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Crystal shapes and crystallization in continuum modeling
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A crystallization model appropriate for application in continuum modeling of complex processes is
presented. As an extension to the previously developed Schneider equations[W. Schneider, A.
Köppel, and J. Berger, “Non-isothermal crystallization of polymers,” Int. Polym. Proc.2, 151
(1988)], the model presented here allows one to account for the growth of crystals of various shapes
and to distinguish between one-, two-, and three-dimensional growth, e.g., between rod-like,
plate-like, and sphere-like growth. It is explained howa priori knowledge of the shape and growth
processes is to be built into the model in a compact form and how experimental data can be used in
conjunction with the dynamic model to determine its growth parameters. The model is capable of
treating transient processing conditions and permits their straightforward implementation. By using
thermodynamic methods, the intimate relation between the crystal shape and the driving forces for
phase change is highlighted. All these capabilities and the versatility of the method are made
possible by the consistent use of four structural variables to describe the crystal shape and number
density, irrespective of the growth dimensionality. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1830512]

I. INTRODUCTION

Realistic material processing conditions are usually com-
plex, and their modeling is a formidable task. Model devel-
opment requires appropriate methods, among them of para-
mount importance the choice of variables. In processes that
involve liquid–solid phase transitions, the characterization of
the degree of crystallinity is a first key element. In the next
level of refinement, characterization of the microstructure,
e.g., shape and number of crystallites, is required for a more
complete understanding of the morphology, and hence of the
material properties of the heterogeneous liquid–solid mate-
rial as it is formed. A next major step concerns the formula-
tion of dynamic equations for the full set of morphological
variables. In this regard, nonequilibrium thermodynamics
methods can provide helpful guidelines to comply with fun-
damental principles of thermodynamics in dynamic situa-
tions.

These issues are especially important in the processing
of polymers, where flow-induced crystallization occurs.1 The
combination of microstructure and coupling to flow crucially
affects the processing and final materials properties.2,3 Due to
the relatively long structural relaxation times of polymers as
compared to low molecular weight liquids, they show
memory effects on experimentally accessible time scales,
and conventional flow conditions result in significant distor-
tion of their structure. As a consequence of chain orientation
and stretch, the polymers crystallize more easily in flow than
in quiescent conditions. Depending on the kinematics, poly-
mers crystallize in various shapes, e.g., spherulites, axialites,

and so-called shish kebabs.2,3 The nucleation and growth of
the latter depend on the deformation rate and time.3,4 This
example of flow-induced crystallization of polymers illus-
trates the two necessary requirements of a successful model.
First, the model must distinguish different crystallite shapes;
and, second, the rate at which they are nucleated and grow
should reflect the processing conditions. Substantial progress
has been made in the characterization of the crystal morphol-
ogy for the crystallization of polymers, both in quiescent and
flow situations.3,5–7 In the form of four coupled differential
equations, the models used in Refs. 3 and 5–7 capture the
volume, surface area, average radius, and number of crystal-
lites for a polydisperse distribution of spheres and shish ke-
babs, respectively.

In this paper, the morphological analysis proposed for
polymer crystallization3,5–7 is extended to model crystals of
arbitrary convex shape, where this shape may depend on
processing conditions. In macroscopic modeling, the rheol-
ogy of polymers is conveniently expressed in terms of mea-
sures of chain deformation, where the latter is influenced by
the flow field and in turn affects the stress in the system. The
degree of chain deformation strongly affects the crystalliza-
tion process. Therefore, the goal is to develop a crystalliza-
tion model on the macroscopic continuum scale, with the
ability to incorporate shape and nucleation rate and growth
rate information from both experiments and microscopic
simulations, as shown in Fig. 1. To do so, morphological
characterization tools from integral geometry are employed.
Dynamic equations sensitive to the crystal shape are pro-
posed and examined under transient conditions. Although in-
spired by polymer crystallization modeling, the method pre-
sented here is more general.

The manuscript is organized as follows. After a brief
introduction into the integral geometric characterization
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methods and dynamic crystallization models in Sec. II, the
formulation of a shape sensitive crystallization model is pro-
posed and discussed in detail in Sec. III, including transient
conditions. The connection to and verification with experi-
mental data is considered in Sec. V, while Sec. VI discusses
the intimate relation between crystal shape and thermody-
namic driving forces for crystallization. Conclusions are
drawn in Sec. VII.

II. METHODS

A. Shape recognition in integral geometry:
Minkowski functionals

Minkowski functionals, also known as intrinsic volumes
(“quermassintegrals,” curvature integrals), are used in inte-
gral geometry to characterize surfaces and shapes. We give
here a brief introduction only; for more details the reader is
referred to the literature.8–11 If A denotes a compact domain
in Rd with regular boundary]A[C2, andd−1 principal radii
of curvatureRi (i =1,… ,d−1), functionalsWm s1ømødd
can be defined by the following surface integrals:

WmsAd =
1

msm
ddE]A

Sm−1S 1

R1
,…,

1

Rd−1
DdS, s1d

where Sm−1 is the sm−1dth elementary symmetric function
and dS denotes thesd−1d-dimensional surface element. In
the specific situation of a two-dimensional surface embedded
in three-dimensional space we find

W1 =
1

3
E

]A

dS, W2 =
1

3
E

]A

1

2
S 1

R1
+

1

R2
DdS,

s2d

W3 =
1

3
E

]A

1

R1R2
dS.

Note that the integrand inW2 is the mean curvature, whereas
the integrand inW3 is the Gaussian curvature(usually de-
noted byH andG, respectively). Although using the concept
of regular surfaces for their definition here, the Minkowski
functionals are also well defined for polyhedra with singular
edges.9 In addition to the above definitions in terms of sur-
face integrals, the zeroth Minkowski functionalW0 is defined
as the volume of the compact domainA. Accordingly, the
functionalWm has dimensionslengthdd−m sm=0,1,… ,dd. To
simplify notation for the remainder of the paper, ford=3, we
also introduce the functionals

Cm: =
1

Vt

6

s3 − md!
Wm, m = 0,1,2,3, s3d

whereVt denotes the total probe volume under consideration.
As an example, for a set ofN nonoverlapping identical
spheres of radiusR in R3, the values of the functionals are

Cm,sph=
8p

s3 − md!
R3−m N

Vt
, m = 0,1,2,3. s4d

In general, the characterization of a domainA,R3 as de-
scribed above results in four numbers,CmsAd, measuring
volume fraction sm=0d, surface area per unit volume
sm=1d, twice the integrated mean curvature(a characteristic
length scale) per unit volumesm=2d, and 8p times the con-
nectivity per unit volumesm=3d. The latter is defined as the
number of disconnected components plus the number of
cavities minus the number of tunnels of the domainA, i.e., it
is a topological measure.

