference, we

have implemented both cases, i.e. profile optimisation of the Germanium concentration

profile and the permittivity profile, and compare their performance in Section 5.3.1.

In view of our numerical integration scheme, it is necessary to limit the radial range

in which to optimise the profile. This limit is set by the core/cladding transition. The

optimisation parameters are chosen as follows

xn = ρn − ρn−1, for n = {1, ..., (N − 1)/2}, (5.1a)

xn = XGe
n , for n = {(N + 1)/2, ..., N}, (5.1b)

and are shown explicitly in Figure 5.1(b). To exclude physically impossible profiles and

limit the parameter space, we set simple bounds for all the optimisation parameters

ǫ ≤ xn ≤ 1 − ǫ, for n = {1, ..., (N − 1)/2}, (5.2a)

0 ≤ xn ≤ 0.5, for n = {(N + 1)/2, ..., N}, (5.2b)

and a single constraint for the horizontal parameters

(N−1)/2
∑

n=1

xn ≤ 1 − ǫ. (5.3)

The small number ǫ is introduced to prevent very steep slopes in the profile, which could

lead to numerical difficulties in the gradient computations. The upper bound XGe
n = 0.5

corresponds to a refractive-index difference of about ∆≈ 3.5 %, which we deem large

enough for practical applications.

Unfortunately, the modified-Newton algorithm available to us cannot be supplemented

with constraints. For this algorithm, the bounds are chosen in such a way that the

constraint of Eq. (5.3) cannot be violated, which inevitably reduces the parameter space

according to

ǫ ≤ xn ≤ 2 (1 − ǫ) / (N − 1) , for n = {1, ..., (N − 1)/2}, (5.4a)

0 ≤ xn ≤ 0.5, for n = {(N + 1)/2, ..., N}. (5.4b)

Now that we have defined proper optimisation parameters, we translate the design goal

into a cost function (CF). It is this function that we will minimise to obtain an optimal

refractive-index profile. The fibre quantities vq that have been discussed in Chapter 3,

characterise the optical fibre, and may be used to construct the CF. Since these are physical

quantities, they are all real-valued. We express the CF as a sum of squared errors, i.e.

CF =

Q
∑

q=1

wq
[

vq(xn) − vref
q

]2
, (5.5)
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where Q denotes the number of fibre quantities. The desired value for a fibre quantity

is denoted by the superscript ‘ref’. Weighting coefficients wq are included to scale the

pertaining quantities to the same order of magnitude, or to stress the importance of a

certain quantity above others.

Optimisation with a stochastic technique carries out repeated evaluations of the CF

of Eq. (5.5). For the gradient-based algorithms, gradients of the CF with respect to

the optimisation parameters are required as well. The computation of these gradients is

treated in the next section.

5.2 Gradient-based optimisation

The gradient-based optimisation is performed by commercially available routines. We have

used a modified-Newton algorithm from the NAG library (E04KDF) [71], and a quasi-

Newton solver named FILTER, developed by Fletcher and Leyffer [25]. In both routines,

gradient information accelerates the search for the minimum of the CF by providing

steepest-descent directions. Hence, the first derivatives of the CF with respect to the

optimisation parameters xn need to be computed, i.e.

∂xn
CF = 2

Q
∑

q=1

wq
[

vq(xn) − vref
q

]

∂xn
vq. (5.6)

The more accurate these gradients are computed, the faster the convergence to a

minimum will be. The fibre quantities vq are not simple functions of the optimisation

parameters, and therefore, inevitably, we have to carry out part of the computation of

∂xn
vq numerically. From Eq. (5.1) and Figure 5.1, we infer that

∂xn
F =

(N−1)/2
∑

i=n

∂ρi
F, for n = {1, ..., (N − 1)/2}, (5.7a)

∂xn
F = ∂XGe

n
F, for n = {(N + 1)/2, ..., N}, (5.7b)

where, for the sake of simplicity, we have introduced the functional F : D → R, which

corresponds to a single fibre quantity vq [61]. To obtain the directional derivatives on

the right-hand side of Eq. (5.7), we have applied two approaches, i.e. the finite-difference

approximation and the Fréchet derivative. To elucidate both procedures, we have redrawn

the arbitrary profile of Figure 5.1 in Figure 5.2.

The finite-difference approximation is, wherever physically possible, carried out with

a central-difference scheme, i.e.

{

∂ρi
, ∂XGe

n

}

F (XGe, δXGe) ≈
1

2h

[

F
(

XGe + hδXGe
)

− F
(

XGe − hδXGe
)]

= ∆Fn,central,

(5.8)
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Figure 5.2: Horizontal and vertical profile variations and the corresponding profile variation

functions hδXGe.

where h is a small value by which the profile is altered at a specific sample point. The

corresponding profile variation function hδXGe about this sample point is shown in Fig-

ure 5.2, and is defined by the points pi, with i ∈ {1, 2, 3}, as follows

p1 = h

[

XGe(ρi−1) −XGe(ρi)

ρi + h− ρi−1

]

, p2 = h

[

XGe(ρi) −XGe(ρi+1)

ρi+1 − ρi

]

, p3 = h. (5.9)

A horizontal variation of the profile corresponds to the directional derivative ∂ρi
F , whereas

a vertical one corresponds to ∂XGe
n
F . As a result, three evaluations of F are required in our

optimisation scheme for each CF evaluation, namely two for the finite-difference scheme

and one for the unperturbed profile to obtain the actual values of vq. Additionally, the

value of the step-size h has to be determined carefully to avoid loss of accuracy. The

accuracy of the finite-difference approximation in Eq. (5.8) depends on the accuracy to

which the functional F can be computed, since the subtraction reduces the number of

correct digits.

The Fréchet derivative, which denotes a directional derivative of the functional F in

the direction of a test function δXGe ∈ D, is defined as follows [61]

{

∂ρi
, ∂XGe

n

}

F (XGe, δXGe) = lim
h→0

1

h

[

F (XGe + hδXGe) − F (XGe)
]

= δFn, (5.10)

where the δ is also known as the first variation of Fn. The test functions δXGe, which

differ for a horizontal and a vertical variation, are obtained by performing the limiting

process in Eq. (5.10) on the profile variations in Figure 5.2. This limiting process will be

elucidated in the next section.

Once the test functions δXGe are known, we determine the first variation of the prop-

agation coefficient δζ, and subsequently, the first variation of the fibre quantities vq. An

accuracy and time comparison between the finite-difference approximation and the exact

Fréchet derivative is performed in Section 5.2.4.
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5.2.1 Gradient computation of the refractive-index profile

We perform the limiting process in Eq. (5.10) on the profile variations in Figure 5.2. The

resulting first variations δXGe are shown in Figure 5.3, where expressions for the linear

X
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Figure 5.3: Horizontal and vertical profile variations and the corresponding profile variation

functions δXGe, which are obtained through Eq. (5.10).

flanks are, with the aid of Eq. (5.9), readily given by

1○: δXGe =
[

XGe(ρi−1) −XGe(ρi)
] ρ− ρi−1

(ρi − ρi−1)
2 , 3○: δXGe =

ρ− ρi−1
ρi − ρi−1

,

2○: δXGe =
[

XGe(ρi) −XGe(ρi+1)
] ρi+1 − ρ

(ρi+1 − ρi)
2 , 4○: δXGe =

ρi+1 − ρ
ρi+1 − ρi

.
(5.11)

Through the Sellmeier equation, given by Eq. (3.8), we obtain the first variation of the

permittivity δεr

δεr(ρ) =
3
∑

i=1

δXGeω̂2
i υ

−1
[

dbGe
i + bidλ

Ge
i ω̂2ω̂i (πaυ)

−1] . (5.12)

Consequently, the derivative with respect to ρ of δεr is given by

∂ρδεr =
3
∑

i=1

ω̂2
i υ

−1
{

∂ρδX
Ge
[

dbGe
i + bidλ

Ge
i ω̂2ω̂i (πaυ)

−1]

+
ω̂iω̂

2δXGedλGe
i ∂ρX

Ge

2 (πaυ)2

[

4πadbGe
i υ−1 + biω̂idλ

Ge
i

(

3ω̂2 + ω̂2
i

)]

}

, (5.13)

where

1○: ∂ρδX
Ge =

XGe(ρi−1) −XGe(ρi)
(ρi − ρi−1)

2 , 3○: ∂ρδX
Ge = (ρi − ρi−1)

−1 ,

2○: ∂ρδX
Ge =

XGe(ρi+1) −XGe(ρi)
(ρi − ρi−1)

2 , 4○: ∂ρδX
Ge = (ρi − ρi+1) ,

(5.14)
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for the pertaining flanks, and a delta function is introduced due to the step between flank

1○ and 2○. These delta functions only occur in the computation of the first variation of

the MFD dII as we will show in Section 5.2.3, and similar to the discussion for the MFD

dII in Section 3.1.4, we neglect them during the pertaining computations.

5.2.2 Gradient computation of the propagation coefficient

The propagation coefficient ζ forms the cornerstone in the computation of all fibre quanti-

ties vq (see Chapter 3). To compute the directional derivative of the fibre quantities, ∂xn
vq,

it is therefore evident that we first have to determine the gradients ∂xn
ζ by employing the

definition from Eq. (5.10). Further, we will frequently refer to Section 2.3 where we have

elaborated on the computation of ζ.

First of all, we expand all variables that are required to compute ζ, and that depend on

the Germanium concentration XGe and its variation δXGe, in terms of their first variation

{

εr(X
Ge) → εr + hδεr,

ζ(XGe) → ζ + hδζ,

{

f(XGe) → f + hδf ,

A(XGe) → A + hδA.
(5.15)

The propagation coefficient ζ is obtained from the characteristic equation C(ζ) of Eq. (2.42).

Upon substituting the expansion of the field vector f in C(ζ), an expression for the first

variation δζ is readily obtained, i.e.

δC(ζ, δζ)|ρ=1 = 0 = det [δf1 f2 f3 f4] |ρ=1 + det [f1 δf2 f3 f4] |ρ=1 +

det [f1 f2 δf3 f4] |ρ=1 + det [f1 f2 f3 δf4] |ρ=1.
(5.16)

For the core region, the first variations δf1 and δf2 are obtained by an expansion of the

system of differential equations of Eq. (2.29) in the following way

dρ

(

f

δf

)

= ρ−1

(

A(ρ) 0

δA(ρ) A(ρ)

)(

f

δf

)

, (5.17)

with

δA(ρ) =

















0
ω̂ζ
ε2
r

(2εrδζ − ζδεr)
m
ε2
r

(εrδζ − ζδεr) 0

ω̂ρ2δεr 0 0 −mδζ
mδζ 0 0 ω̂ (2ζδζ − δεr)

0 −m
ε2
r

(εrδζ − ζδεr)
m2δεr
ω̂ε2

r

0

















. (5.18)

Above, A(ρ) and δεr are given by Eq. (2.30) and Eq. (5.12), respectively. The initial field

vectors, which are needed for the numerical integration of the system of Eq. (5.17), consist
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of the two 4-vectors given by Eq. (2.34) and their first variations, i.e.

(δf1, δf2) =











0 δζ

0 0

δζ δεr,0

0 0











, (δf ′1, δf
′
2) = V











0 δζ + ζW

0 0

0 −δεr,0 − εr,0W

0 −mω̂−1W











, (5.19)

where V is given by Eq. (2.35) and where

W = ∂ρδεr,0 (∂ρεr,0)
−1 − δεr,0 (εr,0)

−1 . (5.20)

The derivative ∂ρδεr,0 at the fibre axis is given by Eq. (5.13).

For the invariant cladding region, where analytical expressions for the field vectors are

available, the first variations are given by

[δf3(ρ), δf4(ρ)] =
ω̂δζ

w2γ2











0 0

ζεr,cl [2 + w2ρ2 (1 − τ 2)] m (ζ2 + εr,cl)

0 0

m (ζ2 + εr,cl) ζ [2 + w2ρ2 (1 − τ 2)]











, (5.21)

where τ =K ′
|m|(wρ)/K|m|(wρ), in which the prime denotes a derivative with respect to the

argument.

Now that all field vectors and their first variations are known, we employ a Van

Wijngaarden–Dekker–Brent root-finding scheme [78] to perform the search for the varia-

tion δζ in Eq. (5.16). This search involves on average about eight function evaluations to

obtain a high precision. However, at the cost of a larger system of differential equations,

we will now present a more efficient alternative, which merely requires a single evaluation.

Alternative gradient computation of the propagation coefficient

Let us regard the propagation coefficient ζ as an independent variable. Since δC(ζ) = 0

holds for all profile variations δXGe (see Eq. (5.16)), its derivative with respect to δXGe

results in
δC

δXGe
= 0 = ∂ζC

δζ

δXGe
+

δC

δXGe

∣

∣

∣

∣

ζ=cst.

⇒ δζ = − δC

∂ζC
. (5.22)

Hence, to determine δζ, we need, in addition to δC, also ∂ζC. The computation of the latter

variation has already been discussed in Section 3.1.1. As ζ is considered an independent

variable, field solutions for both core and cladding regions have to be derived anew.

Let us start with the core region by expanding the system of Eq. (2.29) as follows

dρ







f

δf

∂ζf






= ρ−1







A(ρ) 0 0

δA1(ρ) A(ρ) 0

∂ζA(ρ) 0 A(ρ)













f

δf

∂ζf






, (5.23)
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where

δA1(ρ) = δεr

















0 − ω̂ζ
2

ε2
r

−mζ
ε2
r

0

ω̂ρ2 0 0 0

0 0 0 −ω̂
0

mζ
ε2
r

m2

ω̂ε2
r

0

















, ∂ζA(ρ) =













0
2ω̂ζ
εr

m
εr 0

0 0 0 −m
m 0 0 2ω̂ζ

0 −mεr 0 0













. (5.24)

The initial vectors, and their gradients, which follow from Eq. (2.34), read

(δf1, δf2) =











0 0

0 0

0 δεr,0

0 0











, (δf ′1, δf
′
2) = −V











0 −ζW
0 0

0 δεr,0 + εr,0W

0 mω̂−1W











,

(∂ζf1, ∂ζf2) =











0 1

0 0

1 0

0 0











, (∂ζf
′
1, ∂ζf

′
2) = V











0 1

0 0

0 0

0 0











,

(5.25)

where W is given by Eq. (5.20). In the cladding region, the pertaining derivatives of the

two independent solutions are, with the aid of Eq. (2.38), found as

[∂ζf3 (ρ) , ∂ζf4 (ρ)] =











0 0

∂ζv1εr,cl ∂ζv2

0 0

∂ζv2 ∂ζv1











, (δf3, δf4) = 0 (5.26)

where

∂ζv1 = v1ζω̂
2w−2 [ω̂ρ (σ − τ) − 1] , ∂ζv2 = mω̂2(ζ2 + εr,cl)w

−4, (5.27)

with σ=K ′′
|m|(wρ)/K

′
|m|(wρ) and τ =K ′

|m|(wρ)/K|m|(wρ). Again, the primes denote deriv-

atives with respect to the argument of the Bessel function. Now, we have determined all

the ingredients to tackle Eq. (5.22). The alternative gradient computation has been used

for the computation of δζ as it is about five times more efficient.

Finally, we point out that for the weakly guiding case of Section 2.5, an equivalent

derivation can be performed, although the sizes of the systems of differential equations

are reduced by a factor of two.

5.2.3 Gradient computation of the fibre quantities

To determine the directional derivatives of the fibre quantities ∂xn
vq that are required to

compute the gradient of the cost function in Eq. (5.6), the propagation coefficient and
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the refractive-index profile as well as their gradients prove essential. In the following, we

address all the quantities of the single-mode fibre that have been introduced in Chapter 3

and give expressions of their first variations.

Dispersion

The dispersion is defined by Eq. (3.3). Upon employing the limiting process in Eq. (5.10)

in combination with the expansion of Eq. (5.15), its first variation reads

δD = − ω̂2

2πac0

(

2
dδζ

dω̂
+ ω̂

d2δζ

dω̂2

)

. (5.28)

The derivative of δζ with respect to ω̂ is, with the aid of Eq. (3.4) and Eq. (3.7), determined

from
d δC(ζ, δζ)

dω̂
≡ 0 ⇒ dδζ

dω̂
= − ∂ω̂δC

∂δζδC
− ∂ζδC

∂δζδC

(

dζ

dω̂

)

, (5.29)

d2δζ

dω̂2
= − (∂δζδC)−1

{

∂2
ω̂δC+

(

dζ

dω̂

)[

∂2
ζ δC

(

dζ

dω̂

)

+ 2∂2
ω̂ζδC+ ∂2

ζδζδC

(

dδζ

dω̂

)]

+

(

d2ζ

dω̂2

)

∂ζδC+

(

dδζ

dω̂

)[

∂2
δζδC

(

dδζ

dω̂

)

+ 2∂2
ω̂δζδC+ ∂2

ζδζδC

(

dζ

dω̂

)]

}

.

(5.30)

The derivation of the various first-order and second-order derivatives of δC, which is

given by Eq. (5.16), requires a considerable amount of bookkeeping, although it is quite

straightforward. As an example, we give the first-order derivative for α ∈ {ζ, δζ, ω̂}

∂αδC =|∂αδf1 f2 f3 f4| + |∂αf1 δf2 f3 f4| + |∂αf1 f2 δf3 f4| + |∂αf1 f2 f3 δf4|
+|δf1 ∂αf2 f3 f4| + |f1 ∂αδf2 f3 f4| + |f1 ∂αf2 δf3 f4| + |f1 ∂αf2 f3 δf4|
+|δf1 f2 ∂αf3 f4| + |f1 δf2 ∂αf3 f4| + |f1 f2 ∂αδf3 f4| + |f1 f2 ∂αf3 δf4|
+|δf1 f2 f3 ∂αf4| + |f1 δf2 f3 ∂αf4| + |f1 f2 δf3 ∂αf4| + |f1 f2 f3 ∂αδf4|,

(5.31)

where we have used the notation det(A) = |A| and have assumed that all determinants are

evaluated at ρ= 1. In the core region, the pertaining field vectors are again obtained by

expanding the system of differential equations in Eq. (5.17), i.e.

dρ











f

∂αf

δf

∂αδf











= ρ−1











A(ρ) 0 0 0

∂αA(ρ) A(ρ) 0 0

δA1(ρ) 0 A(ρ) 0

∂αδA1(ρ) δA1(ρ) ∂αA(ρ) A(ρ)





















f

∂αf

δf

∂αδf











. (5.32)

For the cladding region, the derivatives of the field vectors and their first variations follow

from Eq. (2.38) and Eq. (5.26), respectively. This provides us with all the components

required to compute the first variation of the dispersion in Eq. (5.28).
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Dispersion slope

The first variation of the dispersion slope is, with the aid of Eq. (3.11), obtained as

δS =
ω̂3

(2πa)2 c0

(

4
dδζ

dω̂
+ 5ω̂

d2δζ

dω̂2
+ ω̂2d

3δζ

dω̂3

)

, (5.33)

where the first two derivatives on the right-hand side are given by Eqs. (5.29) and (5.30),

respectively. The third-order derivative reads

d3δζ

dω̂3
= − (∂δζδC)−1

{

∂3
ω̂δC+ ∂3

ζC

(

dζ

dω̂

)3

+ ∂3
δζC

(

dδζ

dω̂

)3

+ ∂ζC

(

d3ζ

dω̂3

)

+ 3

(

dζ

dω̂

)[

∂3
ω̂2ζδC+ ∂3

ω̂ζ2δC

(

dζ

dω̂

)

+ ∂2
ζ δC

(

d2ζ

dω̂2

)

+ ∂3
ζ2δζC

(

dζ

dω̂

)(

dδζ

dω̂

)

+ ∂3
ω̂ζδζC

(

dδζ

dω̂

)

+ ∂2
ζδζC

(

d2δζ

dω̂2

)]

+ 3

(

dδζ

dω̂

)[
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(
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dω̂
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(
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dω̂2

)

+ ∂3
ζδζ2C

(

dζ

dω̂

)(

dδζ

dω̂

)

+ ∂3
ω̂ζδζC

(

dζ

dω̂

)

+ ∂2
ζδζC

(

d2ζ

dω̂2
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+ 3∂2
ω̂ζC

(

d2ζ

dω̂2

)

+ 3∂2
ω̂δζC

(

d2δζ

dω̂2

)}

.

