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Abstract

We study a polling model where we want to achieve a balance between the fairness of the

waiting times and the efficiency of the system. For this purpose, we introduce the κ-gated

service discipline. It is a hybrid of the classical gated and exhausted disciplines, and consists

of using κi gated service phases at queue i before the server switches to the next queue. We

derive the distributions and means of the waiting times, a pseudo conservation law for the

weighted sum of the mean waiting times, and the fluid limits of the waiting times. Our goal is

to optimize the κi’s so as to minimize the differences in the mean waiting times, i.e. to achieve

maximal fairness, without giving up too much on the efficiency of the system. From the fluid

limits we derive a heuristic rule for setting the κi’s. In a numerical study the heuristic is

shown to perform well.

Keywords: polling model, waiting times, fairness, efficiency, gated service discipline, exhaus-

tive service discipline, optimization.

1 Introduction

Polling models are used in the modeling of many problems, for example computer systems, main-

tenance systems and telecommunication. In these models, multiple queues are served by a single
∗Corresponding author: P.O. Box 513, 5600MB Eindhoven, The Netherlands, iadan@win.tue.nl
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server, which cyclically visits the queues. A typical performance measure in such systems is the

mean waiting time at each of the queues. In certain applications (see e.g. [13, 17]) it is important

to maintain fairness, in the sense of the queues having (almost) equal mean waiting times. In

achieving this, one usually has to sacrifice the efficiency of the system. In this paper, however,

we introduce a strategy which on the one hand achieves fairness, while on the other hand still

is efficient. Here the efficiency is given by the sum of the mean waiting times, weighted by the

utilization rates, and fairness is understood as the maximal difference in the mean waiting times

at each of the queues. In the literature multiple meanings have been associated to fairness, e.g.

serving customers in order of arrival (see [2, 10]). These interpretations, however, are different

from the fairness considered here.

In a polling model when the server switches to the next queue, a switchover time is incurred.

There are many possible choices for deciding when the server should switch to the next queue.

The rules studied most often are the exhaustive service discipline (when the server arrives at a

queue, it serves its customers until the queue has become empty) and the gated service discipline

(when the server arrives at a queue, a gate closes and only the customers who are before the gate,

i.e., who are already present, will be served in this server visit).

The main advantage of the exhaustive strategy, is that it is optimally efficient. That is, it minimizes

the sum of the mean waiting times at the queues weighted by their utilization rates. However,

the differences between mean waiting times at the queues might be large. Typically, the heaviest

loaded one has the smallest mean waiting time in this discipline. Conversely, the gated discipline

leads in general to much smaller differences. But this is at the expense of the efficiency, which

is much lower for this discipline. We aim to combine the best of both worlds into a new service

discipline, by introducing a hybrid version of exhaustive and gated: the κ-gated service discipline.

The κ-gated discipline consists of using κi gated service phases at queue i before the server switches

to the next queue. That is, upon arrival of the server, it servers the queue consecutively (at most)

κi times, according to the gated discipline. So upon arrival of the server, a first gate closes and

only the customers before this gate are served. After this, a second gate closes, and again only the

customers before this gate are served, etcetera. This is done κi times, or until the queue becomes

empty. The parameters κi are specified in the vector κ = (κ1, . . . , κN ), where N is the number of

queues. Note that when κi = 1, queue i is served according to the gated discipline; when κi →∞,

queue i is served according to the exhaustive discipline (as it is served until it becomes empty).

One of the main questions studied in the current paper is whether the κi’s can be optimized as to

achieve both fairness and efficiency.

Fairness has frequently played a role in the choice of a service discipline in polling systems. For
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example, motivated by a dynamic bandwidth allocation problem of Ethernet Passive Optical

Networks (EPON), in [13, 17] a two-stage gated service discipline is studied. In that case, a gate

closes behind the customers in a stage-1 buffer at the moment the server arrives, the customers in

the stage-2 buffer are being served, and then those present in stage-1 move to the stage-2 buffer.

This was seen to give rise to relatively small differences between mean waiting times at the various

queues, but at the expense of longer delays, i.e., at the expense of the efficiency of the system. The

strategy was later generalized to multi-phase gated (see [18]). The κ-gated discipline can be seen

as a variant of this discipline, where we have removed the extra cycles all customers have to wait

for, in between moving to the next stage buffer. Hence, we expect it to lead to small differences

between mean waiting times as well, but with significantly smaller total mean delays than for two-

or multi-stage gated.

Besides the two- and multi-stage gated disciplines, a number of other disciplines have been pro-

posed in the literature in order to achieve fairness (in the sense considered here). We mention

a few in the following. Altman, Khamisy and Yechiali [1] (see also Shoham and Yechiali [15])

consider a so-called elevator strategy in a globally gated regime. In this setting the queues are

visited in the order: 1, 2, . . . N − 1, N,N,N − 1, . . . 2, 1, 1, 2, . . . etc. When the server turns around

at queue 1 or queue N , a gate closes at all queues: only those before the gate are served. This

strategy turns out to be perfectly fair. However, it is far less efficient because of the globally

gated regime. Our focus here is on cyclic models. Boxma, Van Wijk and Adan [11] introduce

the Gated/Exhaustive discipline: the queues are visited cyclically, where in one cycle alternately

all queues are served according to the gated discipline or all queues are served exhaustively. The

incentive for this mixed strategy arose from the well-known expressions for the mean waiting time

of queue i for gated respectively exhaustive systems: E(W gat
i ) = (1 + ρi)E(RCi) respectively

E(W exh
i ) = (1 − ρi)E(R∗Ci), where ρi is the workload. Furthermore E(RCi) and E(R∗Ci) denote

the mean residual cycle duration from the visit completion respectively beginning of Qi on. These

can be approximated by E(RC) ≈ E(RCi) ≈ E(R∗Ci). From the resulting approximations for

E(W gat
i ) and E(W exh

i ), one might expect the mean waiting time in the Gated/Exhaustive dis-

cipline to become E(W g/e
i ) ≈ E(RC), which does not depend on i. However, it turns out that

this guess was incorrect, as the exhaustive cycle dominates in the waiting times. The difference in

waiting times only marginally decreases compared to exhaustive. To overcome this, [11] proposes

the use of a polling table (see also [3, 19]), which prescribes the order in which queues are visited.

This is related to [9], in which efficient visit orders are studied. Another option are efficient visit

frequencies, see [8]. These options, however, do not focus on fairness.