Integral geometric measures in the form of Minkowski
functionals find applications in various fields of research.
They have been used in complex fluids to study chemical
reaction-diffusion patterns, spinodal decomposition kinetics,
and the structural phase diagrams of emulsions,12,13 as well
as to quantify higher order correlations of galaxy cluster dis-
tributions in cosmology14,15 and the heterogeneity of colloi-
dal particle networks.16 The application of these measures
also enters into continuum models for crystallization, assum-
ing that the shape of the crystal phase can be described as an
assembly of impinging, randomly oriented and randomly po-
sitioned, convex crystals. Quiescent as well as flow-induced
crystallization of polymers has been modeled,3,5–7 and the
thermodynamic driving forces for nucleation and growth
have been elaborated.17,18

B. Crystallization: Integral formulation versus
differential formulation

The theory to determine the overall crystallinity as de-
veloped by Kolmogorov,19 Johnson and Mehl,20 and
Avrami21–23 is widely used. It relates the volume fraction of
the crystalline phasefstd at time t to the nucleation rate per
unit volumeastdsm−3s−1d through

fstd = 1 −e−C0std, s5ad

FIG. 1. Dynamic crystallization model embedded in a
macroscopic modeling approach with the ability to in-
corporate data and shape information from experiments
and microscopic simulations.
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C0std: =E
−`

t

ast8dvst8,tddt8, s5bd

wherevst8 ,td denotes the volume at timet of a single crys-
tallite which began to grow from a nucleus at timet8. The
integral C0 given by Eq.(5b) is known as the “extended”
volume fraction, which can grow without limit, in contrast to
the physical volume fractionf where 0øfø1. The differ-
ence between extended and physical volume fractions arises
from the impingement of the crystals as they grow. Math-
ematically, the relation between them, Eq.(5a), is well
known from the Boolean grain model for convex grains stud-
ied in integral geometry.13 For simplicity and clarity, we ex-
amine only systems without impingement in the following,
i.e., where the individual crystals do not overlap as they
grow. In that case, the sum of the single crystal properties
equals that property of the union of crystals, e.g.,C0 from
Eq. (5b) is then the physical volume fraction. If one wishes
to include impingement in a later stage of the model devel-
opment, the Boolean grain model in the form Eq.(5a) can be
applied readily.

For nonoverlapping convex crystals, the physical vol-
ume fraction is given byC0 in Eq. (5b). For the special case
of spherical crystals that grow at a time-dependent(i.e.,
process-dependent) radial growth rate Gstd fm s−1g,
Schneideret al.24 transformed the integral equation forC0

into a set of four coupled differential equations by repeated
differentiation ofC0 with respect to time. By using the no-
tation from the preceding section and sincevst8 ,td
=s4p /3dR3st8 ,td for spherical crystals with

Rst8,td =E
t8

t

Gssdds, s6d

the Minkowski functionalsCm defined in the preceding sec-
tion are given by

Cmstd =
8p

s3 − md!E−`

t

ast8dR3−mst8,tddt8, m = 0,1,2,3.

s7d

Schneiders’ rate equations can then be written in the compact
form3,5,24

Ċmstd = GstdCm+1std, m = 0,1,2, s8ad

Ċ3std = 8pastd. s8bd

Here as well as in the remainder of this paper, dotted quan-
tities denote the rate of change exclusively due to the crys-
tallization dynamics. Additional contributions to the dynamic
equations ofCm are not considered here, e.g., the convective
terms in general compressible flows which have been dis-
cussed elsewhere.17,25–29As required by the integral geomet-
ric point of view, the number of dynamic variables in the
Schneider equations(8) is four. Note thatCm captures the
s3−mdth moment of the crystal size distribution. Therefore,
in situations of a polydisperse crystal size distribution, e.g.,
due to continuous nucleation, the four functionals
(m=0,1,2,3) capture different information, again highlighting

the need to include them all. Also, the hierarchical differen-
tial equations(8) are substantially more useful for implemen-
tation in a continuum model and in time-dependent simula-
tions than their integral counterpart(5).

The dynamic equations(8) for the morphological de-
scriptors become physical only when one specifies the
material- and process-dependent rates for nucleationa and
growthG. Apart from fundamentally understanding the driv-
ing forces for phase change in terms of differences in chemi-
cal potentials, temperatures, and pressures between the solid
and liquid phases,17,30–32 for practical purposes these rates
can be taken from experimental data under standard
conditions33,34 or from molecular simulations.35–38 However,
we shall not primarily examine the thermodynamic back-
ground of these rates here. Rather, we use a procedure analo-
gous to the one described above to model different particle
shapes and different growth dimensionalities.

III. CRYSTALLIZATION MODEL INCLUDING CRYSTAL
SHAPE

The growth of convex, nonspherical crystals can often
be reduced to specifying the shape and a small set of linear
growth rates along characteristic directions. For example,
once a polymer lamella is recognized to have cylindrical
shape, the thickness and radial growth rate are sufficient to
characterize its growth. Therefore, the crystallization model
presented below is based on the concept of shapes. In the
following three Secs. III A, III B, and III C, we discuss crys-
tallization models for growth into three, two, and one dimen-
sions, respectively, with constant crystal shape but time-
dependent growth rate. Transient situations with variable
crystal shape are then studied in Secs. III D and III E, fol-
lowed by the incorporation of available growth rate data into
the model in Sec. III F.

