

Nonconflict check by using sequential automaton abstractions

Citation for published version (APA):
Su, R., Schuppen, van, J. H., Rooda, J. E., & Hofkamp, A. T. (2008). Nonconflict check by using sequential
automaton abstractions. (SE report; Vol. 2008-10). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/f53b66cb-6bb8-4eeb-8feb-10844821ca1a

Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven
The Netherlands
http://se.wtb.tue.nl/

SE Report: Nr. 2008-10

Nonconflict Check by Using

Sequential Automaton

Abstractions

Rong Su, Jan H. van Schuppen, Jacobus E. Rooda

Albert T. Hofkamp

ISSN: 1872-1567

SE Report: Nr. 2008-10
Eindhoven, October 2008

SE Reports are available via http://se.wtb.tue.nl/sereports

Abstract

In Ramadge-Wonham supervisory control theory we often need to check nonconflict of
plants and corresponding synthesized supervisors. For a large system such a check im-
poses a great computational challenge because of the complexity incurred by composition
of plants and supervisors. In this paper we present a novel procedure based on automaton
abstractions, which removes internal transitions of relevant automata at each step, allow-
ing the nonconflict check to be performed over relatively small automata, even though
the original system can be fairly large.

1 Introduction

Since Ramadge-Wonham supervisory control theory was proposed [1, 2] in 80’s, significant
improvement and extensions have been made. The Ramadge-Wonham paradigm relies
on synchronous product to compose local components and specifications together, upon
which a standard supervisor synthesis procedure (i.e. achieving controllability, observ-
ability and nonblockingness) is performed. Unfortunately, the computational complexity
of synchronous product is exponentially high with respect to the number of components
and their individual sizes in terms of numbers of their states. To overcome this complex-
ity issue, many new synthesis approaches have been developed. For example, in [3] the
authors propose the concept of modularity, which is then extended to the concept of local
modularity in [4]. When local supervisors are (locally) modular, a globally nonblock-
ing supervisor becomes a product of local supervisors achievable through local synthesis.
In [6] [20] [9] new modular synthesis approaches are proposed, which perform model ab-
stractions first, upon which the standard synthesis approach is applied. In [5] the authors
present a hierarchical interface-based approach, which, by imposing a specific interface
invariance, decouples a large system into several independent local modules, and super-
visor synthesis can be performed on each local module whose size is usually much smaller
than the overall system.

When applying those new techniques, particularly modular approaches, we often need to
check whether a collection of finite-state automata are nonconflicting with each other.
Such a check is necessary for at least three reasons. First, a synthesis approach may
require it, e.g. in [3] [4] (local) modularity needs to be tested. Second, during synthesis
if we can locate conflicting modules directly, then it is much more efficient to compute
appropriate coordinators, as typically seen in, e.g. [6] [20] [9]. Finally, even though theo-
retically a synthesis approach can guarantee a supervisor which is nonconflicting with a
plant, practically we still need to test it because a synthesis program may contain coding
errors causing incorrect results. There has been some work on nonconflict test, e.g. in [7]
[8] [17] the authors propose to utilize model abstractions to avoid high complexity caused
by synchronous product. To compute model abstraction [7] [8] use natural projections,
which are required to be observers [10]. The main disadvantage of using observers is that,
the alphabet of the codomain of a projection may need to be fairly large for the sake of
achieving the observer property, potentially causing the size of the projected image too
large for effective nonconflict test. To overcome this difficulty, we propose to use an au-
tomaton abstraction procedure, which appeared in [12] [13] for the purpose of supervisor
synthesis. Our first contribution is to extend the concept of standardized automata in
[13] by selflooping a special event called marking event at each marker state so that ab-
straction preserves blocking behavior, which is crucial for the success of nonconflict check.
Although [17] and several other abstraction techniques are based on nondeterministic au-
tomata, e.g. in [11] [18] [19] [20], they are different from our approach. More explicitly,
[11] aims to achieve weak bisimilarity between an automaton and its abstraction, and
[17] [18] [19] [20] first use silence events to replace internal events, then apply rewriting
rules to ensure that appropriate equivalence relations hold between automata before and
after rewriting, e.g. conflict equivalence in [17] [20], supervision equivalence in [18] and
synthesis equivalence in [19]. The primary goal of our abstraction technique is to create
an abstraction for an automaton G, which is not necessarily weak bisimilar to G, such
that any automaton S, whose alphabet is the same as that of the abstraction, is noncon-
flicting with the abstraction if and only if it is nonconflicting with G. The primary goal
is close to achieving conflict equivalence, but with a procedure much simpler than those
rewriting rules and no silence events are needed. Based on the automaton abstraction
technique, our second contribution is to present an efficient sequential abstraction proce-
dure (SAP), which bears similarity to an algorithm called Computational Procedure for

2

Global Consistency (CPGC) provided in [22], except that CPGC is based on natural pro-
jections, which, as we have pointed out before, is not suitable for nonconflict check unless
all relevant projections are observers. The aggregative nature of SAP and CPGC is also
reflected in [17]. But as mentioned above, the abstraction technique of [17] is different
from ours. Our third contribution is to present a procedure for nonconflict check (PNC)
using SAP, which can check nonconflict of a large number of automata. The efficiency of
PNC has been illustrated by numerical experiments.

This paper is organized as follows. In Section II we introduce abstraction over nonde-
terministic automata and provide relevant properties. Then a procedure called PNC for
nonconflict check based on sequential abstractions is presented in Section III. Conclusions
are stated in Section IV. Long proofs are presented in the Appendix.

2 Automaton Abstraction and Relevant Properties

2.1 Concepts of Languages, Automaton Product and Abstraction

In the following sections we follow the notations used in [14]. Let Σ be a finite alphabet,
and Σ∗ the Kleene closure of Σ, i.e. the collection of all finite sequences of events taken
from Σ. Given two strings s, t ∈ Σ∗, s is called a prefix substring of t, written as s ≤ t,
if there exists s′ ∈ Σ∗ such that ss′ = t, where ss′ denotes the concatenation of s and s′.
We use ǫ to denote the empty string of Σ∗ such that for any string s ∈ Σ∗, ǫs = sǫ = s.
For σ ∈ Σ and s ∈ Σ∗, we use σ ∈ s to denote that s contains σ. A subset L ⊆ Σ∗ is
called a language. L = {s ∈ Σ∗|(∃t ∈ L) s ≤ t} ⊆ Σ∗ is called the prefix closure of L.
Given two languages L, L′ ⊆ Σ∗, LL′ := {ss′ ∈ Σ∗|s ∈ L ∧ s′ ∈ L′}.

Let Σ′ ⊆ Σ. A map P : Σ∗ → Σ′∗ is called the natural projection with respect to (Σ, Σ′),
if

1. P (ǫ) = ǫ

2. (∀σ ∈ Σ)P (σ) :=

{

σ if σ ∈ Σ′

ǫ otherwise

3. (∀sσ ∈ Σ∗)P (sσ) = P (s)P (σ)

Given a language L ⊆ Σ∗, P (L) := {P (s) ⊆ Σ′∗|s ∈ L}. For any two languages L, L′ ⊆
Σ∗, we can show that P (LL′) = P (L)P (L′). The inverse image mapping of P is

P−1 : 2Σ′∗

→ 2Σ∗

: L 7→ P−1(L) := {s ∈ Σ∗|P (s) ∈ L}

Given L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2, the synchronous product of L1 and L2 is defined as:

L1||L2 := P−1
1 (L1) ∩ P−1

2 (L2) = {s ∈ (Σ1 ∪ Σ2)
∗|P1(s) ∈ L1 ∧ P2(s) ∈ L2}

where P1 : (Σ1 ∪Σ2)
∗ → Σ∗

1 and P2 : (Σ1 ∪Σ2)
∗ → Σ∗

2 are natural projections. It is clear
that || is commutative and associative.

Suppose Σ contains two special events: the marking event µ, and the initial event τ .
Given an automaton G = (X, Σ, ξ, x0, Xm), where X stands for the state set, Σ for the

3 Automaton Abstraction and Relevant Properties

alphabet, ξ : X × Σ → 2X for the nondeterministic transition function, x0 for the initial
state, and Xm for the marker state set. As usual, ξ is extended to X × Σ∗.

Definition 2.1. We say G is standardized if the following conditions hold,

1. (∀x ∈ X) [ξ(x, τ) 6= ∅ ⇐⇒ x = x0] ∧ (∀σ ∈ Σ − {τ}) ξ(x0, σ) = ∅

2. (∀x ∈ X − {x0})(∀σ ∈ Σ)x0 /∈ ξ(x, σ)

3. (∀x ∈ X)x ∈ Xm ⇒ x ∈ ξ(x, µ) �

A standardized automaton is an automaton, in which x0 is not marked (by conditions
1,3), τ is only defined at x0, which only has τ outgoing transitions (by condition 1) with-
out any incoming transition (by condition 2); and each marker state has a selflooping
transition µ (by condition 3). Let φ(Σ) be the collection of all standardized finite-state
automata over Σ.

