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Existence of weak solutions to a degenerate pseudo-parabolic

equation modeling two-phase flow in porous media

C. Cancès, C. Choquet, Y. Fan, I.S. Pop

December 29, 2010

Abstract

In this paper, we consider a degenerate pseudo-parabolic equation modeling two-
phase flow in porous media, where dynamic effects in the difference of the phase
pressures are included. Because of the special form of the capillary induced diffusion
function, the equation becomes degenerate for certain values of the unknown. To
overcome the difficulties due to the degeneracy, a regularization method is employed
for proving the existence of a weak solution.

Keywords: Dynamic capillary pressure, two-phase flow, degenerate pseudo-parabolic
equation, weak solution, existence.

1 Introduction

Pseudo-parabolic equations appear as models for many real life applications, such as light-
ning [2], seepage in fissured rocks [4], radiation with time delay [27] and heat conduction
models [36]. Here we consider a pseudo-parabolic equation modeling two-phase flow in
porous media, where dynamic effects are complementing the capillary pressure - saturation
relationship. With a given maximal time T > 0 and for all x ∈ Ω a bounded domain in Rd

(d = 1, 2, or 3) having a Lipschitz continuous boundary ∂Ω, we investigate the equation

(1.1) ∂tu +∇ · F(u, x, t) = ∇ · (H(u)∇pc) , (t, x) ∈ Q := Ω× (0, T ].

This equation is obtained by including Darcy’s law for both phases in the mass conservation
laws. Here u stands for water saturation, F and H are the water fraction flow function
and the capillary induced diffusion function, while pc is the capillary pressure term. Such
models are proposed in [19, 32]. For recent works providing experimental evidence for the
dynamic effects in the phase pressure difference we refer to [12, 21, 5]. Similar models, but
considering an ”apparent saturation” are discussed in [3]. Here we consider a simplified
situation, where

(1.2) pc = u + τ∂tu.

Then (1.1) becomes

(1.3) ∂tu +∇ · F(u, x, t) = ∇ · (H(u)∇(u + τ∂tu)) .
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The functions H and F depend on the specific model, in particular on the relative perme-
abilities. Commonly encountered in the engineering literature are relative permeabilities
of power-like types, up+1 and (1− u)q+1, where p and q are positive reals. This leads to

(1.4) H(u) = K
µ

up+1(1−u)q+1

up+1+M(1−u)q+1 , and F(u, x, t) = Q(x, t) up+1

up+1+M(1−u)q+1 + H(u)ρg,

where K is the permeability tensor of the porous medium, that will be supposed, for the
sake of simplicity, to be isotropic. Next, µ and µ̃ are the viscosities of the two phases,
whereas M = µ̃

µ > 0 is the viscosity ratio of the two fluids, and τ is a positive constant
standing for the damping coefficient. Further, Q is the total flow in the porous medium,
satisfying ∇ · Q = 0, whereas g is the gravity vector. Finally, ρ denotes the difference
between the phase densities.

With the given function H, (1.3) becomes degenerate whenever u = 0 or u = 1. Note
that the expression (1.4) makes sense only for u ∈ [0, 1]. For completeness we extend
H continuously by 0 outside this interval. Therefore the functions H is nonnegative,
bounded and Lipschitz continuous on the entire R. Similarly, the vector valued function
F is extended by constants for all u outside [0, 1], leading to a bounded and Lipschitz
continuous, function defined on R. However, (1.4) is just a typical example appearing in
the literature. In view of this, throughout this paper we assume

(A1)

H : R→ R is nonnegative, Lipschitz and C1, satisfying

H(u) > 0 if 0 < u < 1, and H(u) = 0 otherwise;

F : R→ Rd is Lipschitz and C1. Further, for all v ∈ R, t > 0,∇ · F(v, x, t) = 0.

Pseudo-parabolic equations like (1.3) are investigated in the mathematical literature
for decades. Short time existence of solutions with constant, compact support is obtained
in [15], whereas a nonlinear parabolic-Sobolev equation is studied in [37]. The existence
and uniqueness of weak solutions for some nonlinear pseudo-parabolic equations, where
the degeneracy may appear in only one term, are proved in [17] and [34]. Long time
existence of weak solutions to a closely related model is proved in [28, 29]. We further
refer to [25] for the analysis of a non-degenerate pseudo-parabolic model that includes
hysteresis.

The connection between pseudo-parabolic equations and shock solutions to hyperbolic
conservation laws is investigated in [14] for the case of a constant function H. The analysis
there, based on traveling waves, is continued in [13]. In both cases, undercompressive
shocks are obtained for values of τ exceeding a threshold value. Nonclassical shocks are
also obtained in [6], but in a heterogeneous medium, and in [23], but based on a different
regularization. Traveling wave solutions for a pseudo-parabolic equation involving a convex
flux function are analyzed in [9, 10, 31].