A. Three-dimensional growth

Under certain conditions, crystals preserve their shape
during growth, i.e., the growth process can be described by a
dilation in all three directions of the crystals, as shown in
Fig. 2(a). Let us assume that all particles, although different
in size, are all of the same shapeS, the latter being, for
example, “cuboid,” “ellipsoid,” etc. Consider a single crystal
and denote its extension along a characteristic axis, which is
specific to the shapeS, by 2R. If the crystal was nucleated at
time t8 and grows in that specific direction at a time-

FIG. 2. Illustration of the dilational growth mode as discussed in the text,
exemplified for three-dimensional(a) and two-dimensional growth(b), re-
spectively. The arrows indicate the growth directions.
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dependent rateGstd, then the length in that directionRst8 ,td
is given by (6). The Minkowski functionalsCm for that
single particle are given bycmsSdR3−m /Vt (m=0,1,2,3) with
c3sSd;8p. It is essential to note that the set of coefficients
csSd;fc0sSd ,c1sSd ,c2sSdg depends on the shape but not on
the size of the crystal. One can thus express the functionals
for the assembly of continuously nucleated crystals in the
form

CmsSd = cmsSdE
−`

t

ast8dR3−mst8,tddt8, m = 0,1,2,3,

s9d

the number densityC3 being identical to(7) with m=3. In
order to determine the dynamic equations one repeatedly dif-
ferentiates the volume fractionC0. After rearranging terms,
one finds

ĊmsSd = s3 − md
cmsSd

cm+1sSd
GstdCm+1sSd, m = 0,1,2.

s10d

The evolution equation for the number densityC3 is always
given by (8b), independent of the shapeS. Although the
crystals grow three dimensionally, only a single growth rate
is required in(10) due to the assumption that the shape is a
constant of growth. These equations again highlight the hi-
erarchical structure of the model as well as where and how

the knowledge of the particle shape is built in, namely, in the
coefficientscsSd. For a list of selected shapes these coeffi-
cients are given in Table I for illustrative purposes, while the
meanings of the length scaleR and of the parameters for
these shapes are illustrated in Fig. 3. Using the coefficients
given in Table I for spherical shape, the growth equations
(10) reduce to the Schneider rate equations(8a).

B. Two-dimensional growth

In this section, we study prism shaped crystals, i.e., crys-
tals having identical and parallel top and bottom bases of
shapeS8 separated by heighth, which are connected by a

TABLE I. Coefficientsfc0sSd ,c1sSd ,c2sSdg for various shapes in three-dimensional growthsdG=3d, and sc0sS8d ,c1sS8dd for various shapes of the parallel
surfaces in two-dimensional growthsdG=2d. The meaning of the parametersl and sl1,l2d, respectively, is illustrated in Fig. 3 forsdG=3d. The functionsf
and g are given byfsxd=x+lnsx+Îx2−1d /Îx2−1 andgsxd=x+arccossxd /Î1−x2; for g1sl1,l2d and g2sl1,l2d the reader is referred to the Appendix. For
dG=2, l denotes the ratio of the two main axes of the ellipse and the rectangle, respectively.E is the complete elliptic integral of the second kind.

Coefficients

dG ShapeS c0sSd c1sSd c2sSd

3 Sphere
4p

3 4p 8p

3 Spheroid(Ref. 12)
4p

3
l l . 1: 2plgS1

l
D l.1: 4pfsld

l , 1: 2plfS1

l
D l , 1: 4pgsld

3 Triaxial ellipsoid
4p

3
l1l2 g1sl1,l2d g2sl1,l2d

3 Cylinder pl 2ps1+ld 2psp+ld
3 Rectangular parallelepipedon l1l2 2sl1+l2+l1l2d 2ps1+l1+l2d

3 Double cone
2p

3
l 2pÎl2+1 2p arcoss

l2 − 1

l2 + 1

3 Double pyramid
8

3
l 8Îl2+1 8Îl2 + 2arcoss

1

l2 + 1
+ 8arccos

l2 − 1

l2 + 1

2 Circle p 2p ¯

2 Ellipse pl 4EsÎ1−l2d ¯

2 Rectangle l 2s1+ld ¯

FIG. 3. Illustration of the notation as introduced in the text for five charac-
teristic shapes: rectangular parallelepipedon, triaxial ellipsoid, cylinder,
double cone, and double pyramid.
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perpendicular lateral surface. These shapes include cylinders
(S8: circle) and rectangular parallelepipedons(S8: rectangle).
In contrast to Sec. III A, it is assumed that the thickness of
the crystalsh does not change due to crystallization and that
their growth leads to a dilation of the crystal only in the two
remaining planar directions, leaving the two-dimensional
shapeS8 unchanged[see Fig. 2(b)]. Note, however, that the
aspect ratios of the three-dimensional shape of the crystal-
lites change upon crystallization, because the thicknessh is
constant. Let us assume that, in addition to having equal
thickness, all crystals also have the same shapeS8 in the
directions perpendicular to the thickness direction, and ad-
dress the question of suitable functionals for describing an
assembly of such particles. In principle, one may choose to
use the four morphological variables as defined in(2) and
(3), as it has been done in the preceding Sec. III A. However,
there are other choices which are more appropriate in view of
a crystallization model for two-dimensional growth. The
derivation of the hierarchical crystallization model by re-
peated differentiation(see Sec. III A) suggests that the num-
ber of crystallization equations(nucleation and growth) natu-
rally arises asdG+1 for dG-dimensional growth. Hence the
number of morphological variables used in the crystallization
model is alsodG+1. While dG+1 corresponds to the total
number of Minkowski functionals fordG=3, this is not the
case fordG,3, the consequence of which is discussed in the
following.

Let R denote half the extension of a crystal along a char-
acteristic axis specific to the planar shapeS8 (e.g., radius for
a cylinder with circular base shape), and Gstd the time-
dependent growth rate in that direction. Using the expression
(6) for Rst8 ,td, we define in analogy to(9)

CmsS8d = cmsS8dhstdE
−`

t

ast8dR2−mst8,tddt8, m = 0,1,2,

s11d

with c2sS8d;8p. The coefficientsfc0sS8d ,c1sS8dg are to be
chosen such thatC0 is the volume fraction andC1 is the
lateral surface area of all particles per unit volume, which is
identical to the growth surface. Examples for the coefficients
are listed in Table I. Repeated differentiation of the expres-
sion (11) for m=0 results in a set of coupled differential
equations, similar to the forms(8b) and (10), namely,

ĊmsS8d = s2 − md
cmsS8d

cm+1sS8d
GstdCm+1sS8d, m = 0,1,

s12ad

Ċ2sS8d = 8pastdhstd, s12bd

involving three time-dependent functionals only,Cm

(m=0,1,2). However, the morphological description needs to
be completed by an additional variable according to integral
geometry. We choose the thicknesshstd to be the fourth vari-
able. Although the thickness does not change due to the crys-
tallization dynamics,

ḣ = 0, s13d

it may still change in time due to other effects, such as ap-
plied stress. Therefore, including the thickness variableh in
the set of dynamic variables puts one in a position to incor-
porate such behavior. Furthermore, including the variableh
allows one, first, to express the number density of crystals as
C2std /hstd, which in turn satisfies the common nucleation
equation(8b). Second, the total crystal surface areaC1

total

can be expressed in terms of the growth surface areaC1,
namely,

C1
total = C1 + 2

C0

h
, s14d

where the second term accounts for the base surface areas.
On one hand, the total crystal surface area can be measured
experimentally under certain conditions as discussed below.
On the other hand, calculating the free energy of a crystal
with different surface tensions for the lateral and base sur-
faces(e.g., in the case of a lamellar crystal) requires separate
knowledge of the lateral and base surface areas,C1 and
2C0/h, respectively. This clearly highlights the benefit of the
choice and number of variables in this section, which allows
one to calculate all three surface areas.