Our contribution in this paper is as follows. We introduce the κ-gated discipline. Our motivation

for this discipline is the search for a policy that achieves almost equal mean waiting times at the
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queues (fairness), without giving up too much of the efficiency. In earlier work in the literature, the

focus has been solely on fairness, leading to inefficient policies [1, 17]. For the κ-gated discipline

we derive the distributions and means of the waiting times, a pseudo conservation law for the

weighted sum of the mean waiting times, and the fluid limits of the waiting times. We want to

set the κi’s so as to achieve maximal fairness without giving up too much on the efficiency of the

system. To accomplish this, we use the fluid limits to derive a heuristic for setting κ. Finally, in

a numerical study we extensively test the performance of the heuristic. It turns out to perform

very well.

The structure of this paper is as follows. In Section 2 we introduce the model in more detail and

give the notation that is being used. In Section 3 we derive the mean visit times of the queues,

a Pseudo Conservation Law for the weighted sum of the mean waiting times, the waiting time

distributions at all queues using Multitype Branching Processes, the mean waiting times using the

Mean Value Analysis technique exploiting the concept of Smart Customers, and the Fluid Limits

of the waiting times. In Section 4 we derive a heuristic rule for the setting of κ based on the fluid

limits. Section 5 contains examples and a numerical study into the performance of the heuristic.

We end with a conclusion and discussion of possible further work in Section 6.

2 Model and notation

We consider a polling system [16], with N queues, Q1, . . . , QN , where each queue has infinite

capacity. The queues are served by a single server, in fixed cyclic order Q1, Q2, . . . , QN , Q1, Q2, . . ..

Customers in each queue are served in order of arrival (first come, first served). The arrival

processes at the queues are independent Poisson processes with arrival rate λi at Qi, i = 1, . . . , N .

The service times at Qi are independent and identically distributed (i.i.d.) random variables,

denoted by Bi, having finite first and second moment, and Laplace–Stieltjes transform βi(.). By

RBi we denote a residual service time at Qi. The switch of the server from Qi to Qi+1 lasts for

a switchover time Si, these being i.i.d. random variables, with finite first two moments, Laplace–

Stieltjes transform σi(.), and residual duration RSi . The sum of the switchover times is denoted

by S =
∑N
i=1 Si, where we assume E(S) > 0. Its residual duration is denoted by RS . Furthermore,

we assume that the arrival processes, the service times and the switchover times are all mutually

independent. Customers at Qi are referred to as type i customers. Indices are understood to be

modulo N : QN+1 actually refers to Q1.

The traffic offered per time unit at Qi is denoted by ρi and is given by ρi = λiE(Bi). The total

traffic offered to the system per time unit is ρ =
∑N
i=1 ρi. A necessary and sufficient condition for
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stability in case of gated and exhaustive services, is ρ < 1, see [12]. In the sequel we assume ρ < 1

and we concentrate on the steady-state behavior of the system. We are mainly interested in the

waiting times of customers. By Wi we denote the steady-state waiting time of a customer at Qi,

excluding its own service time.

The cycle time starting from Qi, denoted by Ci, consists of the visit times to each of the queues

and all switchover times incurred. A well-known result [16] is that its first moment does not

depend on i, and is given (for a stable system) by E(C) = E(S)/(1 − ρ). E(C) does not depend

on the service disciplines at the queues.

We now describe the κ-gated service discipline. Upon arrival at Qi, the server serves exactly those

customers present on arrival (phase 1); when this is done, it serves exactly those customers present

in Qi at that moment (phase 2); and so on, until (at most) κi phases are completed, and then the

server switches to the next queue. If the queue is empty at the start of a phase, the server also

switches. This discipline consists of the prescription of κ = (κ1, . . . , κN ), with κi ∈ {1, 2, . . .}∪{∞}

for all i = 1, . . . , N . For κi = 1 the discipline at Qi is equivalent to the well-known gated service

discipline, and for κi =∞ it is equivalent to the exhaustive service discipline. It is readily verified

that the condition ρ < 1 is also necessary and sufficient for the stability in case of the κ-gated

service discipline.

We want to achieve fairness in the waiting times, that is, we want the E(Wi) for i = 1, . . . , N to

be (almost) equal. Hence, we want to minimize

max
i,j

(
E(Wi)− E(Wj)

)
.

On the other hand, we do not want to give up too much of the efficiency of the system. For the

efficiency, we use the weighted sum over all mean waiting times:

N∑
i=1

ρiE(Wi).

This is a measure for the total workload in the system: it is the expected value of the waiting work

in the system at an arbitrary moment. Hence, we focus on the following performance characteristic

of the system:

γ̃(α) := max
i,j

(
E(Wi)− E(Wj)

)
+ α

N∑
i=1

ρiE(Wi), (1)

for some α ∈ [0,∞). Note that (1) depends on the service discipline at each of the queues. Under

the κ-gated discipline, for a given α, the κ can be optimized to minimize γ̃. This optimization

is a trade-off between the fairness (maximal difference in mean waiting times) and the efficiency

(weighted sum of mean waiting times). One can distinguish two extreme cases. For α = 0 only the

fairness of the discipline counts. In that case, the elevator strategy in a globally gated regime is the

5



best choice, as it leads to equal mean waiting times. For α→∞ only the efficiency of the system

is important. The exhaustive discipline is optimal in that case. We remark that for the term

measuring the efficiency, a so-called pseudo conservation law holds, and it is easily determined

without having to calculate all individual mean waiting times (see Section 3.2).

3 Analysis of the κ-Gated Discipline

In this section we present the analysis of the κ-gated discipline. First we derive the mean visit

times at each of the queues. Then we give a pseudo conservation law for the weighted sum of

the mean waiting times. Next we present the derivation of the waiting time distributions, using

multi–type branching processes. Following that, we briefly indicate a simpler way to compute

the mean waiting times. For this we show that the discipline fits into the framework of smart

customers, and then we apply mean value analysis for polling models. We end this section by

presenting the fluid limits of the waiting times. These fluid limits are used in the next section to

derive a heuristic for the optimal setting of κ.

3.1 Mean Visit Times

For the κ-gated discipline, we derive the expected duration of each of the visits and visit phases

to a queue. The expected cycle duration is E(C) = E(S)/(1 − ρ). A fraction ρi of the cycle

the server is working on Qi, hence the expected duration of a visit to Qi, denoted by E(Vi), is

given by E(Vi) = ρiE(C). This gives that the mean intervisit time, denoted by E(Ii), is given

by E(Ii) = (1 − ρi)E(C). To further specify the visit times, let E(V ki ) be the mean visit time of

phase k at Qi, for k = 1, . . . , κi. Then E(Vi) =
∑κi
k=1E(V ki ). In the first phase, all work that

arrived during the last phase of the previous cycle and the intervisit time has to be served. This

gives for the mean durations:

E(V 1
i ) = ρi(E(V κii ) + E(Ii)). (2)

In the second phase, the work that arrived during the first phase is served; in the third phase that

of the second, and so on. This leads to:

E(V ki ) = ρiE(V k−1
i )

= ρk−1
i E(V 1

i ), for k = 2, . . . , κi.