Concerning numerical methods for pseudo-parabolic equations, the superconvergence
of a finite element approximation to similar equation is investigated in [1] and time-
stepping Galerkin methods are analyzed in [16] and [18], where two finite difference approx-
imation schemes are considered. Further, Fourier spectral methods are analyzed in [35].
For homogeneous media, discontinuous initial data and corresponding numerical schemes
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for pseudo-parabolic equations are considered in [11], whereas for heterogeneous media
we refer to [20]. We also mention [33] for a review of different numerical methods for
pseudo-parabolic equations.

In this paper we prove the existence of weak solutions to the degenerate pseudo-
parabolic equation in (1.3). The exact definition will be given below. Existence results
for similar models are proved in [28] and [29]. This work is closely related to the analysis
in [29]. The results there require sufficiently large values of p and q, and requires that the
initial data is neither 0, nor 1 for almost all x ∈ Ω. Here we only assume p, q ≥ 0. In
particular, if p, q ∈ [0, 1), the initial data may be 0 or 1 on a non-zero measure subset of
Ω.

To obtain the existence result we employ regularization and compactness arguments.
The main difficulty appears in dealing with the nonlinear and degenerate term involving
the third order derivative, for which we combine the div-curl lemma (see e.g. [30, 38]) with
equi-integrability properties. A simplified approach is possible whenever the degeneracy
H can be controlled by the convective term F, specifically if the product H(·)−1/2 F(·) is
a bounded function. This is obtained e.g. if Q ≡ 0, as considered in [29]. In this case one
can use the structure of the equation as in [8] to obtain uniform L6 estimates for ∂tu, and
then apply the div-curl lemma directly. Here we consider a rather general convective flux
F that make this latter strategy fail.

Below we use standard notations in the theory of partial differential equations, such
as L2(Ω), W 1,2(Ω) and W 1,2

0 (Ω). W−1,2(Ω) denotes the dual space of W 1,2
0 (Ω), while

L2(0, T ; W 1,2
0 (Ω)) denotes the Bochner space of W 1,2

0 (Ω) valued functions. By (·, ·) we
mean the inner product in either L2(Ω), or (L2(Ω))d, and ‖·‖ stands for the corresponding
norm. Furthermore, C denotes a generic positive real number.

The equation (1.3) is complemented by the following initial and boundary conditions

(1.5) u(·, 0) = u0, and u|∂Ω = CD.

The initial data is assumed in W 1,2(Ω). Furthermore, it satisfies 0 ≤ u0 ≤ 1 almost
everywhere in Ω, while CD ∈ (0, 1) is a constant. The extension to non-constant boundary
data is possible, but requires more technical steps, detailed in [29], that we eliminate here
for the sake of presentation. An important requirement here is that CD is not a degeneracy
value, 0, or 1. The reason for this will become clear in the proof of the main result.

To introduce the concept of a weak solution, we define the space

V := CD + W 1,2
0 (Ω).

Then a weak solution solves
Problem P Find u ∈ W 1,2(0, T ;V ) such that u(·, 0) = u0, H(u)∇∂tu ∈

(
L2(Q)

)d, and
such that

∫ T

0

∫

Ω
∂tuφdxdt−

∫ T

0

∫

Ω
F(u, x, t) · ∇φdxdt(1.6)

+
∫ T

0

∫

Ω
H(u)∇u · ∇φdxdt + τ

∫ T

0

∫

Ω
H(u)∇∂tu · ∇φdxdt = 0,

for any φ ∈ L2(0, T ; W 1,2
0 (Ω)).
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As H(u) vanishes at u = 0 or 1, (1.3) becomes degenerate. We define the functions

(1.7) G,Γ : R→ R ∪ {±∞}, G(u) =
∫ u

CD

1
H(v)

dv, and Γ(u) =
∫ u

CD

G(v)dv.

Clearly, Γ is a convex function satisfying Γ(CD) = Γ′(CD) = 0, implying

(1.8) Γ(u) ≥ 0, for all u ∈ R.

The existence results in the following sections are obtained under the assumption

(A2)
∫

Ω
Γ(u0)dx < ∞.

Under hypothesis (1.4), this assumption is fulfilled if, for example, 0 < p, q < 1. Whenever
p ≥ 1, (A2) requires that meas{u0 = 0} = 0. Similarly, q ≥ 1 requires meas{u0 = 1} = 0.
The construction of Γ is inspired by [28, 29], where a generalized Kullback entropy is
defined. Since Γ is nonnegative, Γ(u0) is an element of L1(Ω). As will be proved below,
this implies ∫

Ω
Γ(u(t))dx < C,

uniformly for t ∈ (0, T ].
The main result of this paper is the existence of weak solutions to Problem P. We

start by studying a regularized problem in Section 2, where we replace H by the strictly
positive function Hδ = H + δ. Some a priori estimates are provided in Section 2 and
the existence of weak solutions for Hδ is proved. In Section 3, the existence of weak
solutions to equation (1.3) is proved by compactness arguments. The major difficulty is
to handle the nonlinear and degenerate term including the mixed, third order derivative.
To identify the limit in this case we combine the div-curl lemma (see e.g. [30, 38]) with
equi-integrability properties.