We now introduce product and abstraction on finite-state automata that will be exten-
sively used later. Given Gi = (Xi, Σi, ξi, x0,i, Xm,i) ∈ φ(Σi) (i = 1, 2), the product of G1

and G2, written as G1 × G2, is an automaton in φ(Σ1 ∪ Σ2) such that

G1 × G2 = (X1 × X2, Σ1 ∪ Σ2, ξ1 × ξ2, (x0,1, x0,2), Xm,1 × Xm,2)

where ξ1 × ξ2 : X1 × X2 × (Σ1 ∪ Σ2) → 2X1×X2 is defined as follows,

(ξ1 × ξ2)((x1, x2), σ) :=

ξ1(x1, σ) × {x2} if σ ∈ Σ1 − Σ2

{x1} × ξ2(x2, σ) if σ ∈ Σ2 − Σ1

ξ1(x1, σ) × ξ2(x2, σ) if σ ∈ Σ1 ∩ Σ2

Clearly, × is commutative and associative. By a slight abuse of notations, from now on we
use G1×G2 to denote its reachability part. ξ1×ξ2 is extended to X1×X2×(Σ1∪Σ2)

∗ →
2X1×X2 .

Lemma 2.2. Let Gi ∈ φ(Σi) (i = 1, 2) be standardized. Then G1 ×G2 is also standard-
ized. �

By Lemma 2.2 we get that standardization is preserved under automaton product. Next,
we discuss how to create an abstraction of an automaton.

Definition 2.3. Given G = (X, Σ, ξ, x0, Xm), let Σ′ ⊆ Σ and P : Σ∗ → Σ′∗ be the
natural projection. A marking weak bisimulation relation on X with respect to Σ′ is an
equivalence relation R ⊆ {(x, x′) ∈ X × X |x ∈ Xm ⇐⇒ x′ ∈ Xm} such that,

(∀(x, x′) ∈ R)(∀s ∈ Σ∗)(∀y ∈ ξ(x, s))(∃s′ ∈ Σ∗)P (s) = P (s′)∧ (∃y′ ∈ ξ(x′, s′)) (y, y′) ∈ R

The largest marking weak bisimulation relation on X with respect to Σ′ is called marking
weak bisimilarity on X with respect to Σ′, written as ≈Σ′,G. �

4

Marking weak bisimulation relation is the same as weak bisimulation relation described
in [21], except for the special treatment on marker states. We now introduce abstraction.

Definition 2.4. Given G = (X, Σ, ξ, x0, Xm), let Σ′ ⊆ Σ with τ, µ ∈ Σ′. The automaton
abstraction of G with respect to ≈Σ′,G is an automaton G/ ≈Σ′,G:= (Y, Σ′, η, y0, Ym)
where

1. Y := X/ ≈Σ′,G:= {< x >:= {x′ ∈ X |(x, x′) ∈≈Σ′,G}|x ∈ X}

2. y0 :=< x0 >∈ Y

3. Ym := {y ∈ Y |y ∩ Xm 6= ∅}

4. η : Y × Σ′ → 2Y , where for any (y, σ) ∈ Y × Σ′,

η(y, σ) := {y′ ∈ Y |(∃x ∈ y)(∃u, u′ ∈ (Σ − Σ′)∗) ξ(x, uσu′) ∩ y′ 6= ∅}

�

An automaton abstraction always contains events τ and µ. In the rest of this paper we
will discuss properties of automaton abstraction and its application in nonconflict check.

The time complexity of computing G/ ≈Σ′,G is mainly resulted from computing X/ ≈Σ′,G,
which can be estimated as follows. We first define a new automaton G′′ = (X, Σ′, ξ′′, x0, Xm),
where for any x, x′ ∈ X and σ ∈ Σ, x′ ∈ ξ′′(x, σ) if there exist u, u′ ∈ (Σ − Σ′)∗ such
that x′ ∈ ξ(x, uσu′). Then we compute X/ ≈Σ′,G′′ , and we can show that the result is
equal to X/ ≈Σ′,G. The total number of transitions in G′′ is no more than mn2, where
n = |X | and m is the number of transitions in G. Based on a result shown in [16], the
time complexity of computing X/ ≈Σ′,G′′ is O(mn2 log n) if we ignore the complexity
caused by checking the condition “x ∈ Xm ⇐⇒ x′ ∈ Xm” in Def. 2.3. If we consider
this extra condition, then the overall complexity is O(n(n − 1) + mn2 log n), because we
need to check at most n(n − 1) pairs of states.

From now on, when G is clear from the context, we simply use ≈Σ′ to denote ≈Σ′,G, and
use < x >Σ′ for an element of X/ ≈Σ′,G. If Σ′ is also clear from the context, then we
simply use < x > for < x >Σ′ . We have the following result, indicating that standard-
ization is preserved under automaton abstraction.

Lemma 2.5. Let G ∈ φ(Σ) be a standardized automaton and Σ′ ⊆ Σ with τ, µ ∈ Σ′.
Then G/ ≈Σ′ is also a standardized automaton. �

To illustrate automaton abstraction, suppose a standardized automaton G ∈ φ(Σ) is
depicted in Figure 1, where Σ = {τ, a, b, µ}. We take Σ′ = {τ, b, µ}. Then we have

X/ ≈Σ′= {< 0 >= {0}, < 1 >= {1, 2}, < 3 >= {3}, < 4 >= {4}}

By Def. 2.4, the abstraction G/ ≈Σ′ is depicted in Figure 1. We now present some
properties of automaton product and automaton abstraction.

5 Automaton Abstraction and Relevant Properties

Figure 1: Example 1: A Standardized Automaton G and its Abstraction G/ ≈Σ′

2.2 Properties of Abstraction

We define a map B : φ(Σ) → 2Σ∗

, where for each G ∈ φ(Σ),

B(G) := {s ∈ Σ∗|(∃x ∈ ξ(x0, s))(∀s′ ∈ Σ∗) ξ(x′, s′) ∩ Xm = ∅}

Any string s ∈ B(G) can lead to a state x, from which no marker state is reachable,
i.e. for any s ∈ Σ∗, ξ(x, s) ∩ Xm = ∅. Such a state x is called a blocking state of G,
and we call B(G) the blocking set of G. A state that is not a blocking state is called a
nonblocking state. We say G is nonblocking if B(G) = ∅. Similarly, we define another

map N : φ(Σ) → 2Σ∗

with

(∀G ∈ φ(Σ))N(G) := {s ∈ Σ∗|ξ(x0, s) ∩ Xm 6= ∅}

We call N(G) the nonblocking set of G, which is simply the set of all strings recognized by

G. It is possible that B(G) ∩ N(G) 6= ∅, due to nondeterminism. We have the following
result.

Proposition 2.6. Given G = (X, Σ, ξ, x0) ∈ φ(Σ), let Σ′ ⊆ Σ, and P : Σ∗ → Σ′∗ be the
natural projection. Then P (B(G)) = B(G/ ≈Σ′) and P (N(G)) = N(G/ ≈Σ′). �

The content of Prop. 2.6 is illustrated by the commutative diagram in Figure 2, from

Figure 2: The Commutative Diagram for Proposition 2.6

which we can derive that, an automaton G is nonblocking if and only if G/ ≈Σ′ is non-
blocking.

6

Given an automaton G = (X, Σ, ξ, x0, Xm), for each x ∈ X , let

NG(x) := {s ∈ Σ∗|ξ(x′, s) ∩ Xm 6= ∅ ∧ µ ∈ s}

We can easily show that, if G is standardized, then x ∈ X is a blocking state if and only
if NG(x) = ∅. We now introduce the following concept, which is extensively used in this
paper.

Definition 2.7. Given automata Gi = (Xi, Σi, ξi, xi,0, Xi.m) (i = 1, 2), we say G1 is
nonblocking preserving with respect to G2, denoted as G1 ⊑ G2, if B(G1) ⊆ B(G2),
N(G1) = N(G2) and

(∀s ∈ N(G1))(∀x1 ∈ ξ1(x1,0, s))(∃x2 ∈ ξ2(x2,0, s))NG2
(x2) ⊆ NG1

(x1)∧ [x1 ∈ X1,m ⇐⇒ x2 ∈ X2,m]

G1 is nonblocking equivalent to G2, denoted as G1
∼= G2, if G1 ⊑ G2 and G2 ⊑ G1. �

Def. 2.7 says that, if G1 is nonblocking preserving with respect to G2 then their individ-
ual nonblocking parts are equal, but G2’s blocking behavior may be larger. If blocking
behaviors are also equal, then G1 and G2 are nonblocking equivalent. We now present a
few results.

Proposition 2.8. (∀G1, G2 ∈ φ(Σ))(∀G3 ∈ φ(Σ′))G1 ⊑ G2 ⇒ G1 × G3 ⊑ G2 × G3. �

Corollary 2.9. (∀G1, G2 ∈ φ(Σ))(∀G3 ∈ φ(Σ′))G1
∼= G2 ⇒ G1 × G3

∼= G2 × G3. �

Proof: Since G1
∼= G2, by Def. 2.7 we have G1 ⊑ G2 and G2 ⊑ G1. Then by Prop. 2.8

we get G1 × G3 ⊑ G2 × G3 and G2 × G3 ⊑ G1 × G3, namely G1 × G3
∼= G2 × G3. �

Prop. 2.8 and Cor. 2.9 say nonblocking preserving and equivalence are invariant under
product.