Substituting this expression for k = κi into (2) gives

E(V 1
i ) = ρi[ρκi−1

i E(V 1
i ) + (1− ρi)E(C)].

6



Solving this leads to E(V 1
i ) = ρi

1−ρi
1−ρκii

E(C), and hence

E(V ki ) = ρki
1− ρi
1− ρκii

E(C), k = 1, . . . , κi. (3)

Note that the mean duration of subsequent phases decreases, as is to be expected. It is readily

verified that with (3), it indeed holds that:
κi∑
k=1

E(V ki ) + E(Ii) = E(C), for i = 1, . . . , N .

3.2 Pseudo Conservation Law

Boxma and Groenendijk [7] derive a so-called Pseudo Conservation Law (PCL) for the case of

cyclic order polling systems. These pseudo conservation laws give an expression for the weighted

sum of the mean waiting times at each of the queues:
∑N
i=1 ρiE(Wi). It is in that way a measure for

the efficiency of the discipline. Based on a workload decomposition result, the following expression

is derived in [7, (3.10)]:

N∑
i=1

ρiE(Wi) =
ρ

1− ρ

N∑
i=1

ρiE(RBi) + ρE(RS) +
E(S)

2(1− ρ)

(
ρ2 −

N∑
i=1

ρ2
i

)
+

N∑
i=1

E(Mi), (4)

where E(Mi) is the mean amount of work in Qi at a departure epoch of the server from Qi. This

is the only term that depends on the service discipline at the queues. For the exhaustive discipline

E(Mexh
i ) trivially equals zero (cf. [7, (3.11)]), and for gated it holds that E(Mgat

i ) = ρiE(Vi) =

ρ2
iE(S)/(1 − ρ) (cf. [7, (3.12)]). The workload decomposition result in [7] is also valid for the

κ-gated discipline, and we find, using (3):

E(Mκ−gat
i ) = ρiE(V κii ) = ρκi+1

i

1− ρi
1− ρκii

E(S)
1− ρ

.

Remark that for the two extreme cases κi = 1 and κi =∞ this expression simplifies to that of the

gated respectively exhaustive discipline.

Comparing the E(Mi) terms for the different strategies, we find the following:

0 = E(Mexh
i ) ≤ E(Mκ−gat

i ) ≤ E(Mgat
i ),

with equality for the first ‘≤’ if and only if κi =∞, and equality for the second ‘≤’ if and only if

κi = 1. Exhaustive is the most efficient service discipline, as the server never switches when there

are still customers in the queue it is serving. So, it leaves no customers behind that have to wait

for an entire cycle. The latter is the case for (κ-) gated. Gated (i.e. κi = 1) is less efficient than

κ-gated for κi ≥ 2, since more customers will be left behind when the server switches to the next

queue. It follows that the efficiency of the κ-gated discipline is always between that of exhaustive

and gated.
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By substituting the expression for E(Mκ−gat
i ) into (4) we find the pseudo conservation law for the

κ-gated discipline:

N∑
i=1

ρiE(Wi) = ρ

∑N
i=1 ρiE(RBi)

1− ρ
+ ρE(RS) +

E(S)
2(1− ρ)

(
ρ2 −

N∑
i=1

ρ2
i + 2

N∑
i=1

ρκi+1
i

1− ρi
1− ρκii

)
.

As only the terms E(Mi) depend on the service discipline (and hence on κ for the κ-gated disci-

pline), we can restrict our attention to
∑N
i=1E(Mi) instead of

∑N
i=1 ρiE(Wi). So in the sequel,

instead of (1), we concentrate on optimizing:

γ(α) := max
i,j

(
E(Wi)− E(Wj)

)
+ α

N∑
i=1

E(Mi), (5)

for some α ∈ [0,∞).

3.3 Waiting time distributions

We determine the Laplace–Stieltjes transform (LST) of the waiting timesWi analogously to Resing [14].

In [14] it is shown, that if the service discipline in each queue satisfies the so-called branching prop-

erty, then the queue length process at polling instants of a fixed queue is a multitype branching

process (MTBP) with immigration in each state. This leads to expressions for the generating

function of the joint queue length process at polling instants. Conform e.g. [4] the LST of the

waiting time then follows.

The κ-gated service discipline does satisfy the branching property [14, Property 1]. Let the start

of the visit to Q1 be the start of the cycle, then by the branching property, each customer present

will during the cycle be replaced in an i.i.d. manner by customers of type 1, . . . , N , according to

the probability generating function (pgf) hi(z), where z = (z1, . . . , zN ). For the gated service

discipline, this hi is given by:

h
(gated)
i (z) = βi

 N∑
j=1

λj(1− zj)

 .

For κ-gated we can recursively express hi as follows:

h
(1-gated)
i (z) = h

(gated)
i (z),

h
(m-gated)
i (z) = βi

 N∑
j=1,j 6=i

λj(1− zj) + λi

(
1− h((m− 1)-gated)

i (z)
) , for m = 2, 3, . . ..

For κi =∞, the pgf hi coincides with that of the exhaustive service discipline, which is given by:

h
(∞-gated)
i (z) = h

(exhaustive)
i (z) = θi

 N∑
j=1,j 6=i

λj(1− zj)

 ,
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where θi(·) is the LST of a busy period triggered by one type i customer in Qi in isolation.

Analogously to [4], let Vbi(z) and Vci(z) be the pgfs of the steady-state joint queue length distri-

butions at the beginning, respectively completion of a visit to Qi. We can express Vb1(z) in itself,

by repeated application of the following relation, cf. [4, (2.2)]:

Vbi+1(z) = Vci(z)σi
( N∑
j=1

λj(1− zj)
)

= Vbi(z1, . . . , zi−1, h
(κi-gated)
i (z), zi+1, . . . , zN )σi

( N∑
j=1

λj(1− zj)
)
, i = 1, 2, . . . , N,

where N + 1 is understood to be 1.

The LST of the steady-state waiting time distribution of a type i customer is given by, cf. [4,

(2.8)]:

E(e−ωWi) =
Ṽci(1− ω/λi)− Ṽbi(1− ω/λi)

(ω − λi(1− βi(ω)))E(C)
,

where Ṽbi(·) is the pgf of the steady-state marginal queue length distribution at a visit beginning

of Qi, given by Ṽbi(z) = Vbi(1, . . . , 1, z, 1, . . . , 1), with z as the ith argument, and Ṽci(·) is defined

analogously. By differentiation, moments of the steady-state waiting time for an arbitrary type i

customer can be derived.