Remark 1.1 Equation (1.3) is a simplified model for two-phase flow in porous media,
where dynamic effects are taken into account in the capillary pressure. However, this
model contains the main mathematical difficulties related to such models: a degenerate
nonlinearity in the terms involving the higher order derivatives. More realistic models are
proposed in [19, 32]. With minor modifications, the present analysis can be extended for
dealing with the cases considered e.g. in [9, 10, 31]. For instance, a capillary pressure of
the form

pc = p(u) + τ∂tu

may be treated following the ideas presented below, provided that p is increasing, with√
p′ ∈ L1(0, 1) and H(·)p′(·) ∈ L∞(0, 1). In particular the degeneracy p′(u) = 0 for some

u is allowed, as well as lims→{0,1} p′(s) = +∞. Note that under these finer assumptions,
the definition of the solution to the Problem P has to be modified slightly (see [7]).
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2 The regularized problem

To overcome the problems that are due to the degeneracy, we regularize Problem P by
perturbing H(u):

(2.1) Hδ(u) = H(u) + δ,

where δ is a small positive number. Then we consider the equation:

(2.2) ∂tu +∇ · F(u, x, t) = ∇ · (Hδ(u)∇(u + τ∂tu)) ,

and investigate the limit case as δ → 0. In particular, we seek a solution to the following
Problem Pδ Find u ∈ W 1,2(0, T ;V ) such that u(·, 0) = u0, ∇∂tu ∈

(
L2(Q)

)d and

∫ T

0

∫

Ω
∂tuφdxdt−

∫ T

0

∫

Ω
F(u, x, t) · ∇φdxdt(2.3)

+
∫ T

0

∫

Ω
Hδ(u)∇u · ∇φdxdt + τ

∫ T

0

∫

Ω
Hδ(u)∇∂tu · ∇φdxdt = 0,

for any φ ∈ L2(0, T ; W 1,2
0 (Ω)).

Clearly, any solution to Problem Pδ depends on δ. However within Section 2, δ will
be fixed. For the ease of reading, the δ-dependence of the solution will be self-understood,
without involving any δ index for the solution u. We start by showing that Pδ has a
solution. To do so, we use the Rothe method [22] and investigate firstly a sequence of time
discrete problems.

2.1 Time discretization

Setting ∆t = T/N(N ∈ N), we consider the Euler-implicit discretization of Problem Pδ

which leads to a sequence of time discretized problems. Specifically, we consider
Problem Pn+1

δ Given un ∈ V, n ∈ {0, 1, 2, ..., N − 1}. Find un+1 ∈ V such that

(un+1 − un, φ) + ∆t(∇ · F(un+1, x, t), φ) + ∆t(Hδ(un+1)∇un+1,∇φ)(2.4)

+τ(Hδ(un+1)∇(un+1 − un),∇φ) = 0,

for any φ ∈ W 1,2
0 (Ω).

For obtaining estimates we will use the elementary Young inequality

(2.5) ab ≤ 1
2δ

a2 +
δ

2
b2, for any a, b ∈ R and δ > 0.

We prove the following result.

Proposition 2.1 Problem Pn+1
δ has a solution.
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Proof . Formally, (2.4) can be written as

(2.6) (τ + ∆t)∇ · (Hδ(X)∇X)− τ∇ · (Hδ(X)∇un)−∆t∇ · F(X,x, t)−X + un = 0,

with X standing for the unknown function. If un ∈ CD + C∞
0 (Ω), the existence of a

solution to (2.6) is provided by Theorem 8.2, Chapter 4 in [24]. To extend the existence
result to un ∈ V we make use of density arguments. Specifically, along a sequence ε → 0
we consider a sequence {un

ε }ε>0 ⊆ CD + C∞
0 (Ω) that converges to un in W 1,2(Ω). For

each un
ε there exists a solution Xε of (2.6), where un

ε replaces un. This defines a sequence
{Xε}ε>0 ⊆ CD + C∞

0 (Ω). As will be seen below, this sequence is uniformly bounded in
W 1,2(Ω), and therefore contains a weakly convergent subsequence. We will show that the
limit X of this subsequence solves Problem P.

The weak form of (2.6) reads

(τ + ∆t)(Hδ(Xε)∇Xε,∇φ)− τ(Hδ(Xε)∇un
ε ,∇φ)(2.7)

−∆t(F(Xε, x, t),∇φ) + (Xε, φ) = (un
ε , φ),

for any φ ∈ W 1,2
0 (Ω). We define the vector valued function F(Xε) :=

∫ Xε

CD
F(v, x, t)dv and

note that this is a 0-vector on ∂Ω. Since F is divergence free in x, for φ = Xε − CD ∈
W 1,2

0 (Ω) one gets

(2.8) (F(Xε, x, t),∇(Xε − CD)) =
∫

Ω
∇F(Xε, x, t) · ∇Xεdx =

∫

∂Ω
γ · F(CD)dx = 0,

the outer normal vector to ∂Ω being here denoted by γ. In this case, (2.7) yields

(τ + ∆t)
∫

Ω
Hδ(Xε)|∇Xε|2dx− τ

∫

Ω
|Hδ(Xε)∇Xε · ∇un

ε |dx +
∫

Ω
|Xε|2dx(2.9)

≤
∫

Ω
(CD + un

ε )Xεdx− CD

∫

Ω
un

ε dx.

