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The dynamics of confined droplets in shear flow is investigated using computational and
experimental techniques for a viscosity ratio of unity. Numerical calculations, using a boundary
integral method �BIM� in which the Green’s functions are modified to include wall effects, are
quantitatively compared with the results of confined droplet experiments performed in a
counter-rotating parallel plate device. For a viscosity ratio of unity, it is experimentally seen that
confinement induces a sigmoidal droplet shape during shear flow. Contrary to other models, this
modified BIM model is capable of predicting the correct droplet shape during startup and steady
state. The model also predicts an increase in droplet deformation and more orientation toward the
flow direction with increasing degree of confinement, which is all experimentally confirmed. For
highly confined droplets, oscillatory behavior is seen upon startup of flow, characterized by an
overshoot in droplet length followed by droplet retraction. Finally, in the case of a viscosity ratio of
unity, a minor effect of confinement on the critical capillary number is observed both numerically
and experimentally. © 2008 American Institute of Physics. �DOI: 10.1063/1.2835312�

I. INTRODUCTION

In the past, a great deal of effort has been devoted to
understanding the behavior of single droplets dispersed in a
matrix fluid. The rheology and the dynamics of a Newtonian
droplet surrounded by an immiscible Newtonian liquid are
therefore well known. In this specific case, the droplet be-
havior in a shear flow field is determined by two nondimen-
sional parameters: the capillary number Ca �=�mR�̇/�,
where �m, R, �̇, and � denote, respectively, the matrix vis-
cosity, the droplet radius, the shear rate, and the interfacial
tension�, and the viscosity ratio � �=�d /�m, in which �d is
the droplet viscosity�. Upon startup of shear flow, an initially
spherical droplet in an unbounded flow field deforms and
orients monotonically until a steady-state shape and orienta-
tion is reached. The magnitude of the deformation increases
with increasing Ca, and droplet breakup only occurs above a
critical value Cacrit.

1 Since the pioneering research of
Taylor,2 many theoretical and numerical studies describing
the Newtonian droplet behavior in bulk flow have been de-
veloped and reviewed, showing all good agreement with ex-
perimental results.3–6

In the past decade, the use of microfluidic devices and
applications in processing industries has grown to a large
extent.7,8 Many of these applications consider multiphase
systems, for instance, to create dispersions with a desired
droplet-size distribution.9–12 Processing droplet-matrix sys-
tems on a microscale, where the droplet diameter is typically
in the order of the channel height, largely affects the droplet
behavior, since droplet-wall interactions come into play.13

Some interesting studies on the behavior of blends and single
droplets undergoing confined shear flow have already been

performed.14–20 For instance, the existence of superstructures
such as pearl necklaces, strings, and single layers was dem-
onstrated for blends with �=1.14–16 Similar patterns were
found when shearing confined blends with ��1.17 For drop-
lets in dilute emulsions, it was shown that bulk theories re-
mained valid as long as the ratio of droplet size to gap spac-
ing was below a critical confinement ratio.17 Also the effect
of confinement on the breakup conditions in shear flow has
been investigated for several viscosity ratios.18 For � near
unity, no significant change in Cacrit was seen. However,
when ��1, confinement suppressed breakup, whereas for
��1, breakup was enhanced.18 Even highly viscous droplets
in a confined emulsion with ��4 could be broken easily,
simply by applying a shear flow. It was reported that highly
confined droplets displayed larger deformation and more ori-
entation toward the flow direction than nonconfined ones
during steady-state shear flow.15,19,20 Not only an increase in
the magnitude of the deformation, but also a change in the
droplet shape was seen.19,20 However, these recent observa-
tions all lack a good theoretical explication. Only a few stud-
ies were conducted including the effects of two parallel walls
on the behavior of single droplets.21–24 For instance, using an
integral solution, Shapira and Haber calculated a first-order
correction for wall effects that took into account the devia-
tion from sphericity and the drag force acting upon a droplet
in confined shear flow.21 It was shown for equal viscosities
that the obtained deformation parameter matched experimen-
tal results quite well.19 Also for viscosity ratios unequal to 1,
it was reported that this model is capable of predicting the
effects of confinement on the deformation parameter.20 How-
ever, the model predicts only a change in the deformation
magnitude and not in the droplet shape, which contradicts
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the experimental observations. Recently, for a viscosity ratio
of 1, numerical simulations were developed to study droplet
behavior in confined flows.22–24 For instance, a boundary in-
tegral method �BIM� was used to study the behavior of a
single droplet confined between two parallel walls.23 The in-
clusion of wall effects in a boundary integral method was
done by modification of the Green’s functions.23,25,26 This
way, it is possible to predict the shape, dimensions, and ori-
entation of confined droplets in shear flow for all viscosity
ratios.