3.4 Mean waiting times

We briefly discuss how the first moments of the waiting times, E(Wi), can easily be obtained in

a more efficient way. For this, we show that the κ-gated discipline fits into the framework of a

polling model with smart customers (introduced in [6]). We can then use mean value analysis

(MVA) for polling systems (introduced by Winands, Adan and Van Houtum [20]), adapted for

smart customers (cf. Boon et al. [5]).

In an ordinary polling model, customers arrive according to a Poisson process at a constant rate λi

at Qi. However, in the case of a model with smart customers, the arrival rate depends on the

position of the server. This rate is λi,j at Qi when the server is serving (or switching to) Qj . This

concept can be used to route arriving customers to a specific queue, depending on the position of

the server.

We use this routing in the following way. We introduce a polling model with the gated discipline

that is related to one served according to the κ-gated discipline. In that model we create multiple

copies of the same queue. We refer to this as the corresponding model. By routing the customers

properly, we send them to the correct queue. That is, a customer arriving at Qi in the original
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model is routed in the corresponding model to the copy of Qi that will be served first. The

underlying idea of this is the following. In the κ-gated model, arriving customers queue behind a

gate, which only opens when the server starts one of the κi serving phases. In the corresponding

model, each of these phases now becomes a separate queue. Hence, we create a polling model

with κi copies of queue Qi, denoted by Q(1)
i , . . . , Q

(κi)
i . No switchover times are incurred between

these copies. Denoting phase k of a visit to Qi by V
(k)
i , then the cycle, including the switchover

times Si (between Q
(κi)
i and Q

(1)
i+1) becomes:

V
(1)
1 −V (2)

1 − . . .−V (κ1)
1 −S1−V (1)

2 −V (2)
2 − . . .−V (κ2)

2 −S2− . . .−SN−1−V (1)
N − . . .−V (κN )

N −SN .

We now have an ‘ordinary’ cyclic polling model with
∑N
i=1 κi queues, each of which is served

according to the gated discipline. We want this system to have the same arrival process as the

original one. For that, we have to route the arriving customers, depending on the position of the

server. A customer arriving at Qi in the original model is now routed to Q(j)
i during V (j−1)

i , for

j = 2, . . . , κi; and to Q(1)
i otherwise.

The corresponding model is a polling model with smart customers. These are studied by Boon

et al. [5]. In [5, Section 6] a system of O
(
N2
)

linear equations is derived for an N queue polling

model with the exhaustive service discipline, from which the E(Wi) can immediately be solved.

Analogously, we can write down a system of O
(
(
∑
i κi)

2
)

linear equations, from which the E(Wi)

directly follow.

Remark: Boon et al. [5, Section 8.2] also give the MTBP approach for polling models with smart

customers. In case that some of the arrival rates are equal to zero, they have to introduce extra

queues requiring zero service times. However, by the structure of the κ-gated discipline, the MTBP

analysis can be reduced to that presented in Section 3.3.

3.5 Fluid limits

The exact expressions for the mean waiting times, following from Sections 3.3 and 3.4, do not

provide an easy way to determine the κi’s minimizing γ(α). Therefore, we derive the fluid limit

approximations of the mean waiting times. These approximations yield closed form expressions,

and can hence easily be used to (approximately) optimize the κi’s.

By taking the fluid limits, we scale the interarrival and service times. For this, we let λi → ∞

and E(Bi) → 0 while keeping the workload λiE(Bi) = ρi fixed. We concentrate on the amount

of work present at a queue, denoted by Hi at queue Qi. By the use of this scaling, we smoothen

the discrete process Hi into a continuous one. In this way, work arrives at a constant rate ρi, and
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Figure 1: The fluid limit of the workload Hi at Qi during one cycle.

during the visit time work is removed at rate 1. So, during the intervisit time of mean length

E(Ii) = (1 − ρi)E(C), the amount of work increases at rate ρi, and during the visit time, with

mean length E(Vi) = ρiE(C), the amount of work decreases at rate 1 − ρi. This cyclic pattern

repeats itself in every cycle. Hence, the workload Hi during a cycle in the κ-gated discipline

becomes as depicted in Figure 1.

At the end of the visit to Qi, the amount of work present is equal to that built up during the last

visit phase V κii . So, it is ρiE(V κii ) =: m. At the start of the visit time it is equal to the work

already present at the beginning of Qi, which is m, plus the work built up during the intervisit

time. Hence, it is m+ ρiE(Ii) =: M . Consequently, the average fluid level during a cycle, i.e. the

mean workload E(Hi), is given by:

E(Hi) =
m+M

2
= m+

ρiE(Ii)
2

= (1 + ρκii )
ρi(1− ρi)
2 (1− ρκii )

E(C).

Using Little’s law formulated for the workload, E(Hi) = ρiE(Wi), the fluid limit of the mean

waiting time of a type i customer directly follows:

E(W fluid
i ) =

m+M

2 ρi
= (1 + ρκii )

1− ρi
2 (1− ρκii )

E(C). (6)

Figure 2 shows these fluid limits for different κi.

It is easily checked that for κi = 1, (6) reduces to E(W fluid
i ) = 1+ρi

2 E(C), which is indeed the

fluid limit for the gated discipline. For κi = ∞, (6) reduces to E(W fluid
i ) = 1−ρi

2 E(C), which is

indeed the fluid limit for the exhaustive discipline.

11
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Figure 2: Fluid limits of the waiting times: E(W fluid
i )/E(C) plotted versus ρi for κi =

1, 2, 3, . . . , 10 and for κi =∞.

4 Balancing fairness and efficiency

We now want to choose κ such that on one hand we achieve fairness, while on the other hand the

system is still efficient. For that, we want to determine the κ that minimizes γ(α) as given in (5).

As we do not have closed form expressions for the mean waiting times, optimization could be done

by an exhaustive search over all κi. However, we use the fluid limits (6) as approximation for the

mean waiting times in the optimization:

min
κ
γfluid(κ, α) (7)

where

γfluid(κ, α) = max
i,j

(
E(W fluid

i )− E(W fluid
j )

)
+ α

N∑
i=1

E(Mκ−gat
i ).