(5.34)

Obviously, third-order derivatives of the fields vectors with their variations are needed.

Hence, the by now familiar system of differential equations must be expanded such that

it yields all desired field vectors in the core region. Also in the cladding region, the

third-order derivatives of the field vectors must be derived. Although these derivations

constitute a precise and time-consuming exercise, they are straightforward, while stating

the resulting expressions would amount to a notable number of pages containing matrices

and vectors. Therefore, we omit these expressions here.

Mode-field diameter and effective area

The main building block in the computation of the mode-field diameter and effective area

is the complex Poynting vector defined in Eq. (3.14). Its first variation is given by

δS(ρ) = ErδH
∗
ψ + δErH

∗
ψ −H∗

r δEψ − δH∗
rEψ. (5.35)

The computation of the transverse field components has been discussed in Section 3.1.4.

Once the proper variations of the modal amplitudes are obtained, the variations of the

transverse field components follow via the scaling of Eq. (2.28) and the variations in the
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core and cladding field vectors in Eqs. (5.17) and (5.21), respectively. The variation in

the radial components follows from Eq. (2.39)

δEr = (ω̂εr)
−1 Z0

[

ρ−1m
(

δHz −Hzδεrε
−1
r

)

+ ω̂
(

δζHψ − ζδHψ − ζHψδεrε
−1
r

)]

,

δHr = − (ω̂Z0)
−1 [ρ−1mδEz + ω̂ (δζEψ + ζδEψ)

]

.
(5.36)

To determine the variations of the modal amplitudes, we recall the matrix-vector

product of Eq. (2.41) and write it in a generic way,

Fa|ρ=1 = 0, (5.37)

where F = [f1(ρ) f2(ρ) f3(ρ) f4(ρ)] and where the vector a contains the modal amplitudes

of the field vectors for the pertaining propagation coefficient ζ. The first variation at ρ= 1

follows from

Fδa = −δFa, (5.38)

where δF = [δf1(ρ) δf2(ρ) δf3(ρ) δf4(ρ)], with vectors given by Eqs. (5.17) and (5.21), and

where δa is the desired variation vector of the modal amplitudes. The evaluation of δa

is complicated by the fact that the matrix F is singular through Eq. (5.37). In [78], a

solution procedure is described, based on the singular-value decomposition of the matrix

F = U [diag(σj)] V, which circumvents this problem. This is achieved by replacing the

inverse of the singular value σj that is (nearly) zero by zero itself. In other words, the

vector δa is given by

δa = V [diag(1/σj)] U
T δFa, (5.39)

where (1/σj) = 0 if σj becomes too small. The apparent ambiguity with the null-space of

F is due to the fact that the modulus of the vector of modal amplitudes is arbitrary (cf.

Eq. (5.37)).

Once δS(ρ) has been computed, the first variation of the Petermann-1 (dI) and the

Petermann-2 (dII) definitions of the mode-field diameter follow from

δdI =
4a2

dI

∫ ∞

ρ=0

δSρ3dρ

∫ ∞

ρ=0

Sρdρ−
∫ ∞

ρ=0

Sρ3dρ

∫ ∞

ρ=0

δSρdρ

(∫ ∞

ρ=0

Sρdρ

)2 ,

δdII =
16a2

dII

∫ ∞

ρ=0

δSρdρ

∫ ∞

ρ=0

(dρS)2

S
ρdρ−

∫ ∞

ρ=0

Sρdρ

∫ ∞

ρ=0

dρS

S2
(2SdρδS − δSdρS) ρdρ

(

∫ ∞

ρ=0

(dρS)2

S
ρdρ

)2 ,

(5.40)
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where we already have performed the integration over ψ and have omitted the ρ-dependence

of the complex Poynting vector. For the effective area, we obtain the following expression

δAeff = 4πa2

∫ ∞

ρ=0

Sρdρ

(∫ ∞

ρ=0

δSρdρ

∫ ∞

ρ=0

S2ρdρ−
∫ ∞

ρ=0

Sρdρ

∫ ∞

ρ=0

SδSρdρ

)

(∫ ∞

ρ=0

S2ρdρ

)2 . (5.41)

The integration over the core and cladding regions is performed with fixed quadrature

rules or, where possible, analytically (see Appendix F.3). The delta functions that occur

in δdII , and originate from possible refractive-index profile jumps and jumps due to vertical

variations (see Figure 5.11), are neglected.

Macrobending loss

In Chapter 4, we have shown that Faustini’s approximation [22] is most suitable to com-

pute the bending losses in an optical fibre with a step-index and parabolic-index profile

for radii of curvature R> 8 mm. That is, if one does not wish to resort to a vectorial

full-wave approach. Since a fast computation of an optimised profile is essential, and the

fibre specifications given by manufacturers are defined for R≥ 10 mm, we will use this

approximation, which is given by Eq. (4.21), to compute the bending losses. For the

fundamental LP01-mode (ℓ= 0), the first variation reads

δα = 2 (P0ζstr)
−1

∫ ∞

ξ=0

(

δS0AiBi−1 + S0Bi−2 [Ai′Biδχa − AiBi′δχb]
)

dξ

− 2 (δP0ζstr + P0δζstr) (P0ζstr)
−2

∫ ∞

ξ=0

S0AiBi−1dξ,

(5.42)

where the prime indicates a derivative of the Airy function with respect to the whole

argument, S0 =S0(ξ), Ai = Ai (χa), Bi = Bi (χb), with χa =χ (0, ξ) and χb =χ (1, ξ), and

δP0 =4a2π

{

K2
0(w)

∫ 1

ρ=0

[

ψ(ρ)δψ(ρ)ψ(1) − δψ(1)ψ2(ρ)

ψ3(1)

]

ρdρ

− ζδζ

2γ2
K2

1(w) −K0(w)K1(w)ω̂ζδζγ−1

∫ 1

ρ=0

[

ψ(ρ)

ψ(1)

]2

ρdρ

}

,

δS0 = − aπδγ (1 + ω̂γ)
(

ω̂γ2
)−1

exp (−ω̂γ) ,

δχ(X, ξ) = (4ω̂ζρc)
2/3 δζ

ζ

[

1

2
− 1

3

(

γ2

ζ2
+
X

ρc

)]

.

(5.43)

The variation δψ is the weak-guidance equivalent of the variation in the field vectors δf .

Profile optimisation for the MAC-value has not been implemented in the optimisa-

tion process, as it takes about ten seconds to perform the search for the effective cut-off
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wavelength (see Section 3.1.6). This would lead to a considerable increase of the overall

optimisation time. Moreover, a proper choice for the bending loss and the mode-field

diameter usually implicitly results in an acceptable MAC-value.

5.2.4 Gradient approximation by finite differences

To check the accuracy (and correctness) of the computed gradients, we have performed

a comparison with the finite-difference approximation. In addition, this comparison pro-

vides us with an optimal value for the step size h. The finite-difference approximation

is performed with the central finite-difference scheme, which is given by Eq. (5.8). For

horizontal profile variations, we recall from Eq. (5.2) that the difference between two

subsequent ρn points is at least ǫ. This imposes an upper limit on the step size, viz.

h≤ ǫ. Experimentally, we have obtained a relative value of ǫ= 0.004 with respect to the

normalised unit core radius.

In case of a vertical profile variation, the Germanium concentration XGe may not

become negative if we add a variation to the profile. If this is about to happen, we employ

a forward finite-difference scheme, i.e.

∂xn
F (XGe, δXGe) ≈

1

h

[

F
(

XGe + hδXGe
)

− F
(

XGe
)]

= ∆Fn,forward. (5.44)

For evaluation purposes, we have constructed a Germanium concentration profile, with a

core radius a= 5µm, which is shown in Figure 5.4. The solid dots indicate the optimisa-
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Figure 5.4: Germanium concentration profile with XF
co =0.27% and XF

cl =0.

tion points, which correspond to “three” horizontal and “four” vertical parameters. The
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horizontal step size h is clearly limited near ρ= 0.425, whereas the vertical one is unidirec-

tional at ρ= 0.45, and hence Eq. (5.44) is used. Further, we have assumed a background

concentration of Fluor, XF
co = 0.27 %, in the core region. The jump in the Germanium con-

centration profile at ρ= 1 is such that the permittivity profile is continuous throughout

at λ= 632.8 nm.

First of all, we validate our gradients ∂xn
ζ by comparing the Fréchet derivatives δFn in

Eq. (5.10) with the finite-difference approximations ∆Fn given by the Eqs. (5.8) and (5.44)

for a central and a forward difference scheme, respectively. The relative error between both

results, which we define as

Rel. error =

∣

∣

∣

∣

1 − ∆Fn,central or forward

δFn

∣

∣

∣

∣

, (5.45)

is shown as a function of the step size h in Figure 5.5. The step size h is taken as an un-

scaled quantity. In particular, it is the variation of the radial coordinate r in micrometres

and of the Germanium concentration XGe in mole fractions. The results for horizontal

profile variations are plotted in Figure 5.5(a), whereas the vertical ones are shown in (b).
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Figure 5.5: The relative error in ∂xnζ, n= 1, ..., 7, obtained by Eq. (5.45) as a function of the

absolute step size h. Horizontal profile variations in (a) and vertical ones in (b). The straight

line corresponds to the estimated error after applying the finite-difference subtraction. For n= 7,

a forward finite-difference scheme has been used.

In the core region, the field vectors and their first variation are computed up to a

relative accuracy of 10−12. In the cladding region, solutions are available up to machine
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Figure 5.6: The relative error in ∂xnD (a) and ∂xnS (b) obtained by Eq. (5.45) as a function of

the absolute step size h for horizontal variations. The straight line corresponds to the estimated

error after applying the finite-difference subtraction.

precision. The variation δζ is computed to the same order of precision. However, when we

compute the gradient with the finite-difference approximation, we lose significant digits

due to the subtraction in the numerator. The upper limit of “trusted” digits is denoted

by the straight lines in Figure 5.5. Below this line we find ourselves in the noise regime.

For n= 7 we had to employ the forward-difference scheme of Eq. (5.44). As a conse-

quence, the relative error is several orders of magnitude higher and a step size of about

h= 6 · 10−7 seems best to guarantee 6 correct digits. For n∈ {1, 2, 3} and n∈ {4, 5, 6},
we have chosen absolute step sizes of h= 5 · 10−4 and h= 5 · 10−5, which will leave about

8 correct digits for ∂xn
ζ.

The dispersion and dispersion slope, respectively given by Eq. (3.3) and Eq. (3.12),

constitute the most tedious computations, due to the presence of several partial derivatives

with respect to ζ, which introduce cancellations in the final assembly of the expressions.

Therefore, we have computed the relative error between the finite-difference method and

the gradient method for both ∂xn
D and ∂xn

S. For convenience, we have only plotted

the elements n∈ {1, 2, 3} in Figure 5.6. In comparison to the propagation coefficient

in Figure 5.5(a), we lose little accuracy in the computation of the dispersion. For the

dispersion slope, on the other hand, we lose two digits. The previously chosen finite-

difference step size of h= 5 · 10−4 remains about the optimal one. Also for the vertical
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variations, we have obtained the same best absolute step size of about h= 5 · 10−5. For

the mode-field diameter, the effective area, and the bending loss similar comparisons have

been performed with comparable results.

From this comparison, we infer that the exact gradient computation works fine. More-

over, as we will discuss in Section 5.3.2, computation times favour the pertaining method

considerably. Conversely, the effort of deriving the gradients by hand is a time-consuming

and tedious job.

5.3 Increasing the optimisation efficiency of the de-

terministic gradient-based schemes

To make the profile optimisation with the gradient-based algorithms as efficient as possi-

ble, we first determine whether the Germanium concentration or the permittivity is the

better vertical optimisation parameter. In Section 5.1, we have already elaborated on

the advantages and disadvantages of each vertical optimisation parameter. Subsequently,

we use the thus acquired vertical parameter to compare a profile optimisation using the

finite-difference approximation with a profile optimisation using Fréchet derivatives.

Practical values for the fibre quantities vq depend on the utilisation of the optical

fibre. For the purpose of illustration, we have chosen all weighting coefficients wq in the

cost function (CF) of Eq. (5.5) to be equal to one. Further, we have added a test in

the optimisation loop, which checks whether the fibre is still in its single-mode regime.

Although the effective cut-off wavelength would be the appropriate quantity for this check,

it is too time consuming inside the optimisation loop (see Section 3.1.6). Therefore, we

have employed a mode-counting scheme that is based on the theoretical cut-off wavelength

[17, 18] which is much faster, and safely, overestimates the cut-off wavelengths of the

higher-order modes. If there exists more than one mode, a penalty is added to the CF.

Finally, we note that all computations have been performed on a Pentium IV, 2.6 GHz

computer.

5.3.1 The best vertical optimisation parameter

To determine whether the Germanium concentration or the permittivity is the better

vertical optimisation parameter, we have used the modified-Newton algorithm to perform

profile optimisations for both profiles. The relation between the Germanium concentration

and the permittivity, given by the Sellmeier equation in Eq. (3.8), is in practice almost

but not completely linear. Moreover, the Germanium concentration does not depend on

the wavelength, whereas the permittivity does.
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We start the permittivity profile optimisation with a simple arbitrarily chosen ini-

tial permittivity profile, which consists of linear segments at a wavelength of 632.8 nm

and is continuous as a function of radius. The corresponding Germanium concentration

profile, with mildly non-linear segments, and the piecewise constant Fluor concentra-

tion profile are shown in Figure 5.7. The core radius is assumed to be a= 5µm. The
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Figure 5.7: Doping concentrations (XF, XGe) with the corresponding mildly non-linear refractive-

index profile n2(ρ) at 1550 nm and the refractive-index difference ∆ given at the wavelength of

632.8 nm. The radius of the fibre is a= 5 µm.

refractive-index difference at λ= 632.8 nm is plotted as well. Since the permittivity profile

is plotted at λ= 1550 nm, it is slightly non-linear, although this is hardly visible. Due to

the presence of Fluor in the core region, the Germanium concentration is discontinuous

at the core/cladding transition at ρ= 1 to achieve a continuous permittivity profile at

λ= 632.8 nm.

For the optimisation of the Germanium concentration profile, we employ linear seg-

ments as well. Also here we consider a continuous profile as a function of radius. Con-

sequently, the permittivity profile is now mildly non-linear and is discontinuous at the

core/cladding interface.

We point out that the initial profile differs for both profile optimisation runs, i.e. there

is a discontinuity at ρ= 1 in either the Germanium concentration or the permittivity.

Consequently, the resulting optimised profiles may differ somewhat as well as the value of

the end value of the cost function (CFe). Therefore, we choose the computation time per

iteration as the primary selection criterium for the best vertical and not the CFe.

We have performed two profile optimisation runs, at the typical wavelength of 1550 nm,
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for various weighting coefficients wq in the CF. The results are summarised in Table 5.1,

Table 5.1: Results for the optimisation of a permittivity (Perm) and Germanium (Germ) profile

with various weighting coefficients wq at λ= 1550 nm.

vref
q wq vGerm

q vPerm
q wq vGerm

q vPerm
q

D (ps/km/nm) 13 1 13.97 13.88 1 13.00 13.00

S (ps/km/nm2) 0 1 5.86E-2 6.03E-2 0 5.97E-2 6.12E-2

MFD dII (µm) 10 1 10.30 10.40 1 10.00 10.00

Bend. loss (dB/turn) 0 1 0.92 0.98 0 0.49 0.34

Eff. Area (µm2) 80 1 79.77 79.73 0 73.52 73.37

Comp. time per iter. (s) - - 0.58 0.89 - 0.54 0.82

Number of iter. - - 26 28 - 16 16

CFe - - 1.94 1.98 - < 1E-6 < 1E-6

where the superscripts “Germ” and “Perm” denote optimisation with respect to the Ger-

manium concentration profile and the permittivity profile, respectively. The desired val-

ues of the fibre quantities are given by vref
q . The bending loss is computed by Eq. (4.21).

In accordance with typical optical specifications, we have chosen a mandrel diameter of

32 mm and a single wind of the optical fibre. Further, we have applied the stress-induced

correction factor of Reff = 1.3R= 20.8 mm, as discussed in Section 3.1.6.

Note that the number of iterations as well as the value of CFe between both vertical

optimisation parameters are about the same. However, since the Germanium concentra-

tion is wavelength-independent, the profile optimisation is about a factor of 1.5 faster.

Moreover, from a manufacturing point of view, information of the dopant concentration

as a function of the radial coordinate is more convenient. Therefore, we will regard the

Germanium concentration as the vertical optimisation parameter of choice.

5.3.2 Finite-difference versus exact-gradient computation

The computation of the gradient by a finite-difference scheme has been discussed exten-

sively in Section 5.2.4. There, it was shown that, with a proper choice for the step-size

h, a fair estimate of the gradient can be obtained. Now, how does this finite-difference

approximation affect the optimisation process in comparison to its exact counterpart? To

answer this question, we start a profile optimisation from the Germanium concentration

profile as given in Figure 5.7, consisting of linear segments and being continuous as a

function of radius. For simplicity, we optimise three fibre quantities, i.e. the dispersion
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(D), the dispersion slope (S) and the mode-field diameter (MFD) dII , at a wavelength of

λ= 1550 nm.

We have performed three optimisation runs with the modified-Newton (MN) algorithm

optimising to a single fibre quantity at a time. The set reference values of these quantities

with their pertaining weighting coefficients are given in Table 5.2. If the reference value

cannot be reached, the run is terminated as soon as the relative difference between the

exact (ex) and finite-difference (fd) value for that quantity is smaller than 10−6. Otherwise,

the relative difference between the reference value and the computed ex-value or fd-value

should be smaller than 10−6 to stop the optimisation run. Further, we have added the

number of iterations and the used computation time.

Table 5.2: Results for the MN optimisation scheme of a Germanium concentration profile with the

finite-difference (fd) approximation or by the exact (ex) gradient for various weighting coefficients

wq at λ= 1550 nm.

vref
q wq vex

q vfd
q wq vex

q vfd
q wq vex

q vfd
q

D 13 1 13.00 13.00 0 15.56 15.56 0 15.66 15.64

S (×1E-2) 0 0 5.87 5.87 1 5.69 5.69 0 5.77 5.77

MFD dII 10 0 8.83 8.83 0 8.50 8.50 1 10.00 10.00

Comp. time (s) - - 9 20 - 13 48 - 11 24

No. of iter. - - 16 20 - 22 48 - 19 24

The profile optimisation with respect to the dispersion slope, employing the finite-

difference scheme, proves to be the most strenuous one. From the discussion in Sec-

tion 5.2.4, this was to be expected as several digits are lost during the computation of this

quantity, due to cancellation. For the dispersion and mode-field diameter, the differences

in the number of iterations are marginal.