C. One-dimensional growth

Finally, the situation of growth in only one direction is
considered. The extension of a crystal along its growth di-
rection is denoted byR and its time-dependent growth rate
by G, which includes the growth of both ends. Perpendicular
to the growth direction, the base surfaces(and hence the
cross section) can be of arbitrary shapeS9, which are taken
identical for all crystals. Since crystals have regular struc-
ture, let us assume that for a given cross sectional shapeS9
one can assign two main axes in that cross sectional plane.
Given the extensions of the crystal in these two directions,
namely,h1 andh2, the area of the cross section is of the form
c0sS9dh1h2. The discussion of two-dimensional growth has
already shown that the definition of the morphological func-
tionals differs from the common integral geometric defini-
tions (2) in order to describe the physics more conveniently.
In particular, a crystallization model with one-dimensional
growth will require only two dynamic variables, which we
define as

CmsS9d = cmsS9dh1stdh2stdE
−`

t

ast8dR1−mst8,tddt8,

m = 0,1, s15d

with Rst8 ,td as given in(6), andc1;8p. As in the previous
Secs. III A and III B the volume fraction is given byC0,
whereasC1 here physically represents 4p /c0 times the total
growth surface area of all crystallites. Repeated differentia-
tion of C0 results in the crystallization model with one-
dimensional growth,

Ċ0sS9d =
c0sS9d

8p
GstdC1sS9d, s16ad
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Ċ1sS9d = 8pastdh1stdh2std, s16bd

involving two time-dependent functionals only,Cm (m=0,1).
While the latter continuously change due to crystallization,
the neutral extensions of the crystals(h1, h2) are unchanged
by crystallization,

h
.

1 = h
.

2 = 0. s17d

However,h1 and h2 still need to be included in the set of
dynamic variables of the full model in order to control the
two planar nongrowth dimensions of the crystal. The axes
along whichh1 and h2 are measured are best chosen along
the symmetry axes of the crystal structure, for which the
anisotropic crystal properties are captured most easily. With
the aid of these two additional variables, the number density
of crystals can be captured byC1/h1h2 which satisfies the
common nucleation equation(8b). Furthermore, the total
particle surface areaC1

total can be written as

C1
total =

c0sS9d
4p

C1 + ] c0sS9,h1,h2d
C0

c0sS9dh1h2
. s18d

The first term accounts for the two growth faces and the
second term is the lateral surface area with]c0sS9 ,h1,h2d
being the circumference of the cross section. Note that, in
contrast to the case of two-dimensional growth(14), this
expression(18) explicitly requiresc0 and]c0, in addition to
all dynamic variables(C0, C1, h1, h2).

D. Transient behavior

The morphological variables given by Eqs.(9), (11), and
(15) are solutions to the crystallization equations discussed
in the previous Secs. III A–III C assuming that the shape
does not change in three-, two-, and one-dimensional growth,
respectively, even if the growth rateGstd varies with time.
For many materials, however, the preferred crystal shape de-
pends on processing conditions and thus does change in
time. In the picture painted here, such effects are captured by

letting the coefficientsc=sc0,… ,cdG−1d in the dynamic crys-
tallization equations depend on the processing conditions.

A prototype for transient behavior consists of a step
change in the shape coefficientsc at t=0, while both the
dimensionalitydG and the nongrowth directions are identical
for tø0 andt.0. (Alterations of growth dimensionality and
directions are discussed in the following section.) Assume
that for tø0 the set of coefficients isc−, whereas fort.0 it
is c+. Obviously, the crystals nucleated att.0 experience
the conditionsc+ only, and thus develop a shape that con-
forms to these coefficients from the time of their creation.
However, it is interesting to ask what shape the crystals
nucleated attø0 will develop. To answer this, we examine
the solution to the dynamic equations fordG-dimensional
growth, namely Eqs.(8b), (10), (12), and(16), respectively,
neglecting nucleation and with constant coefficientsc+ for t
.0. One finds

Cmst . 0d = o
n=m

dG sdG − md!
sn − md!sdG − nd!

Rs0,tdn−m
cm

+

cn
+ Cn

−s0d,

m = 0,…,dG, s19d

where the superscript “2” in Cn
−s0d is a reminder that these

values are influenced by the coefficientsc− only, i.e., by the
conditions prior to t=0, in contrast to the conditionsc+

which apply for t.0. The long-time behavior of(19) is
dominated by the termn=dG, which is proportional to
CdG

− s0d, i.e., to the number density of crystallitesC3
−s0d ac-

cording to Secs. III A–III C. Thus, Eq.(19) shows that the
limiting behavior of all dG+1 variables, limt→`Cmstd, de-
pends only on the number density of particles att=0. In
other words, the crystals lose all memory of their shape in
the growth directions prior tot=0 due to overgrowth after a
sufficiently long time, as illustrated in Fig. 4. Furthermore,
the degree to which the crystal shape conforms to the new
conditions c+ after a finite timet can be estimated from
Eq. (19) by comparing the various terms with different pow-
ers of t.

FIG. 4. Illustration of the difference
between the target shape and the ac-
tual shape as occurring in transient
situations. Processing conditions influ-
ence the target shape, while experi-
mental techniques measure the actual
shape. However, actual and target
shape are connected through the crys-
tallization model.
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In situations of continuously changing coefficientscstd,
the crystal shape always develops toward a shape specified
by the currentcstd, but always lags behind in attaining the
current shape by virtue of the finite time scale introduced by
the growth rateG, as demonstrated above. Providing such
means to estimate the degree of the lag effect should be
useful for the interpretation of experimental data.