By (2.5),

τ

∫

Ω
|Hδ(Xε)∇Xε · ∇un

ε |dx ≤ τ + ∆t

2

∥∥∥
√

Hδ(Xε)∇Xε

∥∥∥
2
+

τ2

2(τ + ∆t)

∥∥∥
√

Hδ(Xε)∇un
ε

∥∥∥
2
,

and from (2.9)

τ + ∆t

2

∥∥∥
√

Hδ(Xε)∇Xε

∥∥∥
2
− τ2

2(τ + ∆t)

∥∥∥
√

Hδ(Xε)∇un
ε

∥∥∥
2
+ ‖Xε‖2(2.10)

≤ 1
2
‖CD + un

ε ‖2 +
1
2
‖Xε‖2 − CD

∫

Ω
un

ε dx.

Since un
ε is bounded in W 1,2(Ω) and δ ≤ Hδ(Xε) ≤ C, we obtain

(2.11) (τ + ∆t)
∥∥∥
√

Hδ(Xε)∇Xε

∥∥∥
2
+ ‖Xε‖2 ≤ C.

Therefore we conclude that Xε is uniformly bounded in W 1,2(Ω), so it contains a sub-
sequence, still denoted by Xε for convenience, converging weakly in W 1,2(Ω). We de-
note this limit by X. From the compact imbedding of W 1,2(Ω) into L2(Ω), we obtain
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F(Xε, x, t) → F(X, x, t) strongly in (L2(Ω))d and Hδ(Xε) → Hδ(X) strongly in L2(Ω).
Hence, for any φ ∈ W 1,2

0 (Ω), we have

(Xε, φ) → (X, φ),(2.12)
(F(Xε, x, t),∇φ) → (F(X, x, t),∇φ).(2.13)

To show that X solves Problem Pn+1
δ , we need to prove that

(2.14) (Hδ(Xε)∇Xε,∇φ) → (Hδ(X)∇X,∇φ).

The idea involved in proving this last step will be used later again. We start by observing
that Hδ(Xε)∇Xε is bounded in (L2(Ω))d, therefore it has a weak limit χ. To identify this
limit, we take φ ∈ C∞

0 (Ω) as test function in (2.7). Since Hδ(Xε) → Hδ(X) strongly in
L2(Ω) and ∇Xε → ∇X weakly in (L2(Ω))d, we have

(2.15) (Hδ(Xε)∇Xε,∇φ) → (Hδ(X)∇X,∇φ).

This implies that Hδ(Xε)∇Xε ⇀ Hδ(X)∇X in distributional sense. By the uniqueness of
the limit, we have χ = Hδ(X)∇X.

Finally, since {un
ε }ε>0 ⊆ V converges weakly to un in W 1,2(Ω), we have

(un
ε , φ) → (un, φ),(2.16)

(Hδ(Xε)∇un
ε ,∇φ) → (Hδ(X)∇un,∇φ).(2.17)

Combining (2.12), (2.13), (2.14), (2.16), (2.17) and (2.7), we conclude that X is a
solution to Problem Pn+1

δ . ¤

In proving the existence of a solution to Problem Pδ, we use the following elementary
results

Proposition 2.2 Let k ∈ {0, 1, ..., N},m ≥ 1. For any set of m-dimensional real vectors
ak, bk ∈ Rm, we have the following identities:

(2.18)
N∑

k=1

< ak − ak−1,

N∑

n=k

bn >=
N∑

k=1

< ak, bk > − < a0,

N∑

k=1

bk >,

(2.19)
N∑

k=1

< ak − ak−1,ak >=
1
2
(|aN |2 − |a0|2 +

N∑

k=1

|ak − ak−1|2),

(2.20)
N∑

k=1

<

N∑

k=n

ak,an >=
1
2
|

N∑

k=1

ak|2 +
1
2

N∑

k=1

|ak|2.
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2.2 A priori estimates

For the existence of a solution to Problem Pδ, we apply compactness arguments based
on the following a priori estimates.

Proposition 2.3 For any n ≥ 1, we have the following:

||∇un||L2(Ω) ≤ C,(2.21) ∫

Ω
Γδ(un)dx ≤ C,(2.22)

||un − un−1||2L2(Ω) + τ ||
√

Hδ(un)∇(un − un−1)||2L2(Ω) ≤ C(∆t)2,(2.23)
||un||L2(Ω) ≤ C.(2.24)

Here C does not depend on δ.

Proof . 1. Taking φ = Gδ(un+1) =
∫ un+1

CD

1
Hδ(v)dv ∈ W 1,2

0 (Ω) in (2.4) gives

(un+1 − un, Gδ(un+1)) + (τ + ∆t)||∇un+1||2L2(Ω)(2.25)

−τ(∇un,∇un+1) + ∆t(∇ · F(un+1, x, t), Gδ(un+1)) = 0.