The latter observation is important if we recall that in the first variation of the MFD dII

delta functions occur through Eq. (5.13) for piecewise-linear continuous profiles, which we

have neglected in the exact-gradient computations. In the finite-difference scheme, these

delta functions are absent and therefore the profile optimisation might yield better results

in a shorter period of time. However, this does not follow from the optimisation results

in Table 5.2, and hence, it seems fair to employ the exact-gradient computations also for

the MFD dII while neglecting the presence of any delta functions.

The difference in computation time between the finite-difference approximation and the

exact-gradient computation is nearly a factor of two, and, hence, the analytic derivation

of all gradients seems worthwhile. Moreover, if we increase the number of optimisation

parameters, the difference in computation time becomes even more pronounced. This is
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shown in Figure 5.8, where we have plotted the computation time of a single CF evaluation

versus the number of optimisation parameters for both schemes.
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Figure 5.8: Computation time per CF evaluation set against the number of optimisation para-

meters with the exact (ex) and finite-difference (fd) gradient computations.

5.4 Initialisation of the profile optimisation

As the input control parameters of the optimisation algorithms severely influence the

outcome of the optimised profile, they have to be chosen carefully. Especially, for the

stochastic optimisation schemes, this initialisation is of importance. For the deterministic

gradient-based schemes, the error in the Karush-Kuhn-Tucker conditions, which we will

discuss in Section 5.5.4, and the relative step size towards the minimum, serve as the only

controllable parameters that can be set to achieve somewhat lower end values of the cost

function (CFe). We have set both parameters to a tolerance of 10−6. In addition, the

Quasi-Newton algorithm also terminates when the trust-region radius gets smaller than

the set tolerance [25]. Therefore, we solely touch upon the initialisation of the stochastic

optimisation schemes. Further, the choice of the initial Germanium concentration profile

is essential, as the minima found with the gradient-based schemes strongly depend on this

choice. We introduce a selection of various Germanium concentration profiles to initiate

the profile optimisation with.

5.4.1 Initialisation of the stochastic optimisation schemes

Although the global search algorithms lay claims to finding the global minimum, indepen-

dent of the initial profile choice, the fine-tuning of the control parameters in the algorithms

proves to be rather delicate.
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For the simulated annealing (SA) scheme, the choice of the initial temperature T0

should be such that the entire parameter space is searched. The reduction coefficient rT ,

the factor by which the temperature decreases, and the number of function evaluations

NT after which this reduction takes place, determine the overall computation time. We

have followed the recommendations given in [14] to initialise the SA minimisation, and

started the profile optimisation with T0 = 1013, rT = 0.85, and NT = 100. Obviously, these

values may be modified to decrease the computation time, and the employed bounds on

the optimisation parameters may be adapted on the basis of the obtained local minima

to reduce the parameter space [34]. However, although smaller values for NT and rT

decrease the computation time considerably, the found minimum is not guaranteed to be

the global one, and several additional runs are required to verify this. Moreover, this

tailoring process of the SA algorithm strongly depends on the employed cost function.

Since our cost function may differ, e.g. with the inclusion of more optimisation parameters,

different weighting coefficients, or different reference values for the fibre quantities, this

process has to be repeated each time a new cost function is used. In our opinion, the effort

of finding the optimum values for each individual case is too time-consuming. Therefore,

we have chosen the initial control parameters such that the whole parameter space is

searched for and sufficient function evaluations are performed before a reduction step is

taken. Adaptive simulated annealing [41] has been developed to perform the rT reduction

process adaptively, reducing the number of function evaluations.

For the differential evolution (DE) scheme, the main control parameters are the pop-

ulation size NP , the amplification factor F , and the crossover constant CR. Although

intervals for these parameters are clearly defined, their optimum values depend on the

cost function and the number of optimisation parameters N . Experimentally, and with

reference to [92], we have chosen NP = 8N , F = 0.6, and CR= 0.9.

5.4.2 The initial Germanium concentration profile

Before we start the profile optimisation, the initial profile needs to be chosen. Especially

for the deterministic gradient-based schemes, this choice is critical, as we may end up in

a local minimum instead of the desired global one. We introduce a selection of various

Germanium concentration profiles to initiate the profile optimisation. For an optimisation

with five optimisation parameters, we distinguish between seven different initial profiles

that are shown in Figure 5.9. At each equally spaced radial point ρ = {0, 1
3
, 2

3
} we can

choose between two Germanium concentration values, namely XGe = 0 % or XGe = 7 %.

Hence, each profile consists of three successive solid dots, which indicate the values of the

optimisation variables. For simplicity, we introduce a binary notation where 0 corresponds

to XGe = 0 % and 1 to XGe = 7 %. The maximum value of XGe = 7 % is the highest integer
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Figure 5.9: Seven possible initial XGe profiles with XF =0.27%. The dots denote the optimisation

parameters in the XGe profile. The radius of the fibre is a= 5 µm.

value for which the fibre with profile (1,1,1) is still in its (theoretical) single-mode regime.

This implies that for an increasing number of optimisation parameters the maximum value

of XGe decreases and approaches that of a step-index fibre (assuming that XF is constant

throughout the core region).

As discussed in Section 5.3.1, we consider the Germanium concentration to be contin-

uous as a function of radius. Consequently, the permittivity profile has a discontinuous

core/cladding transition.

Now that we have initialised the employed optimisation algorithms and have introduced

a procedure to select initial profiles, it is time to perform the actual refractive-index profile

optimisation.

5.5 Optimised profile results

We distinguish between profile optimisation using variations in both horizontal and vertical

directions at each solid dot, except for the on-axis one where only a vertical variation is

allowed, and profile optimisation with variations in the vertical direction only. Obviously,

the latter search has less freedom, although it turns out that it is much less sensitive to

the initial profile than the Newton algorithms. The choice of the initial profile and its

influence on the number of iterations and the overall computation time are shown for

both the stochastic optimisation schemes and the deterministic gradient-based schemes.

Further, we have performed a sensitivity analysis on the resulting optimised refractive-

index profiles to provide the manufacturer with information on how accurate the profile

has to be made.
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5.5.1 Profile variations in both horizontal and vertical directions

First, we consider profile variations in both horizontal and vertical directions at each

point, with the exception of the fibre axis where only a variation in the vertical direction

is allowed. We start with optimisation runs consisting of five optimisation parameters.

Next, profile optimisations with seven optimisation parameters will be performed. Finally,

we will give a brief overview of the end values of the cost function for profiles with nine,

eleven, thirteen and fifteen optimisation parameters.

Five optimisation parameters

We have performed optimisation runs at λ= 1550 nm with the simulated annealing (SA)

and differential evolution (DE) schemes and with both Newton algorithms, viz. the

modified-Newton (MN) algorithm and quasi-Newton (QN) algorithm. We have restricted

ourselves to five optimisation parameters. The initial profiles are chosen as discussed in

Section 5.4.2. The same weighting coefficients wq and reference values of the fibre quanti-

ties vref
q have been used as the ones in Table 5.1. For simplicity, we have not optimised the

profile with respect to the effective area. The start (CFs) and end values (CFe) of the CF

for the profiles under consideration are shown in Table 5.3. The lowest value for CFe ob-

tained by each optimisation algorithm is highlighted by a bold typeface. The computation

time and the number of iterations are specified as well. Here, we distinguish between the

computation of the CF only (F) and of the CF and its gradient (F&G). For profile (1,0,0)

Table 5.3: Start values (CFs) and end values (CFe) of the CF for various initial profiles, con-

taining five optimisation parameters, optimised with the MN, QN, SA and DE algorithms, or

combinations of them. The computation time and the number of iterations of the CF (F) and

the CF with its gradient (F&G) for the best profile are shown as well.

Profile CFs CFMN
e CFQN

e CFMN→QN
e CFSA

e CFDE
e

(1,1,1) 23.6 5.44E-3 5.49E-3 5.40E-3 5.09E-3 5.09E-3

(1,1,0) 426 5.39E-3 5.54E-3 5.39E-3 5.09E-3 5.09E-3

(1,0,1) 211 9.12E-2 1.11E+1 3.21E-2 5.09E-3 5.09E-3

(1,0,0) - - - - 5.09E-3 5.09E-3

(0,1,1) 23.9 9.89E-2 5.10E-2 9.89E-1 5.09E-3 5.09E-3

(0,1,0) 3.1E4 9.83E-2 4.98E-2 9.88E-2 5.09E-3 5.09E-3

(0,0,1) 2.2E3 9.42E-2 4.35 9.42E-2 5.09E-3 5.09E-3

F/F&G 0/329 403/210 50/24 2640000/0 660000/0

Comp. time 5.8 min. 5.3 min. 37 sec. 7.0 days 42.2 hrs.
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no guided mode was found, which implies that the fundamental mode extends far into the

cladding, and that optimisation becomes problematic at best. Likewise, the fundamental

mode would cease to exist altogether for profile (0,0,0).

We observe that all schemes find values for CFe that are substantially lower than their

starting values CFs. Further, we note that the stochastic optimisation methods outperform

the gradient-based ones when it comes down to the lowest value of CFe. Moreover, they

are independent of the initial-profile choice. The SA technique attains the same global

minimum as the DE scheme although at the expense of about four times as many function

evaluations.

Neither of the Newton algorithms converge to the global minimum. However, they

arrive at local minima that are about 6 % to 8 % higher than the global one. An additional

optimisation with QN after the MN optimisation does not yield substantially lower values

of the CF, and is therefore no longer considered. For the SA and DE schemes, there is no

improvement upon making an additional QN run, and hence the resulting minima in this

parameter space are proper ones. A sensitivity analysis in Section 5.5.4 confirms this. The

overall computation times are definitely in favour of the gradient-based routines. The QN

algorithm is a little bit faster than the MN scheme, although the latter algorithm reaches,

in general, somewhat lower minima.

For the best values of CFe, obtained by each optimisation algorithm, the fibre quantities

vq and their set reference values vref
q are given in Table 5.4. Owing to the choice of

Table 5.4: Values of the fibre quantities vq with the pertaining weighting coefficients wq at

λ= 1550 nm for which the profile, with five optimisation parameters, has been optimised.

vref
q wq vMN

q vQN
q vSA

q vDE
q

D (ps/km/nm) 13 1 13.00 13.00 13.00 13.00

S (ps/km/nm2) 0 1 7.20E-2 7.27E-2 7.01E-2 7.01E-2

MFD dII (µm) 10 1 10.00 10.00 10.00 10.00

Bend. loss (dB/turn) 0 1 1.43E-2 1.41E-2 1.35E-2 1.34E-2

the weighting coefficients wq, it is not surprising that the values for the dispersion D

and mode-field diameter dII , which are about three orders of magnitude larger than the

dispersion slope S and the bending loss, correspond to the desired values. The subsequent

“competition” between the dispersion slope and the bending loss determines the final

minimum. One may adapt the weighting coefficients to reduce the importance of D and

MFD dII such that their end values are within a tolerable region about the desired value,

and may arrive at somewhat lower values for the slope and bending loss. Obviously,

this requires a fine tuning of the weighting coefficients, a process for which the Newton



5.5 Optimised profile results 105

algorithms, with their short computation times, are extremely well suited.
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Figure 5.10: Best optimised profiles at λ= 1550 nm (a) and corresponding intensity patterns (b)

obtained by optimisation runs with five optimisation parameters.
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Figure 5.11: Dispersion (D), dispersion slope (S), MFD dII and bending loss (BL) as a function

of wavelength for the best profile obtained by the MN, QN and DE schemes.

The corresponding optimised profiles and their intensity patterns S(ρ) normalised to

the total power carried by the propagating mode are plotted in Figure 5.10 at a wavelength

of λ= 1550 nm. The Newton algorithms are not able to generate the sharp profile peak

near the core/cladding transition. This is due to the circumstance that in their search,

they are encountering the multi-mode regime limitation. The peak causes the value of the
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dispersion slope to lower, which can be seen in Figure 5.11, where we have performed a

wavelength sweep on the four fibre quantities for the best profiles obtained through the

MN, QN and DE schemes.

Seven optimisation parameters

We have also performed optimisation runs with seven optimisation parameters, which are

given in Table 5.5. Based on the observations in Table 5.3, we have made a selection in

the choice of initial profiles, in particular, profiles starting at XGe = 0 % do not yield good

results and are no longer considered. Further, we have only shown the results of those

profiles that contain one transition from XGe = 7 % to 0 %.

Table 5.5: Start values (CFs) and end values (CFe) of the CF for various initial profiles, con-

taining seven optimisation parameters, optimised with the MN, QN, SA and DE algorithms.

The computation time and the number of iterations of the CF (F) and the CF with its gradient

(F&G) for the best profile are shown as well.

Profile CFs CFMN
e CFQN

e CFSA
e CFDE

e

(1,1,1,1) 34.5 5.78E-3 5.66E-3 5.09E-3 5.09E-3

(1,1,1,0) 4.1 5.12E-3 5.16E-3 5.09E-3 5.09E-3

(1,1,0,0) 8.1E6 5.12E-3 5.16E-3 5.09E-3 5.09E-3

F/F&G 0/436 239/153 3878000/0 952000/0

Comp. time 7.7 min. 5.2 min. 11.7 days 2.9 days

Again, we observe that optimisation results obtained by the Newton algorithms strongly

depend on the choice of the initial profile, whereas the DE and SA scheme do not. Dif-

ferences between the lowest values of the CF for the various schemes (bold typeface)

are marginal (within 1.0 %). Computation times are unequivocally much better for the

Newton algorithms.

The SA scheme performs marginally better than the DE scheme, but at the expense of

a four times longer computation time. The differences are shown in Table 5.6, where we

have listed the computed fibre quantities that correspond to the best optimised profiles.

Although the differences in the computed fibre quantities between the various schemes

are small, the corresponding optimised profiles, which are plotted in Figure 5.12(a), are

rather different. The corresponding intensity patterns S(ρ) normalised to the total power

carried by the propagating mode are plotted in Figure 5.12(b). In Section 5.5.4, we will

present a sensitivity analysis of these optimised profiles, which will give more insight in

the influence of each optimisation parameter on the value of the CF.
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Table 5.6: Values of the fibre quantities vq with the pertaining weighting coefficients wq at

λ= 1550 nm for which the profile, with seven optimisation parameters, has been optimised. The

maximum deviation for each quantity vq is given in the last column.

vref
q wq vMN

q vQN
q vSA

q vDE
q Max. dev.

D (ps/km/nm) 13 1 13.00 13.00 13.00 13.00 8.3E-5

S (ps/km/nm2) 0 1 7.02E-2 7.02E-2 7.01E-2 7.01E-2 1.2E-4

MFD dII (µm) 10 1 10.00 10.00 10.00 10.00 3.7E-4

Bend. loss (dB/turn) 0 1 1.41E-2 1.44E-2 1.33E-2 1.35E-2 1.0E-3
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Figure 5.12: Best optimised profiles at λ = 1550 nm (a) and corresponding intensity patterns (b)

obtained by the MN and SA algorithms with seven optimisation parameters.

More than seven optimisation parameters

For completeness, we have carried out similar optimisation runs with nine, eleven, thir-

teen and fifteen optimisation parameters. To limit the number of initial profiles, we have

used the same selection procedure as in the case of the run with seven optimisation pa-

rameters. The lowest value of the CF for each parameter run with the various schemes

are given in Table 5.7. We point out that in order to achieve such low minima for the

DE scheme, we have had to change the control parameter NP to 200. With the initial

recommended NP = 8N , the attained minimum values of the CF were increasing for an

increasing number of optimisation parameters. As a result of these changes, the compu-

tation time increases drastically though.

For all algorithms, the value of CFe gradually decreases for an increasing number of

optimisation parameters, which is good from an optimisation point of view. Still, one

has to contemplate on whether this relatively large number of parameters is practical as

the fabrication process is more involved when the profile consists of more kinks. Profile
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Table 5.7: The end values of the CF (CFe) for the best profiles, containing nine, eleven, thirteen

and fifteen optimisation parameters.

Algorithm CFe (9 p) CFe (11 p) CFe (13 p) CFe (15 p) Comp. times

MN 5.09E-3 4.96E-3 4.96E-3 4.91E-3 21/31/54/86 min.

QN 5.11E-3 5.06E-3 5.02E-3 5.00E-3 7/12/13/15 min.

DE 4.79E-3 4.72E-3 4.71E-3 4.69E-3 12/62/83/96 days

SA 5.09E-3 4.98E-3 4.97E-3 4.81E-3 17/25/31/40 days

optimisation with the permittivity as the vertical parameter yields similar results for the

cases considered in this section.

A hybrid method that first uses a stochastic optimisation scheme to locate the valley

that harbours the global minimum and thereafter a fast Newton one to find it, might

prove worthwhile if the computation time of a single CF iteration can be accelerated. For

a kick-start using the DE scheme, an acceleration by at least a factor of 80 is required

to arrive at an overall computation time that is within the hour for seven optimisation

parameters. As discussed in Appendix E, a direct numerical integration of our system

under the weak-guidance approximation can lessen the required acceleration factor by a

factor of 1.5, which is not nearly enough.

As a last remark, we mention that there are faster computers commercially available.

However, the inevitable reduction of overall computation time is still insufficient.

5.5.2 Profile variations in vertical directions only

Next, let us consider profile variations in the vertical direction only. This curtails the size

of the parameter space drastically. It turns out that the MN algorithm is most suited

since the pertaining computation times are short as compared to the global optimisers.

Further, the results using the MN algorithm turn out to depend less on the initial profile

choice than those obtained using the QN algorithm. In about 70 % of the possible initial

profiles, selected by the procedure that is shown in Figure 5.9, the MN algorithm is able

to find the global minimum, which has been verified with the DE scheme for up to nine

optimisation parameters. In Table 5.8, the value of CFe is given for an increasing number

of vertical parameters.

Also here, we observe a steady decrease in the value of the CFe, which goes hand in

hand with an increase in computation time. A further optimisation with the QN algorithm,

while dropping the restriction on the horizontal parameters and thus considering a much

larger parameter space, did not yield significantly lower minima. On the whole, the
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Table 5.8: End values of the CF (CFe) with vertical optimisation parameters only, optimised

with the MN algorithm.

Opt. Parameters CFe Comp. time # of iterations

3 5.96E-3 43 sec. 76

5 5.40E-3 6 min. 328

7 5.16E-3 11 min. 428

9 5.05E-3 23 min. 664

11 4.94E-3 36 min. 828

22 4.71E-3 82 min. 905

large number of kinks, when optimising for many vertical parameters, renders the method

impractical.

5.5.3 Comparison with commercially available fibres

To see if we can design refractive-index profiles such that they meet the specifications of

single-mode fibres on today’s market, we have downloaded the data-sheets of two leading

optical fibre companies, Draka Communications [20] and Corning [15]. We have assumed a

core radius of a= 5µm, and have extracted the values of those fibre quantities that we are

able to optimise to from the data-sheets. In Table 5.9, these values are listed for several

optical fibres, Corning’s SMF-28eXB, Draka Communications’ Enhanced single-mode op-

tical fibre (ESMF), and Draka Communications’ BendBrightXS single-mode optical fibre

(BBXS).