For deriving a heuristic rule for the optimal setting of κ, we take the following approach. First

we determine the κi’s such that all mean waiting times are equal (optimal fairness), then, using

these κi’s, we minimize the term
∑
iE(Mi) (maximal efficiency given optimal fairness). That is,

we consider the following optimization problem:

min
κ

N∑
i=1

E(Mκ−gat
i ),

such that E(W fluid
1 ) = . . . = E(W fluid

N ).

(8)

For the moment we allow the κi’s to be fractional, later we round them to integers. Note that

the problem in (8) does not depend on α. In an extensive numerical study in the next section we

compare the performance of this heuristic setting to that of the optimal setting solving (7). We

now solve (8), first for 2 queues, and then for N queues.

12



4.1 2 queues

For simplicity we start with the case of 2 queues. In this case we can explicitly solve E(W fluid
1 ) =

E(W fluid
2 ) for κ2 in terms of κ1, ρ1 and ρ2:

(1 + ρκ1
1 )

1− ρ1

2(1− ρκ1
1 )

= (1 + ρκ2
2 )

1− ρ2

2(1− ρκ2
2 )

,

where we have divided by E(C) 6= 0. Solving for κ2, denoted by κopt2 , gives:

ρ
κopt2
2 =

(1− ρ1) (1 + ρκ1
1 )− (1− ρ2) (1− ρκ1

1 )
(1− ρ1) (1 + ρκ1

1 ) + (1− ρ2) (1− ρκ1
1 )

. (9)

So, this κ2 achieves optimal fairness (recall that we allowed κ2 to be fractional). Using this κ2,

we now optimize the efficiency, i.e. we minimize:

2∑
i=1

E(Mi) = ρκ1+1
1

1− ρ1

1− ρκ1
1

+ ρ
κopt2 +1
2

1− ρ2

1− ρκ
opt
2

2

=
(ρ1 − ρ2)ρ2 + ρκ1

1

(
2(1− ρ1)ρ1 + (2− ρ1)ρ2 − ρ2

2

)
2(1− ρκ1

1 )
. (10)

In (10) we have substituted (9) and simplified the expression.

The minimum of (10) (where κ1 > 0, for ρ1 6= ρ2) is found for κ1 → ∞. In this way, from (9),

κopt2 becomes:

κopt2 = logρ2
ρ2 − ρ1

2− ρ1 − ρ2
. (11)

This only makes sense for ρ1 < ρ2; if ρ1 > ρ2, we interchange the indices. In case ρ1 = ρ2 all

κ1 = κ2 give equal mean waiting times. However, κ1 = κ2 = ∞ optimizes the efficiency. So, we

come up with the following heuristic for the choice of κ1 and κ2:
if ρ1 < ρ2: κ1 =∞, κ2 = logρ2

ρ2−ρ1
2−ρ1−ρ2 ,

if ρ1 = ρ2: κ1 = κ2 =∞,

if ρ1 > ρ2: κ1 = logρ1
ρ1−ρ2

2−ρ1−ρ2 , κ2 =∞.

In order to get integer κi’s, we have three possibilities: rounding to the nearest integer denoted

by [x]; using the integer floor function,bxc; and using the integer ceiling function, dxe. We study

all three options in the numerical study in Section 5. We denote a κ set according to the heuristic

by [κ], bκc respectively dκe.

We plot (11) in Figure 3, for ρ1 < ρ2 (and ρ1 + ρ2 < 1 for stability) where we round κ2. From the

figure it becomes clear that κ2 = 2 almost always is a proper choice.
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Figure 3: Optimal value of κ2 (rounded to the nearest integer), given by κopt2 =
[
logρ2

ρ2 − ρ1

2− ρ1 − ρ2

]
,

for ρ1 < ρ2 and ρ1 + ρ2 < 1.

4.2 N queues

For N queues we first determine which κi’s give equal mean waiting times. We solve E(W fluid
1 ) =

E(W fluid
j ) for j = 2, . . . , N , which leads to an expression analogous to (9), with 2 replaced by j

everywhere. We plug these into
∑
iE(Mi). The resulting expression depends only on κ1, and

on all ρi’s. It only makes sense if ρ1 is the smallest of all ρi, and it is minimized for κ1 → ∞.

From this, the expressions for the optimal κ2, . . . , κN directly follow: κoptj = logρj
ρj−ρ1

2−ρ1−...−ρN , for

j = 2, . . . , N .

Hence, we come up with the following heuristic for the choice of the κi’s, i = 1, . . . , N :For all i such that i = arg min ρi, let κi =∞;

For all j = 1, 2, . . . , N where j 6= i, let κj = logρj
ρj−ρi
2−ρ .

(12)

Recall that we have three options to get integer κi’s (round, floor, ceiling). An important notion

here is that, by construction, this heuristic does not depend on α. The numerical results in the

next section, however, show that it performs well for a wide range of α’s. So, this heuristic is

robust against the value of α.
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5 Numerical analysis

In this section we first consider two examples, followed by an extensive numerical study into the

performance of the heuristic setting of κ. For each instance we determine γ(α) as defined in (5).

For brevity of notation we define:

∆ = max
i,j

(
E(Wi)− E(Wj)

)
,

Σ =
N∑
i=1

E(Mi).

We compare the results of the κ-gated discipline with the elevator strategy in a globally gated

regime, cf. [1, 15]. For this strategy all mean waiting times are equal: E(W elev.GG
1 ) = E(W elev.GG

2 ) =

. . . = E(W elev.GG
N ), and given by, cf. [1, (6), (10)]:

E(W elev.GG
1 ) =

1
1− ρ

N∑
i=1

ρiE(RBi) + E(RS) +
1 + ρ

2(1− ρ)
E(S).

The PCL easily follows:
∑N
i=1 ρiE(Wi) = ρE(W1). Using (4) we then derive that:

N∑
i=1

E(Melev.GG
i ) =

ρ+
∑N
i=1 ρ

2
i

2(1− ρ)
E(S).

5.1 Examples

Example 1. Consider a polling model with N = 2 queues, Si, Bi ∼ exp(1), i = 1, 2, and λ1 = 0.6,

λ2 = 0.2. Hence ρ1 = 0.6 and ρ2 = 0.6. We have ρ1 > ρ2 and logρ1
ρ1−ρ2

2−ρ1−ρ2 ≈ 2.15. Hence the

heuristic settings are [κ] = bκc = (2,∞) and dκe = (3,∞).

For the κ-gated discipline, taking κ1, κ2 ∈ {1, 2, 3,∞}, the results are given in Table 1. It turns

out that the heuristic settings for κ perform quite well. Although suboptimal for small α, the

performance seems to be rather robust with respect to α. Despite κ = (2, 2) performs better in

this example for the four values of α chosen, it follows from the values of ∆ and Σ that for large α

the heuristic setting will dominate in performance. In general, however, the heuristic settings

outperform the (2, 2) (unless α is small, i.e. less than 1), as the numerical study in Section 5.2

shows.

