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Abstract

In this paper we review some of the limit theory for the sample autocorrelation function �ACF� of
linear and non�linear processes with regularly varying �nite�dimensional distributions� We focus in
particular on non�linear process models which have attracted the attention for modeling �nancial
time series�
In the �rst two parts we give a short overview of the known limit theory for the sample ACF of

linear processes and of solutions to stochastic recurrence equations �SRE�s�	 including the squares
of GARCH processes� In the third part we concentrate on the limit theory of the sample ACF for
stochastic volatility models� The limit theory for the linear process and the stochastic volatility
models turns out to be quite similar
 they are consistent estimators with rates of convergence faster
than

p
n	 provided that the second moment of the marginal distributions is in�nite� In contrast

to these two kinds of processes	 the sample ACF of the solutions to SRE�s can be very slow� the
closer one is to an in�nite second moment the slower the rate	 and in the case of in�nite variance
the sample ACF has a non�degenerate limit distribution without any normalization�
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� Introduction

Over the past few years heavy�tailed phenomena have attracted the interest of various researchers

in time series analysis	 extreme value theory	 econometrics	 telecommunications	 and various other

�elds� The need to consider time series with heavy�tailed distributions arises from the observation

that traditional models of applied probability theory fail to describe jumps	 bursts	 rapid changes

and other erratic behaviour of various real�life time series�

Heavy�tailed distributions have been considered in the �nancial time series literature for some

time� This includes the GARCH processes whose marginal distributions can have surprisingly

heavy ��Pareto�like� tails� There is plenty of empirical evidence �see for example Embrechts et al�

���� and the references cited therein� that �nancial log�return series of stock indices	 share prices	

exchange rates	 etc�	 can be reasonably modeled by processes with in�nite �rd	 �th or �th moments�

In order to detect non�linearities	 the econometrics literature often recommends to consider not only

the time series itself but also powers of the absolute values� This leads to some serious problems�

if we accept that the underlying time series has in�nite �nd	 �rd	 �th	��� moments we have to think

about the meaning of the classical tools of time series analysis� Indeed	 the sample autocovariance

function �sample ACVF�	 sample autocorrelation function �sample ACF� and the periodogram are

meaningful estimators of their deterministic counterparts ACVF	 ACF and spectral density only if

the second moment structure of the underlying time series is well de�ned� If we detect that a log�

return series has in�nite �th moment it is questionable to use the sample ACF of the squared time

series in order to make statements about the dependence structure of the underlying stationary

model� For example consider plots of the sample ACF of the squares of the Standard � Poor�s

index for the periods ���������	 and ��������� displayed in Figure ���� For the �rst half of the

data	 the ACF of the squares appears to decay slowly	 while for the second half the ACF is not

signi�cant past lag �� The discrepancies in the appearance in the two graphs suggest that either

the process is nonstationary or that the process exhibits heavy tails�

The same drawback for the sample ACF is also present for the periodogram� The latter estimates

the spectral density	 a quantity that does not exist for the squared process if the fourth moments are

in�nite� Thus one should exercise caution in the interpretation of the periodogram of the squares

for heavy�tailed data�

Since it has been realized that heavy tails are present in many real�life situations the research on

heavy�tailed phenomena has intensi�ed over the years� Various recent publications and monographs

such as Samorodnitsky and Taqqu ���� on in�nite variance stable processes	 Embrechts et al� ����

on extremes in �nance and insurance	 and Adler et al� ��� on heavy tails	 demonstrate the emerging

interest and importance of the topic�

It is the aim of this paper to re�consider some of the theory for the sample ACVF and sample
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Figure ��� Sample ACF of the squares of the S� P index for the periods �a	 ��
�����
 and �b	
��������
�

ACF of some classes of heavy�tailed processes� These include linear processes with regularly varying

tails	 solutions to stochastic recurrence equations �SRE�s� and stochastic volatility models� The

latter two classes are commonly used for the econometric modeling of �nancial time series in order

to describe the following empirically observed facts� non�linearity	 dependence and heavy tails�

We also included the class of linear processes because of its enormous practical importance for

applications but also because heavy tails and linear processes do actually interact in an �optimal�

way� This means that the sample ACF still estimates some notion of a population ACF	 even if

the variance of the underlying time series is in�nite	 and the rate of convergence is faster than

the classical
p
n asymptotics� The situation can change abruptly for non�linear processes� In

this case	 the sample ACF can have a non�degenerate limit distribution � a fact which makes

the interpretation of the sample ACF impossible � or the rates of convergence to the ACF can

be extremely slow even when it exists� Such cases include GARCH processes and	 more generally	

solutions to SRE�s� However	 not all non�linear models exhibit unpleasant behaviour of their sample

ACF�s� A particularly �good� example in this context is the class of stochastic volatility models

whose behaviour of the sample ACF is close to the linear process case�

Fundamental to the study of all these heavy�tailed processes is the fact that their �nite�

dimensional distributions are multivariate regularly varying� Therefore we start in Section � with

a short introduction to this generalization of power law tails to the multivariate setting� We also

de�ne stable random distributions which constitute a well�studied class of in�nite variance dis�

tributions with multivariate regularly varying tails� In Section � we consider the sample ACF of
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linear processes	 followed by the sample ACF of solutions to SRE�s in Section � and stochastic

volatility models in Section �� The interplay between the tails and the dependence is crucial for

the understanding of the asymptotic behaviour of the sample ACF� Therefore we �rst introduce in

every section the corresponding model and discuss some of its basic properties� Then we explain

where the heavy tails in the process come from and	 �nally	 we give the theory for the sample ACF

of these processes� One may distinguish between two types of models� The �rst type consists of

models with a heavy�tailed input �noise� resulting in a heavy�tailed output� This includes the linear

and stochastic volatility models� The second type consists of models where light� or heavy�tailed

input results in heavy�tailed output� Solutions to SRE�s belong to the latter type� They are math�

ematically more interesting in the sense that the occurrence of the heavy tails has to be explained

by a deeper understanding of the nonlinear �ltering mechanism�

� Preliminaries

��� Multivariate regular variation

Recall that a non�negative function f on �
��� is said to be regularly varying at in�nity if there
exists an � � R such that

f�x� � x� L�x� �

and L is slowly varying	 i�e�

lim
x��

L�cx�

L�x�
� � � � c � 
 �

We refer to Bingham et al� ��� for an encyclopedic treatment of regular variation�

For many applications in probability theory we need to de�ne regular variation of random

variables and random vectors�

De�nition ��� We say that the random vector X � �X�� � � � �Xd� with values in Rd and its distri�

bution are regularly varying in Rd if there exist � � 
 and a probability measure P� on the Borel

���eld of the unit sphere Sd�� of Rd such that the following limit exists for all x � 
�

P �jXj � tx � X�jXj � � �
P �jXj � t�

v� x�� P���� � t�� ������

where
v� denotes vague convergence on the Borel ���eld of Sd��� The distribution P� is called the

spectral measure of X� and � is the index of X�

We refer to Kallenberg ���� for a detailed treatment of vague convergence of measures� We also

mention that ����� can be expressed in various equivalent ways� For example	 ����� holds if and

only if there exists a sequence of positive constants an and a measure � such that

n P �an X � �� v� ����
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on the Borel ���eld of Rd � In this case	 one can choose �an� and � such that	 for every Borel set B

and x � 
	

���x����B� � x�� P��B� �

For d � �	 we see that X is regularly varying with index � if and only if

P �X � x� 	 p x�� L�x� and P �X 
 �x� 	 q x�� L�x� � x�� ������

where p� q are non�negative numbers such that p� q � � and L is slowly varying� Notice that the

spectral measure is just a two�point distribution on f��� �g� Condition ����� is usually referred to
as the tail balancing condition�

Note that regular variation of X in Rd implies regular variation of jXj and of any linear com�
bination of the components of X� The measure P� can be concentrated on a lower�dimensional

subset of Sd��� For example	 if the random variable X is regularly varying with index � then

X � �X� �� � � � � �� with values in Rd is regularly varying� If X has independent components it is

easily seen that the spectral measure P� has support on the intersections with the axes� For fur�

ther information on multivariate regular variation we refer to de Haan and Resnick ���� or Resnick

����� We also refer to the Appendix of Davis et al� ���� for some useful results about equivalent

de�nitions of regular variation in Rd and about functions of regularly varying vectors�

In what follows	 we will frequently make use of a result by Breiman ���� about the regular

variation of products of independent non�negative random variables 	 and 
� Assume 	 is regularly

varying with index � � 
 and E
��� �� for some � � 
� Then 	
 is regularly varying with index

��

P �	
 � x� 	 E
� P �	 � x� � x�� ������

A multivariate version of Breiman�s result can be found in Davis et al� �����

��� Stable distributions

For further use we introduce the notion of ��stable distribution� The following de�nition is taken

from Samorodnitsky and Taqqu ���� which we recommend as a general reference on stable processes

and their properties�

De�nition ��� Let 
 � � � �� Then X � �X�� � � � �Xd� is an ��stable random vector in Rd if

there exists a �nite measure � on the unit sphere Sd�� of Rs and a vector x� in Rd such that�

�� If � �� �� then X has characteristic function

E expfi �y�X�g � exp
�
�
Z
Sd��

j�y�x�j� ��� i sign��y�x�� � ��dx� � i �y�x��

�
�

�



�� If � � �� then X has characteristic function

E expfi �y�X�g � exp
�
�
Z
Sd��

j�y�x�j
�
� � i

�



sign��y�x�� log j�y�x�j

�
��dx� � i �y�x��

�
�

It can be shown that the pair ���x�� is unique� Moreover	 the vector X is regularly varying with

index �	 and the measure � determines the form of the spectral measure P��

The characteristic function of an ��stable vector X is particularly simple if it is symmetric in

the sense that X and �X have the same distribution and x� � 
� In this case	 we say that X has a
symmetric ��stable distribution �S�S�� The characteristic function of a S�S vector X is particularly

simple�

E expfi �y�X�g � exp
�
�
Z
Sd��

j�y�x�j���dx�
�

�

For d � �	 this formula is even simpler�

Ee i y X � e��� jyj� for some �� � 
�

� The linear process

��� De�nition

Recall the de�nition of a linear process�

Xt �
�X

j���

�jZt�j � t � Z ������

where �Zt� is an iid sequence of random variables	 usually called the noise or innovations sequence	

and ��t� is a sequence of real number� For the a�s� convergence of the in�nite series ����� one

has to impose special conditions on the sequence ��j� which depend on the distribution of Z�

The formulation of these conditions will be speci�ed below� It is worth noting that stationary

ARMA and fractionally integrated ARMA processes have such a linear representation� We refer to

Brockwell and Davis ���� as a general reference on the theory and statistical estimation of linear

processes�

Linear processes	 in particular the ARMA models	 constitute perhaps the best studied class

of time series models� Their theoretical properties are well understood and estimation techniques

are covered by most standard texts on the subject� By choosing appropriate coe�cients �j 	 the

ACF of a linear process can approximate the ACF of any stationary ergodic process	 a property

that helps explain the popularity and modeling sucess enjoyed by linear processes� Moreover	 the

tails of a linear process can be made as heavy as one wishes by making the tails of the innovations

heavy� The latter property is an attractive one as well
 the coe�cients �j occur in the tails only as

a scaling factor� Thus the tails and the ACF behaviour of a linear process can be modelled almost
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independently of each other� the tails are essentially determined by the tails of the innovations	

whereas the ACF only depends on the choice of the coe�cients� This will be made precise in what

follows�

��� Tails

The distribution of X can have heavy tails only if the innovations Zt have heavy tails� This

follows from some general results for regularly varying and subexponential Zt�s
 see Appendix

A��� in Embrechts et al� ����� For the sake of completeness we state a result from Mikosch and

Samorodnitsky ���� which requires the weakest conditions on ��j� known in the literature�

Proposition ��� �� Assume that Z satis�es the tail balancing conditition ����� �with X � Z� for

some p � �
� �� and � � 
� If � � � assume EZ � 
� If the coe�cients �j satisfy� P�
j��� ��j �� for � � �P�
j��� j�j j��� �� for some � � 
 for � 
 � �

then the in�nite series ����� converges a�s� and the following relation holds

P �X � x�

P �jZj � x�
	

�X
j���

j�j j��p If�j��g � q If�j��g� �� k�k�� ������

�� Assume Z satis�es the tail balancing condition ����� for some p � �
� �� and � � �
� ��� that the
in�nite series ����� converges a�s��

�X
j���

j�j j� �� �

and one of the conditions

L���� 
 cL���� for �� � �� � ��� some constants c� �� � 
�

or

L������ 
 cL����L���� for ��� �� � �� � 
� some constants c� �� � 


is satis�ed� Then relation ����� holds�

This proposition implies that heavy�tailed input �regularly varying noise �Zt�� results in heavy�

tailed output� Analogously	 one can show that light�tailed input forces the linear process to be

light�tailed as well� For example	 if the Zt�s are iid Gaussian	 then the output time series �Xt� is

Gaussian� This is clearly due to the linearity of the process� an in�nite sum of independent random

variables cannot have lighter tails than any of its summands�

Using similar calculations as for the proof of Proposition ���	 it can be shown that the �nite�

dimensional distributions of the process �Xt� are regularly varying with index � as well� This means

that the vectors �X�� � � � �Xd�	 d � �	 are regularly varying in Rd with index � and spectral measure
determined by the coe�cients �j �

�



��� Limit theory for the sample ACF

The limit theory for the sample ACVF and ACF of linear processes with in�nite variance was

derived in Davis and Resnick ���	 ��	 ���� The limit theory for �nite variance linear processes is

very much the same as for Gaussian processes
 see for example Brockwell and Davis ����� For the

sake of simplicity and for ease of presentation we restrict ourselves to the case of in�nite variance

symmmetric ��stable �S�S� noise �Zt�
 see Section ���� In this case	 one can show that Z has

Pareto�like behaviour in the sense that

P �Z � x� 	 const x�� � x�� �

De�ne the sample ACF as follows�

e�n�X�h� �� Pn�h
t�� XtXt�hPn

t��X
�
t

� h � �� �� � � � ������

If �Zt� was an iid Gaussian N�
� ��� noise sequence with the same coe�cient sequence ��j�	 �Xt�

would be a Gaussian linear process with ACF

�X�h� ��

P�
j��� �j�j�hP�

j��� ��j
� h � �� �� � � � �

If �Xt� is generated from iid S�S noise it is by no means clear that e�n�X�h� is even a consistent
estimator of �X�h�� However	 from the following surprising result of Davis and Resnick ���� we �nd

that e�n�X�h� is not only consistent but has other good properties as an estimator of �X�h�� �The
following theorem can also be found in Brockwell and Davis ����	 Theorem ��������

Theorem ��� Let �Zt� be an iid sequence of S�S random variables and let �Xt� be the stationary

linear process ������ where

�X
j���

jjj j�j j� �� for some � � �
� �� 
 �
� ���

Then for any positive integer h��
n

logn

����
�e�n�X���� �X��� � � � � � e�n�X�h�� �X�h��

d� �Y�� � � � � Yh� �

where

Yk �
�X
j��

��X�k � j� � �X�k � j� � ��X�j��X �k�� Sj
S�

������

and S�� S�� � � � are independent stable random variables� S� is positive stable with characteristic

function

Ee i 	 S� � exp
n
����� ���� cos�
���� juj��� ��� sign�u� tan�
�����

o
�



and S�� S�� � � � are iid S�S with characteristic function Ee iyS� � e���jyj
�
� where

�� �

��� ���� �� cos�
���� � �� � �



�
� � �

�

Remark ��� If � � � the theorem remains valid for the mean corrected sample ACF	 i�e� whene�n�X�h� is replaced by
b�n�X�h� �� Pn�h

t��

	
Xt �Xn


 	
Xt�h �Xn


Pn
t��

	
Xt �Xn


� ������

where Xn � n��
Pn

t��Xt denotes the sample mean�

Remark ��� It follows at once that

e�n�X�h�� �X�h� � OP ��n� log n�
����� �

This rate of convergence to zero compares favourably with the slower rate	 OP �n
�����	 for the

di�erence e�n�X�h�� �X�h� in the �nite variance case�

Remark ��	 If EZ� �� and EZ � 
	 a modi�cation of Theorem ��� holds with the Sj�s	 j � �	
replaced by iid N�
� �� random variables and S� by the constant �� Notice that the structure of

relation ����� is the reason for the so�called Bartlett formula
 see Brockwell and Davis ����� Thus

����� is an analogue to Bartlett�s formula in the in�nite variance case�

The proof of this result depends heavily on point process convergence results� However	 in order to

give some intuition for why e�n�X�h� is a consistent estimator of �X�h�	 consider the simplest case
of a linear process as given by the MA��� process

Xt � �Zt�� � Zt � t � Z �

The limit behaviour of the sample ACF is closely connected with the large sample behaviour of the

corresponding sample ACVF� De�ne

e�n�X�h� �� �
n

n�hX
t��

XtXt�h � h � 
� �� � � � ������

and choose the sequences �an� and �bn� such that

P �jZj � an� 	 n�� and P �jZ�Z�j � bn� 	 n�� � n�� �

A simple calculation shows that an 	 c�n
��� and bn 	 c��n log n�

��� for certain constants ci	 where

we have made use of the fact that

P �Z�Z� � x� 	 c�x
�� log x�����

�



Now	 a point process convergence result shows that

n
	
a��n e�n�Z�
�� b��n e�n�Z���� b��n e�n�Z���
 d� c� �S�� S�� S�� ������

for some constant c�	 where S�� S�� S� are independent stable as described above� Now	 consider

the di�erence

 n �� e�n�X���� �X��� �

Pn
t��XtXt�� � ����

Pn
t��X

�
tPn

t��X
�
t

�

Recalling that �X��� � ���� � ��� and �����	 it is not di�cult to see that�
n

logn

����
 n

�

�
n

logn

���� 	��Pn
t�� Z

�
t � �� � ���

Pn
t�� ZtZt�� � �

Pn
t�� Zt��Zt��

�� �
Pn

t�� Z
�
t



�� � ���

Pn
t�� Z

�
t

� oP ���

�

�
n

logn

���� �� � ���
Pn��

t�� ZtZt�� � �
Pn��

t�� ZtZt��

�� � ���
Pn

t�� Z
�
t

� oP ���

d� S��� �S� � �X��� S�� � Y� �

From this limit relation one can see that the consistency of the estimator e�n�X��� is due to a special
cancellation e�ect which allows one to get rid of the expressions