Define G(un+1, x, t) :=
∫ un+1

CD
Gδ(v)∂vF(v, x, t)dv. By (A1) we have

(∇ · F(un+1, x, t), Gδ(un+1)) =
∫

Ω
∇ · G(un+1, x, t)dx =

∫

∂Ω
γ · G(CD)dx = 0.

Here γ denotes the outer normal vector to ∂Ω. Further, as in (1.7) we define Γδ(u) :=∫ u
CD

Gδ(v)dv and note that Γ′′δ (u) = 1
Hδ(u) > 0, thus

(2.26) (un+1 − un)Gδ(un+1) ≥ Γδ(un+1)− Γδ(un).

Summing (2.26) in (2.25) up from 0 to n− 1 gives

(2.27) 0 ≥
∫

Ω
Γδ(un)dx−

∫

Ω
Γδ(u0)dx + (∆t + τ)

n∑

k=1

||∇uk||2L2(Ω) − τ
n∑

k=1

(∇uk,∇uk−1).

By (2.19) we have

0 ≥
∫

Ω
Γδ(un)dx−

∫

Ω
Γδ(u0)dx + ∆t

n∑

k=1

||∇uk||2L2(Ω) +(2.28)

τ

2
||∇un||2L2(Ω) −

τ

2
||∇u0||2L2(Ω) +

τ

2

n∑

k=1

||∇(uk − uk−1)||2L2(Ω),

implying
∫

Ω
Γδ(un)dx + ∆t

n∑

k=1

||∇uk||2L2(Ω) +
τ

2
||∇un||2L2(Ω) +

τ

2

n∑

k=1

||∇(uk − uk−1)||2L2(Ω)(2.29)

≤
∫

Ω
Γδ(u0)dx +

τ

2
||∇u0||2L2(Ω).
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Recalling (1.8), as Hδ is bounded and u0 ∈ W 1,2(Ω), we have

∫

Ω
Γδ(u0)dx =

∫

Ω

∫ u0

CD

∫ u

CD

1
Hδ(v)

dvdudx ≤
∫

Ω

∫ u0

CD

∫ u

CD

1
H(v)

dvdudx ≤ C,

where C does not depend on δ. Therefore,
∫

Ω
Γδ(un)dx ≤ C,(2.30)

||∇un||L2(Ω) ≤ C,

n∑

k=1

||∇(uk − uk−1)||2L2(Ω) ≤ C.(2.31)

2. Taking φ = un − un−1 ∈ W 1,2
0 (Ω) in (2.4) written at time tn = n∆t, we have

||un − un−1||2L2(Ω) + ∆t(∇ · F(un, x, t), un − un−1) +(2.32)

∆t(Hδ(un)∇un,∇(un − un−1)) + τ ||
√

Hδ(un)∇(un − un−1)||2L2(Ω) = 0.

By (2.5) and (A1),

||un − un−1||2L2(Ω) −
1
2
||un − un−1||2L2(Ω) −

(C∆t)2

2
||∇un||2L2(Ω)(2.33)

−(∆t)2

2τ
||
√

Hδ(un)∇un||2L2(Ω) −
τ

2
||
√

Hδ(un)∇(un − un−1)||2L2(Ω)

+τ ||
√

Hδ(un)∇(un − un−1)||2L2(Ω) ≤ 0.

According to (2.31), since Hδ is bounded, we obtain

(2.34) ||un − un−1||2L2(Ω) + τ ||
√

Hδ(un)∇(un − un−1)||2L2(Ω) ≤ C(∆t)2.

As Hδ ≥ δ, we also derive

(2.35) ||un − un−1||L2(Ω) ≤ C∆t and ||∇(un − un−1)||L2(Ω) ≤
C∆t√

δ
.

3. Finally, since un − CD ∈ W 1,2
0 (Ω),

(2.36) ||un||L2(Ω) ≤ ||un−CD||L2(Ω)+||CD||L2(Ω) ≤ C(Ω)||∇(un−CD)||L2(Ω)+C ≤ C. ¤

2.3 Existence for Problem Pδ

Using Proposition 2.3, we now prove the existence of a solution to the regularized Prob-
lem Pδ.

Theorem 2.1 Problem Pδ has a solution.

Proof . We start by defining

(2.37) UN (t) = uk−1 +
t− tk−1

∆t
(uk − uk−1),
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for tk−1 = (k− 1)∆t ≤ t < tk = k∆t, k = 1, 2...N . Clearly, UN |∂Ω = CD. Then we have

∫ T

0
||UN (t)||2L2(Ω)dt =

N∑

k=1

∫ tk

tk−1

||uk−1 +
t− tk−1

∆t
(uk − uk−1)||2L2(Ω)dt(2.38)

≤ 2
N∑

k=1

∫ tk

tk−1

(||uk−1||2L2(Ω) + ||uk − uk−1||2L2(Ω))dt

= 2∆t
N∑

k=1

(||uk−1||2L2(Ω) + ||uk − uk−1||2L2(Ω))

≤ C,

and
∫ T

0
||∇UN (t)||2L2(Ω)dt =

N∑

k=1

∫ tk

tk−1

||∇uk−1 +
t− tk−1

∆t
∇(uk − uk−1)||2L2(Ω)dt(2.39)

≤ 2
N∑

k=1

∫ tk

tk−1

(||∇uk−1||2L2(Ω) + ||∇(uk − uk−1)||2L2(Ω))dt

= 2∆t
N∑

k=1

(||∇uk−1||2L2(Ω) + ||∇(uk − uk−1)||2L2(Ω))

≤ C.