In this study, the experimentally determined behavior of
confined single droplets is compared to the predictions of the
modified BIM model for a viscosity ratio of unity. The shape,
deformation, and orientation of droplets during startup and
steady-state shear flow are considered. In addition, breakup
is considered. Steady-state velocity and pressure profiles are
calculated for unconfined and confined droplets in order to
shed light on the underlying deformation mechanism.

II. NUMERICAL PROCEDURE

A. Mathematical formulation

The system is modeled as a Newtonian drop in a New-
tonian matrix fluid under creeping flow conditions. In this
limiting case, the interface velocity can be calculated with a
boundary integral method.27,28 Boundary integral methods
have been used successfully to study drop dynamics in bulk
flow conditions29–33 or the movement of solid spheres and
more recently drops between parallel walls.34–36 In the
boundary integral formulation, the velocity u at a point x0 on
the interface is given by

�� + 1�u�x0� = 2u��x0� −
1

4�
�

S

f�x� · G�x,x0�dS�x�

−
� − 1

4�
�

S

u�x� · T�x,x0� · n�x�dS�x� , �1�

where the integration is performed over all the fluid surfaces
S �see Fig. 1�. Here, all lengths are scaled with R, time with
�̇, velocities with �̇R, and pressures with � /R. Furthermore,
G and T are the Green’s functions associated with a point
force for velocity and stress, respectively, n is the normal
vector to the interface, and u� is the prescribed flow field.
The kinematic condition at the interface is

dx

dt
= u�x,t� . �2�

Since this study is limited to cases with viscosity ratio � of
unity, the second integral on the right-hand side drops out.
The Green’s function G consists of a free-space part G� and
an additional contribution G2W that corrects for the presence
of the walls.25,26 Griggs et al.24 show that two single-wall
reflection Green’s functions perform very well as an approxi-
mation for the Green’s function in Poiseuille flow as results
obtained with this approximation compare very well with
those from a full correct Green’s function and from a Taylor
expansion of these. Computation times for the flows consid-
ered in the current work were very acceptable using the
method of Janssen and Anderson,23 hence no efforts were
invested to reduce computational costs using this approxima-
tion.

In Eq. �1�, f is the discontinuity in the interfacial surface
force, given by

f�x� =
2

Ca
	�x�n�x� , �3�

with 	 the local curvature, defined as 	= 1
2�s ·n, where �s is

the surface gradient operator: �s= �I−nn� ·�. Similar to the
velocity, the pressure p outside the drop, scaled with � /R,
can also be expressed as a boundary integral.28 For drops
with �=1, this expression is

p�x0� = −
Ca

8�
�

S

f�x� · Q�x0,x�dS�x� . �4�

Here, Q�x ,x0� is the pressure vector associated with the
Green’s function G�x ,x0�. Similar to the Green’s function for
the velocity, the pressure vector also consists of a free-space
part and a contribution due to the presence of the walls,

Q = Q� + Q2W, �5�

where Q� is given by

Q��x,x0� = 2
x̂

�x̂�3
, �6�

with x̂=x−x0. The wall contribution Q2W is expressed, as-
suming the walls are located at z
W, in a similar matter as
G2W,23,25

Qx
2W�x,x0� = 2

x̂

s
�

0

�

qJ1�qs�p1pdq , �7�

Qz
2W�x,x0� = 2�

0

�

qJ0�qs�p1ndq , �8�

with s=�x̂2+ ŷ2, and Qy
2W is the same as Qx

2W with x̂ replaced
by ŷ. The integrands are derived from Jones25 and are given
by

p1p = E−�A− cosh�v� − v sinh�v��cosh�w�

+ E+�B− sinh�v� − v cosh�v��sinh�w� , �9�

FIG. 1. Schematic representation of a droplet in a matrix fluid confined
between two parallel plates located at z= 
W �W=d /2�.
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p1n = E−�B+ sinh�v� − v cosh�v��cosh�w�

+ E+�A+ cosh�v� − v sinh�v��sinh�w� , �10�

where A
, B
, and E
 are functions of qW.23,25 Furthermore,
v=qz0, w=qz, and J� is a Bessel function of the first kind
with order �. Similar to the Green’s functions for the veloc-
ity, the integration over q is done by converting the integrals
into a fast decaying part, which is handled numerically, and a
slow decaying part, which is handled analytically,23,34

Qz
2W � 2�

0

�

qJ0�p1n − p̆1n�dq + 2�
0

�

qJ0�qs�p̆1n�q,z,z0�dq ,

�11�

with �=7. The fast decaying terms for the pressure vector are

p̆1n = �	2�W − z0�
q + 1�exp��z + z0 − 2W�q�

− �	2�W + z0�
q + 1�exp��− z − z0 − 2W�q� , �12�

p̆1p = �	2�W − z0�
q − 1�exp��z + z0 − 2W�q�

+ �	2�W + z0�
q − 1�exp��− z − z0 − 2W�q� . �13�

Details of the numerical evaluation of these integrals can be
found elsewhere.23 Observe that for a correct implementation
in Eq. �4�, x and x0 in Eqs. �6�–�8� have to be switched.

The pressure field is calculated by defining a rectangular
grid around the drop and in each point Eq. �4� is evaluated. A
simple near-singular subtraction technique is used to handle
the singularity of Q� as x approaches x0,

p�x0� = −
Ca

8�
�

S

�f�x� − f�x*�� · Q�x0,x�dS�x� + cfn�x*� ,

�14�

with x* the location of the closest node on the drop surface,
fn= f ·n, and c is a constant, which is 0 when x0 is outside
and 8� when x0 is inside the drop.

B. Numerical implementation

The singularity of the free-space kernel G is handled via
a nonsingular contour integration.37 Details concerning the
implementation of the wall contribution to G can be found
elsewhere.23 A standard contour integration is used for the
curvature calculation.38 The mesh is generated from a regular
icosahedron, of which each triangular surface element is sub-
divided into 20 smaller triangles, yielding 8000 elements
�4002 nodes� in total. No remeshing is performed during a
simulation. The normal component of the velocity, calculated
with Eq. �1�, is used to update the position of the interface. In
addition, nodes are advected with an additional tangential
velocity that moves nodes to places with high curvature.38 To
limit computation time, a multitime step algorithm is used,37

in which the kernels are only calculated every 50 time steps.
A time step of 5
10−4 is used in all cases. The maximum
distance between two points on the drop interface, and the
orientation angle, are calculated by fitting a local
paraboloid.30 All details concerning the implementation and
the convergence of the results as a function of the number of
nodes can be found in Janssen and Anderson.23

III. EXPERIMENTAL PROCEDURE

The experiments are performed in a counter-rotating par-
allel plate device �Paar-Physica�. This type of flow cell has
the advantage that a droplet can be held in a stagnation plane
during shear flow without any time or distance limits. A de-
tailed description of the device is given elsewhere.18 All ex-
periments are performed in a thermostatic room at room tem-
perature. The gap between the plates is kept constant at
1 mm, and is filled with the continuous phase. The degree of
confinement, defined as the ratio of droplet diameter 2R to
gap spacing d �see Fig. 1�, is varied by carefully injecting
isolated droplets with different sizes using a homemade in-
jection system. Droplets that are not positioned in the center
plane between the plates are excluded from the experiment.
The visualization of droplets occurs in the velocity-vorticity
plane as well as in the velocity-velocity gradient plane. Dur-
ing startup of shear flow, images are first captured in the
vorticity-velocity plane, as shown in Fig. 2�a�, until the
steady-state regime is reached. Then the flow is stopped, and
after relaxation of the droplet the same experiment is per-
formed while capturing images in the velocity-velocity gra-
dient plane, as shown in Fig. 2�b�. This way, it is possible to
extract all information about the dynamics of the droplets
during flow.