The difference ∆ in the example turns out to be minimal for κ = (2, 2). This is not surprising

as for N = 2 and κ = (2, 2) the κ-gated discipline closely resembles the elevator strategy in a

globally gated regime (cf. [1, 15]). In this discipline the visit order is 1, 2, . . . , N − 1, N,N,N −
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κ1 κ2 E(W1) E(W2) ∆ Σ γ(0) γ(1) γ(2) γ(5)

1 1 12.77 9.69 3.08 4.00 3.1 7.1 11.1 23.1

2 1 8.42 11.49 3.07 1.75 3.1 4.8 6.6 11.8

3 1 6.90 12.60 5.70 1.06 5.7 6.8 7.8 11.0

∞ 1 5.04 14.88 9.84 0.40 9.8 10.2 10.6 11.8

1 2 13.00 7.21 5.83 3.67 5.8 9.5 13.2 24.2

2 2 8.77 8.77 0.0038 1.42 0.0 1.4 2.8 7.1

3 2 7.27 9.82 2.55 0.73 2.6 3.3 4.0 6.2

∞ 2 5.38 12.20 6.82 0.07 6.8 6.9 7.0 7.2

1 3 13.10 6.76 6.34 3.61 6.3 10.0 13.6 24.4

2 3 8.85 8.25 0.60 1.36 0.6 2.0 3.3 7.4

3 3 7.36 9.29 1.92 0.67 1.9 2.6 3.3 5.3

∞ 3 5.47 11.66 6.19 0.01 6.2 6.2 6.2 6.3

1 ∞ 13.12 6.64 6.48 3.60 6.5 10.1 13.7 24.5

[κ] , bκc : 2 ∞ 8.88 8.11 0.77 1.35 0.8 2.1 3.5 7.5

dκe : 3 ∞ 7.39 9.13 1.74 0.66 1.7 2.4 3.1 5.0

∞ ∞ 5.50 11.50 6.00 0.00 6.0 6.0 6.0 6.0

Elev.GG 15.00 15.00 0.00 6.00 0.0 6.0 12.0 30.0

Table 1: Results for Example 1 for the κ-gated strategy, where κ1, κ2 ∈ {1, 2, 3,∞}. Smallest

values per column are given in bold; the optimal settings from the heuristic are underlined. Recall

that κi =∞ is equivalent to the exhaustive service discipline; κi = 1 to the gated service discipline.

Elevator strategy in a globally gated regime is added for comparison.

1, . . . , 2, 1, 1, 2, . . ., and all gates are closed when turning around at 1 and at N . Hence, for N = 2

the queues are served as:

. . . − Q1

(∗)
− Q1 − S1 − Q2

(∗)
− Q2 − S2 − Q1

(∗)
− Q1 − S1 − . . . − . . .

where (∗) denotes that the gate is closed at both queues. In the κ-gated strategy where κ = (2, 2)

the queues are served as:

. . . − Q
(1)
1 − Q

(2)
1 − S1 − Q

(1)
2 − Q

(2)
2 − S2 − Q

(1)
1 − Q

(2)
1 − S1 − . . . − . . .

where the gate is closed when each service phase starts. As the elevator strategy in a globally

gated regime leads to E(W1) = E(W2), it should not be surprising that the (2, 2)-gated strategy

leads to almost equal mean waiting times.

Example 2. Now consider the following setting. Again we have N = 2 queues, Si ∼ exp(2),

Bi ∼ exp(1), i = 1, 2 and λ1 = 0.35, λ2 = 0.25. The heuristic settings are [κ] = dκe = (3,∞) and

bκc = (2,∞). The results are given in Table 2. The heuristic setting of κ performs very well, and

is even optimal for α = 1, 2, and 5. Note that ∆ is again small for κ = (2, 2).
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κ1 κ2 E(W1) E(W2) ∆ Σ γ(0) γ(1) γ(2) γ(5)

1 1 9.30 8.68 0.63 1.85 0.6 2.5 4.3 9.9

2 1 6.36 9.16 2.80 0.94 2.8 3.7 4.7 7.5

3 1 5.60 9.37 3.77 0.73 3.8 4.5 5.2 7.4

∞ 1 5.19 9.53 4.33 0.63 4.3 5.0 5.6 7.5

1 2 9.57 6.30 3.28 1.35 3.3 4.6 6.0 10.0

2 2 6.65 6.77 0.12 0.44 0.1 0.6 1.0 2.3

3 2 5.87 6.98 1.11 0.23 1.1 1.3 1.6 2.2

∞ 2 5.46 7.16 1.71 0.13 1.7 1.8 2.0 2.3

1 3 9.66 5.80 3.86 1.25 3.9 5.1 6.4 10.1

2 3 6.74 6.25 0.49 0.35 0.5 0.8 1.2 2.2

3 3 5.97 6.47 0.50 0.13 0.5 0.6 0.8 1.2

∞ 3 5.55 6.65 1.10 0.03 1.1 1.1 1.2 1.2

1 ∞ 9.70 5.63 4.07 1.23 4.1 5.3 6.5 10.2

bκc : 2 ∞ 6.79 6.07 0.72 0.32 0.7 1.0 1.4 2.3

[κ] , dκe : 3 ∞ 6.02 6.28 0.26 0.10 0.3 0.4 0.5 0.8

∞ ∞ 5.60 6.46 0.87 0.00 0.9 0.9 0.9 0.9

Elev.GG 11.50 11.50 0.00 3.93 0.0 3.9 7.9 39.3

Table 2: Results for Example 2 for the κ-gated strategy. Smallest values per column are given in

bold; the optimal settings from the heuristic are underlined.

5.2 Performance of fluid based heuristic

In a numerical experiment we study the performance of the heuristic settings for the κi’s. We use

a testbed with 4,614 instances (see Table 3) with N = 2, 3, 4, and 5 queues. For α = 0, 1, 2, and 5

we calculate the mean waiting times in case of:

- exhaustive;

- gated;

- κ-gated with κ as in the heuristic (cf. (12));

- κ-gated with κ optimal, found by enumeration of all possibilities (for N = 2, 3);

- elevator strategy in a globally gated regime (cf [1, 15]).