To start our profile optimisation, we have to set the desired values of the fibre quantities

at a specific wavelength in our CF. In view of the values given in the table, we have chosen

for a wavelength of λ= 1550 nm. As the dispersion and dispersion slope are specified in

the data-sheets in terms of inequality constraints, we have used the following rational

expression [15]

D(λ) ≈ S(λD)

4

(

λ− λ4
D

λ3

)

for 1200 nm ≤ λ ≤ 1625 nm, (5.46)

to arrive at an estimate for D to optimise for. For the zero-dispersion wavelength λD, we

have used the centre value of the pertaining range, and for the dispersion slope, the maxi-

mum allowed value is chosen. Hence, for the ESMF we have found that D= 17 ps/km/nm,

for the BBXS, D= 17.3 ps/km/nm, and for the SMF-28eXB, D= 16.8 ps/km/nm, respec-

tively. For the mode-field diameter dII of the BBXS, we have chosen the centre value of

the given range, i.e. MFD dII = 9.9µm. The desired values of the dispersion slope S and
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Table 5.9: Specifications of Corning’s SMF-28eXB (issued 05/07), and Draka Communications’

ESMF and BBXS (issued 11/07). Our optimised results are given in the columns denoted by

“Opt” next to each fibre.

Optical fibre ESMF Opt BBXS Opt SMF-28eXB Opt

D (1550 nm) ≤18 17 - 17.3 ≤18 16.8

D (1625 nm) ≤22 21.2 - 21.7 ≤22 21.1

λD 1300-1322 1311 1300-1324 1313 1302-1322 1313

S (λD) ≤0.090 0.088 ≤0.092 0.090 ≤0.089 0.087

MFD dII (1310 nm) 9.0 8.9 8.5-9.3 8.7 8.6 8.6

MFD dII (1550 nm) 10.1 10.1 9.4-10.4 9.9 9.8 9.8

Bend. loss

-R=25 mm, 100 turns ≤0.05 1.1E-4 - - - -

-R=10 mm, 1 turn - - ≤0.10 0.06 ≤0.50 0.11

the bending loss are set to zero to obtain optimal results. Further, we have made sure that

the fibre is still in the single-mode regime for λce> 1300 nm by tweaking the theoretical

cut-off frequency in the mode-counting scheme [17, 18].

After some manual fine-tuning of the weighting coefficients wq in the CF, we have been

able to meet the specifications of current day’s commercially available optical fibres, as

is shown in the columns in Table 5.9 denoted by “Opt”. To achieve these results, we

have employed nine optimisation parameters and have used both Newton algorithms to

optimise with, which is essential in the design process as computation times of the global

optimisation schemes are prohibitive. Although the BBXS and SMF-28eXB have especially

been designed to achieve a low macrobending sensitivity, there still appears to be room

for improvement as can be seen from the values highlighted by a bold typeface.

5.5.4 Sensitivity analysis of the optimised profiles

For the optical-fibre manufacturer, the sensitivity of the fibre quantities, or more specif-

ically of the CF, to small variations in the optimised refractive-index profile is of great

importance. The less sensitive a profile is, the more robust the manufacturing process will

be. To get an idea of the landscape in which the best profiles are located, we have defined

distances from the best value of the CF in terms of percentages, i.e 1 %, 5 % and 10 %.

Subsequently, we repeated the optimisation with the pertaining best optimiser and saved

those vectors xn that yield a value of the CF which is within one of these percentage re-

gions. Upon recalling the refractive-index profiles of Figure 5.10 and 5.12, the DE scheme
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performed best for five optimisation parameters and the SA scheme for seven, and hence,

we have employed these schemes to determine the regions. This is shown in Figure 5.13,

where we have shaded, next to the best optimised profile, from dark to light grey the areas

that correspond to the 1 %, 5 % and 10 % deviations from this profile, respectively.
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Figure 5.13: Best optimised profiles (solid line) obtained by the DE and SA schemes for five (left)

and seven (right) parameters, respectively. The dark grey and light grey area denote deviations

in the CF from the best profile by 1%, 5% and 10%, respectively.

Although the sensitivity of the profiles can be readily determined from these plots, they

require a full additional run to be generated, as knowledge of the minimum is required.

An alternative would be to save all values of the CF with the corresponding vector xn

during the first run, but this requires too much memory to be efficient.

Sensitivity information can also be extracted from the deterministic methods using the

gradient vector and the Hessian matrix. Since the MN algorithm provides both on exit, we

have employed this scheme to demonstrate the principle. We recall from Section 5.1 that

the MN algorithm is supplemented with simple bounds and that no additional constraints

on the optimisation parameters can be added. An adaption of these simple bounds is

required if one wishes to perform the sensitivity analysis on the profiles obtained by the

other schemes in Figure 5.13, since the parameters of these profiles are generally outside the

pertaining simple bounds. Then the simple bounds are modified such that the pertaining

optimisation parameter is included, but almost fixed.

For convenience, we employ the simple bounds as defined by Eq. (5.4), which results in

the optimised MN profiles determined in Section 5.5.1. Due to these bounds, the search for

the minimum is generally obstructed and the optimisation may end there. If such a bound

ci is actively obstructing the search, the pertaining non-negative Lagrange multiplier λi in

the Karush-Kuhn-Tucker conditions tells us how sensitive the CF is to a change in such

a bound [70], i.e. the larger λi, the harder the CF is “pushing” or “pulling” against the
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particular bound. In that case, the following relation holds

∂xn
CF(xn)|xn=x∗n

=
∑

i∈A(x∗n)

λi∂xn
ci(x

∗
n), (5.47)

where the optimisation parameters x∗n correspond to the optimal profile, and A(x∗n) denotes

the set of active bounds or constraints. For example, for the optimisation with seven

parameters, the pertaining relation results in


























−8.9

−8.8

−9.0

0

0

7.8

0



























× 10−3 = −λ1



























1

0

0

0

0

0

0



























− λ2



























0

1

0

0

0

0

0



























− λ3



























0

0

1

0

0

0

0



























+ λ4



























0

0

0

0

0

1

0



























, (5.48)

with the following set of active bounds

c1 : x1 ≤ (1 − ǫ) /3, c2 : x2 ≤ (1 − ǫ) /3,

c3 : x3 ≤ (1 − ǫ) /3, c4 : x6 ≥ ǫ.
(5.49)

Since Eq. (5.47) is satisfied and all λi are greater than zero, we have found the lowest

possible point. The best optimised profile obtained by the optimisation run with five

parameters also satisfies the Karush-Kuhn-Tucker conditions.

Now that we have ascertained that x∗n corresponds to the lowest point, we can obtain

sensitivity information from the available gradient vector and Hessian matrix H. A Taylor

series expansion of the CF about this point gives us

CF(xn) = CF(x∗n) + (∆xn)
T ∂xn

CF + (∆xn)
T

H (∆xn) +O
[

(∆xn)
3] , (5.50)

where ∆xn =xn− x∗n. Neglecting the third-order derivatives, we obtain for any requested

absolute error in the value of CF a quadratic equation in terms of ∆xn. If a bound or

constraint is encountered for a certain parameter, a first-order equation suffices as long as

the requested absolute error is small. In Table 5.10, we have shown the deviations in ∆xn

corresponding to an error of 1% in the value of the CF for the optimised MN profile with

seven optimisation parameters

Apparently, deviations in the optimisation parameter x5, which is the first vertical

optimisation parameter away from the fibre axis, prove most stringent, and consequently

manufacturing precision is most important there. As we have assumed first-order equa-

tions for those parameters that encounter a bound, the deviations ∆x1, ∆x2, ∆x3, and

∆x6 are inversely proportional to the Lagrange multipliers in Eq. (5.48).
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Table 5.10: Deviations ∆xn from the minimum x∗n to achieve an absolute error of 1% in the

value of the CF for the optimised MN profile with seven optimisation parameters

n 1 2 3 4 5 6 7

x∗n 3.32E-1 3.32E-1 3.32E-1 6.47E-2 8.55E-2 0 8.21E-2

∆xn -5.78E-3 -5.84E-3 -5.72E-3 ±6.27E-5 ±3.42E-5 6.56E-3 ±4.31E-5

5.6 Short summary

We can imagine that after all these results it is hard to see the wood for the trees.

Therefore, we summarise the most important findings of this chapter in bullet form:

• profile optimisation of the Germanium concentration profile is more than two times

faster than optimisation of the permittivity profile and is more convenient from a

manufacturing point of view;

• profile optimisation with an exact gradient computation is about twice as efficient

than using a finite-difference approximation;

• profile optimisation with a Newton algorithm is at least 300 times faster than optimi-

sation with the DE scheme, which in turn is the fastest among the tested stochastic

algorithms for a limited number of parameters;

• profile optimisation with the stochastic schemes leads to minima that are comparable

or better than the ones found with the Newton algorithms. By a systematic selection

of the initial profiles for the deterministic schemes the number of optimisation runs

are limited and minima are found within a margin of error of 6 %;

• profile optimisation in vertical directions only is more stable from an initial profile

point of view. However, to the method’s detriment the attained minima differ too

much from the ones found with a profile optimisation in both horizontal an vertical

directions;

• profile optimisation with the stochastic schemes requires a considerable amount of

fine-tuning, whereas the Newton algorithms require an extensive analytical gradient

calculation;

• a sensitivity analysis of the profile provides us with information on the shape of the

valley in the cost function, which is of importance for the accuracy of the manufac-

turing process;
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• the Hessian matrix, the gradient vector and the set of constraints determine whether

the obtained minimum is the lowest point in the valley and sensitivity information

can be retrieved from their values;

• there still appears to be room for improvement in the design of the refractive-index

profiles of commercially available fibres.

The optimisation method of preference depends on the designer who has to contem-

plate on the necessity to find the global minimum instead of a local one with a 6 % error,

the maximum number of optimisation parameters, and the available time to find an op-

timised profile. Both Newton algorithms, but in particular the quasi-Newton algorithm,

are recommended in the design process when fine-tuning the weighting coefficients in the

CF.



Chapter 6

Wave propagation in MMF links

The multi-mode fibre (MMF) has long been the preferred means of transmission in short-

range data communication networks, e.g. campus and in-building networks, as it offers a

cheap easy-to-install alternative to the single-mode fibre (SMF). In particular, the MMF

consisting of a graded-index (GI) power-law profile, i.e. a power-law profile with a finite

power-law exponent g, is favourable for its differential mode delay (DMD) qualities, as

discussed in Section 3.2.1. Typical wavelengths of operation are 850 nm and 1300 nm.

Next to the silica-based MMF, the polymer optical fibre (POF) is gaining ground

rapidly [43, 44]. Owing to its large core diameter (120∼ 1000µm), it offers a larger

ductility than its silica counterpart, improving the ease of installation even further and

thus reducing the installation costs. Modal-dispersion management is key, as thousands

of modes propagate along the POF. Due to the polymer, the attenuation per unit length

is considerably higher than that of silica. However, since production technology improves,

a steady decrease in the loss is attained, increasing its range of usage (100∼ 300 m). To

analyse such fibres, more suitable solution techniques exist than an extensive vectorial

full-wave computation, like, for example, the ray approach [90]. We concentrate on the

silica-based MMF.

As already indicated, the transmission rate of a GI-MMF is primarily limited by DMD.

Much research is conducted into methods by which the information capacity of optical

fibres may be increased. These methods consist primarily of multiplexing techniques, i.e.

the simultaneous transmission of a number of signals along the optical fibre. An overview

of these techniques can be found in [48]. We mention the most frequently employed,

namely wavelength division multiplexing, time division multiplexing, subcarrier multi-

plexing, and mode group diversity multiplexing (MGDM). The latter technique, which we

will concentrate on in this chapter, is only applicable in MMF links.

In Section 6.1, we will demonstrate the MGDM technique on the basis of measure-

ments and simulations of the intensity patterns at the receiver’s end of the MMF. The
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measurements have been performed by the electro-optical communication group at the

Eindhoven University of Technology [101]. For the simulations, we use the model that has

been introduced in Section 3.2.1 to compute the DMD properties of the fibre. However,

for large propagation distances the intensity patterns simulated at the fibre’s end begin

to deviate from the measured ones. To compensate for these differences, we have included

mode coupling and differential mode attenuation (DMA) in our model in Section 6.2. In

Section 6.3, we have investigated a new technique called mode-selective spatial filtering

(MSSF) to increase the spatial diversity of the MGDM link by employing a lens between

the fibre end and the photodetector that captures the light [102]. We have compared the

available MSSF measurements with our simulations.

As a side step, we have examined the effect of small deviations in the refractive-index

profile on the intensity pattern. A statistical analysis of these profile defects was first

investigated by Webster [114], and was later on expanded upon by the IEEE 802.3aq

committee [40], which resulted in the “108-fiber model”.

6.1 Mode group diversity multiplexing

Mode group diversity multiplexing (MGDM) is a technique that is used to increase the

information rate in an MMF by creating parallel independent communication channels

[53]. Each independent channel carries only a subset of all guided modes in the MMF.

To create one such a channel, we excite the GI-MMF by a single single-mode fibre (SMF)

pigtail with a possible radial offset. Since excitations at different radial offsets result in

different intensity patterns at the fibre end, an optimal radial offset can be determined

such that the overall DMD is minimised. Bandwidth gains up to a factor of 4 have been

achieved in this way [79].

Employing several SMF pigtails at different offset positions enables the possibility to

launch different signals in different channels (see Figure 3.8). By placing a properly tuned

photodetector at the fibre end, it is possible to retrieve the transmitted signals via a matrix

inversion implemented in adaptive electronics, thus creating a multiple-input multiple-

output (MIMO) system. Inevitably, optical cross talk among the pertaining channels and

noise is introduced, which limits the possible number of channels. With every group of

modes, we can associate certain helical ray paths. By adjusting the angular tilt of the

pigtail according to its radial offset, a more selective excitation of the mode groups can

be achieved [89]. As a result, the optical cross talk among the channels can be reduced.

To numerically model an MGDM link, we recall the discussions in Section 3.2 and

Appendix F.2, where we have introduced differential mode attenuation, mode coupling,

and selective launching. In the following sections, these concepts will be used in the
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simulation of a stable MGDM link.

6.1.1 Excitation with a radial offset

It has been demonstrated experimentally that a 3 × 3 MIMO system, consisting of three

transmitters and three receivers, can be achieved with the MGDM technique [103]. That

system has been proven stable and robust over time. The setup is shown in Figure 6.1.

The end faces of the three transmitters, i.e. the SMF pigtails, are denoted by Ti, with

T1 T2 T3
A1 A2 A3

Figure 6.1: A 3 × 3 MIMO system consisting of three transmitters T at the launch (left) and

three annular regions A corresponding to the receiving areas of the photodetector (right).

i= {1, 2, 3}. At the receiving end of the MMF, three annular regions Ai, with i= {1, 2, 3},
are defined. From the power captured within each region, the corresponding transmitted

signal Ti can be retrieved, provided that the cross talk among the three channels is limited.

To this end, a proper choice of the radii of the pigtail offsets and the annular regions is

essential.

Regarding the annular regions, it is convenient to employ a multi-segment photode-

tector to collect the light [76]. The total power within an annular region is obtained by

integration. Mathematically, the MGDM link can be cast in the form [6, 101]

sAi
= H sTi

+ ni, ⇒ sTi
= H−1 sAi

+ H−1ni, (6.1)

where sAi
denotes the power that arrives at each segment Ai and sTi

is the transmitted

power launched at Ti. Since we employ a coherent source in our simulations and the

propagating modes are mutually orthogonal, we may add the modal powers to arrive

at the total power vectors sAi
and sTi

. The real-valued transmission matrix H, which

characterises the MGDM link, must vary much slower with time than the vectors sAi
and

sTi
to recover the transmitted signal. Further, we have added the term ni to account for the

noise of the channel and the electronic processing unit. Note that signal recovery depends

on the condition number of the transmission matrix as its inverse is required. Moreover,
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since the matrix inversion is carried out by adaptive electronics, the eigenvalues of the

pertaining matrix may vary over time due to temperature changes and noise. According

to Gershgorin’s circle theorem [93], the inverse exists for diagonally dominant matrices

and the influence of varying eigenvalues is easily recognised. Hence, ideally H = I, where

I denotes the identity matrix. Under this condition, there is no optical cross talk, and

consequently, no demultiplexing processing would be required to separate the channels.

As a result, noise would not be amplified during this step. The Frobenius norm for an

ideal N ×N MIMO system equals N . It is this ideal transmission matrix behaviour that

we aim to achieve.

To verify our simulation results and demonstrate the MGDM principle, we have per-

formed measurements for a 3× 3 MGDM link. The employed GI-MMF has a core radius

of a= 31.25µm and an NA = 0.275 [20]. Its refractive-index profile has been designed for

operation at either λ= 850 nm or λ= 1300 nm. The linewidth of the employed laser is

85 kHz with a central wavelength of 1310 nm. The laser is pigtailed to a 1 m standard

SMF with a mode-field diameter dII of 9.3µm at λ= 1310 nm. To control the level of the

optical power, a variable optical attenuator with SMF pigtails is used. The radial offset of

the SMF axis from the GI-MMF axis is set by means of computer-controlled translational

stages. A microscope with a 50× magnification and an NA = 0.75 projects the intensity

pattern at the fibre end onto an infra-red vidicon camera. Thereupon, an image is grabbed

with video processing software. The SMF pigtails are positioned at three distinct radial

offsets, i.e at r0 = 0µm, 13µm and 26µm. In Figure 6.2, the measured intensity patterns

are shown for fibre lengths of z= 1 m, 75 m and 1 km. These distances are typical fibre

r0 = 0 µm r0 =13 µm r0 =26 µm

z=1 km

z=75 m

z=1 m

Figure 6.2: Measured intensity patterns at λ=1310 nm for various distances z from the launch

end and radial offsets of r0 =0 µm, 13 µm and 26 µm, at λ=1310 nm. The profile of the GI-MMF

is designed for either λ=850 nm or λ=1300 nm.
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lengths in computer-router connections, in-building connections and campus connections,

respectively.

We observe that the radial offset position is an indication for the shape of the intensity

pattern, i.e. the power remains confined to an imaginary disc of about r= r0, indepen-

dent of the fibre length. This is a result of the optimised power-law profile, which guides

the propagating modes towards the centre in a controlled fashion. In MGDM links, this

confinement is exploited as the multi-segment photodetector can recover the three simul-

taneously transmitted signals from the retrieved power provided that the cross talk among

the channels is limited.

The speckles in the patterns are caused by the constructive and destructive interference

among the propagating modes, which have different group velocities. Moreover, it is

demonstrated in [16, 36, 52] that for a coherent source the speckle contrast is maximal. The

broader the emission spectrum of the source and the longer the fibre, the less pronounced

the speckle contrast will be. Additionally, mode coupling reduces the speckle contrast by

introducing an overall blur to the pattern. For small wavelengths, the chance of power

exchange among the propagating modes increases owing to the large number of modes.

Since the employed laser has a small linewidth and the employed wavelength is large, the

speckles remain clearly visible even for larger distances z.