Proposition 2.10. (∀Σ′ ⊆ Σ)(∀G1, G2 ∈ φ(Σ))G1 ⊑ G2 ⇒ G1/ ≈Σ′⊑ G2/ ≈Σ′ . �

Corollary 2.11. (∀Σ′ ⊆ Σ)(∀G1, G2 ∈ φ(Σ))G1
∼= G2 ⇒ G1/ ≈Σ′

∼= G2/ ≈Σ′ . �

Proof: Use Prop. 2.10 and Def. 2.7, the corollary follows. �

Prop. 2.10 and Cor. 2.11 say nonblocking preserving and equivalence is invariant under
abstraction.

Proposition 2.12. (∀Σ′′ ⊆ Σ′ ⊆ Σ)(∀G ∈ φ(Σ))G/ ≈Σ′′
∼= (G/ ≈Σ′)/ ≈Σ′′ . �

Prop. 2.12 is about the chain rule of automaton abstraction, which says an automaton
abstraction can be replaced by a sequence of automaton abstractions, and the results are
nonblocking equivalent to each other.

7 Automaton Abstraction and Relevant Properties

Proposition 2.13. Given Gi ∈ φ(Σi) with i = 1, 2, let Σ′ ⊆ Σ1 ∪ Σ2. If Σ1 ∩ Σ2 ⊆ Σ′,
then we have that (G1 × G2)/ ≈Σ′

∼= (G1/ ≈Σ1∩Σ′) × (G2/ ≈Σ2∩Σ′). �

Proposition 2.13 is about the distribution of automaton abstraction over automaton prod-
uct. As an illustration we present a simple example. Suppose we have Σ1 = {τ, a, µ} and
Σ2 = {τ, b, c, µ}. Let G1 ∈ φ(Σ1) and G2 ∈ φ(Σ2) be shown in Figure 3. Suppose we pick

Figure 3: Example 2: G1 and G2

Σ′ = {τ , a, b, µ} ⊇ Σ1 ∩Σ2. The results of G1 ×G2 and (G1 ×G2)/ ≈Σ′ are depicted in
Figure 4. The results of G1/ ≈Σ1∩Σ′ , G2/ ≈Σ2∩Σ′ and (G1/ ≈Σ1∩Σ′)× (G2/ ≈Σ2∩Σ′) are

Figure 4: Example 2: G1 × G2 and (G1 × G2)/ ≈Σ′

depicted in Figure 5. We can check that (G1×G2)/ ≈Σ′
∼= (G1/ ≈Σ1∩Σ′)× (G2/ ≈Σ2∩Σ′).

If G is very large, e.g. G = G1 × · · · × Gn for some very large number n ∈ N, where
Gi ∈ φ(Σi) for i = 1, 2, · · · , n, how to compute G/ ≈Σ′? To overcome this difficulty, we
propose the following algorithm.

Suppose I = {1, · · · , n} for some n ∈ N. For J ⊆ I, let ΣJ := ∪j∈JΣj . Let Σ′ ⊆ ∪i∈IΣi.

8

Figure 5: Example 2: G1/ ≈Σ1∩Σ′ , G2/ ≈Σ2∩Σ′ and (G1/ ≈Σ1∩Σ′) × (G2/ ≈Σ2∩Σ′)

Sequential Abstraction over Product: (SAP)
(1) Input of SAP: a collection of automata {Gi|i ∈ I}.
(2) For k = 1, 2, · · · , n, we perform the following computation.

• Set Jk := {1, 2, · · · , k}, Tk := ΣJk
∩ (ΣI−Jk

∪ Σ′).

• If k = 1 then W1 := G1/ ≈T1

• If k > 1 then Wk := (Wk−1 × Gk)/ ≈Tk

(3) Output of SAP: Wn. �

Theorem 2.14. Suppose Wn is computed by SAP. Then (×i∈IGi)/ ≈Σ′
∼= Wn. �

Proof: We use induction to show that

(∀k : 1 ≤ k ≤ n) (×j∈Jk
Gj)/ ≈Tk

∼= Wk (1)

It is clear that G1/ ≈T1
∼= W1. Suppose Equation (1) is true for k ≤ l ∈ N. Then we need

to show that it also holds for k = l + 1. By the procedure,

(×j∈Jl+1
Gj)/ ≈Tl+1

∼= ((×j∈Jl+1
Gj)/ ≈Tl∪Σl+1

)/ ≈Tl+1
by Prop. 2.12

∼= (((×j∈Jl
Gj)/ ≈Tl

) × Gl+1)/ ≈Tl+1

because Σl+1 ∩ ΣJl
⊆ Tl ∪ Σl+1 and Prop. 2.13 and Prop. 2.10

∼= (Wl × Gl+1)/ ≈Tl+1

by the induction hypothesis and Prop. 2.8 and Prop. 2.10

= Wl+1

Therefore Equation (1) holds for all k, particularly k = n. The proposition follows. �

Theorem 2.14 confirms that SAP allows us to obtain an abstraction of the entire system
G = ×i∈IGi in a sequential way. Thus, we can avoid computing G explicitly, which
may be prohibitively large for many industrial systems. The results of our numerical
experiments indicate that the ordering of those automata affects the computational com-
plexity, which is defined as the corresponding maximum number of states and transitions
appearing in SAP at each step, i.e. maxk ||Wk−1 ×Gk||, where ||Wk−1 ×Gk|| denotes the

9 Automaton Abstraction and Relevant Properties

number of states and transitions of Wk−1 × Gk. Unfortunately, finding an ordering that
results in the minimum complexity requires enumeration of all possible orderings. So we
come up with a heuristic rule: given Jk−1 = {r1, r2, · · · , rk−1}, the choice of Σrk

at the
step k in SAP maximize the ratio of the size of ΣJk

= ΣJk−1
∪Σrk

, denoted as |ΣJk
|, over

the size of Tk, namely

rk := arg max
i∈I−Jk−1

|ΣJk−1
∪ Σi|

|(ΣJk−1
∪ Σi) ∩ (ΣI−(Jk−1∪{i}) ∪ Σ′)|

The rationality of this rule is that a large ratio of alphabets implies a large ratio of au-
tomaton sizes ||×j∈Jk

Gj ||/||(×j∈Jk
Gj)/ ≈Tk

||, which may indirectly put ||Wk−1 ×Grk
||

under control. Although the rationality can not be formally proved, it does provide a
good heuristics that usually results in small complexity in SAP, as illustrated in our nu-
merical experiments listed in Table 1 of the next section.

Next, we discuss how to use SAP to check nonconflict of a large number of ordinary
finite-state automata and provide experiment results.

3 Check Nonconflict of Finite-State Automata

Given a deterministic finite state automaton A = (Y, ∆, η, y0, Ym), we define the closed
behavior of A as L(A) := {s ∈ Σ∗|η(y0, s) is defined}, and the marked behavior of A as
Lm(A) := {s ∈ L(A)|η(y0, s) ∩ Ym 6= ∅}. Let I be a finite index set. Given a collection
of deterministic finite-state automata

A := {Ai = (Yi, ∆i, ηi, yi,0, Yi,m)|i ∈ I}

we say A is nonconflicting if ||i∈ILm(Ai) = ||i∈IL(Ai).

To check whether A is nonconflicting, we propose the procedure of nonconflict check
(PNC):

1. Input: A = {Ai|i ∈ I}.

2. For each i ∈ I, we create a standardized automaton Gi = (Xi, Σi, ξi, xi,0, Xi,m) as
follows:

(a) Xi := Yi ∪ {x̂0}

(b) Xi,m := Yi,m

(c) xi,o := x̂0

(d) Σi := ∆i ∪ {τ, µ}

(e) ξi : Xi × Σi → 2Xi is defined as follows:

• For any x ∈ Yi and σ ∈ ∆, ξ(x, σ) := {η(x, σ)}

• ξ(xi,0, τ) := {y0}

• For any x ∈ Yi,m, ξ(x, µ) := {x}

3. Let Σ′ := {τ, µ} and Σ = ∪i∈IΣi. Use SAP to compute Wn, where n = |I|.

4. Output: if B(Wn) = ∅ then claim that A is nonconflicting. Otherwise, claim that
A is conflicting. �

10

What PNC does is simply to first convert each Ai into a standardize automaton Gi by
adding an extra state xi,0, which is connected with the initial state yi,0 of Ai by τ , and
treated as the initial state of Gi; then selflooping µ at each marker state of Ai. After
that, we run SAP on those standardized automata {Gi|i ∈ I}, and make a conclusion on
whether A is nonconflicting by checking the emptiness of B(Wn). We will show that the
claim made by PNC is correct.