As the continuous phase, a poly�isobutylene� liquid
�PIB, Parapol 1300 from ExxonMobil Chemical, USA� is
used. The droplet phase consists of a poly�dimethyl siloxane�
liquid �PDMS 100000, Rhodorsil from Rhodia Chemicals,
France�. Both pure materials exhibit a fairly Newtonian be-
havior with constant viscosities up to the highest shear rates
used in the experiments. As elasticity effects are negligible,
the components behave as Newtonian fluids under the mea-
surement conditions.39 The viscosities �m and �d of PIB and
PDMS, respectively, are 103.8 and 103.7 Pa s at 23.7 °C,
resulting in a viscosity ratio � close to 1 at room tempera-
ture. The interfacial tension � of the PDMS/PIB system is

FIG. 2. Schematic representation of a deformed droplet with the geometrical
parameters in shear flow: �a� Velocity-vorticity plane; �b� velocity-velocity
gradient plane.
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reported to be 2.8 mN /m.40 The difference in density be-
tween PIB ��PIB=890 kg /m3 at 20 °C� and PDMS ��PDMS

=970 kg /m3 at 20 °C� is small enough to neglect gravita-
tional effects.41

IV. RESULTS AND DISCUSSION

A. Steady state

Figure 3 shows the steady-state shapes of a droplet with
a degree of confinement of 0.18 at different capillary num-
bers. For 2R /d�0.2, it was reported that wall effects are still
negligible and bulk flow still prevails.20 In Fig. 3�a�, the
experimentally observed shapes recorded in the velocity-
velocity gradient plane are depicted. The corresponding
shapes calculated from the numerical simulations are shown
in Fig. 3�b�. As can be seen, a good agreement between the
numerical plots and the experimental images is present for
all three capillary numbers shown here. Both series of im-
ages display an ellipsoidal droplet shape for all Ca, as can be
expected for nonconfined droplets. Note that the experimen-
tal images taken in the velocity-velocity gradient direction
�as in Figs. 3 and 5� are slightly optically deformed in the
velocity direction due to the cylindrical curvature of the glass
cup surrounding the plates. Therefore, a spherical droplet is
weakly seen as an elliptical one with its longest axis in the
velocity direction. Consequently, the visualization of de-
formed droplets also suffers from this aberration, and hence a
larger droplet orientation toward the flow direction than ac-
tually present is microscopically seen. However, the image
analysis procedure used for this type of experiment only
takes into account correctly visualized dimensions of the
droplets, hence the main axes L and B of the droplet in the
velocity-velocity gradient plane are not directly obtained
from the images but calculated using the correctly repre-
sented dimensions. The images show a decrease in orienta-
tion angle � �see Fig. 2�b�� and thus more orientation toward
the flow direction, with increasing capillary number. At first

glance, it can be concluded that the numerical BIM model
with integrated wall effects is capable of predicting the shape
of droplets under bulk flow conditions.

To quantify the previous results, the dimensionless axes
�Fig. 4�a�� and the orientation angle �Fig. 4�b�� of the non-
confined droplet are shown as a function of Ca. The lines in
the graphs represent the dimensionless axes and orientation
angle calculated from the modified BIM model. As can be
seen in Fig. 4�a�, the model is perfectly capable of predicting
the main axes L /2R, B /2R, and W /2R �see Fig. 2� of the
droplet during steady-state shear flow up to capillary num-
bers not far from the critical value. The prediction of the
orientation angle �, however, is slightly different from the
experimental results. The model predicts more orientation
toward the flow direction than experimentally observed. De-
spite these small deviations, the modified BIM model pre-
dicts quite accurately the trend in orientation angle with in-
creasing Ca. Therefore, it can be concluded that the model is
able to give the full three-dimensional steady-state shape and
dimensions of an unconfined deformed droplet up to capil-
lary numbers of 0.4. The model is also capable of predicting
the decreasing trend in orientation angle as a function of Ca.

In Fig. 5, the experimentally determined steady-state
shapes of a confined droplet �2R /d=0.82� and the numeri-
cally determined steady-state shapes at the same confinement
ratio are shown for three different capillary numbers. When

FIG. 3. Steady-state droplet shape in the velocity-velocity gradient plane at
Ca=0.1, 0.2, and 0.25 for 2R /d=0.18: �a� Experimental data and �b� nu-
merical data.

FIG. 4. Comparison between experimental data and numerical simulations
for 2R /d=0.18 as a function of capillary number: �a� Dimensionless droplet
axes and �b� orientation angle.
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comparing the experimental images of this confined droplet
�Fig. 5�a�� with the experimental images of the unconfined
droplet �Fig. 3�a��, it is immediately clear that confinement
affects the deformation of a droplet at a constant Ca. It is
seen that not only the magnitude of the deformation, but also
the shape of the deformed droplet is changed due to the
proximity of the walls. Instead of an ellipsoid, which is the
characteristic shape for droplets in a bulk shear flow, a sig-
moidal deformation with slightly more pronounced pointed
ends is present in a confined shear flow. The results of the
numerical model �Fig. 5�b�� display great similarity with the
experimental droplet shape �Fig. 5�a�� for all three capillary
numbers under investigation. Contrary to the model of Sha-
pira and Haber,21 this model predicts both a change in shape
and an increase in deformation magnitude. Therefore, it can
be stated that this model is capable of describing the steady-
state shape of confined droplets in any shear flow field.