E. Alteration of growth directions

We examine here systems that experience a step change
in growth dimensionality and growth directions att=0, but
with constant shape coefficientsc before and after that. Such
a change is reflected in the initial conditions att=0 for the
subsequent growth process. We illustrate this with an ex-
ample.

In flow-induced crystallization of polymers, the forma-
tion of the shish kebabs can, under certain conditions, be
decomposed into the flow-induced nucleation and one-
dimensional growth of shishesst,0d, and the subsequent
st.0d outward growth of the kebabs in two dimensions per-
pendicular to the initial shish growth direction3,39 [see also
Fig. 5(a)]. It is assumed here that the flow-induced nucle-
ation and shish length growth is stopped att=0, for example,
due to the cessation of flow. For the one-dimensional shish
growth of cylindrical shape with radius r at
t,0, the appropriate variables are(C0

S, C1
S, h1

S, h2
S) given by

Eq. (15) with c0=p andh1
S=h2

S=r. These variables represent
the volume fractionsC0

Sd, four times the total growth surface
area of all crystallites per unit volumesC1

Sd, and the cylinder
radius(h1

S, h2
S). For the two-dimensional kebab growth fort

.0, the appropriate variables aresC0
K, C1

K, C2
K, hKd given

by Eq. (11) for a cylinder withc0=p andc1=2p (see Table
I). These variables stand for the volume fractionsm=0d, the
growth surface area per unit volumesm=1d, 8phK times the
number density of crystallitessm=2d, and the shish length
hK. Since the descriptions for shish growth and kebab growth
must represent the same structure att=0, one finds

C0
Ks0d = C0

Ss0d, s20ad

C1
Ks0d =

2

h1
SC0

Ss0d, s20bd

C2
Ks0d =

8

h1
S2C0

Ss0d, s20cd

hKs0d = 8
C0

Ss0d
C1

Ss0d
. s20dd

These initial conditions, which show the connection between
the two different regimes, can now be used to study the
kebab growth in terms of the dynamic equations(12). The
key result of this shish-kebab growth example is that the
crystallization model presented in Secs. III A–III C can ac-
commodate a change in the growth dimensionality and in the
growth directions by appropriately matching the variables at
that transition. The explicit use ofh1

S in Eq. (20) highlights
the importance of also including “neutral” variables in the
description, instead of the growth variables only.

F. Incorporating knowledge about growth rates

Often, one has some information about the crystalliza-
tion process from experiments or molecular simulations,
such as linear growth rates and the accompanying shape. The
question arises as to how such information is to be incorpo-
rated into the crystallization model.

The dynamic crystallization model, Eqs.(8b), (10), (12),
and (16), has already been written in a form suitable for
considering crystal growth of specific shapes. The latter are
represented in the model in terms of the coefficientscsld,
wherel denotes the set of parameters for that shape family.
Examples for these coefficients are given in Table I. In order
to discuss the incorporation of available growth rates into the
model, we study the example of a rectangular parallelepipe-
don shown in Fig. 3. If the growth rates in the three direc-
tions are denoted by(Ga, Gb, Gc), then the shape after infi-
nitely long time is a parallelepipedon with side lengths with
ratios (1, l1, l2) (see also Fig. 3) with

G = Ga, s21ad

l1 =
Gb

Ga
, s21bd

l2 =
Gc

Ga
, s21cd

because the coefficientscsld with values (21b) and (21c)
exactly describe the target shape after a long time, as shown
in Sec. III D.

IV. ILLUSTRATIVE EXAMPLES

A. Extended chain single crystals

The crystallization of polyethylene under high pressure
results in single crystals of tapered shape.40,41Starting from a
folded primary nucleus, the combination of lateral growth
and thickness growth through chain-sliding diffusion leads to

FIG. 5. Illustration of shish kebab crystallization. For separate or simulta-
neous shish and kebab growth, the crystals form cylinders(a) or double-
cones(b), respectively. The magnified region shows the kebab growth sur-
faces in white, the integral of which is different from the total surface area
of the cone.
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extended chain single crystals. During this growth the thick-
ness grows linearly with time, as does the lateral size(diam-
eter). Therefore, according to the experimental findings the
crystal shape is appropriately described by a double cone, for
which the ratiol (see Fig. 3) of total height to diameter is
constant. In order to model this crystallization process, the
coefficientscsld corresponding to a double cone(see Table
I) have to be used in the three-dimensional growth model
(10), where the value forl can be taken from experimental
data,40,41 e.g., l.1/10. The rateG in the dynamic model
represents the lateral growth rate.

B. Thickness growth in lamella stacks

Experimental results indicate that under certain condi-
tions the crystal thickness neither stays constant nor does it
grow linearly in time, as described just above. For example,
the thickness of slowly cooled melt-crystallized polyethylene
and single crystals grows logarithmically with time upon an-
nealing, and also the thickness growth rate of stacked lamella
slows down as the lamella thickness is comparable to the
spacing between the lamellae.42,43In order to study how such
effects can be represented in the crystallization model, we
consider the individual crystals to be lamellae, i.e., of cylin-
drical shape, with ratiol between cylinder height and radius.
Since the thickness growth rate is decreasing with time while
the radial growth rate is constant, the value ofl in the crys-
tallization model has to change during the crystallization
process. In particular, for the case of arrested thickness
growth in the long-time limit, one has limt→`lstd=0. The
situation of arrested thickness growth for long times can be
accounted for as follows. First, we denote the ratio of height
to radius for the very early stages of crystallization(i.e., for
small crystallites) by l0. Second, we remember that in the
long time limit we wish to have a constant thickness,h`,
which depends for example on the distance between succes-
sive lamellae in the stack. The final thicknessh` can be
approximated by the expressionlkRl with the average cyl-
inder radiuskRl. Since 4C2/ spC3d=s1+l /pdkRl (see Table
I) is a good measure for the average cylinder radius, in par-
ticular asl becomes small, one can make the following an-
satz:

lsC2,C3d =
1

s1/l0d + s4C2d/sh`pC3d
. s22d

For the initial stages,C2/C3 is small(i.e., small crystallites)
and hencel.l0. In contrast, for the late stagesC2/C3 is
large and hencel is small by virtue of Eq.(22), and there-
fore lsC2,C3dkRl.lsC2,C3d4C2s/pC3d.h`, as in-
tended. Solving the three-dimensional growth model(10)
with the cylinder shape coefficients listed in Table I and the
ansatz(22) indeed results in the average thickness approach-
ing a constant value for long times. However, this limiting
thickness of the actual crystals slightly differs from
h`.lkRl due to the time lag effects discussed in Sec. III D,
because the quantityh` is related to the target shape through
l. The saturation of thickness growth is also reflected in the
Avrami exponent, defined by the derivativem
=]sln C0d /]slntd in our notation, which gradually transi-

tions from an initial value ofm=3 to m=2, in the absence
of nucleation for simplicity. Therefore, the dimensionality
of growth as measured by the Avrami exponent shows a
gradual decrease although the crystals grow insexactlyd
three dimensions for all times except fort→`. In turn,
noninteger Avrami exponents determined from experi-
mental data can result from a growth nonlinear in time for
at least one of the growth directions, in addition to a time
variation in nucleation rate.