Lemma 3.1. A is nonconflicting if and only if B(×i∈IGi) = ∅. �

Proof: By the properties of automaton product and synchronous product, we have that

A is nonconflicting if and only if Lm(×i∈IAi) = L(×i∈IAi). Since each Ai is deter-

ministic, we have that Lm(×i∈IAi) = L(×i∈IAi) if and only if B(×i∈IAi) = ∅. By the
construction of {Gi|i ∈ I}, we have that B(×i∈IAi) = ∅ if and only if B(×i∈IGi) = ∅. �

The correctness of PNC is shown in the following main result.

Theorem 3.2. A is nonconflicting if and only if in PNC we have B(Wn) = ∅. �

Proof: By Lemma 3.1 we get that A is nonconflicting if and only if B(×i∈IGi) = ∅. Let
P : Σ∗ → Σ′∗ be the natural projection. We have

B(×i∈IGi) = ∅ ⇐⇒ P (B(×i∈IGi)) = ∅

By Prop. 2.6 we get that

P (B(×i∈IGi)) = ∅ ⇐⇒ B((×i∈IGi)/ ≈Σ′) = ∅

By Theorem. 2.14 we have (×i∈IGi)/ ≈Σ′
∼= Wn. Thus, we have

B((×i∈IGi)/ ≈Σ′) = ∅ ⇐⇒ B(Wn) = ∅

which means B(×i∈IGi) = ∅ if and only if B(Wn) = ∅, and the theorem follows. �

Theorem 3.2 confirms that we can use PNC to determine whether A is nonconflicting.
As an illustration we apply the proposed nonconflict check approach to the following
simple transfer line (STL) example, which is depicted in Figure 6. In this example we

Figure 6: Example 3: A Simple Transfer Line (STL)

have 4 buffers B1, B2, B3 and B4; 4 machines M1, M2, M3 and M4, whose function is
to put work pieces to a buffer or remove work pieces from a buffer; and 1 transfer unit
(TU), whose function is to remove work pieces from B4 or return (imperfect) work pieces
back to B1. The models for machines and TU are depicted in Figure 7, and models of
buffers are depicted in Figure 8. We require that no buffer will be overflow or underflow.
After using the modular design approach introduced in [6], we obtain 4 local supervisors

11 Check Nonconflict of Finite-State Automata

Figure 7: Example 3: Models for Machines and TU

Figure 8: Example 3: Buffer Models

SUPERi (i = 1, 2, 3, 4), where each SUPERi is associated with Bi; and one coordinator
C, whose function is to prevent conflict among local supervisors. Their sizes are listed as
follows:

SUPER1 (16, 42); SUPER2 (6, 8); SUPER3 (10, 16); SUPER4 (10, 21); C (59, 158)

where in each tuple (x, y), x denotes the number of states and y for the number of tran-
sitions.

Suppose we want to check whether local supervisors and the coordinator are noncon-
flicting. We apply our proposed approach. First, we convert every ordinary finite-state
automaton into a standard automaton, then apply PNC on them. To show that order-
ing may have impact on the computational complexity of PNC, we choose two different
orders and list results below.
(1) The ordering is SUPER1, SUPER2, SUPER3, SUPER4, C. The results of SAP are:

W1 (7, 10) ; W1 × SUPER2 (31, 92) ; W2 (15, 42) ; W2 × SUPER3 (71, 246)

W3 (71, 246) ; W3 × SUPER4 (176, 554) ; W4 (64, 170) ; W4 × SUPER5 (60, 160) ; W5 (3, 6)

In W5 we have B(W5) = ∅. Thus, we conclude that they are nonconflicting.

12

(2) The ordering is SUPER1, SUPER3, SUPER2, SUPER4, C. The results of SAP are:

W1 (11, 18) ; W1 × SUPER3 (101, 422) ; W2 (101, 422) ; W2 × SUPER2 (251, 912)

W3 (91, 308) ; W3 × SUPER4 (136, 385) ; W4 (64, 170) ; W4 × SUPER5 (60, 160) ; W5 (3, 6)

In W5 we have B(W5) = ∅. Thus, we conclude that they are nonconflicting.
By using the monolithic approach, whose maximum size is (568, 1927) after synchroniz-
ing all local supervisors and the coordinator together, we confirm that, indeed they are
nonconflicting. We can see that the first ordering is better than the second one. After
we take out the coordinator C and redo the same check with the ordering of SUPER1,
SUPER2, SUPER3 and SUPER4, we have the following results:

W1 (7, 10); W2 (19, 128); W3 (29, 282); W4 (4, 9)

where B(W4) 6= ∅. Thus, we conclude that those local supervisors without the coordi-
nator are conflicting with each other. The conclusion is consistent with the result from
using the monolithic approach, whose maximum size of intermediate results is (600, 2039).
Next, we apply PNC to some relatively large examples to check its efficiency.

Table 1

CN LC SSAC SRPNC MSPNC/CTPNC (s) CMC CPNC

G1 (15, 219); W1 (11, 54);
G2 (408, 3664); W2 (35, 350);

1 G3 (39, 414); (1159920, 23686344) W3 (21, 196); (161, 3295) / 10 NC NC
G4 (43, 571); W4 (31, 420);
G5 (33, 117) W5 (3, 6)

G1 (24, 80); W1 (3, 11);
G2 (162, 1620); W2 (11, 140);

2 G3 (12, 80); (1135296, 25014096) W3 (81, 1312); (177, 2840) / 3 C C
G4 (66, 547); W4 (25, 621);
G5 (9, 78) W5 (4, 9)

G1 (16, 69); W1 (39, 745);
G2 (112, 672); W2 (305, 6396);

3 G3 (108, 1332); (1005120, 19683696) W3 (8, 32); (305, 6296) / 25 NC NC
G4 (39, 414); W4 (37, 899);
G5 (64, 404) W5 (3, 6)

G1 (162, 1620); W1 (9, 39);
4 G2 (112, 672); (5272128, 150273792) W2 (5, 20); (17, 206) / 0.1 NC NC

G3 (108, 1332); W3 (11, 34);
G4 (33, 117); W4 (3, 6)

Table 1 summarizes our test results, where ‘CN’ denotes Case Number, ‘LC’ for Local
Component, ‘SSAC’ for Size of Synchronization of All Components (i.e. the numbers
of states and transitions of ×i∈IGi), ‘SRPNC’ for Sizes of Results of PNC, ‘MSPNC’
for Maximum Size in PNC, ‘CTPNC’ for Computation Time of PNC which is realized
in Python running on Intel(R) Core(TM)2 2.4GHz CPU with 3.5 GB RAM, ‘CMC’ for
Conclusion of Monolithic Check, ‘CPNC’ for Conclusion of PNC, ‘NC’ for nonconflicting
and ‘C’ for conflicting. We do not count the computation time for the monolithic approach
because the check is done manually. But the computation time for synchronization takes
10 s for Case 1, 33s for Case 2, 23s for Case 3 and 381s for Case 4. The ordering of
local components in PNC is determined by the heuristic rule described in Section II.

13 Check Nonconflict of Finite-State Automata

In the monolithic approach, by using the ‘trim’ operation on ×i∈IGi in TCT [15], we
can determine whether ×i∈IGi is reachable and coreachable, i.e. we can decide whether
local components are nonconflicting. Based on this approach we obtain all results in the
column of CMC, which agree with the conclusions made by PNC. Clearly PNC has a
substantial computational advantage over the monolithic approach.

4 Conclusions

In this paper we first introduce an automaton-based abstraction technique and provide
relevant properties. Then we propose a sequential abstraction procedure (SAP), based
on which we propose the procedure PNC to check nonconflict of a large number of de-
terministic finite-state automata, which is commonly encountered in Ramadge-Wonham
supervisory control theory. Numerical experiments have shown that, sequential abstrac-
tion can help us avoid high complexity in checking nonconflict, which is usually resulted
from product of a large number of automata.