Next, we have performed simulations on a similar GI-MMF, viz. the core radius equals

a= 31.25µm and NA = 0.275. In Section 3.2.1, we have optimised the power-law profile

of this particular GI-MMF to achieve a good DMD behaviour at λ= 850 nm, resulting

in a power-law exponent g= 2.06. As the current measurements have been performed

at λ= 1310 nm, DMD simulations have been performed at this wavelength, yielding an

optimal value of g= 1.97. The dimension and refractive index of the step-index SMF

pigtail have been adjusted such that for its MFD we have dII = 9.3µm at λ= 1310 nm. In

Figure 6.3, the simulated intensity patterns for both g= 1.97 and g= 2.06 are shown for

various lengths of the GI-MMF. For reasons of clarity, we have not yet taken mode coupling

and differential mode attenuation into account in the simulations. These phenomena will

be included to our model in Section 6.2.

A closer look at the patterns for r= 0µm indeed reveals that for g= 1.97, which is the

optimal g at this wavelength, the power remains confined to the core centre, whereas the

power for g= 2.06 exhibits a gradual spread as the distance increases. On the other hand,

if we excite the GI-MMF with a radial offset, the distinction between the spreading effects

disappears. The power remains confined to the imaginary disc of about r= r0. Since

the source in the simulations is monochromatic and mode coupling has not been taken

into account, the speckle contrast is maximal. The symmetry in the patterns reflects

the polarisation of the excitation probe, which is chosen along the horizontal axis. As
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(a) (b)(g=1.97) (g= 2.06)

z=1 km

z=75 m

z=1 m

z=0 m

r0 =0 µm r0 =13 µm r0 = 26µm r0 =0 µm r0 =13 µm r0 = 26µm

Figure 6.3: Simulated intensity patterns at various distances z from the launch end and radial

offsets of r0 =0 µm, 13 µm and 26 µm, at λ=1310 nm. For (a) g=1.97 and for (b) g=2.06.

a consequence, only half of the intensity pattern has to be computed, which leads to a

reduction in computation time.

When the SMF pigtail approaches the core/cladding transition, the overlap efficiency

reduces as more power is leaking into the cladding region of the GI-MMF. To acquire

the same amount of power at the fibre end for all offsets, either the laser has to deliver

more power to offsets close to the core/cladding transition, or the power collected at the

outer segments of the photodetector needs to be amplified. Inevitably, this introduces

constraints on the power budget. To give an unbiased comparison, we choose to operate

the laser at a fixed power for all offset positions and amplify all output signals equally.

For our model, this implies that we normalise the output power with respect to the power

transferred into the GI-MMF at z= 0 m for a cental launch, which in turn is normalised

to its maximum amplitude. In Figure 6.4, we have plotted the power, after integrating

over a single period of the angular coordinate ψ at the launch z= 0 m for the three radial

offsets. The GI-MMF with g= 1.97 is used. A subsequent integration over the radial

coordinate reveals that the total cross-sectional power for r0 = 26µm is about 80 % of that

for r0 = 0µm, whereas that for r0 = 13µm is still about 100 %.

Figure 6.5 shows the spread in power at a distance of z= 75 m. In view of the inter-

section of the various lines, the radii Ri of the corresponding annular regions Ai of the
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Figure 6.4: Normalised power at z=0m for

various radial offset.
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Figure 6.5: Normalised power at z=75m for

various radial offset.

photodetector (see Figure 6.1), are best given by

0µm ≤ R1 ≤ 7µm ≤ R2 ≤ 17µm ≤ R3 ≤ 31.25µm, (6.2)

to minimise the optical cross talk. This is in close agreement with the annular regions

found experimentally by Tsekrekos et al. [103] for an excitation of the same GI-MMF at

λ= 660 nm by an SMF pigtail with an MFD dII of 4.2µm at the operating wavelength,

which resulted in a stable 3 × 3 link. As a consequence, it appears that the proposed

MGDM technique is not restricted to a confined wavelength range when defining optimal

radiiRi but only to distance and to differences in power amplifications of the various signals

at the transmitter and receiver end. A stable 4 × 4 link based on the MGDM technique

has not been achieved in practice due to the power penalty introduced by thermal and

shot noise [2, 101].

Next, let us determine the transmission matrix H in Eq. (6.1), as it is a measure

for the optical cross talk between the channels, and thus for the maximum number of

possible channels. For the three received signals j at z= 75 m, the elements hi,j building

the transmission matrix H at the receiver’s end (rec) are obtained by

hrec
i,j =

∫∫

Ai

Sj(ρ, ψ)ρdρdψ

/ 3
∑

j=1

∫∫

Ai

Sj(ρ, ψ)ρdρdψ, (6.3)

where ρ = r/a, which results in the following transmission matrix

H =







0.72 0.21 0.07

0.18 0.58 0.24

0.01 0.12 0.87






. (6.4)

Consequently, from

OC(Ai) = 10 log10

(

∑

j 6=i

hi,j

/

hi,i

)

, (6.5)
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the total optical cross talk (OC) in the regions A1, A2 and A3 are given by -4.1 dB, -1.4 dB

and -8.3 dB, respectively. The diagonally dominant transmission matrix has a Frobenius

norm condition number of 3.9. In [103], the transmission matrix elements are determined

from a transmitter side of view, which also results in a diagonally dominant matrix and a

Frobenius norm condition number equal to 3.9.

6.1.2 Excitation with both a radial offset and an angular tilt

In addition to the radial offset, we employ an angular tilt to the SMF pigtails in the 3× 3

MGDM link [10, 106]. Since the propagating modes tend to follow helical-shaped paths,

the addition of an angular tilt under an optimal angle θ′′ = θ0 matching the trajectory

of these paths is expected to yield steeper power peaks in Figure 6.5. As a result, a

better reception of the signals may become feasible as optical cross talk is reduced and

the possibility to increase the number of independent channels arises.

To determine the angle θ0 for the radial offset of r0 = 13µm (T2), we gradually increase

the angle θ′′ starting from θ′′ = 0. We define the optimal angle as the angle at which

the power within annular region A2 attains a maximum at a distance of z= 75 m. After

numerous simulations, we have found that θ0 ≈ 4.0◦ is best to a resolution of 0.1◦. For

a radial offset of r0 = 26µm (T3), we have maximised the power within annular region

A3 and obtained an optimal angle of θ0 ≈ 1.5◦. Theoretically, the sharpest peak in the

pertaining interval occurs for θ0 ≈ 9.1◦, although the intensity at the output is very low,

due to an increased leakage into the cladding at the launch. To retain enough confinement,

the optimal angle θ0 has to remain small.

In Figure 6.6(a), we have plotted the “optimised” equivalent of Figure 6.5. We observe

that the power is indeed more confined to the preset annular regions than for the case

of Figure 6.3(a). The irrevocable conclusion is thus that the cross talk can be reduced

with an angular tilt added to possible radial offset. This confinedness is clearly visible in

the intensity patterns that are plotted in Figure 6.6(b) for the radial offset r0 = 13µm at

several distances z from the launch end.

The transmission matrix H of this MGDM link for z= 75 m is given by

H =







0.80 0.13 0.07

0.17 0.60 0.23

0.01 0.18 0.81






, (6.6)

which yields an optical cross talk in the regions A1, A2, and A3 of -6.0 dB, -1.8 dB, and

-6.3 dB, respectively. The Frobenius norm condition number of H equals 3.7 and its inverse

exists owing to diagonal dominance.
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Figure 6.6: The GI-MMF (g=1.97) is excited by an SMF pigtail at λ=1310 nm with an offset

of r= r0 and θ′′ = θ0. (a) Normalised power in an annular region of the GI-MMF as a function

of radius optimised for z=75m. (b) Corresponding intensity patterns for r0 =13 µm at various

distances z.

This might look promising as this condition number is slightly closer to the ideal

value of 3 than the condition number of 3.9 obtained from the matrix of Eq. (6.4) for

radial offset excitation only. However, in practice, there are two major drawbacks to an

excitation with an angular tilt. First of all, the SMF pigtail and the GI-MMF should

be connected properly, which is more difficult with an additional tilt angle. Moreover,

more light is reflected at the pertaining transition, and as a result, the coupling efficiency

reduces. Secondly, the length of the GI-MMF will affect the intensity pattern, as the

finite linewidth of the source and/or the presence of mode coupling will cause a gradual

fill of the disk-shaped ring. An example of this filling is shown in the rightmost column

of Figure 6.7. Hence, in practice, the inclusion of an additional angular tilt next to the

radial offset does not lead to a sufficient improvement.

6.2 The effect of mode coupling and DMA

Thus far we have neglected the influence of mode coupling and differential mode attenu-

ation (DMA) in the computation of the intensity patterns. These phenomena, and their

numerical evaluation, have been discussed in detail in Section 3.2. To validate our sim-

ulation results, we have performed measurements with the same GI-MMF as introduced

in Section 6.1, although this time at a wavelength of λ= 660 nm. Consequently, about a

thousand modes propagate at nearly identical group velocities, which increases the likeli-

hood of power mixing. To exclude an overall fill due to a wide linewidth, we have used
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a continuous-wave Fabry-Pérot laser, which has a very narrow linewidth when operated

above threshold [100]. At the operating wavelength, the employed 1 m SMF pigtail has an

MFD dII = 4.2µm and a numerical aperture NA = 0.12. The measured intensity patterns

are shown in Figure 6.7.

r0 = 0 µm r0 =13 µm r0 = 26µm

z=1 km

z=75 m

z=1 m

r0 =13 µm
θ0 ≈ 6.5◦

Figure 6.7: Measured intensity patterns at various distances z from the launch end and radial

offsets of r0 =0 µm, 13 µm and 26 µm, at λ=660 nm. For r0 =13 µm, an additional measurement

is performed with θ0 ≈ 6.5◦. The profile of the GI-MMF is, according to the manufacturer,

designed for operation at either λ=850 nm or λ=1300 nm.

Mode coupling is visible as the power gradually spreads for increasing distances from

a few hot spots into a more overall fill. Already at an intermediate distance of z= 75 m,

mode coupling is well under way. For z= 1 km, the coupling seems complete. From an

MGDM point of view, it is again good to see that the power remains within an imaginary

disc of about r= r0. Employing an angular tilt of θ0 ≈ 6.5◦ at r0 = 13µm shows a ring

in the intensity pattern for small distances. As a result of mode coupling, the ring is

completely indistinguishable at z= 1 km. Note that the angular tilt causes the imaginary

disc to have a slightly larger radius [104].

All simulations performed up until now do not show this overall filling. To investigate

its origin, we have taken intra-group mode coupling into account for the distances z= 75 m

and z= 1 km. At the operating wavelength of λ= 660 nm extended precision arithmetic

has been used for our numerical scheme (see Section 2.4). Since the GI-MMF is, according

to the manufacturer, designed for operation at either λ= 850 nm or λ= 1300 nm, we have

assumed the power-law exponent g= 2.06, corresponding to the lower wavelength. The

computed intensity patterns are shown in Figure 6.8(a). Note that the speckle pattern

turns into a more gradual fill when mode coupling is included, similar to the measure-

ments. The annular ring, on the other hand, observed for excitation with an angular
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r0 =13 µm r0 =26 µm

z= 1 km

z= 75 m

z= 1 m

r0 = 13µm
θ0 ≈ 6.5◦

DMA
r0 = 13µm
θ0 ≈ 6.5◦

(a) (b)

Figure 6.8: Simulated intensity patterns at various distances z from the launch end with radial

offsets and angular tilts of r0 =13 µm, r0 =26 µm and θ0 ≈ 6.5◦, at λ=660 nm. Intra-group mode

coupling is included for z=75m and z=1 km (a). The effect of including DMA is shown in (b).

tilt of θ0 ≈ 6.5◦, cannot be reproduced. Already at z= 1 m, the ring seems to be absent,

although an integration of the pertaining power still yields a steep peak at about r= r0.

In addition, we observe that the power is more spread in comparison to the measurements

for this type of offset. The inclusion of DMA mitigates this spreading effect, as is shown

in Figure 6.8(b). Although the spreading is not noticeable for non-angular excitations,

inclusion of DMA for large z does not alter the intensity patterns either.

We must admit that the measurements do not fully coincide with the simulations for

angular tilts, and that the speckle contrast is still discernible even if mode coupling is

included. The inclusion of inter-group mode coupling and the finite linewidth of the laser

might lead to a closer match.

6.3 Mode-selective spatial filtering

The mode-selective spatial filtering (MSSF) technique was first introduced in [102], as a

means to reduce the optical cross talk in an MGDM system, while maintaining its ease of

realisation. This is achieved by placing a properly chosen lens between the output of the

GI-MMF and the multi-segment photodetector, as is schematically shown in Figure 6.9.

Light rays departing from the GI-MMF exit at an angle θ = θout, which is determined by

the abrupt change in refractive index at the MMF-air transition and the local wavenumber.

If this angle of departure is within the cone with angle θlens, the light is captured by the
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detector

MMF

lens

qlens

Figure 6.9: Configuration used for MSSF. A lens projects light from the output of the GI-MMF

onto the multi-segment photodetector.

detector. The angle θlens is given by

NAlens = nsur sin θlens, (6.7)

where NAlens is the numerical aperture of the lens, and nsur denotes the refractive index

of the medium surrounding the lens, which in our case is air, i.e. nsur = 1.

To determine the angle θout at the MMF-air transition, we regard each mode as a plane

wave, with a normalised longitudinal propagation coefficient ζ, incident on the transition,

and neglect any reflected waves. Although this may seem a crude approximation, it proves

to be a rather effective and efficient one, as it avoids the time-consuming computational

solution of the total scattering problem. We will demonstrate that the attained intensity

patterns are in close agreement with measurements available in the literature.

As an initial impetus, we consider two regions that are separated by the MMF-air

transition. In each region, the dispersion relation must hold for each propagating mode i,

i.e. [83]

ξ2
1(ρ) + ζ2

i,1 = n2(ρ) in region 1 (MMF),

ξ2
2(ρ) + ζ2

i,2(ρ) = 1 in region 2 (air),
(6.8)

where ξ denotes the normalised transverse wavenumber. The angle θout is given by

tan θout = ξ2(ρ)/ζi,2(ρ). (6.9)

At the MMF-air transition, continuity of the transverse wavenumber yields ξ1 = ξ2. Since

we have expressions for all the electromagnetic field components of every mode at each

sample point ρj at our disposal, we set those portions of the field components to zero that

are not captured by the lens, i.e. for which

[

n2 (ρj) − ζ2
i,1

]

>
[

1 − n2 (ρj) + ζ2
i,1

]

tan2 θlens. (6.10)

Inevitably, the power radiating into free space is lost. With the MSSF technique, it is

possible to create a stable 5 × 5 MGDM link, whereas without the pertaining technique,
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we have only been able to establish a stable 3× 3 MGDM link (see Section 6.1.1). In the

next section, we will construct this 5 × 5 MGDM link with MSSF and compute intensity

patterns for an excitation of the MMF with SMF pigtails at five different radial offsets. In

addition, we demonstrate the effectiveness of this technique by comparing the transmission

matrices H of this link with and without the inclusion of the MSSF technique.

6.3.1 A stable 5 × 5 MGDM link with MSSF

According to [101], a 5 × 5 MGDM link is possible through the construction of a stable

transmission matrix H by using the following radial offset positions for the SMF pigtails:

r0 = 0, 10, 15, 21, and 26µm. At the employed excitation wavelength of λ= 635 nm, the

pigtails are characterised by MFD dII = 4.2µm, and NA = 0.12. We employ the same GI-

MMF as introduced in Section 6.1, viz. a= 31.25µm, NA = 0.275 and g= 2.06, optimised

at λ= 850 nm. For the lens, we take NAlens = 0.10. The simulated intensity patterns for

this configuration are shown in Figure 6.10 for z= 1 m and z= 1 km.

r0 = 0 µm r0 = 10µm r0 =15 µm r0 =21 µm r0 =26 µm

z= 1 m

z= 1 km

Figure 6.10: Simulated intensity patterns with MSSF and an NAlens =0.10 at z=1m and

z=1 km from the launch end with radial offsets of r0 =0 µm, 10 µm, 15 µm, 21 µm, and 26 µm at

λ=635 nm. Mode coupling and DMA are included for z=1 km.

The inclusion of the lens clearly introduces annular rings in the intensity pattern

because the power at the centre leaves the end face of the fibre at quite an acute angle,

especially for the radial offsets r0 = 15µm, 21µm, and 26µm, respectively. For r0 = 0µm

the presence of the lens does not change the intensity pattern and for r0 = 10µm the hole

at the centre has not yet formed. Further, we observe that the rings are more pronounced

at z= 1 km than at z= 1 m, indicating that the power is more equally spread owing to

intra-group mode coupling. This is in agreement with the measurements in [101].

To examine the optical cross talk of the 5× 5 MIMO system, we have determined the
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transmission matrix at z= 1 km with and without the inclusion of MSSF, i.e.

HMSSF =

















0.839 0.159 0.002 0.000 0.000

0.050 0.851 0.098 0.000 0.000

0.000 0.216 0.730 0.055 0.000

0.000 0.036 0.068 0.786 0.109

0.000 0.004 0.009 0.065 0.921

















,

HNO MSSF =

















0.746 0.124 0.069 0.037 0.023

0.020 0.451 0.285 0.157 0.087

0.000 0.140 0.435 0.264 0.161

0.000 0.018 0.110 0.524 0.348

0.000 0.006 0.013 0.157 0.824

















,

(6.11)

respectively. For HNO MSSF, the radii Ri of the corresponding annular regions Ai of the

photodetector, with i= {1, 2, 3, 4, 5}, are set as follows

0µm ≤ R1 ≤ 5µm ≤ R2 ≤ 11µm ≤ R3 ≤ 16µm ≤ R4 ≤ 22µm ≤ R5 ≤ 31.25µm.

(6.12)

The optical cross talk in the annular regions A1 until A5 is with the aid of Eq. (6.5) given

by -4.7 dB, 0.9 dB, 1.1 dB, -0.4 dB, and -6.7 dB, respectively. Since the matrix is no longer

diagonally dominant, the inverse transmission matrix may become singular and signal

recovery is no longer guaranteed. The transmission matrix Frobenius norm condition

number equals 9.2.

For the transmission matrix HMSSF, on the other hand, the radii Ri, corresponding to

the annular regions Ai, are set as follows

0µm ≤ R1 ≤ 5µm ≤ R2 ≤ 12µm ≤ R3 ≤ 18µm ≤ R4 ≤ 24µm ≤ R5 ≤ 31.25µm.

(6.13)

The optical cross talk in the regions A1 until A5 are -7.2 dB, -7.6 dB, -4.5 dB, -5.7 dB, and

-10.7 dB, respectively, and the Frobenius norm condition number equals 5.4.

The MSSF techniques ensures that the optical cross talk between the channels be-

comes small, which results in a nearly ideal identity matrix, and thus diagonal dominance

guaranteeing a stable MGDM link. However, this advantage comes at a price, since the

power that is not captured by the photodetector is inevitably lost. Upon comparing the

case with MSSF to the one without, we have found the loss for increasing radial offset

positions to be 0 dB, 0 dB, 3.7 dB, 6.2 dB, and 7.8 dB, respectively. Fortunately, the power

penalty introduced by shot and thermal noise is low for near-ideal transmission matrices

and thus signal recovery is possible [101].
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We have performed similar runs for a lens with NAlens = 0.09 and NAlens = 0.50, result-

ing in, respectively, thinner rings at the expense of more power loss, and in no rings at all,

i.e. an overall fill with less power loss. Further, at λ= 1300 nm, there exists less coupling

as fewer modes propagate and therefore there exists a clear hole in the intensity pattern

for r0 = 10µm.