Figure 6 shows the dimensionless axes �Fig. 6�a�� and
the orientation angle �Fig. 6�b�� as a function of Ca for this
confined droplet. The lines represent the results calculated
from the simulations for �=1 and 2R /d=0.83. Both the ex-
perimental results and the model calculations for the con-
fined droplet show large differences with respect to the lim-
iting bulk behavior �see Fig. 4�. Clearly a larger distortion
from the spherical shape is present due to the confining effect
of the walls. The experimental and the numerical results of
the confined droplet are in good agreement. All three main
axes of the droplet and its orientation in the flow field are
reproduced nicely by the model. The model is, therefore, not
only capable of predicting the right shape, as stated before,
but also the deformation magnitude and orientation angle
match nicely the experimental results up to capillary num-
bers around 0.3.

In order to explain the observed results, the velocity and
pressure profiles in and around the droplet are calculated. In
Fig. 7, numerically obtained velocity profiles are given in the
y=0 plane at a capillary number of 0.25 for an unconfined

FIG. 5. Steady-state droplet shape in the velocity-velocity gradient plane at
Ca=0.1, 0.2, and 0.25 for 2R /d=0.83: �a� Experimental data and �b� nu-
merical data.

FIG. 6. Comparison between experimental data and numerical simulations
for 2R /d=0.83 as a function of capillary number: �a� Dimensionless droplet
axes and �b� orientation angle.

FIG. 7. Velocity profiles for Ca=0.25: �a� 2R /d=0 and �b� 2R /d=0.83.
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�Fig. 7�a�� and a confined �Fig. 7�b�� droplet. In both cases,
the velocities inside the droplet follow the same recirculation
pattern. The resulting streamlines are closed and no dead
zones can be observed, not even in the case of confined
droplets. Hence at �=1, the velocity profile inside the drop-
let does not seem to influence the deformation behavior be-
tween the confined and unconfined case. Outside the drop,
the gap between the wall and the droplet surface is extremely
narrow near the ends of the drop, leading to an increased
shear rate in the matrix fluid at those places. As a conse-
quence, the shape of a confined droplet is changed from el-
lipsoidal to sigmoidal and the deformation is increased.
Similar findings were reported by Renardy.22

Next, we present pressure profiles in the y=0 plane ob-
tained from the simulations. For the drop in bulk conditions
�Fig. 8�a��, high pressures are found on the inside of the drop
near the tips, where the curvature of the interface is high. On
the other hand, near regions with low curvature, like the
waist of the drop, the pressure is even lower than the result-
ing pressure in a spherical drop, which is 2� /R, or 2 in our
scaled variables. Just outside the drop we find a pressure
lower than 0 near the tips and higher than 0 near places with
low curvature. However, the case for the confined drop is
significantly different, as can be seen in Fig. 8�b�. Near the
tips we find an even higher pressure than the drop in bulk
flow conditions. As the curvature here is also larger, this is to
be expected. Once again, we find lower pressure inside the
drop near places with low curvature. The main difference,

however, is outside the drop. The wedge that forms between
the drop and the wall leads to a large increase of the pres-
sure. In fact, the pressure approaches values as high as 1 in
those areas. Subsequently, the pressure drop behind the
wedge is huge, as also there the pressure is lower due to the
high curvature. It is believed that this changed pressure pro-
file is responsible for the changed droplet dynamics, al-
though no conclusive statement can be made at present. In
order to investigate this effect more systematically, a com-
parison between simulations and experiments at different
viscosity ratios is necessary since it is known that the viscos-
ity ratio drastically affects the droplet dynamics in confine-
ment.