Appendix

1. Proof of Lemma 2.2: Suppose Gi = (Xi, Σi, ξi, xi,0, Xi,m) (i = 1, 2). First, for any
(x1, x2) ∈ X1 × X2 we have

ξ1 × ξ2((x1, x2), τ) 6= ∅ ⇐⇒ ξ1(x1, τ) 6= ∅ ∧ ξ2(x2, τ) 6= ∅

⇐⇒ x1 = x1,0 ∧ x2 = x2,0 because G1 and G2 are standardized

⇐⇒ (x1, x2) = (x1,0, x2,0)

For any σ ∈ (Σ1 ∪ Σ2) − {τ}, if σ ∈ Σi for i=1 or 2, we have ξi(xi,0, σ) = ∅. Thus,

ξ1 × ξ2((x1,0, x2,0), σ) = ∅

For any (x1, x2) ∈ X1 × X2 − {(x1,0, x2,0)} and σ ∈ (Σ1 ∪ Σ2), since G1 and G2 are
standardized, we have

ξ1 × ξ2((x1, x2), σ) 6= ∅ ⇒ (x1, x2) 6= (x1,0, x2,0)

Finally, for any (x1, x2) ∈ X1 × X2, we have

(x1, x2) ∈ X1,m × X2,m ⇒ x1 ∈ X1,m ∧ x2 ∈ X2,m

⇒ x1 ∈ ξ1(x1, µ) ∧ x2 ∈ ξ2(x2, µ) because G1 and G2 are standardized

⇒ (x1, x2) ∈ ξ1 × ξ2((x1, x2), µ)

Thus, G1 × G2 is standardized. �

2. Proof of Lemma 2.5: As in Def. 2.4, let G = (X, Σ, ξ, x0, Xm) and G/ ≈Σ′=
(Y, Σ′, η, y0, Ym). Then for any y ∈ Y = X/ ≈Σ′ we have

η(y, τ) 6= ∅ ⇐⇒ (∃x ∈ y)(∃u, u′ ∈ (Σ − Σ′)∗) ξ(x, uτu′) 6= ∅

⇐⇒ (∃x′ ∈ ξ(x, u)) ξ(x′, τ) 6= ∅

⇐⇒ (∃x′ ∈ ξ(x, u))x′ = x0 because G is standardized

⇐⇒ x = x0 because (∀x̂ ∈ X − {x0})(∀σ ∈ Σ)x0 /∈ ξ(x̂, σ)

⇐⇒ y =< x >=< x0 >= y0

Since τ ∈ Σ′, for any σ ∈ Σ′ − {τ} and u ∈ (Σ − Σ′)∗, we have ξ(x0, uσ) = ∅. Thus

η(y0, σ) = {y =< x >∈ Y |(∃u, u′ ∈ (Σ − Σ′)∗)x ∈ ξ(x0, uσu′)} = ∅

14

For any y ∈ Y − {y0} and σ ∈ Σ′, since G, we have

η(y, σ) 6= ∅ ⇒ (∃x ∈ y)(∃u, u′ ∈ (Σ − Σ′)∗) ξ(x, uσu′) 6= ∅

⇒ x0 /∈ ξ(x, uσu′) because (∀x̂ ∈ X − {x0})(∀σ ∈ Σ)x0 /∈ ξ(x̂, σ)

⇒ < x0 >= y0 /∈ η(y, σ)

Finally, for any y ∈ Y , we have

y ∈ Ym ⇒ (∀x ∈ y)x ∈ Xm

⇒ x ∈ ξ(x, µ) because G is standardized

⇒ < x >= y ∈ η(< x >, µ) = η(y, µ) by the definition of automaton abstraction

Thus, G/ ≈Σ′ is standardized. �

3. Proof of Prop. 2.6: Let ξ′ be the transition map of G/ ≈Σ′ . First we show that
P (B(G)) ⊆ B(G/ ≈Σ′). For each string s ∈ P (B(G)), there exists t ∈ B(G) with
P (t) = s such that

(∃x ∈ ξ(x0, t))(∀t′ ∈ Σ∗) ξ(x, t′) ∩ Xm = ∅

Since G is standardized, we get that < x >∈ ξ′(< x0 >, P (t)). Furthermore, from the
condition

(∀t′ ∈ Σ∗) ξ(x, t′) ∩ Xm = ∅

we can derive that

(∀s′ ∈ Σ′∗) ξ′(< x >, s′) ∩ (Xm/ ≈Σ′) = ∅

Thus, s = P (t) ∈ B(G/ ≈Σ′ .
Next we show that B(G/ ≈Σ′) ⊆ P (B(G)). For each string s ∈ B(G/ ≈Σ′), we have

(∃ < x >∈ ξ′(< x0 >, s))(∀s′ ∈ Σ′∗) ξ′(< x′ >, s′) ∩ (Xm/ ≈Σ′) = ∅

Clearly, x /∈ Xm. By the definition of automaton abstraction,

(∃t ∈ Σ∗)P (t) = s ∧ x ∈ ξ(x0, t)) ∧ (∀t′ ∈ Σ∗) ξ(x′, t′) ∩ Xm 6= ∅ ⇒ t′ ∈ (Σ − Σ′)∗

We claim that x is a blocking state of G because, otherwise, there exists t′ ∈ Σ∗ such
that ξ(x, t′) ∩ Xm 6= ∅. Since G is standardized, we get that ξ(x, t′µ) ∩ Xm 6= ∅. But
s′µ /∈ (Σ − Σ′)∗. Since x is a blocking state, we get t ∈ B(G), thus P (t) = s ∈ P (B(G)).
To show that P (N(G)) ⊆ N(G/ ≈Σ′), let s ∈ P (N(G)). Then

(∃t ∈ N(G))P (t) = s ∧ ξ(x0, t) ∩ Xm 6= ∅

Since G is standardized, ξ′(< x0 >, P (t)) ∩ (Xm/ ≈Σ′) 6= ∅. Thus, s ∈ N(G/ ≈Σ′).
Finally we show that N(G/ ≈Σ′) ⊆ P (N(G)). Let s ∈ N(G/ ≈Σ′). Then

ξ′(< x0 >, s) ∩ (Xm/ ≈Σ′) 6= ∅

Thus, there exists t ∈ Σ∗ with P (t) = s such that ξ(x0, t) ∩ Xm 6= ∅, which means
t ∈ N(G). Thus, P (t) = s ∈ P (N(G)). �

4. Proof of Proposition 2.8: Let Gi = (Xi, Σi, ξi, xi,0, Xi,m) with i = 1, 2, 3, where
Σ1 = Σ2 = Σ and Σ3 = Σ′. Let P : (Σ ∪ Σ′)∗ → Σ∗ and P ′ : (Σ ∪ Σ′)∗ → Σ′∗ be
natural projections. We first show that N(G1 × G3) = N(G2 × G3). Clearly, We have
N(G1 ×G3) = N(G1)||N(G3). Since G1 ⊑ G2, we have N(G1) = N(G2). Thus, we have

N(G1 × G3) = N(G1)||N(G3) = N(G2)||N(G3) = N(G2 × G3)

To show that B(G1 × G3) ⊆ B(G2 × G3), let s ∈ B(G1 × G3). By the definition of
automaton product, there exists x1 ∈ X1 such tat x1 ∈ ξ1(x1,0, P (s)). There are two
cases to consider. Case 1: x1 is a blocking state. Then P (s) ∈ B(G1) ⊆ B(G2). Thus,
s ∈ B(G2 × G3). Case 2: x1 is a nonblocking state. Since G1 ⊑ G2, there exists

15 Conclusions

x2 ∈ ξ2(x2,0, P (s)) such that NG1
(x1) ⊇ NG2

(x2). Since s ∈ B(G1 × G3), there exists
x3 ∈ X3 such that (x1, x3) ∈ ξ1 × ξ3((x1,0, x3,0), s) and NG1×G3

(x1, x3) = ∅. We have

NG2×G3
(x2, x3) = NG2

(x2)||NG3
(x3) ⊆ NG1

(x1)||NG3
(x3) = NG1×G3

(x1, x3) = ∅

Thus, (x2, x3) is a blocking state of G2 × G3, which means s ∈ B(G2 × G3). Therefore,
in either case we have B(G1 × G3) ⊆ B(G2 × G3).
Finally, follow the argument in Case 2, for any string s ∈ (Σ ∪ Σ′)∗ and any state
(x1, x3) ∈ ξ1 × ξ3((x1,0, x3,0), s), we have (x2, x3) ∈ ξ2 × ξ3((x2,0, x3,0), s) such that
NG2×G3

(x2, x3) ⊆ NG1×G3
(x1, x3). �

5. Proof of Prop. 2.10: Let Gi = (Xi, Σ, ξi, xi,0, Xi,m), where i = 1, 2, and P : Σ∗ → Σ′∗

be the natural projection. Since G1 ⊑ G2, by Prop. 2.6 we have

N(G1/ ≈Σ′) = P (N(G1)) = P (N(G2)) = N(G2/ ≈Σ′)

To show B(G1/ ≈Σ′) ⊆ B(G2/ ≈Σ′), let ξ′i (i = 1, 2) be the transition map of Gi/ ≈Σ′ .
For any s ∈ B(G1/ ≈Σ′), there exists x1 ∈ X1 such that

< x1 >∈ ξ′1(< x1,0 >, s) ∧ (∀s′ ∈ Σ′∗) ξ′1(< x1 >, s′) ∩ (X1,m/ ≈Σ′) = ∅

which means there exists t ∈ Σ∗ such that

P (t) = s ∧ x1 ∈ ξ1(x1,0, t) ∧ (∀t′ ∈ Σ∗) ξ1(x1, t
′) ∩ X1,m 6= ∅ ⇒ t′ ∈ (Σ − Σ′)∗

Thus, NG1
(x1) ⊆ (Σ − Σ′)∗. There are two cases. Case 1: x1 is a blocking state of

G1. Then t ∈ B(G1), which means s = P (t) ∈ P (B(G1)). Since G1 ⊑ G2, we have
B(G1) ⊆ B(G2). Thus, by Prop. 2.6, we have s ∈ P (B(G2)) ⊆ B(G2/ ≈Σ′). Case 2: x1

is a nonblocking state. Thus t ∈ N(G1). Clearly x1 /∈ X1,m. Since G1 ⊑ G2, there exists
x2 ∈ X2 such that

x2 ∈ ξ2(x2,0, t) ∧ NG1
(x1) = NG2

(x2) ∧ [x1 ∈ X1,m ⇐⇒ x2 ∈ X2,m]

Since NG1
(x1) ⊆ (Σ − Σ′)∗, we have

(∀t′ ∈ Σ∗) ξ2(x2, t
′) ∩ X1,m 6= ∅ ⇒ t′ ∈ (Σ − Σ′)∗

Since x1 /∈ X1,m, we have x2 /∈ X2,m. Thus, by the definition of automaton abstraction,

< x2 >∈ ξ′2(< x2,0 >, P (t)) ∧ (∀s′ ∈ Σ′∗) ξ′2(< x2 >, s′) ∩ (X2,m/ ≈Σ′) = ∅

which means s = P (t) ∈ B(G2/ ≈Σ′). Thus, in either case B(G1/ ≈Σ′) ⊆ B(G2/ ≈Σ′).