We conclude that the number of independent channels in an MGDM link with MSSF

is higher than a link without. Since the choice of the lens determines the thickness of the

annular rings, the number of channels might still be increased somewhat, although this

will inevitably introduce more loss of power.

6.4 Refractive-index profile defects

A statistical analysis of defects in the refractive index power-law profile for the MMF was

first investigated by Webster [114] and was later expanded upon by the IEEE 802.3aq

committee [40]. The analysis is exclusively concerned with MMFs that are operated at

λ=1300 nm and have a core radius of a= 31.25µm. At the pertaining wavelength, the

unperturbed refractive index n(ρ) has a numerical aperture of NA = 0.28 and a power-law

exponent of g= 1.97. The set consists of 108 fibres with one or more defects, which are

considered to represent the 5% of “worst case” fibres that are likely to be installed. The

following defects are included in this set

• different values for the power-law exponent g in the regions 0<ρ< 0.5 and 0.5<ρ< 1,

varying between 1.89 and 2.05. The continuity of the refractive profile nres is retained

by defining it as follows (see also Eq. (2.1))

nres(ρ) =

{

n1(ρ) = nco

√
1 − 2∆1ρg1 for 0 ≤ ρ < 0.5,

n2(ρ) = nh

√
1 − 2∆2ρg2 for 0.5 ≤ ρ < 1,

(6.14)

where ∆1 = ∆, given by Eq. (2.2) and ∆2 = (n2
h − n2

cl) /(2n
2
h) with

n2
h =

{

[n1(0.5)]2 − (0.5)g2 n2
cl

}

/ [1 − (0.5)g2 ] . (6.15)

Conversion to the permittivity profile is achieved by εr(ρ) =n2
res(ρ);

• an on-axis dip or peak. To the unperturbed refractive index nunp(ρ) a contribution

naxis(ρ) is added, which accounts for the perturbation at the axis, i.e.

naxis(ρ) = A exp
[

−4 ln(2)ρ2/ρ2
FWHM

]

, (6.16)

where the subscript FWHM denotes the full width at half maximum of the pertaining

dip or peak and ρFWHM = FWHM/a. In the standard, one has chosen A= -0.004
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for a dip and A= 0.002 for a peak. Further, FWHM = 3µm. Consequently, the

permittivity profile is given by εr(ρ) = [n(ρ) + naxis(ρ)]
2;

• an exponential, instead of an abrupt, core/cladding transition for ρ>ρe = 0.896.

The thus constructed refractive index profile is given by

nexp(ρ) =

{

n(ρ) for ρ < ρe,

ncl + [n(ρe) − ncl] exp [−b (ρ− ρe)] for ρ ≥ ρe,
(6.17)

where b= 9.5178m−1. The corresponding permittivity profile reads εr(ρ) = n2
exp(ρ);

• a kink perturbation at ρ= ρk. The kink is defined as an additive perturbation to

the refractive-index difference ∆ according to

δ∆ = ak [exp (−bk|ρ− ρk|) − exp (−bk|1 − ρk|)] ∆, (6.18)

where ak = 0.03 and bk = 3.2. This results in the following addition to permittivity

profile εr(ρ)

δεr(ρ) = 2∆n2
coak [exp (−bk|ρ− ρk|) − exp (−bk|1 − ρk|)] . (6.19)

The set of 108 near-ideal power-law profiles is representative for the imperfections

found in installed-base MMFs. Based on these profiles, a statistical assessment can be

given of important fibre quantities, like DMD. We have selected the most pronounced

profiles occurring in the set to compute their intensity patterns. The fibres are specified

via the parameters in Table 6.1. The permittivity profiles of fibre no. 26, fibre no. 78,

Table 6.1: Specifications of several fibres out of the “108 fiber model”.

Fibre no. g1 g2 On axis Kink at ρk

26 1.89 2.05 Dip 0.864

30 1.89 2.05 Peak 0.672

74 2.05 1.89 Dip 0.480

78 2.05 1.89 Peak 0.544

and the unperturbed fibre are plotted in Figure 6.11(a). The difference in the refractive

index between the unperturbed fibre and the perturbed ones is plotted in (b).

The MMF is excited by an SMF pigtail at the prescribed wavelength of λ= 1300 nm

at three radial offsets, i.e. r0 = 0µm, 13µm and 26µm, respectively. In Figure 6.12(a),

the intensity patterns of the various fibres are shown for z= 75 m. Since an exponential

core/cladding transition only affects the intensity pattern if we excite the MMF at a radial
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Figure 6.11: (a) Relative permittivity profiles for the unperturbed fibre with g=1.97, fibre no. 26

and fibre no. 78. (b) Absolute difference in the relative permittivity profiles between the perturbed

fibres and the unperturbed one.

r0 =26 µm

r0 =13 µm

r0 =0 µm

Fibre no. 26 30 74 78 Fibre no. 26, r0 =0 µm

P PK

K KD

D PD

(a) (b)

Figure 6.12: Intensity patterns at z=75m (a) for the fibres in Table 6.1, (b) for fibre no. 26 at

r0 =0 µm with the inclusion of a dip (D), a kink (K), and/or different g-values (P).

offset of r0> 28µm [6, 114], we have not included this case in our selection of fibres in

Table 6.1. Although intra-group mode coupling and DMA could influence the patterns

at this distance, as discussed in Section 6.2, we have switched these features off for the

sake of clarity. The presence of mode coupling would introduce an additional blur to the

patterns.

For r0 = 0µm, fibre no. 26 immediately attracts our attention as power spreads out-

wards. For fibre no. 74, we see several ripples appear, although they are not as pronounced

as the ones for fibre no. 26. On the basis of fibre no. 26, we specify the impact of each

of the aforementioned profile defects separately. The results are shown in Figure 6.12(b).
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The capitals D, K and P, corresponds to the inclusion of a dip, a kink, and/or a change

of g at ρ= 0.5, respectively. Apparently, a dip in the refractive-index profile, possibly in

combination with a kink or a change of g, introduces an unwanted spread of power. A

kink, a change of g or a combination of them are not as severe. For fibre no. 74, we have

performed the same analysis and have arrived at the same conclusions. However, already

a minor change in the propagated distance z causes fibre no. 74 to have more pronounced

ripples in its intensity profile than the ones in fibre no. 26. This confirms our observation

that a dip at the fibre axis is the worst profile defect among the ones investigated.



Chapter 7

Conclusions and recommendations

In view of the broad range of applications in which the optical fibre can be employed,

and the ever-increasing demands to improve current day’s commercially available fibres,

simulations have become an indispensable part in the design process. On the basis of an

optical fibre model, including radial inhomogeneity, we have implemented a robust and

modular vectorial numerical scheme to perform these simulations. This scheme uses the

Marcuvitz-Schwinger equations as its keystone and consists of a coupled system of four

differential equations. Since the numerical integration of the scheme is limited in the radial

direction, we have tweaked its performance to tackle multi-mode fibres with large core

radii, or equivalently operation at short wavelengths, by introducing extended precision

arithmetic. Obviously, this extension should be used with care as the computation time,

which depends on the used compiler and computer, may increase drastically.

The thus implemented numerical scheme enables us to compute a set of important fibre

quantities that characterise the optical fibre. For the single-mode fibre, we can compute

the quantities dispersion, dispersion slope, mode-field diameter, effective area, bending

loss, effective and theoretical cut-off wavelength and MAC-value, whereas for the multi-

mode fibre, we have focused on differential mode delay, differential mode attenuation

and (intra-group) mode coupling. The inclusion of polarisation-mode dispersion is still a

recommended improvement, especially since it is regarded as an effect that should receive

extra attention in the coming years according to the International Telecommunication

Union [42]. To model polarisation-mode dispersion, a coupled system of two stochastic

differential equations must be solved, which is a non-trivial task. However, one may define

a perturbation to the effective modal dielectric matrix, which links the dopant profile to

the polarisation-mode dispersion. Then, one must set manufacturing tolerances for the

maximum deviations in the fibre geometry, which, via the perturbation to the effective

modal dielectric matrix leads to an estimate for the expected differential group delay [7].

The scalar equivalent of our vectorial full-wave scheme, which is referred to as the
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weak-guidance approximation, has been implemented as well. A comparison between both

schemes showed that the computation time decreases at the expense of accuracy when the

approximation is used. For weakly guiding single-mode fibres, the loss of accuracy in

the fibre quantities is marginal. However, for an increasing refractive-index difference, the

accuracy becomes a non-negligible issue. As computation times merely differ by a factor of

1.5, we prefer exact computations over approximate ones, even in an optimisation scheme.

We have performed a vectorial full-wave analysis of a single-mode bent fibre to compute

the macrobending loss. To introduce the bottleneck in this bending problem, viz. the

computation of a product of Bessel functions of large complex order and argument to

a high accuracy, we have first analysed the bent slab configuration, its two dimensional

equivalent. Due to a triple integral involving these Bessel functions in the 3-D case,

computations times are excessive and a full-wave analysis is therefore inappropriate in an

optimisation scheme. On the basis of a step-index and parabolic-index profile, we have

determined the best of many approximate modelling techniques that estimate the bending

loss rapidly, and have used the full-wave analysis as a reference [86]. It is shown that the

approximation of Faustini and Martini gives good bending loss results for radii of curvature

R> 8 mm for these two profiles. We have extended this approximation to compute the

bending loss of the higher-order modes to determine the effective cut-off wavelength and

as a result the MAC-value. Computations have been compared with measurements and

the results are in good agreement.

The extension to higher-order modes may form the first step towards computing the

bending losses in a multi-mode fibre. Owing to its larger refractive-index contrast, the

bending losses for a multi-mode fibre are less significant than the ones for a single-mode

fibre. Still, the higher-order modes loose their power already for the slightest bends or

imperfections in the fibre. This will put, for example, a limit on a mode group diversity

multiplexing link, which may use the higher-order modes to create an independent channel.

Moreover, in extreme bends that may occur during the in-building installation process,

mode coupling must be taken into account in the model as well. Reliable modelling

techniques for simulating bending effects in multi-mode fibres are not yet available in the

literature.

To aid in the design of single-mode optical fibres, we have implemented and performed

a numerical optimisation of the refractive-index profile. The fibre quantities have been

used to set a design goal in terms of a cost function. The refractive-index profile, or more

specifically one of its dopant building blocks, viz. the Germanium concentration profile,

has been discretised in continuous piecewise-linear segments, whose endpoints serve as the

free parameters in the optimisation scheme. We have employed two statistically oriented

optimisers, viz. differential evolution and simulated annealing, and two gradient based
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ones, namely a modified-Newton and a quasi-Newton algorithm. We have discussed their

effectiveness in finding the global minimum of a cost function. While the latter algorithms

are fast (minutes), and therefore preferable in a design tool, in particular the quasi-Newton

scheme, they frequently end up in a local minimum, depending on the initial profile guess.

The statistically oriented optimisers, on the other hand, find the global minimum at the

expense of sometimes excessive computation times (days to months).

A hybrid method that determines the right “valley” with a stochastic optimisation

scheme, and the minimum of the pertaining “valley” with a gradient-based scheme, may

be an effective alternative. For acceptable computation times, this implies that one should

accelerate the computation of a single cost function evaluation by a factor of 80. A finite-

element method under the condition of weak guidance with basis functions that are defined

over a whole or finite support of the unknown field, e.g. Laguerre-Gauss functions, may

give solace as long as the approximation does not alter the location of the valleys too

much.

Further, we have performed a sensitivity analysis of the optimised profiles to verify

whether the attained minima are really the lowest points in the landscape and to provide

the manufacturer with information on how accurate the profile has to be made. We have

demonstrated that there still appears to be room for improvement in the design of the

refractive index profile of commercially available fibres.

Since, in practice, it is more convenient to fabricate quadratic profiles, one may consider

this profile shape instead of the piecewise-linear segment profile which has been imple-

mented now. It is already possible to change the Flour concentration, albeit piecewise

constant, to establish more degrees of freedom.

For the multi-mode fibre, we have investigated the effects of differential mode delay,

differential mode attenuation and mode coupling on short (in-house) multi-mode fibre

links. Once the power-law exponent g in the multi-mode power-law fibre had been op-

timised to minimise its differential mode delay, we have used this fibre in a mode group

diversity multiplexing link. This is a multiplexing technique that creates multiple inde-

pendent channels by exciting mode groups in the fibre with singe-mode fibre pigtails at

different radial offsets and/or angular tilts. The intensity patterns, primarily created by

constructive and destructive interference among the propagating modes, have been gen-

erated for distances up to a kilometre. The inclusion of differential mode attenuation

and mode coupling to our model via an empirical formula and a set of coupled power

equations, respectively, reduces the differences between experiments and simulations.

The maximum possible number of independent transmission channels is determined

from the transmission matrix, which relates the input signals to the signals retrieved at the

fibre’s end. The condition number of this matrix is a measure for robustness of the link.
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A 3×3 mode group diversity multiplexing link has been established through an excitation

with radial offsets only and a photodetector with proper defined annular regions at the

receiver end. Further, we have shown that a link with five independent channels is possible

if we employ the mode-selective spatial filtering technique. Also here measurements have

been set against simulations and are in good agreement.

Additionally, we have shown the influence of possible manufacturing defects in the

fibre’s refractive-index profile by analysing the most pronounced fibres in the set of the

“108-fiber model”. It turns out that an on-axis dip in the refractive-index profile, possibly

in combination with a kink or a change of the power-law index, introduces an unwanted

spread of power for a central launch at the fibre’s end. A kink, a change of the power-law

index or a combination of them are not as severe.

The multi-mode fibre effects are thus far only simulated for silica-based fibres. Since

the (graded-index) polymer optical fibre is gaining ground rapidly, as difficulties regarding

its attenuation proved bridgeable, simulations for this type of fibre become increasingly

important. Moreover, the possibility to construct arbitrary profiles is being improved as

we speak, which may make profile optimisation a desirable feature in the future. Owing

to its large core diameter this type of fibre is even more flexible than the silica-based

multi-mode fibre, and thus installation costs are reduced. On the other hand, thousands

of modes will propagate along the fibre, and hence, mode coupling becomes a significant

factor, which limits its application to short-range networks. Obviously, this poses new

challenges to the employed model and the solution procedure to obtain the propagation

characteristics. The ray approach may prove a suitable procedure [90].
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List of abbreviations

BB BendBright

BDF Backward differentiation formula

CF Cost function

CFe End value of cost function

CFs Start value of cost function

CSF Conventional single-mode fibre

DCF Dispersion compensating fibre

DE Differential evolution

DMA Differential mode attenuation

DMD Differential mode delay

DMG Degenerate mode group

DSF Dispersion-shifted fibre

ESI Equivalent step-index

ESMF Enhanced single-mode fibre

FWHM Full width at half maximum

GI-MMF Graded-index multi-mode fibre

ITU International telecommunication union

LAN Local area network

LPS Linear path segment

MFD Mode-field diameter

MGDM Mode group diversity multiplexing

MIMO Multiple-input multiple-output

MMF Multi-mode fibre

MN Modified Newton

MSSF Mode-selective spatial filtering
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NA Numerical aperture

OC Optical cross talk

PCVD Plasma-activated chemical vapour deposition

PMD Polarisation mode dispersion

PMG Principle mode group

POF Polymer optical fibre

QN Quasi Newton

SA Simulated annealing

SDP Steepest-descent path

SMF Single-mode fibre

TE Transverse electric

TM Transverse magnetic

TEM Transverse electromagnetic

VFW Vectorial full-wave

WGA Weak-guidance approximation



Appendix B

The Marcuvitz-Schwinger equations

in an orthogonal coordinate system

The aim of this appendix is to give the Maxwell equations of Eq. (2.6) in terms of the

well-known scale factors hi [3], without utilising tensor notation. Although this approach

might be more familiar, it is only valid for orthogonal coordinate systems. In an orthogonal

coordinate system, the metric gij of Eq. (2.9) diagonalises. Its elements are given in terms

of the scale factors by gii =h2
i , where i ∈ {1, 2, 3}. These scale factors are related to the

differential arc length dr through an inner product

〈dr, dr〉 = h2
1dx

2
1 + h2

2dx
2
2 + h2

3dx
2
3, (B.1)

where {x1, x2, x3} denote curvilinear coordinates and dxi is an infinitesimal scalar dis-

placement along the directions ui(r(xi)), which form a right-handed set of unit vectors

normal to the surfaces of constant xi.

Although all differential vector operators may be expressed in terms of the scale factors,

we are particularly interested, in view of Eq. (2.6), in the curl of a vector field v, i.e.

∇× v = ∇× (viui) = H−1ǫijkhi∂xj
(hkvk)ui, (B.2)

where lowercase Roman subscripts take the values 1, 2, 3, ǫijk denotes the Levi-Civita

symbol and H=h1h2h3. Consequently, Maxwell’s equations can be written as

H−1ǫijkhi∂xj
(hkEk) + jωµHi = −Ki, (B.3a)

−H−1ǫℓmnhℓ∂xm
(hnHn) + jωεEℓ = −Jℓ. (B.3b)

To express the transverse electric field components in terms of the magnetic ones, we wish

to eliminate the longitudinal component of the electric field in Eq. (B.3a). We regard u3

as the longitudinal direction. Consequently, it follows from Eq. (B.3b) that

E3 = (jωε)−1
[

H−1ǫ3µνh3∂xµ
(hνHν) − J3

]

, (B.4)
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where Greek subscripts take the values 1, 2. Upon substituting Eq. (B.4) in Eq. (B.3a), and

after some rearranging, we arrive at the following differential equation for the transverse

field components

−∂x3
(hκEκ) = jωµ

[

h−2
σ Hǫκσ3 + k−2ε∂xκ

(

h2
3H−1ε−1∂xµ

ǫµσ3

)]

(hσHσ) + ǫκσ3K
eff
σ , (B.5)

where

Keff
σ = h−1

σ HKσ + (jω)−1ǫκσ3∂xκ

(

ε−1h3J3

)

. (B.6)

Invoking duality, we may replace {Ek, Hk, ε, µ, Jk, Kk} by {Hk,−Ek, µ, ε,Kk,−Jk}, which

leads to

−∂x3
(hλHλ) = jωε

[

h−2
τ Hǫλ3τ + k−2µ∂xλ

(

h2
3H−1µ−1∂xν

ǫν3τ
)]

(hτEτ ) + ǫλ3τJ
eff
τ , (B.7)

where

Jeff
τ = h−1

τ HJτ − (jω)−1ǫλτ3∂xλ

[

µ−1h3K3

]

. (B.8)

In matrix form, we see that we have obtained the Marcuvitz-Schwinger equations of

Eq. (2.18) for an orthogonal coordinate system

−∂x3

(

hκEκ

hλHλ

)

=

(

0 jωµ [Uκ + Tκµ (ε)]

jωε [Uλ + Tλν (µ)] 0

)(

hτEτ

hσHσ

)

+

(

ǫκσ3Keff
σ

ǫλ3τJeff
τ

)

,

(B.9)

where

Uκ = h−2
σ Hǫκσ3, and Tκµ(x) = k−2x∂xκ

h2
3H−1x−1∂xµ

ǫµσ3. (B.10)

The longitudinal components E3 and H3 are, with reference to Eq. (B.4), given by

E3 = (jωε)−1
[

H−1ǫ3µνh3∂xµ
(hνHν) − J3

]

,

H3 = (jωµ)−1 [H−1ǫµ3νh3∂xµ
(hνEν) −K3

]

.
(B.11)



Appendix C

Bessel functions with large complex

order and argument

In this appendix, we discuss the numerical computation of Bessel functions with large

complex order and argument [87]. For common ranges of order and argument, it is well

known how to evaluate the Bessel functions numerically, and many routines are available

to perform the actual computation. However, the available (double precision) routines

fail when it comes to computing a product of Bessel functions with large complex order

and argument, especially when a high relative precision (10−11) is required [99, 111, 117].