The elevator strategy in a globally gated regime is added for comparison as it is known to give

identical mean waiting times. However, it is in general far less efficient. On the contrary, the

exhaustive discipline is optimally efficient, however, it might be less fair. For the κ-gated discipline,

we optimize the κ. This is done by enumerating over all combinations of κi ∈ {1, 2, 3, 4, 5, 6,∞}

(for N = 2) or κi ∈ {1, 2, 3,∞} (for N = 3), for i = 1, . . . , N . For N = 4 and 5 we leave this out.

The results for N = 2, 3, 4, and 5 are respectively given in Tables 4, 5, 6, and 7. The results over

all these N are in Table 8. From the tables we can make the following observations. The elevator
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TESTBED

N = 2 (2,925 settings)

λ1, λ2 ∈ {0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95},

B1 ∼ exp(1),

B2, S1, S2 ∼ exp(.) with mean ∈ {0.2, 0.5, 1., 2., 5.},

N = 3 (243 settings)

λ1, λ2, λ3 ∈ {0.1, 0.3, 0.5, 0.7, 0.9},

B1 ∼ exp(1),

B2, B3 ∼ exp(.) with same mean ∈ {0.5, 1., 2.},

S1, S2, S3 ∼ exp(.) with same mean ∈ {0.5, 1., 2.},

N = 4 (552 settings)

λ1, . . . , λ4 ∈ {0.1, 0.3, 0.5, 0.7, 0.9},

B1 ∼ exp(1),

B2, . . . , B4 ∼ exp(.) with same mean ∈ {0.5, 1., 2.},

S1, . . . , S4 ∼ exp(.) with same mean ∈ {0.5, 1., 2.},

N = 5 (894 settings)

λ1, . . . , λ5 ∈ {0.1, 0.3, 0.5, 0.7, 0.9},

B1 ∼ exp(1),

B2, . . . , B5 ∼ exp(.) with same mean ∈ {0.5, 1., 2.},

S1, . . . , S5 ∼ exp(.) with same mean ∈ {0.5, 1., 2.},

Table 3: Test bed for numerical study: full factorial design of the given possibilities which are

stable (
∑N
i=1 ρi < 1). In total 4,614 settings.

discipline \ averages E(W1) E(W2) ∆ Σ γ(0) γ(1) γ(2) γ(5)

Q1 exh - Q2 exh 9.8 30.7 25.6 0.0 25.6 25.6 25.6 25.6

Q1 exh - Q2 gat 7.5 35.8 28.2 1.7 28.2 29.9 31.6 36.7

Q1 gat - Q2 exh 21.7 10.5 11.3 7.9 11.3 19.1 27.0 50.6

Q1 gat - Q2 gat 19.5 15.2 6.2 9.6 6.2 15.7 25.3 54.0

elevator gg 22.7 22.7 0.0 11.9 0.0 11.9 23.8 59.5

κ-gat heur (round) 13.2 12.9 0.7 4.4 0.7 4.4 8.1 19.3

κ-gat heur (floor) 15.3 12.9 3.9 5.8 3.9 9.7 15.4 32.8

κ-gat heur (ceiling) 12.3 13.5 1.9 2.9 1.9 4.8 7.7 16.4

κ = (2, 2) 13.5 13.6 0.4 4.1 0.4 4.5 8.6 20.9

κ-gat opt α = 0 13.5 13.5 0.3 4.1 0.3 4.4 8.5 20.6

κ-gat opt α = 1 13.1 13.2 0.5 3.7 0.5 4.1 7.8 18.7

κ-gat opt α = 2 12.0 13.5 2.0 2.7 2.0 4.7 7.4 15.4

κ-gat opt α = 5 10.4 15.3 6.7 1.1 6.7 7.8 8.9 12.2

Table 4: Results of numerical study for N = 2: average values over 2,925 cases (as described

in Table 3). Minimum value per column in bold. Optimization of κ by exhaustive search over

κi ∈ {1, 2, 3, 4, 5, 6,∞}, i = 1, 2.
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discipline \ averages E(W1) E(W2) E(W3) ∆ Σ γ(0) γ(1) γ(2) γ(5)

exhaustive 11.2 12.2 12.3 6.2 0.0 6.2 6.2 6.2 6.2

gated 16.0 15.3 15.4 4.2 5.6 4.2 9.9 15.5 32.4

elevator gg 21.4 21.4 21.4 0.0 10.2 0.0 10.2 20.3 50.8

κ-gat heur (round) 12.2 12.1 12.2 0.7 1.6 0.7 2.4 4.0 8.9

κ-gat heur (floor) 14.2 13.8 13.8 6.0 4.9 6.0 10.9 15.8 30.5

κ-gat heur (ceiling) 12.4 12.1 12.2 1.2 1.6 1.2 2.8 4.4 9.2

κ-gat opt α = 0 12.5 12.7 10.5 2.4 1.2 2.4 3.6 4.9 8.6

κ-gat opt α = 1 12.2 12.6 11.1 2.3 1.2 2.3 3.5 4.7 8.3

κ-gat opt α = 2 11.6 12.9 11.6 3.3 0.9 3.2 4.2 5.0 7.7

κ-gat opt α = 5 10.8 13.2 12.0 4.5 0.6 4.5 5.1 6.7 7.4

Table 5: Results of numerical study for N = 3: average values over 243 cases (as described in

Table 3). Optimization of κ by exhaustive search over κi ∈ {1, 2, 3,∞}, i = 1, 2, 3.

discipline \ averages E(W1) E(W2) E(W3) E(W4) ∆ Σ γ(0) γ(1) γ(2) γ(5)

exhaustive 20.3 22.4 22.4 22.6 9.7 0.0 9.7 9.7 9.7 9.7

gated 30.6 29.0 29.0 29.1 8.0 11.1 8.0 19.0 30.1 63.2

elevator gg 43.5 43.5 43.5 43.5 0.0 23.0 0.0 23.0 46.0 115.0

κ-gat heur (round) 22.9 23.1 23.2 23.2 2.3 2.9 2.3 5.2 8.2 17.0

κ-gat heur (floor) 29.5 27.6 27.6 27.6 11.6 10.5 11.6 22.0 32.5 63.8

κ-gat heur (ceiling) 22.9 23.1 23.2 23.2 2.3 2.9 2.3 5.2 8.2 17.0

Table 6: Results of numerical study for N = 4: average values over 552 cases (as described in

Table 3). Note: Ceiling differs in only 3 instances from Round.