Finally, for each s ∈ N(G1/ ≈Σ′), there exists x1 ∈ X1 such that

< x1 >∈ ξ′1(< x1,0 >, s) ∧ (∃s′ ∈ Σ′∗) ξ′1(< x1 >, s′) ∩ (X1,m/ ≈Σ′) 6= ∅

which means there exists t ∈ Σ∗ with P (t) = s such that

x1 ∈ ξ′1(x1,0, t) ∧ (∃t′ ∈ Σ′∗)P (t′) = s′ ∧ ξ1(x1, t
′) ∩ X1,m 6= ∅

Clearly, t ∈ N(G1). Thus, by G1 ⊑ G2, we have

(∃x2 ∈ ξ2(x2,0, t))NG1
(x1) ⊇ NG2

(x2) ∧ [x1 ∈ X1,m ⇐⇒ x2 ∈ X2,m]

Since G2 is standardized, we get < x2 >∈ ξ′2(< x2,0 >, s). For any s′ ∈ NG2/≈Σ′
(< x2 >),

we have ξ′2(< x2 >, s′) ∩ X2,m/ ≈Σ′ 6= ∅. Thus, there exists t′ ∈ Σ∗ with P (t′) = s′ such
that ξ2(x2, t

′) ∩ X2,m 6= ∅. Since µ ∈ s′, we have µ ∈ t′. Thus, t′ ∈ NG2
(x2) ⊆ NG1

(x1).
So

ξ′1(< x1 >, s′) ∩ (X1,m/ ≈Σ′) 6= ∅

namely s′ ∈ NG1/≈Σ′
(< x1 >). Thus, NG2/≈Σ′

(x2) ⊆ NG1/≈Σ′
(x1). �

6. Proof of Prop. 2.12: Let ξ′′ be the transition map of G/ ≈Σ′′ , and ξ′′′ be the transition
map of (G/ ≈Σ′)/ ≈Σ′′ . Let P12 : Σ∗ → Σ′∗, P13 : Σ∗ → Σ′′∗ and P23 : Σ′∗ → Σ′′∗ be

16

natural projections. We first show that G/ ≈Σ′′⊑ (G/ ≈Σ′)/ ≈Σ′′ .
By Prop. 2.6 we have

N(G/ ≈Σ′′) = P13(N(G)) = P23(P12(N(G))) = P23(N(G/ ≈Σ′)) = N((G/ ≈Σ′)/ ≈Σ′′)

We now show B(G/ ≈Σ′′) ⊆ B((G/ ≈Σ′)/ ≈Σ′′). Let s ∈ B(G/ ≈Σ′′). There exists
x ∈ X such that

< x >Σ′′∈ ξ′′(< x0 >Σ′′ , s) ∧ (∀s′ ∈ Σ′′∗) ξ′′(< x >Σ′′ , s′) ∩ Xm/ ≈Σ′′= ∅

Thus, there exists t ∈ Σ∗ with P13(t) = s such that

x ∈ ξ(x0, t) ∧ (∀t′ ∈ Σ∗) ξ(x, t′) ∩ Xm 6= ∅ ⇒ t′ ∈ (Σ − Σ′′)∗ (2)

We have two cases to consider. Case 1: x is a blocking state. Then clearly t ∈ B(G). By
Prop. 2.6, P13(t) = s = P23(P12(t)) ∈ P23(P12(B(G))) ⊆ B((G/ ≈Σ′)/ ≈Σ′′). Case 2: x
is a nonblocking state. Clearly x /∈ Xm, which means << x >Σ′>Σ′′ /∈ (Xm/ ≈Σ′)/ ≈Σ′′ .
Thus, from Expression (2) and the definition of automaton abstraction, we get that

<< x >Σ′>Σ′′∈ ξ′′′(<< x0 >Σ′>Σ′′ , s)∧ (∀s′ ∈ Σ′′∗) ξ′′′(<< x >Σ′>Σ′′ , s′)∩((Xm/ ≈Σ′)/ ≈Σ′′) = ∅

Thus, s ∈ B((G/ ≈Σ′)/ ≈Σ′′). In either case we have B(G/ ≈Σ′′) ⊆ B((G/ ≈Σ′)/ ≈Σ′′).

Let s ∈ N(G/ ≈Σ′′). For any x ∈ X with < x >Σ′′∈ ξ′′(< x0 >Σ′′ , s), we have that

(∃t ∈ Σ∗)P13(t) = s ∧ x ∈ ξ(x0, t)

Since G is standardize, if s = ǫ, then t = ǫ, which means x = x0. Clearly, we have
the following expression: << x0 >Σ′>Σ′′∈ ξ′′′(<< x0 >Σ′>Σ′′ , ǫ). If s 6= ǫ, then by the
definition of automaton abstraction and the assumption that Σ′′ ⊆ Σ′ ⊆ Σ, we get that
<< x >Σ′>Σ′′∈ ξ′′′(<< x0 >Σ′>Σ′′ , s). Thus, in either case we have << x >Σ′>Σ′′∈
ξ′′′(<< x0 >Σ′>Σ′′ , s). We now show that

N(G/≈Σ′)/≈Σ′′
(<< x >Σ′>Σ′′) ⊆ NG/≈Σ′′

(< x >Σ′′)

Let s′ ∈ N(G/≈Σ′)/≈Σ′′
(<< x >Σ′>Σ′′). Then there exists t′ ∈ Σ∗ with P13(t

′) = s′ such
that ξ(x, t′)∩Xm 6= ∅. Since µ ∈ s′, we have µ ∈ t′. Thus, P13(t

′) 6= ǫ. By the definition
of automaton abstraction, we get that ξ′′(< x >Σ′′ , P13(t

′)) ∩ Xm/ ≈Σ′′ 6= ∅. Thus,
s′ ∈ NG/≈Σ′′

(< x >Σ′′), namely N(G/≈Σ′)/≈Σ′′
(<< x >Σ′>Σ′′) ⊆ NG/≈Σ′′

(< x >Σ′′).
Next, to show (G/ ≈Σ′)/ ≈Σ′′⊑ G/ ≈Σ′′ , we first show B((G/ ≈Σ′)/ ≈Σ′′) ⊆ B(G/ ≈Σ′′).
Let s ∈ B((G/ ≈Σ′)/ ≈Σ′′). Then there exists x ∈ X such that

<< x >Σ′>Σ′′∈ ξ′′′(<< x0 >Σ′>Σ′′ , s)∧ (∀s′ ∈ Σ′′∗) ξ′′′(<< x >Σ′>Σ′′ , s′)∩((Xm/ ≈Σ′)/ ≈Σ′′) = ∅

Thus, there exists t ∈ Σ∗ with P13(t) = s such that

x ∈ ξ(x0, t) ∧ (∀t′ ∈ Σ∗) ξ(x, t′) ∩ Xm 6= ∅ ⇒ t′ ∈ (Σ − Σ′′)∗ (3)

We have two cases to consider. Case 1: x is a blocking state. Then clearly t ∈ B(G).
By Prop. 2.6, P13(t) = s ∈ P13(B(G)) ⊆ B(G/ ≈Σ′′). Case 2: x is a nonblocking state.
Clearly x /∈ Xm, which means < x >Σ′′ /∈ Xm/ ≈Σ′′ . Thus, from Expression (3) we get
that

< x >Σ′′∈ ξ′′(< x0 >Σ′′ , s) ∧ (∀s′ ∈ Σ′′∗) ξ′′(< x >Σ′′ , s′) ∩ (Xm/ ≈Σ′′) = ∅

Thus, s ∈ B(G/ ≈Σ′′). In either case we have B((G/ ≈Σ′)/ ≈Σ′′) ⊆ B(G/ ≈Σ′′).