With radiation problems in mind, we have developed a method and a computer code in

which a high accuracy can be attained, even up to machine precision, for orders, ν, that

vary over the entire range of 1<Re(ν)< 106.

Since asymptotic expansion techniques cannot be guaranteed to provide sufficient ac-

curacy over the total range of ν [77], we take standard integral representations of the

Bessel functions as our starting point [1, 98]

Jν(x) =
1

2πj

−∞+πj
∫

−∞−πj

e−x sinh t+νtdt,

H(1)
ν (x) =

1

πj

∞
∫

−∞−πj

e−x sinh t+νtdt; H(2)
ν (x) =

1

πj

−∞+πj
∫

∞

e−x sinh t+νtdt,

(C.1)

where {ν, x}∈ C and |arg(x)|<π/2. This region of validity can be extended via analytic

continuation. Note that modified Bessel functions are covered as well, as the argument of

the Bessel function may be complex, i.e. [1]

Iν(ξ) = e−
1
2
νπjJν

(

ξe
1
2
πj
)

for − π < arg(ξ) ≤ π/2,

Kν(ξ) =
πj

2
e

1
2
νπjH(1)

ν

(

ξe
1
2
πj
)

for − π < arg(ξ) ≤ π/2.
(C.2)
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Since the integral representations have the same integrand, we will only consider Jν(x) for

the moment, to perform some mathematical manipulations.

Since both |ν| and |x| can be large, we introduce the variable x= νz, which renders

a more suitable exponent in the integrand, i.e. exp [w (t)], where w (t)=−ν (z sinh t− t).

Since the integration is performed in the complex t-plane, we adopt t=σ + jτ , where

{σ, τ}∈ R. In general, the integrand is a highly oscillating function for large complex

orders, and consequently numerical integration becomes slow. To avoid this oscillatory

behaviour, we deform the current integration path into the steepest-descent path (SDP).

C.1 Steepest-descent paths

It is well-known that along an SDP, which passes through a saddle-point, the integrand

decays most rapidly and the exponential function no longer oscillates. The locations of

the saddle points t±0 , which follow from w′(t±0 ) = 0, are given by

t±0 = ln

(

1 ±
√

1 − z2

z

)

+ 2nπj, (C.3)

where n∈ Z. We consider the principal branches, i.e. −π < Im(t±0 )≤π. The SDPs in the

complex t-plane follow from the root locus of

w(t) − w(t±0 ) = −s2, with s ≥ 0, (C.4)

and consequently, the asymptotes, obtained by letting s→∞, are given by

τ = −arg(x) for σ → ∞, (C.5a)

τ = arg(x) ± π for σ → −∞. (C.5b)

For ν and x complex, no analytical solutions to Eq. (C.4) exist (except for specific combi-

nations of imaginary and real orders and arguments, e.g. [28]). Hence, we have to search

for the SDPs numerically. To give an impression of their location in the complex plane,

we have sketched some typical steepest ascent and descent paths in Figure C.1 that are

frequently encountered in problems involving small losses. For the various kinds of Bessel

functions in Eq. (C.1), the limits of the integrals determine the appropriate asymptotes.

A transition stage, like the one depicted in Figure C.1(b), is important for our nu-

merical integration scheme, as it clearly demarcates parameter regions associated with

integration along fundamentally different SDPs. Watson [113] derives an expression for

this transition stage. However, upon close observation, the integrands along his “SDPs”,

although decaying exponentially, still oscillate for x∈ C. To arrive at non-oscillatory in-

tegrands, we have to take the corresponding phase term of x into account as well, as
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Figure C.1: Impression of the steepest ascent (A) and descent (D) paths in the complex t-plane

for Bessel functions with complex order and argument for a case in which Im(ν)< 0, Re(ν)> 0,

Im(ν)< Re(ν) and x ∈ R
+. Upon increasing x, we obtain the plots (a) → (c), where stage (b)

is defined by γ= 0 (see Eq. (C.6)).

remarked by Felsen [23]. Upon defining the saddle-points as t±0 = ±(α + jβ), such that

0 < β ≤ π, the condition of the transition stage for the SDPs becomes unique and reads

γ = 0, with

γ =Im(x) [(sinhα− α coshα) cos β + β sinhα sin β] +

Re(x) [(coshα− α sinhα) sin β − β coshα cos β] .
(C.6)

The condition γ = 0 amounts to w(t±0 ) ∈ R in Eq. C.4. To gain more insight in, and to

show the importance of the variable γ, we have plotted the contours γ = 0 in Figure C.2 for

three successive cases regarding the argument of x = |x| exp(jφ), viz. φ = {0, π/4, π/2}.
The shaded areas represent those areas for which γ > 0. A counter-clockwise rotation

occurs for a decreasing phase term. Not only the saddle-points are opposites, the SDPs in

opposite regions are symmetric with respect to the origin of the complex t-plane as well.

Hence, it suffices to compute the Bessel functions in those regions for which 0 < β ≤ π.

The transition encountered in Figure C.1 corresponds to the case Im(x) = 0 in Fig-

ure C.2. In particular, Figure C.1(a) corresponds to a value of γ in region III, and C.1(c)

denotes a value of γ in region II. Further, we infer from Figure C.1(a) that in region III

the SDPs that approach the proper asymptotes are associated with Jν(x) and H(1)
ν (x),

whereas the SDP for H(2)
ν (x) is a composition of the former two. In region II, on the other

hand, the topology of the SDPs indicate that the integral representations for H(1)
ν (x) and

H(2)
ν (x) should be used to calculate Jν(x) through addition. In Table C.1, we have denoted

for all regions, which combination of Bessel functions is readily evaluated. Note that since

the SDPs in opposite regions are similar, the same combinations of paths must be used.
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Figure C.2: Contour plots of Eq. (C.6) for different arguments of x = |x| exp(jφ), i.e. from left

to right φ = {0, π/4, π/2}. Shaded areas correspond to γ > 0 and unshaded ones to γ < 0 under

the condition that that α is chosen for which 0 < β ≤ π.

Table C.1: The Bessel functions Jν(x), H
(1)
ν (x), or H

(2)
ν (x) that are computed in each region. A

combination of the two renders the third one.

Region I II III IV V VI

Jν , H(2)
ν H(1)

ν , H(2)
ν Jν , H(1)

ν Jν , H(2)
ν H(1)

ν , H(2)
ν Jν , H(1)

ν

We have employed a Van Wijngaarden–Dekker–Brent root-finding scheme [78] to ob-

tain the location of the SDP via Eq. (C.4), while the numerical integration was performed

through an adaptive 30 − 61 point Gauss-Kronrod rule, which can be set to a required

accuracy [65]. We would like to integrate with respect to τ , since this would amount to

an integral over a domain of bounded support [29]. However, if the path of integration

becomes locally horizontal, like the upper SDP in Figure C.1(c), the integration variable

needs to be changed to avoid singularities. This complicates the search considerably and

therefore leads to an increase in the time required to evaluate the integral.

To avoid overflow and underflow, we scale the Bessel functions with respect to the

value of the integrand at the saddle point [30]. For the products of Bessel functions under

consideration, both saddle points are involved. If both have the same order and argument,

the saddle points are opposites and the scaling factors cancel. Otherwise, the different

orders as well as the arguments have to be commensurate to guarantee stability.

After some extensive testing, it turned out that integration along well-chosen piecewise-

linear path segments (LPSs) is not only much easier but also much faster. The exception

forms the SDP for Jν(x) in Figure C.1(a), which for real order and argument can be

derived analytically [29]. For complex argument, the asymptotes of the SDP for Jν(x)
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are shifted by arg(x) (see Eq. (C.5b)). However, the shape of the SDP does not change

significantly. Therefore, a simple translation of the analytical SDP through the pertaining

saddle point suffices to attain accurate results.

C.2 Piecewise-linear path segments

Especially for large orders and arguments, the integrand oscillates rapidly if we stray

too far away from the SDPs. However, if we choose piecewise-linear integration paths,

through the saddle-points and tangent to the descent paths, the residual oscillations pose

no difficulties whatsoever. The application of a Taylor expansion about the saddle point

up to second order yields an expression for the angle θ between a line parallel to the real

axis and the tangents of the paths crossing in the saddle point, i.e.

θn = −arg(ν)/2 − arg
(

1 − z2
)

/4 + nπ/2, (C.7)

where n∈ {0, 1, 2, 3} and arg(ν) denotes the argument of ν. Note that the crossing of the

paths in the saddle point are perpendicular, since the saddle points under consideration

are isolated ones for ν 6= x. In Figure C.3, we have plotted the employed LPSs for the

situations in Figure C.1, and have indicated the angle θ= θ0 in Figure C.3(b), explicitly.

If a LPS passes through the saddle point at the angle θ, the integrand will hardly oscillate
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Figure C.3: Replacement of the SDPs in Figure C.1 by LPSs.

in the vicinity of the saddle point. Moreover, for large orders, decay along an SDP is

exceptionally fast and therefore oscillations that might occur at a greater distance are

negligible. We connect this segment to other segments that run towards infinity along the

appropriate asymptotes defined in Eq. (C.5).
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C.3 Numerical results

We have developed a numerical code to compute results for a product of (modified) Bessel

functions. The modified Bessel functions are directly related to the Bessel functions by

Eq. (C.2). We are not aware of a single mathematical package which can be used as a

reference to validate our results over the entire range of complex orders 1<Re(ν)< 106

and arguments that occur in practice. For validation purposes, we have computed the

absolute value of the product Iν(ξ)Kν(ξ) and settled for a relatively small constant com-

plex order ν= 1200 − 10j. The real part of the complex argument ξ has been varied,

with Im(ξ) =−800 fixed. MathematicaTM [117] has been used to verify our results, as is

shown in Figure C.4. In Table C.2, the numerical results for various complex orders and

arguments are given.
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Figure C.4: Product of the modified Bessel

functions |Iν(ξ)Kν(ξ)|, where ξ= ζ−800j and

ν = 1200 − 10j.

Figure C.5: Product of the modified Bessel

functions |Iν(ξ)Kν(ξ)|, where ξ= ζ−800j and

ν = 1.2 · 106 − 10j.

MathematicaTM failed to produce results for some of the values of ζ in Figure C.4.

Oddly enough, we have had to request a “60-digit precision” to obtain results for all

values. If we set the real part of the order to Re(ν) = 1.2 ·106, MathematicaTM aborts due

to overflows, while our program still functions properly, as is shown in Figure C.5. The

set relative accuracy of 10−11 has been checked via the Wronskian relation given in [1],

i.e. Iν+1(ξ)Kν(ξ) + Iν(ξ)Kν+1(ξ) = ξ−1.

In Table C.2, we have given some typical values that occur in the problem of a bent

optical fibre [86] and some values with small complex orders and arguments to show the

range of applicability. We have underlined the digits that differ between the obtained

results and computed the relative error. Note that all are well within the set relative

accuracy of 10−11.

A comparison of computation times between integration along the paths of Figure C.1
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Table C.2: Comparison of the accuracy for the results of a product of modified Bessel functions

|Iν(ξ)Kν(ξ)| between MathematicaTM and integration along the paths of Figure C.3.

ν ξ MathematicaTM Our program Rel.error

2+j -6j 1.02079122908986422 1.02079122908986442 2.2E-16

35-j 1-j 1.4279211363517527E-2 1.4279211363517530E-2 2.4E-16

1+35j 1 1.4288396754169612E-2 1.4288396754169647E-2 2.5E-15

1.2·103-10j 10-8j 4.16646605857194E-4 4.16646605857148E-4 1.1E-13

1.2·103-10j 105-8j 4.99964004697354E-6 4.99964004696312E-6 2.1E-12

2·105-0.2j 103j 2.50003125058470E-6 2.50003125058207E-6 1.1E-12

1.2·106-10j 10-5·103j 4.1667028360457E-7 4.1667028360156E-7 7.2E-12

1.2·106-10j 105-5·103j NAN 4.15230927117101E-7 -

and the paths of Figure C.3 for the same products of Bessel functions of Table C.2 is

shown in Table C.3. Further, we have added the computation times of MathematicaTM

Table C.3: Comparison of computation times between integration along the paths of Figure C.1,

the paths of Figure C.3, and by MathematicaTM for a product of modified Bessel functions

|Iν(ξ)Kν(ξ)| using a Pentium IV, 2.6 GHz computer.

ν ξ Fig. 1 Fig. 2 MathematicaTM Region

2+j -6j 2.9s 0.9ms 15.6ms I

35-j 1-j 3.5s 1.4ms 15.6ms III

1+35j 1 3.4s 1.6ms 15.6ms IV

1200-10j 10-8j 3.4s 2.4ms 15.6ms III

1200-10j 105-8j 7.9s 3.6ms 15.6ms II

2·105-0.2j 103j 6.8s 4.0ms 75s III

1.2·106-10j 10-5000j 3.5s 4.6ms 1692s III

1.2·106-10j 105-5000j 3.7s 4.6ms NAN III

and the region in Figure C.2 to show which combination of Bessel functions in Table C.1

has been used. As the order and argument increase, MathematicaTM becomes much

slower and eventually fails, whereas computation times for our routine are only marginally

influenced by a change in order or argument. Since a numerical path search is not required,

integration along the paths in Figure C.3 is, by as much as three orders of magnitude, faster

than integration along the SDPs in Figure C.1. Especially for the fourth and fifth case
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in Table C.3, integration along the SDPs takes much longer. This is due to the extensive

search to locate the upper SDP numerically, which is needed to compute Jν(ξ). Since

this path contains a minimum, where the integrand is not negligible yet, the integration

variables have to be changed to perform the numerical evaluation.

In the product of Bessel functions, one of the constituents of the product may be

recessive, while the other may be dominant. If that recessive constituent were calculated

as a linear combination of two dominant solutions, the accuracy of the product would

be swamped [30]. The fact that this does not happen indicates that the combinations of

Bessel functions in Table C.1 are the right ones.



Appendix D

Wavefields generated by a bundle of

phased line sources

The scalar wavefield, φ, generated by a phased line source with an exp(jωt) time factor

and a longitudinal phase factor exp(−jk0ζz), satisfies

−
(

∂2
x + ∂2

y − k2
0n

2
cl

)

φ = δ(x)δ(y) exp(−jk0ζz). (D.1)

The substitution φ= exp(−jk0ζz)G(x, y) leads to the modified Helmholtz equation for a

two-dimensional Green’s function

−
(

∂2
x + ∂2

y − κ2
)

G = δ(x)δ(y), (D.2)

where κ= k0

√

ζ2 − n2
cl. For a source and point of observation, respectively located on

concentric circles at {x′, y′}= {̺ cosχ, ̺ sinχ} and {x, y}= {r cos θ, r sin θ}, with ̺ ≤ r,

the solution reads

G =
1

2π
K0(κR) =

1

2π

∞
∑

i=−∞

Ii(κ̺)Ki(κr)e
ji(θ−χ), (D.3)

with R=
√

(x− x′)2 + (y − y′)2.

To determine the modes of propagation of a straight open waveguide with circularly

cylindrical symmetry, one aims at connecting the interior field solutions that remain

bounded in the core region to exterior field solutions that remain bounded in the ho-

mogeneous region outside the core. In this case the angular harmonics decouple, and

the Cartesian components of the exterior field solutions for the mth angular harmonic are

proportional to combinations of Km(κr) and its derivative. For bent optical fibres, ana-

lytical solutions for the exterior fields on a toroidal coordinate system are not available.

As has been explained in Section 4.4, such bounded exterior fields can be generated with
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the aid of auxiliary ring sources located inside the imaginary core region of an auxiliary

homogeneous configuration.

To assess the validity of that approach, we investigate the ramifications of using aux-

iliary sources for straight open waveguides. To this end, suppose that instead of a single

source, we have an array of N ′ sources, located on a circle about the origin with radius ̺

and polar angles χn′ = 2πn′/N ′, n′ = 0, 1, . . . , N ′−1. The sources are modulated by factors

(N ′)−1 exp(jm′χn′), with m′ ∈ {−M, . . . ,M}. The corresponding field is given by

gm′(θ) =
1

2π

∞
∑

l′=−∞

Im′+l′N ′(κ̺)Km′+l′N ′(κr)ej(m
′+l′N ′)θ. (D.4)

To extract a single angular harmonic, one would like to evaluate

gm,m′ =

2π
∫

θ=0

e−jmθgm′ dθ =

{

Im(κ̺)Km(κr), m−m′ = 0 modN ′,

0, otherwise.
(D.5)

Hence, although the array of line sources produces higher-order angular harmonics, se-

lecting m∈ {−M, . . . ,M} will result in angular harmonics that correspond to the array

phase factor, provided that N ′≥ 2M + 1.

In the case of a bent fibre, the computational burden of evaluating the integrands is very

high. Hence, the numerical quadrature rule mesh for the full range of angular harmonics

(m,m′ ∈ {−M,M}) should be as coarse as possible. If we choose N =N ′≥ 2M + 1 equally

spaced samples, the discrete counterpart of Eq. (D.5) reads

ḡm,m′ =
2π

N

N−1
∑

n=0

e−2πjmn/Ngm′(2πn/N) =
∞
∑

ℓ=−∞

Im+ℓN(κ̺)Km+ℓN(κr)δm,m′ , (D.6)

for m,m′ ∈ {−M, . . . ,M}. In Eq. (D.6) aliasing is manifest in the terms with ℓ 6= 0.

However, owing to the asymptotically exponential decay In(κ̺)Kn(κr)≃ (2n)−1(̺/r)n for

large orders with respect to the arguments, the unwanted higher-order harmonics may be

suppressed, by choosing N and ρs = ̺/r large and small enough, respectively. In the case

of bent optical fibres, the actual dominant modes have large amplitudes for m small, and

rapidly decaying ones for higher m, which has a mitigating effect on the aliasing error.

In our experience, taking N =N ′ = 2M + 2 (just above the minimum N =N ′ = 2M + 1)

turns out to be adequate since aliasing mainly affects the high-m constituents.

It would seem that by choosing ρs very small, aliasing may be eliminated altogether,

since the field excited through the source modulation factors associated with azimuthal

index m may always be scaled back to unity, while the higher order angular harmonics

decay more rapidly. However, let us assume that the field amplitudes of the required

2M + 1 independent angular harmonics are arranged on the diagonal of a matrix A, and



151

that each harmonic is contaminated by noise, represented through the off-diagonal com-

ponents of A (for simplicity, we have taken all off-diagonal entries equal). If ρs is chosen

too small, the noise constituents with m small will decay at a much smaller rate than the

diagonal components of A for large m. As a consequence, the original 2M + 1 indepen-

dent harmonic constituents will almost become dependent. For the straight fibre, this can

be quantified through the condition number of ATA. It turns out that for ρs = ̺/r= 0.2,

M = 9 and a 10−5 noise level, the condition number becomes prohibitive (> 5×106), while

for ρs = 0.58 and M = 9, a 10−3 noise level poses no problems whatsoever (condATA< 5).