Additionally,
∫ T

0
||∂tUN ||2L2(Ω)dt =

N∑

k=1

∫ tk

tk−1

|| 1
∆t

(uk − uk−1)||2L2(Ω)dt(2.40)

=
1

∆t

N∑

k=1

||uk − uk−1||2L2(Ω) ≤ C

and, by (2.35),
∫ T

0
||∂t∇UN ||2L2(Ω)dt =

N∑

k=1

∫ tk

tk−1

|| 1
∆t
∇(uk − uk−1)||2L2(Ω)dt,(2.41)

=
1

∆t

N∑

k=1

||∇(uk − uk−1)||2L2(Ω) ≤
C

δ
.

By (2.38), (2.39), (2.40), (2.41), there exists a subsequence of {UN} (still denoted as
{UN}) such that, as N →∞,

UN → U strongly in L2(Q),(2.42)

∂tUN⇀ ∂tU weakly in L2(Q),(2.43)

∇UN⇀ ∇U weakly in L2(Q),(2.44)

∇∂tUN⇀ ∇∂tU weakly in L2(Q).(2.45)
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Now we prove that U solves Problem Pδ. Firstly, for any φ ∈ L2(0, T ; W 1,2
0 (Ω)), (2.4)

implies

(
uk − uk−1

∆t
,

∫ tk

tk−1

φdt) + (∇ · F(uk, x, t),
∫ tk

tk−1

φdt) + (Hδ(uk)∇uk,

∫ tk

tk−1

∇φdt) +(2.46)

τ(Hδ(uk)∇uk − uk−1

∆t
dt,

∫ tk

tk−1

∇φdt) = 0,

for k = 1, 2, ..N . Define

(2.47) UN (t) = uk,

for tk−1 = (k − 1)∆t ≤ t < tk = k∆t, k = 1, 2...N . Then UN |∂Ω = CD and
∫ T

0

∫

Ω
∂tUNφdxdt−

∫ T

0

∫

Ω
F(UN , x, t) · ∇φdxdt(2.48)

+
∫ T

0

∫

Ω
Hδ(UN )∇UN · ∇φdxdt + τ

∫ T

0

∫

Ω
Hδ(UN )∇∂tUN · ∇φdxdt = 0.

We now exploit a general principle that relates the piecewise linear and the piecewise
constant interpolation (see e.g. [26] for a proof of the corresponding lemma): if one
interpolation converges strongly in L2(Q), then the other interpolation also converges
strongly in L2(Q). From the convergence of UN , we conclude that UN also converges
strongly in L2(Q). Then we obtain F (UN ) → F (U) strongly in (L2(Q))d and Hδ(UN ) →
Hδ(U) strongly in L2(Q). Employing the same idea as in the proof of Lemma 2.1, we have

Hδ(UN )∇UN ⇀ Hδ(U)∇U weakly in (L2(Q))d,(2.49)
Hδ(UN )∇∂tUN ⇀ Hδ(U)∇∂tU weakly in (L2(Q))d.(2.50)

Combining the latter results with (2.48), we obtain that U is a solution to Problem Pδ.
¤

3 Existence for Problem P

For any δ > 0, Section 2 provides a solution uδ to the regularized Problem Pδ. In this
section, we identify a sequence {δn}n∈N tending to 0, providing the limit u of the sequence
{uδn}n∈N, which solves Problem P. This involves compactness argument, and therefore
convergence should always be understood along a subsequence. From Assumption (A.2),
Proposition 2.3 and Theorem 2.1, we have the following

Proposition 3.1 We have the following estimates:

||uδ||L2(Q) ≤ C,(3.1)
||∂tuδ||L2(Q) ≤ C,(3.2)

||
√

Hδ(uδ)∇∂tuδ||L2(0,T ;(L2(Ω))d) ≤ C,(3.3)
||∇uδ||L∞(0,T ;(L2(Ω))d) ≤ C,(3.4) ∫

Ω
Γδ(uδ(t))dx ≤ C, for a.e. t > 0,(3.5)
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where C does not depend on δ.

By Proposition 3.1, there exists a u ∈ H1(Q) such that,

uδn → u strongly in L2(Q), and a.e. on Q,(3.6)

∂tuδn ⇀ ∂tu weakly in L2(Q),(3.7)

as well as

(3.8) ∇uδn ⇀ ∇u in L∞(0, T ; (L2(Ω))d) in the weak- ? sense.

Further, from (3.3) there exists a ζ = (ζ1, ..., ζd) ∈
(
L2(Q)

)d such that,

(3.9)
√

Hδn(uδn)∂t∇uδn ⇀ ζ weakly in
(
L2(Q)

)d
.