Pn
t�� Z

�
t which	 otherwise	 would

determine the rate of convergence� Since the summands ZtZt�� and ZtZt�� have tails lighter than

those of Z�
t �see ������ the faster rate of convergence follows from ����� and the continuous mapping

theorem�

Clearly	 the cancellation e�ect described above is due to the particular structure of the linear

process� For general stationary sequences �Xt� such extraordinary behaviour cannot be expected�

This will become clear in the following section�

Despite their !exibility for modeling tails and ACF behaviour	 linear processes are not consid�

ered good models for log�returns� Indeed	 the sample ACF of the S�P index for the years ���������

suggests that this log�return series might be well modelled by an MA��� process� However the inno�

vations from such a �tted model could not be iid since the sample ACF of the absolute log�returns

and their squares �see Figure ���� suggest dependence well beyond lag �� This kind of sample

ACF behaviour shows that the class of standard linear models are not appropriate for describing

the dependence of log�return series and therefore various non�linear models have been proposed in

the literature� In what follows	 we focus on two standard models	 the GARCH and the stochastic

volatility processes� We investigate their tails and sample ACF behaviour�

The latter two models are multiplicative noise models that have the form Xt � �t Zt	 where

��t� is referred to as the stochastic volatility process and is assumed to be independent of the noise

�



�Zt�� The sequence �Zt� is often assumed to be iid with EZ � 
 and EZ� � �� GARCH models

take �t to be a function of the �past� of the process	 whereas one speci�es a stochastic model for

��t� in the case of a stochastic volatility model�

We start by investigating the GARCH model in the more general context of stochastic recurrence

equations �SRE�s��

� Stochastic recurrence equations

��� De�nition

In what follows	 we consider processes which are given by a SRE of the form

Yt � AtYt�� �Bt � t � Z ������

where ��At�Bt�� is an iid sequence �At and Bt can be dependent�	 the At�s are d � d random

matrices and the random vectors Bt assume values in R
d �

Example ��� �ARCH��� process�

An important example of a process �Yt� satisfying ����� is given by the squares �X
�
t � of an ARCH���

process �autoregressive conditionally heteroscedastic processes of order ��� It was introduced by

Engle ���� as an econometric model for log�returns of speculative prices �foreign exchange rates	

stock indices	 share prices	 etc��� Given non�negative parameters �� and ��	 �Xt� is de�ned as

Xt � �t Zt � t � Z ������

where �Zt� is an iid sequence	 and

��t � �� � ��X
�
t�� � t � Z �

Clearly	

Yt � X�
t � At � ��Z

�
t � Bt � ��Z

�
t �

satisfy the SRE ������

Example ��� �GARCH��	�� process�

Since the �t of ARCH procsesses to log�returns was not completely satisfactory �a good �t to real�

life data requires a large number of parameters �j�	 Bollerslev ��� introduced a more parsimonious

family of models	 the GARCH �generalised ARCH� processes� A GARCH��	�� �GARCH of order

��	��� process �Xt� is given by relation �����	 where

��t � �� � ��X
�
t�� � ���

�
t�� � t � Z ������

�




The process �X�
t � cannot be written in the form ����� for one�dimensional Yt�s� However	 an iteration

of ����� yields

��t � �� � ���
�
t��Z

�
t�� � ���

�
t�� � �� � ��t�����Z

�
t�� � ��� �

and so the sequence ���t � satis�es ����� with

Yt � ��t � At � ��Z
�
t�� � �� � Bt � �� � t � Z �

The GARCH��	�� model is capable of capturing the main distinguishing features of log�returns

of �nancial assets and	 as a result	 has become one of the mainstays of econometric models� In

addition to the model�s !exibility in describing certain types of dependence structure	 it is also

able to model tail heaviness	 a property often present in observed data� A critical discussion of the

GARCH model	 and the GARCH��	�� in particular	 is given in Mikosch and St"aric"a ���	 ����

Example ��� �GARCH�p� q� process�

A GARCH�p� q� process �GARCH of order �p� q�� is de�ned in a similar way� It is given by �����

with

��t � �� �

pX
i��

�iX
�
t�i �

qX
j��

�j�
�
t�j � t � Z ������

where the integers p� q � 
 determine the order of the process� Write

Yt � �X
�
t � � � � �X

�
t�p��� �

�
t � � � � � �

�
t�q���

� ������

This process satis�es ����� with matrix�valued At�s and vector�valued Bt�s�

At �
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��Z
�
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�
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�
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�
t �qZ

�
t
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������

Bt � ���Z
�
t � 
� � � � � 
� ��� 
 � � � � 
�

� ������

Example ��� �The simple bilinear process�

The simple bilinear process

Xt � aXt�� � bXt��Zt�� � Zt � t � Z �

��



for positive a	 b and an iid sequence �Zt� can be embedded in the framework of a SRE of type ������

Indeed	 notice that Xt � Yt�� � Zt	 where �Yt� satis�es ����� with

At � a� bZt and Bt � AtZt �

This kind of process has been treated in Basrak et al� ����

One of the crucial problems is to �nd conditions for the existence of a strictly stationary solution to

������ These conditions have been studied for a long time	 even under less restrictive assumptions

than ��At�Bt�� being iid
 see for example Brandt ���	 Kesten ��
�	 Vervaat ����	 Bougerol and Picard

���� The following result gives some conditions which are close to necessity
 see Babillot et al� ����

Recall the notion of operator norm of a matrix A with respect to a given norm j � j�

kAk � sup
jxj��

jAxj �

For an iid sequence �An� of iid d� d matrices	

� � inf

�
�

n
E log kA� � � �Ank � n � N

�
�����

is called the top Lyapunov exponent associated with �An�� If E log
� kA�k � �	 it can be shown

�see Furstenberg and Kesten ����� that

� � lim
n��

�

n
log kA� � � �Ank a�s������

With a few exceptions �including the ARCH��	�� and GARCH��	�� cases� one cannot calculate �

explicitly�

Theorem ��	 Assume E log� kA�k ��� E log� jB�j �� and � � 
� Then the series

Yn � Bn �

�X
k��

An � � �An�k��Bn�k����
�

converges a�s�� and the so�de�ned process �Yn� is the unique causal strictly stationary solution of

������

Notice that � � 
 holds if E log kA�k � 
� The condition on � in Theorem ��� is particularly simple
in the case d � � since then

�

n
E log jA� � � �Anj � E log jA�j � � �

Corollary ��
 Assume d � �� �� 
 E log jA�j � 
 and E log� jB�j � �� Then the unique

stationary solution of ����� is given by ����
��

��



Example ��� �Conditions for stationarity�

�� The process ���t � of an ARCH��� process has a stationary version if �� � 
 and E log���Z
�� � 
�

If Z is N�
� ��	 one can choose a positive �� � �e

� � ��������	 where �� is Euler�s constant� See

Goldie ����
 cf� Section ��� in Embrechts et al� ����� Notice that the stationarity of ���t � also implies

the stationarity of the ARCH��� process �Xt��

�� The process ���t � of a GARCH��	�� process has a stationary version if �� � 
 and E log���Z
��

��� � 
� Also in this case	 stationarity of ���t � implies stationarity of the GARCH��	�� process

�Xt��

We mention at this point that it is very di�cult to make any statements about the stationarity

of solutions to general SRE�s and GARCH�p� q� processes in particular� For general GARCH�p� q�

processes	 precise necessary and su�cient conditions for � � 
 in terms of explicit and calculable

conditions on the the parameters �j	 �k and the distribution of Z are not known
 see Bougerol and

Picard ��� for the most general su�cient conditions which amount to certain restrictions on the

distribution of Z	 the following assumptions on the parameters

�� � 
 and

pX
j��

�j �

qX
k��

�k 
 � �������

and some further technical conditions� We also mention that the Xt�s have a second �nite moment

if EZ � 
	 EZ� � � and one has strict inequality in ������� See Davis et al� ���� for further

discussion and details� In the latter reference it is mentioned that the case of multivariate GARCH

processes could be treated in an analogous way	 but the theoretical di�culties are then even more

signi�cant�

��� Tails

Recall the de�nition of multivariate regular variation from Section ���� It is quite surprising that

the stationary solutions to SRE�s have �nite�dimensional distributions with multivariate regularly

varying tails under very general conditions on ��At�Bt��� This is due to a deep result on the

renewal theory of products of random matrices given by Kesten ��
� in the case d � �� The one�
dimensional case was considered by Goldie ����� We state a modi�cation of Kesten�s fundamental

result �Theorems � and � in ��
��� In these results	 k � k denotes the operator norm de�ned in terms
of the Euclidean norm j � j�

Theorem ��� Let �An� be an iid sequence of d� d matrices with non�negative entries satisfying�

� For some � � 
� EkAk� � ��

� A has no zero rows a�s�

��



� The event

flog ��An � � �A�� � is dense in R for some n and An � � �A� � 
g������

has probability �� where ��C� is the spectral radius of the matrix C and C � 
 means that all

entries of this matrix are positive�

� There exists a �� � 
 such that

E


� min
i�������d

dX
j��

Aij

�A��

� d����������

and

E
	kAk�� log� kAk
 �� �������

Then there exists a unique solution �� � �
� ��� to the equation


 � lim
n��

�

n
logEkAn � � �A�k�� �������

If �Yn� is the stationary solution to the SRE in ����� with coe�cient matrices �An� satisfying the

above conditions and B has non�negative entries with EjBj�� ��� then Y is regularly varying with

index ��� Moreover� the �nite�dimensional distributions of the stationary solution �Yt� of ����� are

regularly varying with index ���

A combination of the general results for SRE�s �Theorems ��� and ���� speci�ed to GARCH�p� q�

processes yields the following result which is given in Davis et al� �����

Theorem ��
 Consider the SRE ����� with Yt given by ������ At by ����� and Bt by ������

�A� �Existence of stationary solution�

Assume that the following condition holds�

E log� jZj �� and the Lyapunov exponent � � 
�������

Then there exists a unique causal stationary solution of the SRE ������

�B	 �Regular variation of the �nite�dimensional distributions�

Let j � j denote the Euclidean norm and k � k the corresponding operator norm� In addition to the

Lyapunov exponent � being less than 
� assume the following conditions�

�� Z has a positive density on R such that either EjZjh � � for all h � 
 or EjZjh� � � for

some h� � 
 and EjZjh �� for 
 
 h � h��

�� Not all of the parameters �j and �k vanish�

��



Then there exists a �� � 
 such that Y is regularly varying with index ���

A consequence of the theorem is the following�

Corollary ���� Let �Xt� be a stationary GARCH�p� q� process� Assume the conditions of part B

of Theorem ��� hold� Then there exists a � � 
 such that the �nite�dimensional distributions of the

process ���t�Xt�� are regularly varying with index ��

Example ���� �ARCH��� and GARCH��	���

For these two models we can give an explicit equation for the value of �� Indeed	 ������ for d � �

degenerates to EjAj�� � �� Recall from Example ��� that At � ��Z
�
t � Hence the tail index �

of X is given by the solution to the equation E���Z
����� � �� Similarly	 in the GARCH��	��

case of Example ��� we have At � ��Z
�
t�� � �� which gives the tail index � for � by solving

E���Z
� � ���

��� � �� Then	 by Breiman�s results ����� it follows that

P �jXj � x� � P �jZj� � x� 	 const P �� � x� 	 const x�� �

Unfortuntaly	 these are the only two cases where one can give an explicit formula for � in terms of

the parameters of the GARCH process and the distribution of the noise�

The above results show that there is quite an intriguing relation between the parameters of a