The observation that regarding the location of the auxiliary sources, one should steer clear

of both the boundary of the circular cylinder of radius r and its centre is in agreement with

results reported on the scattering from dielectric cylinders using a multifilament current

mode [56]. Although the analysis above pertains the scalar-wave straight-fibre case, we

have reached similar conclusions empirically for the much more complicated, full-vectorial

bent-optical fibre case.





Appendix E

Comparison of the vectorial full-wave

computation with the weak-guidance

approximation

The accuracy of the weak-guidance approximation (WGA) is investigated by a comparison

with exact vectorial full-wave (VFW) results for the normalised propagation coefficient

ζ, the group slowness per meter pg = 1/vg, the dispersion D, and the dispersion slope S.

Their computation has been discussed in Chapter 3. From the results we have extracted

validity regions for the use of the WGA. Further, we have recorded the computation times

to compute these quantities with both methods.

Accuracy check

We have examined the accuracy of the WGA on the basis of several refractive-index

profiles, viz. step, parabolic, and arbitrary. The latter is shown in Figure E.1. The fibres

D(%)

0

r

Figure E.1: Arbitrary refractive-index profile.

are weakly guiding, as we have assumed a refractive-index difference with a maximum ∆

of 0.27 % at λ = 632.8 nm. The core radius, a= 4.1µm, is similar to that of the CSF in
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Table 3.1.

To perform the actual accuracy check, we define a relative error between a fibre quantity

vq, either computed via the WGA or the VFW analysis, as

Rel. err. vq(%) =

∣

∣

∣

∣

∣

1 −
vWGA
q

vVFW
q

∣

∣

∣

∣

∣

× 100 %. (E.1)

In Figure E.2, the relative error is plotted for pg, D and S as a function of wavelength. A

wavelength sweep is performed about the centre wavelength, λ= 1550 nm. Observe that
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Figure E.2: The relative error is set against the wavelength for various profiles with a maximum

∆=0.27% and a core radius of a= 4.1 µm.

the relative error is small, but whether it is negligible depends on the application. For ex-

ample, let us regard a 10 Gbit/s bit stream. According to Figure E.2(a), the relative error

for all profiles is of O(10−6), which implies that for distances z > 10 km the pulses are no
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longer distinguishable. As we are constantly pursuing higher bit rates, the aforementioned

distance will inevitably decrease. Although the assumed values are (rough) estimates, it

gives an idea of the limitations of the WGA.

Further, we note that the relative error in the dispersion slope, the third derivative of

ζ with respect to ω̂, approaches the noise level as the wavelength increases. This is due

to cancellations in its numerical computation in Eq. (3.12).

Next, we have examined the influence of an increasing ∆, which renders the fibre less

weakly guiding. Again, the relative error is our measure. To give a fair comparison, we aim

to keep the normalised frequency V , given by Eq. (2.43), constant at V = 2.4, such that

we are still operating in the single-mode regime. This is achieved by a proper adjustment

of the core radius for a fixed wavelength at λ= 632.8 nm. In Figure E.3, the relative error
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Figure E.3: The relative error of various fibre quantities set against the refractive-index difference

∆ for a constant normalised frequency of V=2.4.
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for the fibre quantities under consideration is plotted as a function of ∆ at λ= 632.8 nm

for the step-index and parabolic-index profile. As expected, we observe a steady increase

of the error for higher contrasts. Whether the error is still acceptable depends on the

application. However, in the synthesis problem, one would like to design a fibre profile

with specified or optimum fibre properties. In that case a higher accuracy allows one to

obtain sharper estimates for the pertaining quantities.

Time comparison

Under the WGA, the dimension of the system of differential equations expressed in terms

of the number of field vectors, is halved. Consequently, less computation time is needed

to perform the numerical integration of the system in the core region. The comparison

is made for a parabolic-index weakly-guiding fibre with ∆ = 0.3 % and a= 5µm, at a

wavelength, λ= 1550 nm. In Table E.1, the computation times for both the WGA and

VFW analyses are shown. A Pentium IV, 2.4 GHz computer has been used to perform

the computation. In addition, we have given the values for the propagation coefficient ζ,

the group slowness pg, the dispersion D, and the dispersion slope S computed by both

methods. To keep the value of pg tractable, we have multiplied it with the speed of light

in vacuum c0.

Table E.1: Values for the propagation coefficient ζ and the fibre quantities pg, D and S at

λ=1550 nm and the overall computation time for a single-mode fibre of radius a=5 µm with a

parabolic-index profile of ∆=0.3%.

Method ζ c0pg D S Time

VFW 1.4450879 1.4660822 14.853122 0.0620421 0.12 s

WGA 1.4450901 1.4660847 14.875426 0.0620389 0.08 s

Owing to the smaller system in the WGA case, the numerical computation of the

various fibre quantities is about 1.5 times faster than with the VFW. It is this (marginal)

gain in time that one has to weigh against the induced error in the computation of the

pertaining quantities. In our opinion, accuracy prevails over computation time, as we do

not want to limit ourselves to weakly guiding fibres. In particular, during the optimisation

process of the refractive-index profile discussed in Chapter 5, this limitation may prove

an impediment.



Appendix F

Transverse integrals for bent pipes,

and single- and multi-mode fibres

F.1 The curved pipe

The integrals that arise on the right-side of Eq. (4.28) follow directly from the Marcuvitz-

Schwinger equations of Eq. (2.18). Eventually, they form the elements of the tensor B in

Eq. (4.29). They are given by

I1 =
1

2π

π
∫

ψ=−π

ρc + ρ cosψ

ρ
exp[−j(m− ℓ)ψ]dψ,

I2 =
1

2π

π
∫

ψ=−π

ρ

ρc + ρ cosψ
exp[−j(m− ℓ)ψ]dψ.

(F.1)

The integral I1 occurs in the term B12 of Eq. (4.29), and only yields a non-vanishing

solution for certain combinations of m and ℓ, i.e.

I1 =
ρc
ρ
δℓ,m +

1

2
(δℓ+1,m + δℓ,m+1). (F.2)

To evaluate I2, we introduce the variable ξ= exp(jψ), which gives for ℓ≥m

I2 =
1

2πj

∮

2ξℓ−m

ξ+ − ξ−

(

1

ξ − ξ+
− 1

ξ − ξ−

)

dξ, (F.3)

where

ξ± = −ρ−1
(

ρc ∓
√

ρ2
c − ρ2

)

= −ρ
(

ρc ±
√

ρ2
c − ρ2

)−1

. (F.4)

Note that ξ+ is located inside the unit circle in the complex ξ-plane, whereas ξ− lies

outside. Upon employing the residue theorem, we readily obtain

I2 = ρξℓ−m+

(

ρ2
c − ρ2

)−1/2
, for ℓ ≥ m. (F.5)
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A similar derivation holds for ℓ≤m. If we compose both solutions, we arrive at

I2 = ρξ
|ℓ−m|
+

(

ρ2
c − ρ2

)−1/2
= ρG, (F.6)

where G is given by Eq. (4.29).

F.2 The overlap integral

The aim of this section is to perform the numerical computation of Eq. (3.27), which we

repeat here for convenience

Amn =
1

2

∞
∫

ρ=0

2π
∫

ψ=0

Re [Ei (ρ
′′, ψ′′) × H∗

mn (ρ, ψ)] · uza2
Mρdψdρ, (F.7)

where the integral over a cross section of the fibre is to be performed at the plane z= 0.

The electric field Ei of the step-index SMF pigtail is expressed in a cylindrical coordinate

system {ρ′′, ψ′′, z′′}, with the by now familiar normalised radial coordinate ρ′′ = r′′/aS

where aS denotes the pertaining core radius. The magnetic field Hmn in the MMF is

expressed in a cylindrical coordinate system {ρ, ψ, z}, where ρ= r/aM with aM the core

radius of the MMF. The configuration is shown in Figure 3.10. The unit vectors of both

coordinate systems are related via






uρ′′

uψ′′

uz′′






=







sψsψ′′cθ′′ + cψcψ′′ cψsψ′′cθ′′ − sψcψ′′ sψ′′sθ′′

sψcψ′′cθ′′ − cψsψ′′ cψcψ′′cθ′′ − sψsψ′′ cψ′′sθ′′

−sψsθ′′ −cψsθ′′ cθ′′













uρ

uψ

uz






, (F.8)

where sξ and cξ, with ξ ∈ {ψ, ψ′′, θ′′}, denote sin ξ and cos ξ, respectively. The angle θ′′

corresponds to the angular tilt of the SMF pigtail. The cross-products between the unit

vectors of the various field components of Ei and Hmn are now readily derived. The field

components of a step-index SMF are available analytically in terms of Bessel functions [27].

For the MMF, the field components are obtained via the method proposed in Chapter 2.

If we assume that the fibre axis of the SMF is located at ρ= ρ0, the following relations

hold between a point P (ρ, ψ, 0) and P (ρ′′, ψ′′, z′′)

tψ′′ = tψ′cθ′′ = ρsψcθ′′ (ρcψ − ρ0)
−1 , z′′ = ρasψsθ′′

ρ′′cψ′′ = ρ′cψ′ = ρ′(ρcψ − ρ0) =
(

ρ2 + ρ2
0 − 2ρρ0cψ

)1/2
(ρcψ − ρ0),

(F.9)

where tξ denotes tan ξ. This conversion enables us to perform the actual numerical inte-

gration over the cross section of the MMF. First, we perform the numerical integration

over ψ. As is shown in Figure F.1, we can identify three regions of integration, depending

on the radial offset and angular tilt, i.e.
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Figure F.1: Various angular integration paths parameterised by ψ are given by dots. The gray

ellipse denotes to the overlap of the SMF with the MMF for a radial offset and an angular tilt.

1. integration is completely in the SMF core

ρ0 ≤ aS ∧ 0 ≤ ρ ≤ aSMF − ρ0, (F.10)

2. integration is completely in the SMF cladding

ρ ≥ ρ0 + aS ∨ ρ0 > aS ∧ 0 ≤ ρ ≤ ρ0 − aS, if θ′′ = 0,

ρ ≥
√

(ρ0/sθ′′)
2 + (aS/cθ′′)

2 ∨ ρ0 > aS ∧ 0 ≤ ρ ≤ ρ0 − aS, elsewhere,
(F.11)

3. integration is partially in the SMF core and partially in the cladding

ρ0 ≥ aS ∧ ρ0 − aS ≤ ρ ≤ ρ0 + aS,

ρ0 < aS ∧ aS − ρ0 ≤ ρ ≤ ρ0 + aS,

}

if θ′′ = 0,

ρ0 ≥ aS ∧ ρ0 − aS ≤ ρ ≤
√

(ρ0/sθ′′)
2 + (aS/cθ′′)

2,

ρ0 < aS ∧ aS − ρ0 ≤ ρ ≤
√

(ρ0/sθ′′)
2 + (aS/cθ′′)

2,











otherwise.

(F.12)

The integration limits of the ψ integral are defined by the angle ψb(ρ), which denotes an

intersection between the circle and the ellipse, i.e.

cosψb =
(

ρ2 + ρ2
0 − a2

S

)

/ (2ρρ0) , if θ′′ = 0,

cosψb =

(

ρ0 ±
√

ρ2
0c

2
θ′′ − s2

θ′′ (ρ
2c2θ′′ − a2

S)

)

/
(

ρs2
θ′′

)

, elsewhere.
(F.13)

For simplicity, we have assumed that the ellipse does not cross the core/cladding interface

of the MMF at any point. The subsequent numerical integration over ρ is performed

by a Gauss-Laguerre quadrature rule over a semi-infinite interval. The decay as ρ→∞
is exponential, i.e. exp(−bρ), with b=wS + wM, where w is given by Eq. (2.36), and

the subscript indicates whether the SMF propagation coefficient or an MMF one is used,

respectively. Further, to include a polarisation angle ψi to the incident field, the ψ-

dependence of the pertaining electromagnetic field components has to be changed into

exp [−jm (ψ + ψi)].
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F.3 Integrals in closed form for the MFD in the cladding

region

This section deals with the analytical integration over the cladding region of the numera-

tors of the MFD and Aeff in Eq. (3.13) and Eq. (3.15). Note that the denominator of the

MFD dI is implicitly addressed as well, since it is the numerator of the MFD dII . The

pertaining integrals are given by

∫

A∞

S(ρ)ρdρdψ, and

∫

A∞

S(ρ)ρ3dρdψ, (F.14)

where A∞ denotes the infinite cross section of the fibre and the complex Poynting vector

S(ρ) is given by Eq. (3.14). The Poynting vector depends solely on the radial coordinate,

and hence we are left with the following integrals that are derived analytically

∞
∫

ρ=1

K|m|(wρ)K
′
|m|(wρ)dρ = w−1

∞
∫

x=w

K|m|(x)K
′
|m|(x)dx = − 1

2w
K2

|m|(w), (F.15)

∞
∫

ρ=1

ρ2K|m|(wρ)K
′
|m|(wρ)dρ = w−3

∞
∫

x=w

x2K|m|(x)K
′
|m|(x)dx

=
1

2w3

[

m2K2
|m|(w) − w2K ′2

|m|(w)
]

,

(F.16)

∞
∫

ρ=1

[

m2ρ−1K2
|m|(wρ) + ρw2K ′2

|m|(wρ)
]

dρ =

∞
∫

x=w

[

m2x−1K2
|m|(x) + xK ′2

|m|(x)
]

dx

=
1

2
K2

|m|(w)





(
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)
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|m|(x)
]

dx

=
2

3
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K ′
|m|(w)
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. (F.18)

A prime indicates the derivative of the modified Bessel function with respect to its argu-

ment.
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Samenvatting

Al enkele tientallen jaren worden op silicium gebaseerde glasvezels gebruikt voor telecom-

municatie en sensor toepassingen. In netwerken waarbij grote afstanden moeten worden

overbrugd worden vaak monomode glasvezels gebruikt. Bij kortere afstanden, bijvoor-

beeld in een thuisnetwerk, heeft de multimode glasvezel de voorkeur. Door de enorme

bandbreedte van de glasvezels in vergelijking met hun elektronische draadloze of op koper

gebaseerde tegenhangers, blijft de vraag naar glasvezels stijgen. In een concurrende markt,

zullen glasvezelfabrikanten betere vezels moeten produceren die niet alleen goedkoop maar

ook eenvoudig te installeren zijn.

Omdat het onderzoek, de ontwikkeling en het fabricageproces van glasvezels al een

volwassen discipline is, kunnen verbeteringen in de huidige generatie van vezels alleen be-

werkstelligd worden door het constueren van robuuste, nauwkeurige en effciënte numerieke

modellen. Met behulp van deze modellen kunnen we de grootheden berekenen welke het

gedrag van de vezel bepalen. We hebben een modulair computerprogramma geschreven,

gebaseerd op de vergelijkingen van Maxwell, om deze grootheden te berekenen voor zowel

monomode als multi-mode glasvezels. Essentieel hierbij is het brekings-index profiel, of

meer specifieker het doping profiel, welke de glasvezel volledig karakteriseert. Voor de

monomode glasvezel hebben we ons geconcentreerd op de volgende grootheden: de disper-

sie, de afgeleide van de dispersie naar frequentie, de modale veld diameter, het effectieve

gebied, de effectieve afsnijfrequentie en de buigingsverliezen. Voor de multimode glasvezel

zijn de differentiële modale vertraging en de buigingsverliezen essentiële grootheden.

Voor de numerieke berekening van de buigingsverliezen van een monomode glasvezel,

welke we uitgebreid behandeld hebben, bestaan enkele benaderende uitdrukkingen in de

literatuur. Echter zij geven verschillende resultaten. Om duidelijkheid te verschaffen

hebben we een volledig vectoriële analyse van de gebogen glasvezel uitgevoerd. Hierbij

komen drievoudige integralen voor waarin de binnenste integrand bestaat uit producten

van Bessel functies met een grote, complexe orde en argument. Deze producten dienen

met een hoge nauwkeurigheid berekend te worden omdat cijfers in de betreffende integrand

elkaar kunnen opheffen. Dit heeft tot gevolg dat de berekening van de buigingsverliezen

als functie van de kromtestraal weken kan duren op een hedendaagse computer. De berek-



ende resultaten zijn als referentie gebruikt om de meest accurate benaderingsmethode

te selecteren. Vervolgens is die benaderingsmethode gebruikt om de buigingsverliezen

van hogere orde modi te berekenen, omdat de effectieve afsnijfrequentie afhangt van het

buigingsverlies van de eerste hogere orde mode.

Daar de eigenschappen van een glasvezel vaak tegenstrijdig zijn, blijft het een uitdaging

om een juist doping profiel te ontwerpen dusdanig dat de gewenste ontwerpdoeleinden (zo

goed mogelijk) worden gehaald. Een ontwerpdoel bestaat uit een set van gewenste waarden

voor enkele typische glasvezel grootheden, welke wiskundig kunnen worden gegoten in een

kostenfunctie. Het minimaliseren van deze kostenfunctie levert het optimale doping profiel.

Voor de monomode glasvezel hebben we voor stuksgewijs lineaire doping profielen deze

optimalisatie uitgevoerd, waarbij we gebruik hebben gemaakt van globale en op gradient

informatie gebaseerde routines om het ontwerpproces aanzienlijk te kunnen versnellen.

Vaak leiden deze optimalisatie routines tot tegen intüıtieve doping profielen. We hebben

een weloverwogen keuze gemaakt en de uitkomsten van de verschillende routines met elkaar

vergeleken voor de monomode glasvezel. De belangrijkste conclusie is misschien wel dat

er nog steeds ruimte is voor verbetering in de doping profielen van de huidige generatie

van glasvezels.

Voor multimode glasvezels is profiel optimalisatie te tijdrovend. Een handmatige af-

stemming van het populaire geleidelijk veranderende brekings-index profiel in de radiële

richting is wel mogelijk om de differentiële modale vertraging te minimaliseren. Daarnaast

hebben we differentiële modale verzwakking en modale overspraak tussen de propagerende

modi gesimuleerd om resultaten te verkrijgen die overeenstemmen met de metingen.

Tevens hebben we de invloed bekeken op het intensiteitspatroon voor kleine imperfec-

ties in de glasvezel, zoals bijvoorbeeld de aanwezigheid van een kink in het profiel.

Een selectieve excitatie van verschillende mode groepen in de multimode glasvezel

biedt de mogelijkheid om onafhankelijk kanalen te creëren, en daardoor de informatie

capaciteit te vergroten. Kort geleden is de haalbaarheid van deze zogenaamde mode groep

diversiteits multiplexing techniek aangetoond. Numerieke simulaties zijn een middel om

de werking van deze techniek beter te begrijpen en om de methode wellicht te verbeteren.

De scheiding van de kanalen kan worden vergroot door een lens te plaatsen tussen de

uitgang van de glasvezel en de detector. Deze techniek heet modale selectieve spatiële

filtering en is gëımplementeerd in onze programmatuur. Onze metingen aan mode groep

diversiteits multiplexing links, met en zonder toepassing van de mode groep diversiteits

multiplexing techniek, onderbouwen de simulaties.

De ontwikkelde programmatuur heeft een brede inzetbaarheid. Mede door zijn modu-

laire opbouw zijn uitbreidingen, zoals het toevoegen van meerdere grootheden of andere

profiel materialen, rechtlijnig.
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