Let ψ ∈ C∞
0 (Q), then for all n, uδn satisfies

(3.10) An + Bn + Cn + Dn = 0,

where

An =
∫∫

Q
∂tuδnψdxdt,

Bn = −
∫∫

Q
F(uδn , x, t) · ∇ψdxdt,

Cn =
∫∫

Q
Hδn(uδn)∇uδn · ∇ψdxdt,

Dn =
∫∫

Q
Hδn(uδn)∂t∇uδn · ∇ψdxdt.

In view of the above, An, Bn and Cn converge to the desired limit as n → ∞. We thus
focus on the limit of Dn. To this end, let j ∈ {1, . . . , d} be fixed and decompose the
variable x ∈ Rd into (xj , x̃j) ∈ R× Rd−1. Define

Ωj(x̃j) := {xj ∈ R | (xj , x̃j) ∈ Ω}, and Qj(x̃j) := Ωj(x̃j)× (0, T ).

We note that

(3.11) Dn =
d∑

j=1

∫

Rd−1

Dj,n(x̃j)dx̃j ,

where, for a.e. x̃j ∈ Rd−1,

Dj,n(x̃j) =
∫∫

Qj(x̃j)
Hδn(uδn)∂t∂xjuδn∂xjψdxjdt.

We have the following
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Lemma 3.1 For almost every x̃j ∈ Rd−1,

lim
n→∞Dj,n(x̃j) = Dj(x̃j) :=

∫∫

Qj(x̃j)
H(u)∂t∂xju∂xjψdxjdt.

Proof We deduce from Proposition 3.1 that, for almost every x̃j ,

‖∂xjuδn(·, x̃j)‖L2(Qj(x̃j)) ≤ C(x̃j),(3.12)

‖
√

H(uδn(·, x̃j))∂t∂xjuδn(·, x̃j)‖L2(Qj(x̃j)) ≤ C(x̃j),(3.13)

‖∂tuδn(·, x̃j)‖L2(Qj(x̃j)) ≤ C(x̃j),(3.14)

where C(x̃j) ∈ L2(Rd−1). From (3.13) and in view of (3.9), we deduce

(3.15)
√

H(uδn(·, x̃j))∂t∂xjuδn(·, x̃j) ⇀ ζj(x̃j) weakly in L2(Qj(x̃j)).

We define an auxiliary C2 function A : R→ R such that

(3.16)
A√
H
∈ L∞(0, 1),

A′√
H
∈ L∞(0, 1), A′′ ∈ L∞(0, 1),

and A(s) > 0 if s ∈ (0, 1).

For instance, if H(u) ∼ up+1 in the vicinity of 0 (as in encountered e.g. in (1.4)), one
can consider A(u) ∼ umax(1,(p+3)/2). The construction in the vicinity of 1 is similar. Note
that (3.16) implies that A(·) is 0 outside (0, 1). Furthermore, the fractions in (3.16) are
extended by 0 outside (0, 1).

Define the differential operator ∇̃ := (∂xj , ∂t)T , and, for fixed x̃j in a full measure
subset of Rd−1, the two vector-valued functions

(3.17) Vn(x̃j) = (A′(uδn(·, x̃j))∂tuδn(·, x̃j), 0), Wn(x̃j) = (∂xjuδn(·, x̃j), ∂tuδn(·, x̃j)).

For reader’s convenience, we remove the parameter x̃j in the sequel. By (3.12)–(3.14)
and the properties of A, we obtain that Vn and Wn are uniformly bounded in (L2(Qj))2.
Since ∇̃ ×Wn = ∇̃ × (∇̃uδn) = 0, so {∇̃ ×Wn, n ∈ N} is a compact subset of W−1,2(Qj).
Moreover, the sequence {∇ · Vn, n ∈ N} is uniformly bounded in L2(0, T ; L1(Ωj)), as

(3.18) ∂xj (A
′(uδn)∂tuδn) = A′′(uδn)∂tuδn∂xjuδn +

A′(uδn)√
H(uδn)

√
H(uδn)∂t∂xjuδn ,

a.e. in ωj(x̃j) = {(xj , t) ∈ Qj | u(xj , t, x̃j) ∈ (0, 1)} and in fact in the entire Qj in view
of the extension of the fractions in (3.16). The embedding L2(0, T ; L1(Ωj)) ↪→ W−1,2(Qj)
being compact (note that Ωj ⊂ R), then, applying the div-curl lemma [30, 38], we get

(3.19) Vn ·Wn = A′(uδn)∂tuδn∂xjuδn ⇀ A′(u)∂tu∂xju weakly in D′(Qj).

Finally, let A be a primitive form of A. As before, the equality

(3.20) ∂t∂xjA(uδn) = A′(uδn)∂tuδn∂xjuδn +
A(uδn)√
H(uδn)

√
H(uδn)∂t∂xjuδn ,
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holding a.e. in ωj can be extended to Qj . Since A(uδn )√
H(uδn)

converges a.e. in Qj to A(u)√
H(u)

and is essentially bounded uniformly w.r.t. n, we obtain the strong convergence in L2(Qj).
Together with the weak convergence in (3.9), we pass to the limit (n →∞) in (3.20) and
obtain

(3.21) ∂t∂xjA(u) = A′(u)∂tu∂xju +
A(u)√
H(u)

ζj .