GARCH�p� q� process	 the distribution of the noise �Zt� and the tails of the process� In particular	 it

is rather surprising that the �nite�dimensional distributions are regularly varying� Indeed	 although

the input noise �Zt� may have light tails �exponential	 normal� the resulting output �Xt� has Pareto�

like tails� This is completely di�erent from the linear process case where we discovered that the

tails and the ACF behaviour are due to totally di�erent sources� the coe�cients �j and the tails

of the noise� In the GARCH�p� q� case the parameters �j 	 �k and the whole distribution of Z	 not

only its tails	 contribute to the heavy tailedness of marginal distribution of the process�

The squares of a GARCH�p� q� process can be written as the solution to an ARMA equation with

a martingale di�erence sequence as noise provided the second moment of Xt is �nite� However	 the

analogy between an ARMA and GARCH process can be quite misleading especially when discussing

conditions for stationarity and the tail behaviour of the marginal distribution� The source of the

heavy tails of GARCH process does not come directly from the martingale di�erence sequence	 but

rather the nonlinear mechanism that connects the output with the input�

The interaction between the parameters of the GARCH�p� q� process and its tails is illustrated

in the form of the invariant distribution of the process which contains products of the matrices

At in front of the �noise� Bt �see ����
��� This is in contrast to a linear process ����� where the

coe�cents in front of the innovations Zt are constants� Notice that it is the presence of sums of

products of an increasing number of At�s which causes the heavy tails of the distribution of Yt� For

��



example	 if one assumes that �Zt� is iid Gaussian noise in the de�nition of a GARCH�p� q� process

and considers the corresponding Yt�s	 At�s and Bt�s �see �����#������	 then it is readily seen that a

truncation of the in�nite series ����
� yields a random variable which has all �nite power moments�

The interaction between the tails and dependence structure	 in particular the non�linearity of

the process	 is also responsible for the sample ACF behaviour of solutions to SRE�s� In contrast

to the linear process case of Section ���	 we show in the next section that the cancellation e�ect

which was explained in Section ��� does not occur for this class of processes� This fact makes the

limit theory of the sample ACF for such processes more di�cult to study�

��� Limit theory for the sample ACF

The limit theory for the sample ACF	 ACVF and cross�correlations of solutions to SRE�s heavily

depends on point process techniques� We refrain here from discussing those methods and refer to

Davis et al� ���� for details� As mentioned earlier	 because of the non�linearity of the processes	

we cannot expect that a theory analogous to linear processes holds	 in particular we may expect

complications for the sample ACF behaviour if the tail index of the marginal distribution is small�

This is the content of the following results�

We start with the sample autocovariances of the �rst component process �Yt� say of �Yt�
 the

case of sample cross�correlations and the joint limits for the sample autocorrelations of di�erent

component processes can be derived as well�

Recall the de�nition of the sample ACVF e�n�Y from ����� and the corresponding sample ACF
from ������ We also write

�Y �h� � EY�Yh and �Y �h� � �Y �h���Y �
� � h � 
 �

for the autocovariances and autocorrelations	 respectively	 of the sequence �Yt�	 when these quan�

tities exist� Also recall the notion of an in�nite variance stable random vector from Section ����

Theorem ���� Assume that �Yt� is a solution to ����� satisfying the conditions of Theorem ����

��	 If �� � �
� ��� then �
n�������n�Y �h�

�
h�������m

d� �Vh�h�������m �

��n�Y �h��h�������m
d� �Vh�V��h�������m �

where the vector �V�� � � � � Vm� is jointly �����stable in Rm�� �

��	 If �� � ��� �� and for h � 
� � � � �m�

lim
���
lim sup
n��

var

�
n�����

n�hX
t��

YtYt�hIfjYtYt�hj�a�n�g

�
� 
 �������

��



then �
n��������n�Y �h�� �Y �h��

�
h�������m

d� �Vh�h�������m ������� �
n��������n�X�h�� �X�h�

�
h�������m

d� ���X �
� �Vh � �X�h�V��h�������m �������

where �V�� � � � � Vm� is jointly �����stable in Rm�� �

�
	 If �� � � then ������ and ������ hold with normalization n���� where �V�� � � � � Vm� is mul�

tivariate normal with mean zero and covariance matrix �
P�

k��� cov�Y�Yi� YkYk�j��i�j�������m

and V� � E�Y �
� ��

The limit random vectors in parts ��� and ��� of the theorem can be expressed in terms of the

limiting points of appropriate point processes� For more details	 see Davis and Mikosch ���� where

the proofs of ��� and ��� are provided and also Davis et al� ����� Part ��� follows from a standard

central limit theorem for strongly mixing sequences
 see for example Doukhan �����

The distributional limits of the sample ACF and ACVF of GARCH�p� q� processes �Xt� do not

follow directly from Theorem ���� since only the the squares of the process satisfy the SRE ������

However	 an application of the point process convergence in Davis and Mikosch ���� guarantees that

similar results can be proved for the processes �Xt�	 �jXtj� and �X�
t � or any power �jXtjp� for some

p � 
� The limit results of Theorem ���� remain qualitatively the same for Yt � Xt� jXtj�X�
t � � � �	

but the parameters of the limiting stable laws have to be changed� See Davis et al� ���� for details�

Theorems ��� and ���� demonstrate quite clearly the di�erences between the limiting behaviour

of the ACF for linear and non�linear processes� In the linear case	 the rate of convergence as

determined by the normalising constants is faster the heavier the tails� In the nonlinear case	 the

rate of convergence of the sample ACF to their deterministic counterpart is slower the heavier

the tails	 and if the underlying time series has in�nite variance	 the sample autotcorrelations have

non�degenerate limit laws�

Since it is generally believed that log�returns have heavy tails in the sense that they are Pareto�

like with tail parameter between � and � �see for example M$uller et al� ���� or Embrechts et al� ����	

in particular Chapters � and ��	 Theorem ���� indicates that the sample ACF of such data has to

be treated with some care because it could mean nothing or that the classical ������pn con�dence
bands are totally misleading� Clearly	 for GARCH processes the form of the limit distribution and

the growth of the scaling constants of the sample ACF depend critically on the values of the model�s

parameters� We will see in the next section that the sample ACF of stochastic volatility models

behaves quite di�erently� Its limiting behaviour is more in line with that for a linear process�

��



� Stochastic volatility models

��� De�nition

As evident from the preceding discussion	 the theoretical development of the basic probabilistic

properties of GARCH processes is thorny� conditions for stationarity are di�cult to formulate and

verify	 the tail behaviour is complicated and little is known about the dependence structure� On

the other hand	 estimation for GARCH processes is relatively easy by using conditional maximum

likelihood based on the iid assumption of the noise
 see for example Gourieroux ���� and the

references therein� The latter property is certainly one of the attractions for this kind of model and

has contributed to its popularity�

Over the last few years	 another kind of econometric time series has attracted some attention�

the stochastic volatility processes� Like GARCH models	 these processes are multiplicative noise

models	 i�e�

Xt � �t Zt � t � Z ������

where �Zt� is an iid sequence of random variables which is completely independent of another

strictly stationary sequence ��t� of non�negative random variables� The independence of the two

sequences �Zt� and ��t� allows one to easily derive the basic probabilistic properties of stochastic

volatility processes� For example	 the dependence structure of the process is determined via the

dependence in the volatility sequence ��t�� For our purposes	 we shall assume that

�t � e
Yt � t � Z ������

where �Yt� is a linear process

Yt �
�X
j��

�j�t�j � t � Z ������

with coe�cients �j satisfying
�X
j��

��j �������

and an iid noise sequence ��t�� For ease of presentation we assume that � is N�
� �� which	 together

with �����	 ensures that the de�ning sum for Yt in ����� is convergent a�s� The condition of Gaus�

sianity of the �t�s can be relaxed at the cost of more technical conditions	 see Davis and Mikosch

���� for details�

Notice that the assumption ����� is the weakest possible
 it allows one to use any non�determi�

nistic Gaussian stationary time series as a model for �Yt�	 in particular one can choose �Yt� as a

stationary ARMA or a FARIMA process for modeling any kind of long or short range dependence

in �Yt�	 hence one can achieve any kind of ACF behaviour in ��t� as well as in �Xt� �due to the

��



independence of �Yt� and ��t��� This latter property gives the stochastic volatility models a certain

advantage over the GARCH models� The latter are strongly mixing with geometric rate under very

general assumptions on the paramaters and the noise sequence
 see Davis et al� ���� for details�

As a consequence of the mixing property	 if the ACF of these processes is well de�ned	 it decays

to zero at an exponential rate	 hence long range dependence e�ects �in the sense that the ACF is

not absolutely summable� cannot be achieved for a GARCH process or any of its powers� Since it

is believed in parts of the econometrics community that log�return series might exhibit long range

dependence	 the stochastic volatility models are quite !exible for modelling this behaviour
 see for

example Breidt et al� �����

In what follows	 we show that the tails and the sample ACF of these models also have more

attractive properties than the GARCH models even in the in�nite second and fourth moment cases�

On the other hand	 estimation for stochastic volatility models tends to be more complicated than

that for GARCH processes
 see for example Breidt and Carriquiry ��
��

��� Tails

By virtue of Breiman�s result �����	 we know that

P �X � x� 	 E�� P �Z � x� and P �X � x� 	 E�� P �Z 
 �x� � x�� ������

provided E���� �� for some � � 
 and Z is regularly varying with index � � 
 and tail balancing

condition

P �Z � x� � p x�� L�x� and P �Z � x� � q x�� L�x� ������

where L is slowly varying and p� q � � for some p � �
� ��� In what follows	 we assume that �����
holds	 and we also require

EjZj� �� ������

Then Z�Z� is also regularly varying with index � satisfying �see equations ����� and ����� in Davis

and Resnick �����

P �Z�Z� � x�

P �jZ�Z�j � x�
� ep �� p� � ��� p�� as x�� ������

Another application of ����� implies that X�Xh is regularly varying with index ���
P �X�Xh � x� � P �Z�Z����h � x� 	 E����h�

� P �Z�Z� � x� �

P �X�Xh 
 x� � P �Z�Z����h 
 �x� 	 E����h�
� P �Z�Z� 
 �x� �

�����

provided E����h�
��� � � for some � � 
� Since we assumed the exponential structure ����� for

the �t�s and that the Yt�s are Gaussian	 the �t�s are log�normal and therefore the latter moment

condition holds for every � � 
�

��



An application of a multivariate version of Breiman�s result �see the Appendix in Davis et al�

����� ensures that the �nite�dimensional distributions of �Xt� are regularly varying with the same

index �� We refrain from giving details�

��� Limit theory for the sample ACF

In order to describe the limiting behaviour of the sample ACF of a stochastic volatility process in

the heavy�tailed case	 two sequences of constants �an� and �bn� which �gure into the normalizing

constants must be de�ned� Speci�cally	 let �an� and �bn� be the respective �� � n����quantiles of

jZ�j and jZ�Z�j de�ned by

an � inffx � P �jZ�j � x� 
 n��g and bn � inffx � P �jZ�Z�j � x� 
 n��g �����
�

Using point process techniques and arguments similar to the ones given in ����	 the weak limit

behaviour for the sample ACF can be derived for stochastic volatility processes� These results are

summarized in the following theorem�

Theorem 	�� Assume �Xt� is the stochastic volatility process satisfying ����������� where Z sat�

is�es conditions ����� and ������ Let e�n�X�h� and e�n�X�h� denote the sample ACVF and ACF of

the process as de�ned in ����� and ����� and assume that either

�i	 � � �
� ���
�ii	 � � � and Z� has a symmetric distribution�

or

�iii	 � � ��� �� and Z� has mean 
�

Then

n
	
a��n e�n�X�
�� b��n e�n�X���� � � � � b��n e�n�X�r�
 d� �Vh�h�������r �

where �V�� V�� � � � � Vr� are independent random variables� V� is a non�negative stable random variable

with exponent ��� and V�� � � � � Vr are identically distributed as stable with exponent �� In addition�

we have for all three cases that�	
a�nb

��
n e�n�X�h�
h�������r d� �Vh�V��h�������r �

Remark 	�� By choosing the volatility process ��t� to be identically �	 we can recover the limiting

results obtained in Davis and Resnick ���� for the autocovariances and autocorrelations of the �Zt�

process� If �S�� S�� � � � � Sr� denotes the limit random vector of the sample autocovariances based on