discipline \ averages E(W1) E(W2) E(W3) E(W4) E(W5) ∆ Σ γ(0) γ(1) γ(2) γ(5)

exhaustive 19.9 20.6 20.6 20.6 20.7 7.4 0.0 7.4 7.4 7.4 7.4

gated 26.6 26.0 26.0 26.1 26.1 6.5 8.2 6.5 14.8 23.0 47.6

elevator gg 39.9 39.9 39.9 39.9 39.9 0.0 20.2 0.0 20.2 40.4 101.0

κ-gat heur (round) 21.1 21.3 21.3 21.3 21.4 2.4 1.9 2.4 4.4 6.3 12.1

κ-gat heur (floor) 26.1 25.0 25.0 25.0 25.0 9.2 7.9 9.2 17.1 25.0 48.8

κ-gat heur (ceiling) 21.1 21.3 21.3 21.3 21.4 2.4 1.9 2.4 4.4 6.3 12.1

Table 7: Results of numerical study for N = 5: average values over 894 cases (as described in

Table 3). Note: Ceiling identical to Round in all tested instances.

strategy in a globally gated regime, having equal mean waiting times (maximal fairness), is hence

always optimal for α = 0. This would be the case for small values of α near zero as well. The

exhaustive strategy, leading to Σ = 0 (maximal efficiency), hence would be optimal for large values

of α. The κ-gated discipline, using the heuristic settings for κ, seems to perform very well in the
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discipline \ averages ∆ Σ γ(0) γ(1) γ(2) γ(5)

exhaustive 19.1 0.0 19.1 19.1 19.1 19.1

gated 6.4 9.3 6.4 15.6 24.9 52.7

elevator gg 0.0 14.7 0.0 14.7 29.5 73.7

κ-gat heur (round) 1.2 3.2 1.2 4.4 7.6 17.1

κ-gat heur (floor) 5.9 6.7 5.9 12.6 19.3 39.5

κ-gat heur (ceiling) 1.9 2.6 1.9 4.5 7.2 15.0

Table 8: Results over all 4,614 instances.

range of α’s in between. For a specific α (and specific setting of the parameters), one can typically

find a better performing κ, but this optimization by exhaustive search is very time-consuming.

The performance of the heuristics turns out to perform close to optimal for all given α’s. For

N = 2 it outperforms (2, 2) for all α except for α close to zero. When using the floor function in

the heuristic, the results seem to be not that good. It is both less fair and less efficient on average

than the rounding and ceiling. The performance of those two does not differ that much.

One might expect the performance of the different settings to depend heavily on the switchover

times incurred during a cycle, as during those intervals all work in the system is waiting. For

that reason, we separate the results according to the value of E(S) (the mean total switchover

time during a cycle), see Table 9. We focused on N = 2, as this most clearly illustrates the

results. From the table, we see that the performance of e.g. the elevator strategy in a globally

gated regime is best for small values of E(S), as is to be expected, but it is outperformed by the

κ-gated discipline already for small α, by all indicated choices for the setting of the κ (except

the heuristic setting using the floor function). Note that it is also outperformed by κ = (2, 2),

although these settings closely resemble each other.

Summarizing, the κ-gated discipline with κ set according to the heuristic, either rounding or

ceiling, performs very well. It is robust against the setting of α and it performs well over a wide

range of values for E(S).

6 Conclusion

We introduced the κ-gated service discipline for a polling model. It is a hybrid of the classical

gated and exhausted disciplines, and consists of using κi gated service phases at Qi before the

server switches to the next queue. The aim of this discipline is to provide fairness (almost equal

mean waiting times at the queues), while not giving up efficiency (weighted sum of mean waiting

times). For the trade-off between these two we introduced the factor α. The κi’s can then be
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value of E(S) (inst.): all (2925) [0.4, 1] (468) (1, 2] (585) (2, 3] (702) (3, 5.5] (585) (5.5, 10] (585)

discipline \ averages ∆ Σ ∆ Σ ∆ Σ ∆ Σ ∆ Σ ∆ Σ

exhaustive 25.6 0.0 20.8 0.0 22.1 0.0 24.0 0.0 28.7 0.0 31.6 0.0

gated 6.2 9.6 2.4 1.9 3.4 4.1 4.9 7.1 8.4 14.0 11.2 19.8

elevator gg 0.0 11.9 0.0 2.4 0.0 5.1 0.0 8.8 0.0 17.4 0.0 24.6

κ-gat heur (round) 0.7 3.7 0.3 0.8 0.4 1.6 0.6 2.7 1.0 5.4 1.2 7.7

κ-gat heur (floor) 3.9 5.8 1.6 1.2 2.2 2.5 3.1 4.3 5.3 8.4 7.0 12.0

κ-gat heur (ceiling) 1.9 2.9 0.9 0.6 1.2 1.2 1.6 2.2 2.5 4.3 3.1 6.0

κ-gat opt α = 0 0.3 4.1 0.1 0.8 0.2 1.7 0.3 3.0 0.5 5.9 0.6 8.4

κ-gat opt α = 1 0.5 3.7 0.1 0.8 0.2 1.6 0.3 2.7 0.7 5.3 0.9 7.5

κ-gat opt α = 2 2.0 2.7 0.1 0.8 0.3 1.5 0.6 2.6 3.4 3.7 5.6 4.5

κ-gat opt α = 5 6.7 1.1 0.8 0.6 2.7 0.8 5.3 1.0 10.4 1.3 13.3 1.7

κ = (2, 2) 0.4 4.1 0.1 0.8 0.2 1.7 0.3 3.0 0.7 6.0 0.8 8.5

Table 9: Results for N = 2 split out according to E(S) (the mean total switchover time during a

cycle), where E(S) ∈ [0.4, 10] for the testbed of Table 3.

optimized.

We showed how the mean visit times, the pseudo conservation law, the distribution of waiting

times and the mean waiting times can be derived. We also derived the fluid limits. Further,

using the fluid limits, we provided a heuristic to set the κ (not depending on α). In an extensive

numerical study we showed that the heuristics perform very well. Typically when α is given, one

can find (e.g. by an exhaustive search) a better setting, but the heuristic setting is robust against

the value of α, that is, for all α it performs close to optimal. So, the factor α typically does not

play a significant role in the choice of κ.

We have chosen here to set κ so as to optimize the fairness and efficiency. However, the κ-gated

discipline can be used for other performance characteristics on the mean waiting times as well.

Instead of the efficiency, one could for example consider the sum
∑N
i=1 ciE(Wi), where each queue

i = 1, . . . , N is assigned a cost factor ci. This could e.g. reflect a difference in the importance of

the customers in each queue.

An interesting option for further research is the handling of the fractional κi’s. Instead of rounding,

one might assign a probability, say pi with which bκic phases are used, and otherwise dκie. This,

however, might lead to a more complicated exact analysis. Another question is in which order the

queues should be placed, as to minimize the variance in waiting times or in the γ(α).
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