In the distributional sense, this implies

(3.22) A′(u)∂tu∂xju + A(u)∂t∂xju = A′(u)∂tu∂xju +
A(u)√
H(u)

ζj .

As a consequence, for almost every x̃j ∈ Rd−1,

(3.23) ζj(x̃j) =
√

H(u(·, x̃j))∂t∂xju(·, x̃j).

Because of (3.15) and the strong L2(Qj) convergence of
√

Hδn(uδ(·, x̃j)) to
√

H(u(·, x̃j)),
one has for almost every x̃j in Rd−1,

lim
n→∞Dj,n(x̃j) =

∫∫

Qj(x̃j)

√
H(u(·, x̃j))ζj(x̃j)∂xjψdxjdt = Dj(x̃j).

Proposition 3.2 Let u be the limit in (3.6)–(3.8). Then, for all ψ ∈ C∞
0 (Q),

(3.24) lim
n→∞

∫∫

Q
Hδn(uδn)∂t∇uδn · ∇ψdxdt =

∫∫

Q
H(u)∂t∇u · ∇ψdxdt.

Proof Note that, thanks to (3.11), for proving Proposition 3.2, it is sufficient to show
that, for any j ∈ {1, . . . , d},

lim
n→∞

∫

Rd−1

Dj,n(x̃j)dx̃j =
∫

Rd−1

Dj(x̃j)dx̃j .

Since Ω is bounded, the functions Dj,n are compactly supported. Further, the Cauchy-
Schwarz inequality gives

(Dj,n(x̃j))
2 ≤ C

∫∫

Qj(x̃j)
Hδn(uδn)

(
∂t∂xjuδn

)2
dxjdt,

and therefore
∫

Rd−1

(Dj,n(x̃j))
2 dx̃j ≤ C

∫∫

Q
Hδn(uδn)

(
∂t∂xjuδn

)2
dxdt.

By (3.3), Dj,n is uniformly bounded in L2(Rd−1). Hence the sequence {Dj,n}n is equi-
integrable. Now (3.24) follows by Lemma 3.1 and Vitali’s theorem.
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Theorem 3.1 Problem P has a solution u. Furthermore, this solution is essentially
bounded by 0 and 1 in Q.

Proof Let u be the limit in (3.6)–(3.8). To show that u is a weak solution of Problem
P, it is sufficient to show that

(3.25) lim
n→∞An =

∫∫

Q
∂tuψdxdt,

(3.26) lim
n→∞Bn = −

∫∫

Q
F(u, x, t) · ∇ψdxdt,

(3.27) lim
n→∞Cn =

∫∫

Q
H(u)∇u · ∇ψdxdt,

(3.28) lim
n→∞Dn =

∫∫

Q
H(u)∂t∇u · ∇ψdxdt.

While (3.28) has been established in Proposition 3.2, the limit identification (3.25)–(3.27)
follows straightforwardly from (3.6)–(3.8) and the strong L2 convergence of Hδn(uδn) to
H(u).

It remains to prove that 0 ≤ u ≤ 1 a.e. in Q. To this end we consider ε > 0 arbitrary,
take t ∈ (0, T ), and define Ω−ε,n(t) := {x ∈ Ω | uδn(x, t) < −ε}. Then

(3.29) Γδn(uδn) =
∫ uδn

CD

∫ w

CD

1
Hδn(v)

dvdw =
(CD − uδn)2

2δn
,

a.e. in Ω−ε,n(t). Recalling (3.5), for all δn > 0 and a.e. t, we write

(3.30) C ≥
∫

Ω
Γδn(uδn(x, t))dx ≥

∫

Ω−ε (t)
Γδn(uδn(x, t))dx =

(CD + ε)2

2δn
meas(Ω−ε,n(t)).

Letting δn → 0, we obtain

(3.31) lim
n→∞meas(Ω−ε,n(t)) = 0,

for a.e. t ∈ (0, T ]. However, by (3.13) and (3.14), uδn → u in C([0, T ]; L2(Ω)), thus
uδn(·, t) → u(·, t) a.e in Ω, for all t. Passing to the limit ε → 0 gives the lower bound for
u. Similarly, we have u ≤ 1 a.e., and the theorem is proved. ¤

4 Conclusion

We consider a degenerate pseudo-parabolic equation modeling two-phase flow in porous
media, which includes dynamic effects in the capillary pressure. We prove the existence
of weak solutions. The major difficulty is due to the degeneracy in the higher order term,
a mixed (space-time) derivative of third order. To overcome this we employ regulariza-
tion techniques, and prove the existence for the regularized problem, as well as a-priori
estimates that are uniform w.r.t. the regularization parameter. Then we use compactness
arguments to show the existence of a solution to the original problem. For identifying the
limit of the third order term we combine compensated compactness and equi-integrability
arguments.
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