B. Startup

Next to the steady-state behavior, also the transient drop-
let behavior during startup of shear flow is investigated. In
Fig. 9�a�, the transient shape during startup of shear flow is
shown for an unconfined droplet �2R /d=0.19�, at a capillary
number of 0.2. The deformation is expressed as a function of
the dimensionless time t* �t*= t /� with t the absolute time
and �=�mR /� a characteristic emulsion time�. The dimen-
sionless projections of the droplet in the vorticity-velocity
plane, namely Lp /2R and W /2R �see Fig. 2�, will be used
here to express the deformation of the droplets. This way, no

FIG. 8. Pressure distribution for Ca=0.25: �a� 2R /d=0 and �b� 2R /d
=0.83.

FIG. 9. Comparison between experimental startup data and numerical simu-
lations for 2R /d=0.19 as a function of dimensionless time: �a� Ca=0.2 and
�b� Ca=0.35.
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further shape calculations have to be performed on the im-
ages obtained during the experiments and no numerical cal-
culations of the orientation angle have to be performed. The
lines in Fig. 9 represent the corresponding predictions of the
model. For �=1, the numerical model is capable of predict-
ing the shape evolution of the confined droplet during startup
of flow. At every point in time, the model corresponds well
with the experimental data. It is seen that the shape of the
droplet during startup remains ellipsoidal at all times. The
magnitude of the deformation of the ellipsoidal droplet
changes monotonically with time until steady state is
reached, as is exactly the case for nonconfined droplets. Both
the model and the experimental results reach the steady-state
shape at the same moment in time. In Fig. 9�b�, comparable
results for the same droplet, yet at a more elevated capillary
number of 0.35, are shown. Also here, good agreement be-
tween experimental results and the numerical simulations is
present. Therefore, it can be concluded that the numerical
model is capable of predicting the transient startup dynamics
in shear flow in the limiting case of a nonconfined droplet.

The results for a confined droplet during startup of flow
at a capillary number of 0.2 are illustrated in Fig. 10. In Fig.
10�a�, it can be seen that the model �lines in the graph� pre-
dicts a large overshoot in Lp /2R, which occurs simulta-
neously with an undershoot in W /2R. Similar observations
are experimentally obtained. However, the overshoot in
Lp /2R is less pronounced and less deformation is seen at the
final steady state. Both experimental and numerical results
indicate that a confined droplet does not deform monotoni-
cally toward its steady-state shape but passes first through a
maximum in deformation before retracting to its steady-state
deformation. The steady-state regime also settles in at a later
point in time compared to the unconfined situation. In Figs.
10�b� and 10�c�, the shape evolution during startup is both
numerically and experimentally shown. As can be seen on
the microscopic images, the droplet displays a sigmoidal
shape already immediately after startup. This is also pre-
dicted by the numerical simulation, and again good agree-
ment between the experimental and numerical images is
seen. Since the shape of the droplet is sigmoidal, no unique
definition of the orientation angle can be given. Therefore,
the angle is not experimentally determined or calculated and
only the projections are used to quantify the droplet shape.

In Fig. 11, the droplet shape is shown as a function of
time for a confined droplet at a capillary number of 0.35. As
can be seen in Fig. 11�a�, both the experimental results and
the predictions of the numerical model show a large over-
shoot in Lp. This overshoot occurs at a time scale in which
steady state has already been reached normally in bulk flow.
Although the experimental maximum occurs a little bit later
in time, good agreement between the experimental droplet
length and the numerically calculated length is seen. In the
experimental and numerical images in Figs. 11�b� and 11�c�,
a very elongated, sigmoidal droplet is seen. Again, the sig-
moidal shape is present from the beginning of startup. At the
maximal deformation, the center part of the body shows
some slight necking, although no breakup is seen. Instead,
the droplet retracts to its sigmoidal steady-state deformation.
The model calculations and shapes show an excellent simi-

larity with the experimental observations. Good agreement is
present for low and high capillary numbers and for both con-
fined and unconfined droplets.

The results in Figs. 9–11 show transient dynamics during
startup at conditions relatively far from critical. In Fig. 12,
however, the droplet dimensions are shown as a function of
time for the same confined droplet �2R /d=0.88� as in Fig.
11, but this time at a near-critical capillary number of 0.4. As
can be seen in Fig. 12, both the experimental results and the
predictions of the numerical model show again a large over-
shoot in Lp. Under the present conditions, the simulations
predict a damped oscillatory behavior, as was also observed
by Renardy.22 The experimental maximum occurs a little bit
earlier in time compared to the numerical maximum, and
since the experiment is stopped earlier, no conclusions of
damped oscillatory behavior can be drawn here. However,
similar experiments performed by Sibillo et al. did show
these damped oscillations.19