Let s ∈ N((G/ ≈Σ′)/ ≈Σ′′). For any x ∈ X with << x >Σ′>Σ′′∈ ξ′′′(<< x0 >Σ′>Σ′′ , s),
we have

(∃t ∈ Σ∗)P13(t) = s ∧ x ∈ ξ(x0, t)

Since G is standardize, if s = ǫ, then t = ǫ, which means x = x0. Clearly, we have the
following expression: < x0 >Σ′′∈ ξ′′(< x0 >Σ′′ , ǫ). If s 6= ǫ, then by the assumption
that Σ′′ ⊆ Σ′ ⊆ Σ, we get < x >Σ′′∈ ξ′′(< x0 >Σ′′ , s). Thus, in either case we have
< x >Σ′′∈ ξ′′(< x0 >Σ′′ , s). We now show that

NG/≈Σ′′
(< x >Σ′′) ⊆ N(G/≈Σ′)/≈Σ′′

(<< x >Σ′>Σ′′)

Let s′ ∈ NG/≈Σ′′
(< x >Σ′′). Then

(∃t′ ∈ Σ∗)P13(t
′) = s′ ∧ ξ(x, t′) ∩ Xm 6= ∅

17 Conclusions

Since µ ∈ s′, we have µ ∈ t′. Thus, P13(t
′) 6= ǫ. By the definition of abstraction, we have

ξ′′′(<< x >Σ′>Σ′′ , P13(t
′)) ∩ ((Xm/ ≈Σ′)/ ≈Σ′′) 6= ∅

Thus, s′ ∈ N(G/≈Σ′)/≈Σ′′
(<< x >Σ′>Σ′′), namely

NG/≈Σ′′
(< x >Σ′′) ⊆ N(G/≈Σ′)/≈Σ′′

(<< x >Σ′>Σ′′)

The proposition follows. �

7. Proof of Prop. 2.13: Let Gi = (Xi, Σi, ξi, xi,0, Xi,m) ∈ φ(Σi) with i = 1, 2. For

notation simplicity let Σ̂i = Σi ∩ Σ′, and P : (Σ1 ∪ Σ2)
∗ → Σ′∗, Pi : Σ∗

i → Σ̂∗
i , P̂i :

Σ′∗ → Σ̂∗
i and Qi : (Σ1 ∪ Σ2)

∗ → Σ∗
i be natural projections, ξ′ the transition map of

(G1 × G2)/ ≈Σ′ and ξ′i be the transition map of Gi/ ≈Σ̂i
(i = 1, 2).

First, we have the following,

N((G1 × G2)/ ≈Σ′) = P (N(G1 × G2)) by Prop. 2.6

= P (N(G1)||N(G2))

= P1(N(G1))||P2(N(G2)) because Σ1 ∩ Σ2 ⊆ Σ′

= N(G1/ ≈Σ̂1
)||N(G2/ ≈Σ̂2

) by Prop. 2.6

= N((G1/ ≈Σ̂1
) × (G2/ ≈Σ̂2

))

Next, we show
B((G1 × G2)/ ≈Σ′) ⊆ B((G1/ ≈Σ̂1

) × (G2/ ≈Σ̂2
))

Let s ∈ B((G1 × G2)/ ≈Σ′). Then there exists (x1, x2) ∈ X1 × X2 such that

< (x1, x2) >Σ′∈ ξ′(< (x1,0, x2,0) >Σ′ , s)∧ (∀s′ ∈ Σ′∗) ξ′(< (x1, x2) >Σ′ , s′)∩((X1,m×X2,m)/ ≈Σ′) = ∅

which means (x1, x2) /∈ X1,m × X2,m and there exists t ∈ (Σ1 ∪ Σ2)
∗ with P (t) = s such

that

(x1, x2) ∈ ξ1×ξ2((x1,0, x2,0), t)∧ (∀t′ ∈ Σ∗) ξ1×ξ2((x1, x2), t
′)∩(X1,m×X2,m) 6= ∅ ⇒ t′ ∈ ((Σ1∪Σ2)−Σ′)∗

Since G1 and G2 are standardized, from (x1, x2) ∈ ξ1× ξ2((x1,0, x2,0), t) and the fact that
Σ1 ∩ Σ2 ⊆ Σ′ we can derive that

(< x1 >Σ̂1
, < x2 >Σ̂2

) ∈ ξ′1 × ξ′2((< x1,0 >Σ̂1
, < x2,0 >Σ̂1

), s)

We claim that (< x1 >Σ̂1
, < x2 >Σ̂2

) is a blocking state of (G1/ ≈Σ̂1
) × (G2/ ≈Σ̂2

).

Otherwise, there exists s′ ∈ Σ′∗ such that

ξ′1 × ξ′2((< x1 >Σ̂1
, < x2 >Σ̂2

), s′) ∩ ((X1,m/ ≈Σ̂1
) × (X2,m/ ≈Σ̂2

)) 6= ∅

Since (x1, x2) /∈ X1,m×X2,m, we get (< x1 >Σ̂1
, < x2 >Σ̂2

) /∈ (X1,m/ ≈Σ̂1
)×(X2,m/ ≈Σ̂2

).

Thus, s′ 6= ǫ, which means there exists t′ ∈ Σ∗ with P (t′) = s′ /∈ ((Σ1 ∪ Σ2) − Σ′)∗ such
that ξ1 × ξ2((x1, x2), t

′) ∩ (X1,m × X2,m) 6= ∅ - contradict the fact that

(∀t′ ∈ Σ∗) ξ1 × ξ2((x1, x2), t
′) ∩ (X1,m × X2,m) 6= ∅ ⇒ t′ ∈ ((Σ1 ∪ Σ2) − Σ′)∗

From the claim we get that s ∈ B((G1/ ≈Σ̂1
) × (G2/ ≈Σ̂2

)).

Let s ∈ N((G1 × G2)/ ≈Σ′). For any (x1, x2) ∈ X1 × X2 with

< (x1, x2) >Σ′∈ ξ′(< (x1,0, x2,0) >Σ′ , s)

we have
(∃t ∈ Σ∗)P(t) = s ∧ (x1, x2) ∈ ξ((x1,0, x2,0), t)

Since G1 and G2 are standardize, if s = ǫ, then t = ǫ, which means (x1, x2) = (x1,0, x2,0).
Clearly, we have the following expression:

(< x1,0 >Σ̂1
, < x2,0 >Σ̂2

) ∈ ξ′1 × ξ′2((< x1,0 >Σ̂1
, < x2,0 >Σ̂2

), ǫ)

If s 6= ǫ, then by the assumption that Σ1 ∩ Σ2 ⊆ Σ′, we get

(< x1 >Σ̂1
, < x2 >Σ̂2

) ∈ ξ′1 × ξ′2((< x1,0 >Σ̂1
, < x2,0 >Σ̂2

), s)

18

Thus, in either case we have

(< x1 >Σ̂1
, < x2 >Σ̂2

) ∈ ξ′1 × ξ′2((< x1,0 >Σ̂1
, < x2,0 >Σ̂2

), s)

We now show that

N(G1/≈
Σ̂1

)×(G2/≈
Σ̂2

)(< x1 >Σ̂1
, < x2 >Σ̂2

) ⊆ N(G1×G2)/≈Σ′
(< (x1, x2) >Σ′)

Let s′ ∈ N(G1/≈
Σ̂1

)×(G2/≈
Σ̂2

)(< x1 >Σ̂1
, < x2 >Σ̂2

). Then there exists t′ ∈ Σ∗ with

P (t′) = s′ such that ξ1 × ξ2((x1, x2), t
′) ∩ (X1,m × X2,m) 6= ∅. Since µ ∈ s′, we have

µ ∈ t′. Thus, P (t′) 6= ǫ. By the definition of automaton abstraction, we have

ξ′(< (x1, x2) >Σ′ , P (t′)) ∩ (X1,m × X2,m)/ ≈Σ′ 6= ∅

Thus, s′ ∈ N(G1×G2)/≈Σ′
(< (x1, x2) >Σ′), namely

N(G1/≈
Σ̂1

)×(G2/≈
Σ̂2

)(< x1 >Σ̂1
, < x2 >Σ̂2

) ⊆ N(G1×G2)/≈Σ′
(< (x1, x2) >Σ′)

Thus, (G1 × G2)/ ≈Σ′⊑ (G1/ ≈Σ̂1
) × (G2/ ≈Σ̂2

).