C. Shish-kebab growth: Revisited

In Sec. III E the shish-kebab growth has been used to
illustrate how a change in dimensionality can be incorpo-
rated in the model. In contrast, Eder and Janeschitz-Kriegl3

(EJK) use a slightly different idea. In their case, a kebab
starts growing outward immediately from every added shish
element, i.e., shish and kebab growth occur simultaneously.
Their surface area variable represents the sum of all growth
surfaces of the disk-shaped kebabs, i.e., it measures the ac-
tive area for the deposition of the polymer chains onto the
kebab growth surfaces. While time-dependent nucleation and
growth rates lead to complicated shapes which are correctly
described in the EJK model, a double cone-like shape as
illustrated in Fig. 5(b) develops under stationary conditions.
In the crystallization model discussed in this paper, double
cones are modeled with coefficientsc that correspond to this
shape, and have a smooth surface in contrast to the stepped
surface in the Eder and Janeschitz-Kriegl model, see Fig.
5(b). The double cone representation is exact for stationary
conditions, but only approximate in transient situations. In
contrast to the growth surface area variable in the EJK
model, the shape model used here for double cones correctly
captures thetotal crystal surface, which is the relevant one
for measurement with scattering methods, as discussed be-
low.

The specific goals of the modeling effort dictate which
of the two models for simultaneous shish and kebab growth
is to be used, since each of these models has its advantages
and disadvantages. The choice between models that treat
shish and kebab growth simultaneously or sequentially is a
physical decision which can be made on the following
grounds. Close examination of various flow-induced crystal-
lization experiments indicate that the stretch of the chain
backbonea is a critical parameter for the formation of the
shish-kebab structure.44 Using this hypothesis, we denote the
value above which shish formation is observed byaS,
whereas kebabs can only form if the chain stretch is below a
threshold value,aK. If aK ,aS, there is only sequential shish
and kebab growth, while foraK .aS a range of stretching
exists in which simultaneous shish and kebab growth occurs.
As illustrated above, the shape model presented here is ca-
pable of describing both the simultaneous and the sequential
growth mode, which lead to double cone-like and cylindrical
shapes, respectively.

Experiments show that the shish structure, although
nucleated only in the stretched melt, can grow into unde-
formed parts of the melt.45 In other words, this phenomena
occurs at the boundary of a stretched melt, i.e., in a thin layer
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not larger than the length of the shish. Considering the fact
that the resolution of the variables in the current crystalliza-
tion model(i.e., the volume element) is much larger than the
crystal size, special care has to be taken when incorporating
such boundary effects. Nevertheless, if one wishes to de-
scribe such shish growth into the undeformed melt, there are
(at least) two possibilities to do so. First, the preferred crystal
shape(i.e., “shish”) can be seen as not being determined by
the local state of the melt, but rather by nonlocal effects,
which in turn have to be reflected in the shape parametersl
in the model. Another possibility is to assume the idea of
self-generated fields proposed by Schultz.46 One then needs
to think carefully about the local parameter/property of the
melt which is supposed to influence the crystal target shape.

D. Fibril-lamella transition

Heat treatment of highly oriented polypropylene and
poly(ethylene-terephtalate) brings about a transition from a
fibrillar to a lamellar structure.47,48 In this transition, several
oriented partly crystalline fibrillar crystals merge to form a
stack of lamellae, where the stacking direction is along the
fibrillar direction and the lamellae themselves are oriented
perpendicular. For simplification, we assume that the crystal
morphology is described by one-dimensional growth of cyl-
inders prior to the transition, and by two-dimensional(lat-
eral) growth of cylinders thereafter. Thus, in terms of vari-
ables, this situation corresponds to the case of the sequential
shish-kebab transition of Sec. III E. For the fibrillar and
lamellar states we use the variablessC0

F,C1
F,h1

F,h2
Fd and

sC0
L ,C1

L ,C2
L ,hLd, respectively. Here,h1

F=h2
F is the radius of

the fibrils, andhL the thickness of the lamellae. Although the
fibrils are only partly crystalline, we choose the variables
with superscript “F” to describe the entire fibrils;C0

F thus
describes the filling of space with fibrils, rather than a real
degree of crystallinity. In order to connect the fibrillar and
lamellar descriptions at the transition, additional experimen-
tal data are required: the average number of fibrilsN that
merge sideways to form a lamella; the average degree of
crystallinity w within one (partly crystalline) fibril; and the
periodicity of the defect modulationD in the fibrils prior to
the transition, which sets the scale for the periodicity of the
lamellar stacking. With these quantities and using the very
definitions of the structural variables one arrives at these re-
lations at the transition:

C0
L = wC0

F, s23ad

C1
L =

2w

ÎNh1
F
C0

F, s23bd

C2
L =

8w

Nh1
F2C0

F, s23cd

hL = wD, s23dd

where the additional assumption has been made that the sum
of the cross sectional areas ofN fibrils equals the cross sec-
tional area of a lamella. However, this assumption is not

essential here and can be altered if one wishes to do so. In
conclusion, relations(23) show that the descriptions of the
crystallization prior to and after the complicated structural
transition can be linked, but only if certain experimental data
is available.

V. EXPERIMENTAL RELEVANCE

In contrast to incorporatinga priori knowledge of the
preferred crystal shape and growth rate into the crystalliza-
tion model, it is also desirable to measure these properties
experimentally, even under transient conditions. Specifically,
we discuss what kinds of experimental data are needed to
extract the shape of the crystals and to study the relation
between processing conditions and preferred crystal shape.