�Zt�	 then there is an interesting relationship between Sk and Vk	 namely	

�V�� V�� � � � � Vr�
d
� �k��k��S�� k����k�S�� � � � � k�����rk�Sr��

�




where k � k� denotes the ��norm� It follows that	
a�nb

��
n e�n�X�h�
h�������r d�

�k���h��k�
k��k��

Sh
S�

�
h�������r

�

Remark 	�� The conclusion of �iii� of the theorem remains valid if e�n�X�h� is replaced by the
mean�corrected version of the ACF given by ������

	���� Other powers

It is also possible to investigate the sample ACVF and ACF of the processes �jXtj�� for any power
� � 
� We restrict ourselves to the case � � � in order to illustrate the method�

Notice that jXtj � jZtj�t	 t � �� �� � � �	 has a structure similar to the original process �Xt�� Hence

Theorem ��� applies directly to the ACF of jXtj when � � � and to the ACF of the stochastic

volatility model with noise jZtj �EjZtj when � � ��� ���
In order to remove the centering of the noise in the � � ��� �� case	 we use the following

decomposition for h � � with �jXj � EjX�Xkj	 eZt � jZtj �EjZj and eXt � eZt�t�

n �e�n�jXj�h� � e�jXj�h�� �
n�hX
t��

eZt
eZt�h�t�t�h �EjZj

n�hX
t��

eZt�t�t�h �EjZj
n�hX
t��

eZt�h�t�t�h

��EjZj��
n�hX
t��

��t�t�h �E���h�

� I� � I� � I� � I� �

Since

n��I� � e�n� eX�h� �
and E eZ � 
	 Theorem ��� �iii� is directly applicable to � eXt�� Also notice that na

��
n e�n�jXj�
�

converges weakly to an ����stable distribution	 for the same reasons as given for �Xt�� It remains

to show that

b��n Ij
P� 
 � j � �� �� � �������

Point process arguments can be used to show that a��n Ij	 j � �� � converge to an ��stable dis�

tribution	 and since an�bn � 
	 ������ holds for j � �� �� It is straightforward to show that

var�b��n I�� � 
 for cases when the linear process in ����� has absolutely summable coe�cients or

when the coe�cients are given by a fractionally integrated model� Thus b��n I�
P� 
 and the limit

law for e�n�jXj�h� is as speci�ed in Theorem ����

��
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(a) GARCH(1,1) Model, n=10000
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(b) SV Model, n=10000
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(c) GARCH(1,1) Model, n=100000
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(d) SV Model, n=100000

Figure 	�� Boxplots based on �


 replications of the sample ACF �at lags � to �
� for data

generated from a GARCH��	�� model and from a stochastic volatility model� �a� GARCH model

with sample size n � �
� 


� �b� stochastic volatility model with n � �
� 


� �c� GARCH model

with n � �

� 


� and �d� stochastic volatility model with n � �

� 


�
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(a) GARCH(1,1) Model, n=10000
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(b) SV Model, n=10000
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(c) GARCH(1,1) Model, n=100000
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(d) SV Model, n=100000

Figure 	�	 Boxplots based on �


 replications of the sample ACF �at lags � to �
� of the squares
from a GARCH��	�� model and from a stochastic volatility model� �a� GARCH model with sample

size n � �
� 


� �b� stochastic volatility model with n � �
� 


� �c� GARCH model with n �
�

� 


� and �d� stochastic volatility model with n � �

� 


�

��



	���� A brief simulation comparison

To illustrate the di�erences in the asymptotic theory for the ACF of GARCH and stochastic

volatility models	 a small simulation experiment was conducted� One thousand replicates of lengths

�
	


 and �

	


 were generated from a GARCH��	�� time series model with parameter values

in the stochastic volatility recursion ����� given by

�� � ���� �
�	� �� � ���
 and �� � ���� �

The noise was generated from a student�s t distribution with � degrees of freedom�normalized

to have variance �� With this choice of parameter values and noise distribution the marginal

distribution has Pareto tails with approximate exponent �� The sampling behaviour of the ACF

of the data and its squares are depicted using box plots in Figures ����a�	�c� and ����a�	�c� for

samples of size �
	


 and �

	


� As seen in these �gures	 the sample ACF of the data appears

to be converging to 
 as the sample size increases �note the di�erences in the magnitude of the

vertical scaling on the graphs�� On the other hand	 the sampling distributions for the ACF of the

squares �Figure ����a�	�c�� appear to be the same for the two samples sizes n � �
� 


 and �

� 




re!ecting the limit theory as speci�ed by Theorem ���� ���� These box plots can be interpreted as

estimates of the limiting distributions of the ACF�

Samples paths of sizes �
� 


 and �

� 


 were also generated from a stochastic volatility

model	 where the stochastic volatility process ��t� satis�es the model

log �t � ��� log �t�� � �t �

��t� is a sequence of iid N�
� �� random variables	 and the noise �Zt� was taken to be iid with a t�

distribution on � degrees of freedom� �The noise was normalized to have variance ��� We chose this

noise distribution in order to match the tail behaviour of the GARCH��	�� process� The sampling

behaviour of the ACF of the data and its squares are shown in Figures ����b�	�d� and ����b�	�d��

These plots demonstrate the weak consistency of the estimates to zero as n increase� Notice that

the autocorrelations of the squares are more concentrated around 
 as predicted by the theory�

Finally	 these graphs illustrate the generally good performance of the sample ACF of stochastic

volatility models in terms of convergence in probability to their population counterparts�especially

when compared to the behaviour found in the GARCH model�
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