To show (G1/ ≈Σ̂1
) × (G2/ ≈Σ̂2

) ⊑ (G1 × G2)/ ≈Σ′ , we first show that

B((G1/ ≈Σ̂1
) × (G2/ ≈Σ̂2

)) ⊆ B((G1 × G2)/ ≈Σ′)

Let s ∈ B((G1/ ≈Σ̂1
) × (G2/ ≈Σ̂2

)). Then there exists (x1, x2) ∈ X1 × X2 such that

(< x1 >Σ̂1
, < x2 >Σ̂2

) ∈ ξ′1 × ξ′2(< (< x1,0 >Σ̂1
, < x2,0 >Σ̂2

), s) (4)

and

(∀s′ ∈ Σ′∗) ξ′1 × ξ′2((< x1 >Σ̂1
, < x2 >Σ̂2

), s′) ∩ ((X1,m/ ≈Σ̂1
) × (X2,m/ ≈Σ̂2

)) = ∅ (5)

From Expression (4) we get that

(∃t ∈ (Σ1 ∪ Σ2)
∗)P (t) = s ∧ (x1, x2) ∈ ξ1 × ξ2((x1,0, x2,0), t) (6)

From Expression (5) we get that (x1, x2) /∈ X1,m ×X2,m. Since G1 and G2 are standard-
ized, from Expression (6) and the fact that Σ1 ∩ Σ2 ⊆ Σ′ we have

< (x1, x2) >Σ′∈ ξ′(< (x1,0, x2,0) >Σ′ , s)

We claim that < (x1, x2) >Σ′ is a blocking state of (G1 × G2)/ ≈Σ′ . Otherwise, there
exists s′ ∈ Σ′∗ such that

ξ′(< (x1, x2) >Σ′ , s′) ∩ ((X1,m × X2,m)/ ≈Σ′) 6= ∅

Since G1 and G2 are standardized, we get that

ξ′(< (x1, x2) >Σ′ , s′µ) ∩ ((X1,m × X2,m)/ ≈Σ′) 6= ∅

Clearly, P̂i(s
′µ) 6= ǫ. Thus, there exists t′ ∈ Σ∗ with P (t′) = s′µ such that

ξ1 × ξ2((x1, x2), t
′µ) ∩ (X1,m × X2,m) 6= ∅

Since P̂i(s
′µ) 6= ǫ for i = 1, 2 and Σ1 ∩ Σ2 ⊆ Σ′, we have

ξ′1 × ξ′2((< x1 >Σ̂1
, < x2 >Σ̂2

), s′µ) ∩ ((X1,m/ ≈Σ̂1
) × (X2,m/ ≈Σ̂2

)) 6= ∅

which contradicts Expression (5). Thus, the claim is true, namely s ∈ B((G1×G2)/ ≈Σ′).

Let s ∈ N((G1/ ≈Σ̂1
) × (G2/ ≈Σ̂2

)). For any (x1, x2) ∈ X1 × X2 with

(< x1 >Σ̂1
, < x2 >Σ̂2

) ∈ ξ′1 × ξ′2((< x1,0 >Σ̂1
, < x2,0 >Σ̂2

), s)

we have
(∃t ∈ Σ∗)P(t) = s ∧ (x1, x2) ∈ ξ((x1,0, x2,0), t)

Since G1 and G2 are standardize, if s = ǫ, then t = ǫ, which means (x1, x2) = (x1,0, x2,0).
Clearly, we have the following expression:

< (x1,0, x2,0) >Σ′∈ ξ′(< (x1,0, x2,0) >Σ′ , ǫ)

If s 6= ǫ, then by the assumption that Σ1 ∩ Σ2 ⊆ Σ′, we get

< (x1, x2) >Σ′∈ ξ′(< (x1,0, x2,0) >Σ′ , s)

19 Conclusions

Thus, in either case we have

< (x1, x2) >Σ′∈ ξ′(< (x1,0, x2,0) >Σ′ , s)

We now show that

N(G1×G2)/≈Σ′
(< (x1, x2) >Σ′) ⊆ N(G1/≈

Σ̂1
)×(G2/≈

Σ̂2
)(< x1 >Σ̂1

, < x2 >Σ̂2
)

Let s′ ∈ N(G1×G2)/≈Σ′
(< (x1, x2) >Σ′). Then there exists t′ ∈ Σ∗ with P (t′) = s′ such

that ξ1 × ξ2((x1, x2), t
′) ∩ (X1,m × X2,m) 6= ∅. Since µ ∈ s′, we have µ ∈ t′. Thus,

P̂i(P (t′)) 6= ǫ (i = 1, 2). By the definition of automaton abstraction and Σ1 ∩ Σ2 ⊆ Σ′,
we have

ξ′1 × ξ′2((< x1 >Σ̂1
, < x2 >Σ̂2

), P (t′)) ∩ ((X1,m/ ≈Σ̂1
) × (X2,m/ ≈Σ̂2

)) 6= ∅

Thus, s′ ∈ N(G1/≈
Σ̂1

)×(G2/≈
Σ̂2

)(< x1 >Σ̂1
, < x2 >Σ̂2

), namely

N(G1×G2)/≈Σ′
(< (x1, x2) >Σ′) ⊆ N(G1/≈

Σ̂1
)×(G2/≈

Σ̂2
)(< x1 >Σ̂1

, < x2 >Σ̂2
)

Thus, (G1/ ≈Σ̂1
) × (G2/ ≈Σ̂2

) ⊑ (G1 × G2)/ ≈Σ′ . �

20

Bibliography

[1] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event
systems. SIAM J. Control and Optimization, 25(1):206–230, 1987.

[2] W.M. Wonham and P.J. Ramadge. On the supremal controllable sublanguage of a
given language. SIAM J. Control and Optimization, 25(3):637–659, 1987.

[3] W.M. Wonham and P.J. Ramadge. Modular supervisory control of discrete event
systems. Maths. of Control, Signals & Systems, 1(1):13–30, 1988.

[4] M.H. de Queiroz and J.E.R. Cury. Modular supervisory control of composed systems.
In Proc. of American Control Conference, pages 4051–4055, Chicago, USA, June
2000.

[5] R.J. Leduc, M. Lawford and W.M. Wonham. Hierarchical interface-based supervisory
control-part II: parallel case. IEEE Trans. Automatic Control, 50(9):1336–1348,
2005.

[6] L. Feng and W.M. Wonham. Computationally efficient supervisor design: abstraction
and modularity. In Proc. 8th International Workshop on Discrete Event Systems
(WODES06), pages 3–8, 2006.

[7] P.N. Pena, J.E.R. Cury and S. Lafortune. Testing modularity of local supervisors:
an approach based on abstractions. In Proc. 8th International Workshop on Discrete
Event Systems (WODES06), pages 107–112, 2006.

[8] P.N. Pena, A.E. Carrilho da Cunha, J.E.R. Cury and S. Lafortune. New results on
the nonconflict test of modular supervisors. In Proc. 9th International Workshop on
Discrete Event Systems (WODES08), pages 468–473, 2008.

[9] K. Schmidt and C. Breindl. On maximal permissiveness of hierarchical and modular
supervisory control approaches for discrete event systems. In Proc. 9th International
Workshop on Discrete Event Systems (WODES08), pages 462–467, 2008.

[10] K.C. Wong and W.M. Wonham. On the computation of observers in discrete-event
systems. Discrete Event Dynamic Systems, 14(1):55-107, 2004.

[11] R. Su and J.G. Thistle. A distributed supervisor synthesis approach based on
weak bisimulation. In Proc. 8th International Workshop on Discrete Event Systems
(WODES06), pages 64–69, 2006.

[12] R. Su, J.H. van Schuppen and J.E. Rooda. Synthesizing nonblocking distributed
supervisors based on automaton abstraction. In Proc. 47th IEEE Conference on
Decision and Control (CDC09), 2008.

[13] R. Su, J.H. van Schuppen and J.E. Rooda. Model abstraction of nondeterministic
finite state automata in supervisor synthesis. submitted to IEEE Trans. Automatic
Control, 2008.

[14] W. M. Wonham. Supervisory Control of Discrete-Event Systems. Systems Control
Group, Dept. of ECE, University of Toronto. URL: www.control.utoronto.ca/DES,
July 1, 2007.

[15] Design Software: XPTCT (Version 121 for Windows 98/XP). Systems Control
Group, Dept. of ECE, University of Toronto. URL: www.control.utoronto.ca/DES,
July 1, 2008.

[16] J.C. Fernandez. An implementation of an efficient algorithm for bisimulation equiv-
alence. Science of Computer Programming, 13(2-3): 219-236, 1990

21

[17] H. Flordal and R. Malik. Modular nonblocking verification using conflict equivalence.
In Proc. 8th International Workshop on Discrete Event Systems (WODES06), pages
100–106, 2006.

[18] H. Flordal, R. Malik, M. Fabian and K. Akesson. Compositional synthesis of max-
imally permissive supervisors using supervisor equivalence. In Discrete Event Dy-
namic Systems, 17(4):475-504, 2007.

[19] R. Malik and H. Flordal. Yet another approach to compositional synthesis of discrete
event systems. In Proc. 9th International Workshop on Discrete Event Systems
(WODES08), pages 16–21, 2008.

[20] R.C. Hill, D.M. Tilbury and S. Lafortune. Modular supervisory control with
equivalence-based conflict resolution. In Proc. 2008 American Control Conference
(ACC08), pages 491–498, 2008.

[21] R. Milner. Operational and algebraic semantics of concurrent processes. Handbook of
theoretical computer science (vol. B): formal models and semantics, pp. 1201-1242,
MIT Press, 1990

[22] R. Su and W.M. Wonham. Global and local consistencies in distributed fault diag-
nosis for discrete-event systems. IEEE Trans. Automatic Control, 50(12):1923-1935,
2005.

22 Bibliography