A. Scattering and form factor

The shape of discrete particles leaves significant finger-
prints in scattering experiments, namely in the form factor
Psqd. For details the reader is referred, for example, to an
introduction by Pusey.49 We consider here the limit of low
number density of crystals, i.e., we assume that multiple
scattering can be neglected and that the particle positions and
orientations are uncorrelated. For systems of identical par-
ticles only, the total scattering intensity depends on the scat-
tering vectorq only due to the form factor. Therefore, the
following specific properties of the form factor can be ex-
ploited directly for evaluating the experimentally accessible
scattering intensity. First, the form factor goes to unity for
small q. Second, in the Porod limit50–53 Psqd is proportional
to the particle surface area divided by the square of the par-
ticle volume for isotropic systems. Third, the integral ofPsqd
over all q is inversely proportional to the particle volume.
However, still not all of the required four structural variables
can be measured from these three general features of the
form factor. In order to complete these results, one may use
precalculated form factors for predetermined shapes and
compare them with the experimental data,54 which then pro-
vides the shape parametersl and in turn the coefficients
csld. Form factors have been calculated for various param-
etrized shapes(see also Ref. 55), e.g., sphere,56 ellipsoid of
revolution,57 triaxial ellipsoids,58 rectangular parallelepipe-
dons,59 and cylinder.60

For an assembly of particles of unknown(but common)
shape and polydisperse size, the simultaneous determination
of the shape and size distribution is impossible.54 Either the
size distribution must be measured by other means in order
to determine the particle shape from the scattering experi-
ment, or vice versa. The procedure for measuring the
processing-shape relation discussed below thus has certain
limitations.

B. Measuring the processing-shape relation

Before proceeding, it is essential to distinguish between
the structural variables as measured experimentally on the
one hand, and on the other hand the shapeS and parameters
l appearing in the dynamic model(8b), (10), (12), and(16),
respectively. While the former reveal information about the
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actual shape, the latter indicates the target shape toward
which the crystals evolve(see Fig. 4). As discussed in Sec.
III D on the transient behavior, the actual structure lags be-
hind the target shapeS due to the finite growth rateGstd.
Although the actual shape is directly accessible in experi-
ments, one has to keep in mind that from a modeling per-
spective it is the target shape that matters. One may examine
the relation between processing conditions, chain deforma-
tion, and target shape(see Fig. 4), which is closely related to
experiments and simulations under stationary conditions, and
is thus often the main focus in modeling. In so doing, the
complicated overgrowth effects do not enter the picture; and
this distinct physical process can be treated separately.
Therefore, the measurement of the target shapeS is dis-
cussed below in detail.

First, the dimensionality of growthdG has to be obtained
from the experimental data. For constant growth rate, one
finds the value fordG from the time dependence of the vol-
ume fraction(similarly to the determination of the Avrami
exponent61), assuming the nucleation rate is either constant
or pulse-like. Under transient conditions, the rates(a andG)
as well as the target shape(S andl) may change in time due
to changing processing conditions. In our model as well as in
experiments, such effects result in noninteger values for the
Avrami exponent,61,62 even though the dimensionality of
growthdG remains an integer. Hence the time dependence of
the volume fraction cannot be used for the determination of
dG in transient situations. Instead,dG is given by the number
of independent crystal dimensions that grow in time, and
these dimensions must be determined independent of volume
fraction by the scattering experiment.

Second, corresponding to the specific value fordG one
must consider the dynamic equations(8b), (10), (12), and
(16), respectively, for a shapeS j with the corresponding set
of parameterslf jg. In the event that experiments can provide
the valuesCm sm=0,…dGd and their rate of change by
appropriate scattering data, then the values of the ratios

F Ċm

Cm+1
G

exp
= FsdG − md

cmslf jgd
cm+1slf jgd

GstdG
theo

,

m = 0,…,dG − 1 s24d

are known. If the family of shapes used in Eq.(24) hasdG

−1 parameters, solution of thedG equations(24) gives a
unique solution for the growth rateG and thedG−1 param-
eters. If the number of parameters is less thandG−1, then the
system of constraints(24) is overdetermined. If there is no
solution, then the shape of the crystals in the experiment is
not given byS j; and one knows to solve(24) for another
shapeSk with parameterslfkg, where a higher number of
parameters may be required. An example of the overdeter-
mined case is the one-parameter family of spheroids, which
show three-dimensional growth. In summary, it is up to the
user to choose between families of shapes with number of
parametersmødG−1. If m,dG−1, one has limited flexibil-
ity as far as parametrization is concerned, but greater confi-
dence concerning the shape in general, since for the wrong
choice of shape family, no solution to(24) exists. If m=dG

−1, one must assume that the shape is correct and then get

the corresponding values for the parameters. These then de-
scribe the target crystal shape as required for the processing-
shape relation(see Fig. 4).

Finally, one should note that this entire procedure and
the very existence of the conditions(24) go back to including
more morphological variables(and hence more details) in
the description than just the commonly used volume fraction.

VI. CONSEQUENCES FOR THERMODYNAMIC
DRIVING FORCES

It has been shown in previous work17,63 for specific
cases, that the shape of the crystallites is connected to the
thermodynamic driving force behind the growth rate. This
previous analysis is generalized here in view of the shape
dependent crystallization model presented above. In essence
the dynamic equations of the forms(8b), (10), (12), and(16)
are combined with a two-phase model by using nonequilib-
rium thermodynamic techniques.64–68

The full set of variablesszd of the combined model in-
cludes thermodynamic variables for the melt and crystal
phases, such as their mass densitiesrm andrc, as well as the
Minkowski functionals. For simplicity three-dimensional
growth is consideredsdG=3d in the following: the other
cases can be treated similarly. If one assumes that both
phases have equal temperature, then the relevant thermody-
namic potential is the Helmholtz free energy,Fszd. A change
in the volume fractionC0 due to crystallization is coupled to

mass transfer between the phases, i.e.,ṙc= r̂Ċ0 and ṙm

=−r̂Ċ0, wherer̂ is a mass density. Taking such dependen-
cies into account, it is useful to define the four functionsL
through

ḞszduĊm
= − LmszdĊm, m = 0,1,2,3, s25d

where the right side does not include a summation. The sub-
script on the left side denotes inclusion of changes inF
caused by changes inCm due to crystallization. While bulk
contributions(e.g., the chemical potential difference of the
melt and crystal phase) are contained inL0, surface tension
effects are represented in the surface area derivativeL1. It
has been shown that, in order to respect fundamental thermo-
dynamic principles, the crystallization equations for the
Minkowski functionalsC=sC0,C1,C2,C3d must take the
form17,63

Ċ = R · L, s26d

whereR is a positive semidefinite and symmetric 434 ma-
trix.