FIG. 10. Startup data at Ca=0.2 for 2R /d=0.88. �a� Comparison between
experimental and numerical droplet dimensions as a function of dimension-
less time. �b� Experimental droplet shape and �c� numerical droplet shape at
t*= �1� 5.1, �2� 21.1, and �3� 60.6.
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Under all conditions of transient behavior shown here, it
can be stated that, at a viscosity ratio of unity, the numerical
model is capable of predicting an increased transient defor-
mation of confined droplet with respect to bulk droplets and
a correct droplet shape when compared to the experimental
results. However, the model predicts a slightly higher defor-
mation than experimentally observed.

C. Breakup

Since some quantitative differences in deformation are
seen at near-critical capillary numbers, also a comparison
between the experimentally obtained critical capillary num-
ber and the numerically calculated one is made as a function
of degree of confinement �Fig. 13�. All computations started
with initially spherical drops and the simulations were run
until a stationary state was reached, or until the drop broke
up. The critical capillary number was determined within
0.01. It is seen in Fig. 13 that the critical capillary number
decreases slightly with increasing confinement ratio until a
minimum is reached around a degree of confinement of 0.5.
A further increase in confinement ratio causes Cacrit to in-
crease again to a value slightly higher than the unconfined
result. Good agreement is seen between the experimental and
the numerical results. However, the numerical results are
systematically lower than the experimental ones. The nu-
merical value, however, is determined at the capillary num-
ber in between the last steady-state value and the first
breakup value at an accuracy of 0.01. On the other hand, the
experimental results, which indicate the capillary number at
which breakup is first seen, are less precisely determined,
and hence a small overestimation of the real critical capillary
number is made. Unlike confined breakup results at viscosity
ratios �1, at a viscosity ratio of 1, little effect of confinement
on the critical value is seen, both numerically and experi-
mentally.

V. CONCLUSIONS

The dynamics of single droplets confined between two
parallel plates is investigated both numerically and experi-
mentally. A boundary integral method, in which the Green’s
functions were modified to include wall effects, is used here.
The numerical results are validated with experimental data
obtained in a counter-rotating parallel plate device. The drop-
let shape, deformation, and orientation in shear flow are stud-
ied as a function of capillary number and confinement ratio
for a viscosity ratio of unity. It was first shown that the
results of the modified BIM model match the experimental
results of unconfined droplets during startup and steady-state

FIG. 11. Startup data at Ca=0.35 for 2R /d=0.88. �a� Comparison between
experimental and numerical droplet dimensions as a function of dimension-
less time. �b� Experimental droplet shape and �c� numerical droplet shape at
t*= �1� 18.2, �2� 60.6, and �3� 135.5.

FIG. 12. Startup data at Ca=0.4 for 2R /d=0.88: Comparison between ex-
perimental and numerical droplet dimensions as a function of dimensionless
time.

FIG. 13. Experimental and numerical critical capillary number as a function
of confinement ratio for �=1.
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shear flow. Therefore, it can be concluded that the model is
capable of predicting the dynamics of droplets in the limiting
case of an unbounded flow field. However, droplets that are
confined between two parallel plates show clearly a different
behavior compared to bulk droplets. It was seen that confine-
ment induces a sigmoidal droplet shape during shear flow.
Contrary to other models, the modified BIM model is ca-
pable of predicting the right droplet shape at any point in
time. The model also predicts an increase in deformation and
more orientation toward the flow direction as a function of
confinement ratio, which could all be experimentally con-
firmed. Velocity and pressure profiles have been calculated.
Whereas the velocity profiles both inside and outside the
droplet are not affected significantly by the degree of con-
finement, the pressure profile outside a confined droplet is
observed to be drastically different. Upon startup of flow,
both the experimental data and the numerical results show
oscillatory behavior for highly confined droplets. This behav-
ior is characterized by one or more overshoots in droplet
length followed by droplet retraction toward a sigmoidal,
largely deformed steady-state shape. Again, good agreement
was seen between the experimental and the numerical data,
when comparing the shape and magnitude of deformation.
However, the numerical model systematically predicted a
larger deformation with respect to the experimental results
for highly confined and highly deformed droplets, especially
at near-critical conditions. However, despite these differ-
ences in deformation, it has been shown that the numerical
model and the experimental results display the same behav-
ior with respect to the critical capillary number.
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