Equation(26) describes the same physics represented by

(8b) and (10), according to which the ratioĊm /Ċn for
0øm ,nø2 is independent of the growth rateG, i.e., inde-
pendent of any thermodynamic driving force. In turn, this
means by virtue of Eq.(26) that the ratio of the correspond-
ing rows ofR must satisfy the same condition. Exploiting the
symmetry property of that matrix and assumingLmÞ0 (m
=0, 1, 2, 3), one finally arrives at
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G

R0
= S3c0L0 + 2FC2/c2

C1/c1
Gc1L1 + FC3/c3

C1/c1
Gc2L2D

+ PF 1

C1/c1
GL3, s27ad

8pa

R0
= S3c0L0 + 2FC2/c2

C1/c1
Gc1L1 + FC3/c3

C1/c1
Gc2L2DP

+ QF 1

C1/c1
GL3. s27bd

Here,R0szdù0 is a general kinetic coefficient, and the func-
tions Pszd and Qszd are constrained toQù P2 due to the
positivity requirement of the matrixR. Although the terms in
brackets in Eq.(27) do not depend on the crystal shape but
only on the crystal size, the growth rate and nucleation rate
are still shape-dependent. The crucial conclusion is that the
shape coefficients(c0, c1, c2) enter the dynamic equations for
the morphological variables not only explicitly, as suggested
in (10), but that they also enter into the growth rateG and the
nucleation ratea implicitly, as shown in(27). Since this
result is a direct consequence of the positivity and symmetry
of the matrixR, the relations(27) highlight the intimate cou-
pling of structure and thermodynamics. Also note that
whereasc0L0 is a size independent bulk term, the terms pro-
portional toL1 (i.e., surface tension) are size dependent due
to the average inverse length scaleC2/C1. This shows how
the size dependences of the growth rate and nucleation rate
due to surface tension are captured appropriately on this
level of description when using the variablesCm (m=0, 1, 2,
3). It also emphasizes again the necessity to include all four
functionals in the description in order to describe such ef-
fects properly.

The nucleation rate(27b) is proportional to the growth
rate (27a) if Q=P2, which corresponds to the isokinetic as-
sumption of the Nakamura equation.69 Correspondingly, one
can show that the rank of the matrixR, which represents the
number of physically distinct processes, drops from two for
QÞP2 to one forQ=P2. Only in the former case can one
speak of a true physical distinction between nucleation and
growth.

VII. CONCLUSIONS

A crystallization model capable of recognizing shape has
been introduced in a general manner in Sec. III. It is capable
of capturing one-, two-, and three-dimensional growth and of
connecting these different regimes, as shown with the shish-
kebab example.A priori knowledge of the crystal shape un-
der stationary conditions can be incorporated into the dy-
namic model in a compact form.

Transient crystallization conditions are captured by
changing the parameters that describe the crystal shape, lead-
ing to shape memory effects. Due to the finite growth rate of
crystals, the actual crystal shape observed in experiments
lags behind the target shape, which would ideally be attained
after infinitely long exposure to the nontransient experimen-
tal conditions. Using the concept of target shapes, the rela-

tion between processing conditions and target shape, which
is closely related to experiments and simulations under sta-
tionary conditions, is effectively separated from the addi-
tional complication of shape memory effects. By way of the
dynamic crystallization equations(8b), (10), (12), and (16),
respectively, one can extract the target shape from the experi-
mental data on the actual shape, under certain circumstances,
as described in Sec. V. Thus, memory effects require com-
bining modeling and experiment to measure and verify the
desired constitutive processing-target shape relations.

The intimate relation between crystal shape and thermo-
dynamic driving forces for crystallization was established in
Sec. VI. This coupling arises when combining the dynamic
crystallization model presented here with a two-phase model,
and needs to be included in order to avoid thermodynamic
inconsistencies. One finds that the nucleation rate as well as
the growth rate have a explicit shape dependence, in addition
to being size dependent.

The versatility of the crystallization model presented
here is based upon using four structural variables to describe
the crystal shape and number density, irrespective of the
growth dimensionality. FordG-dimensional growth(dG=1, 2,
3) the number of dynamic variables required for the crystal-
lization model isdG+1. We have shown that an additional
3−dG “static” variables should be included in the model as
well (see Secs. III B and III C), e.g., for properly transition-
ing between two growth regimes of different growth dimen-
sionality, as shown in Sec. III E. The use of multiple struc-
tural variables also surfaces in the measurement of the
processing-shape relation(Sec. V), as well as in the size and
shape dependence of the nucleation rate and growth rate
(Sec. VI). A reasonable choice of variables as well as under-
standing of the structure of their dynamic equations is impor-
tant to model crystallization successfully under complex pro-
cessing conditions.

Beyond the illustrative examples discussed in Sec. IV,
the morphological description of crystal shape and growth as
presented here may also be applied to describe other experi-
mentally observed phenomena. These include distinction be-
tween lenticular, truncated lozenge70 and hexagonal71 shapes.
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APPENDIX: MINKOWSKI FUNCTIONALS FOR A
TRIAXIAL ELLIPSOID

For a triaxial ellipsoid« with main axes(R, l1R, l2R),
the two coefficientsc1s«d=g1sl1,l2d and c2s«d=g2sl1,l2d
defined byCms«d=cms«dR3−m /Vt (m=1,2) are determined.
To that end, one can calculate the surface areaC1s«d as well
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as the surface area of its parallel-bodyC1s«ed, where the
parallel-body«e is defined by

«e: = hxu ix − yi ø e,y [ «j, sA1d

including the ellipsoid itself as well as all points in the vi-
cinity e of the ellipsoid. Since it is known from integral
geometry13 that C2s«d can be calculated by

C1s«ed = C1s«d + eC2s«d + Ose2d, sA2d

a straightforward, although lengthy, calculation leads to

g1sl1,l2d

=E
0

p E
0

2p

Îl1
2cos2 u + l2

2sin2 ussin2 f + l1
2cos2 fd

3sinududf, sA3d

g2sl1,l2d = l1l2E
0

p E
0

2p l1
2cos2 f + sin2 f + l2

2sin2 u + cos2 usl1
2sin2 f + cos2 fd

l1
2cos2 u + l2

2sin2 ussin2 f + l1
2cos2 fd

sinududf. sA4d
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