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Signaling Over Arbitrarily Permuted Parallel Channels

Frans M. J. Willems, Fellow, IEEE, and
Alexei Gorokhov, Member, IEEE

Abstract—The problem of transmission of information over arbitrarily
permuted parallel channels is studied here. The transmitter does not know
over which channel a certain code-sequence will actually be transmitted,
however the receiver knows how the sequences are permuted. The permu-
tation is arbitrary but constant during the (simultaneous) transmission of
the code-sequences via the parallel channels. It is shown first that the sum
of the capacities of each channel is achievable for such a communication
system in the special case where the capacity achieving input distributions
of all channels are identical. More important is that this sum-capacity can
also be achieved using a single channel code for all channels combined
with a sequential decoding method. The construction of a rate-matching
code based on Maximum Distance Separable (MDS) codes turns out to
be crucial. Finally, the case where the parallel channels have different ca-
pacity-achieving input distributions is investigated. Also for this case the
capacity is determined. Again, this capacity is achievable with a sequential
decoding procedure.

Index Terms—Capacity, maximum distance separable (MDS) codes, par-
allel channels, permuted channels, rate-matching code, sequential decoding
method.

I. INTRODUCTION

In a communication system, it is often the case that the channel is not
constant. The transmitter may not be aware of the state of the channel,
but for the decoder it is in general not very difficult to find out what
the actual state is (was). Certain fading channels correspond to such
a situation. Note that the channel can be changing (fading) over time
and/or over frequency. Despite the fact that the transmitter is not aware
of the state of the channel it would be desirable if the largest possible
rate could be achieved at any time and/or for all frequencies. Here we
want to investigate how this can be realized. We therefore model the
varying channel as a collection of parallel channels and study coding
techniques for this situation. We first focus on the case where the same
input distribution achieves capacity for all channels in the collection
but later we will also consider the case where this assumption does not
hold.

The outline of the correspondence is as follows. In Section II, we de-
scribe the model that we use in our investigations. Essential is the con-
cept of an input-permuter that connects code-sequences in an arbitrary
way to each of the parallel channels. The permutation remains constant
as long as it takes to transmit the code-sequences via the channels. The
permuter embodies the fact that the transmitter does not know the ac-
tual state of the channel. We first consider the case where all channels
have the same capacity-achieving input distribution. Section III shows
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Fig. 1. A transmitter that communicates via an input-permuter followed by
three parallel channels to a receiver.

that the capacity of the system is the sum of the capacities of the par-
allel channels. The proof of this statement is based on the asymptotic
equipartition property (AEP), see Cover and Thomas [1]. In Section IV,
we propose a sequential decoding procedure combined with a single
code for all channels. A crucial ingredient of this method is a so-called
rate-matching code that creates the required dependency between the
codewords for the parallel channels. We give the definitions of a rate-
matching code and discuss some of its properties. Then in Section V
we use the AEP to demonstrate that sequential procedures achieve the
sum-capacity. In Section VI we propose several methods that can be
used to construct rate-matching codes. Section VII discusses an appli-
cation of the results that we have obtained here. In particular we show
that for two flat-fading additive white Gaussian noise (AWGN) chan-
nels in parallel, we can decrease the outage probability. The case where
the parallel channels have different capacity-achieving input distribu-
tions is considered in Section VIII. We determine the capacity also for
this case. We conclude by making some final remarks in Section IX.

II. PROBLEM DESCRIPTION

Suppose that we have a communication system in which the trans-
mitter (encoder) is connected to the receiver (decoder) by S parallel
channels (see Fig. 1 where S = 3). The encoder produces S code-se-
quences, all having length T . These S code-sequences are transmitted
over theS channels, each sequence via one of them. WithinT transmis-
sions a message-index W is conveyed by the encoder to the decoder.
This index assumes values in f1; 2; . . . ;Mg. The distribution of W is
uniform, i.e., PrfW = wg = 1=M for all w 2 f1; 2; . . . ;Mg.

The input alphabets of all S parallel channels are assumed to be
discrete and identical; thus

X1 = X2 = � � � = XS = X : (1)

For each message-index W the encoder generates S code-sequences
X1; X2; . . . ; XS , hence

(X1; X2; . . . ; XS) = e(W ) (2)

where Xs (xs1; xs2; . . . ; xsT ) for s = 1; . . . ; S, with Xst 2 X for
t = 1; 2; . . . ; T .

An input-permuter then permutes the S code-sequences over the S
parallel channels. More specifically it ”connects” channel s to code-se-
quence Xr where r = �(s) for s = 1; . . . ; S, hence code-sequence
Xr is transmitted via channel s = ��1(r). The mapping �(�) from
f1; . . . ; Sg to f1; . . . ; Sg is one-to-one (a permutation). Since there
are S! different permutations we label these permutations 1; 2; . . . ; S!
here. At a certain moment prior to transmission, one of these permu-
tations is chosen. This permutation then remains constant as long as it
takes to transmit the S code-sequences simultaneously via the parallel
channels. The encoder is not aware of the chosen permutation �, the
decoder is supposed to be informed about � however (or is able to de-
termine it somehow).

All S parallel channels are memoryless. Channel s for s = 1; . . . ; S
has transition probability matrix fPs(ysjx); x 2 X ; ys 2 Ysg. Note
that the discrete channel output alphabets Y1;Y2; . . . ;YS need not be
identical.

The decoder, knowing the actual permutation �, forms an estimate
Ŵ (�) 2 f1; 2; . . . ;Mg of the transmitted message-index based on the
received S channel output sequences Y 1; Y 2; . . . ; Y S , i.e.

Ŵ (�) = d(Y 1; Y 2; . . . ; Y S ; �): (3)

Here channel output sequence Y s, for s = 1; . . . ; S, is the output of
channel s, hence

Y s (Ys1; Ys2; . . . ; YsT ) with Yst 2 Ys for t = 1; 2; . . . ; T: (4)

We now say that rate R is achievable if, for all � > 0 and all T large
enough, there exist an encoder e(�) and decoder d(�) such that both

1

T
log2M �R� �

PrfŴ (�) 6= Wg � �; for all S! permutations �: (5)

The largest achievable rate is called the capacity C�. In the next sec-
tion we will determine this capacity for the case that one single input
distribution achieves capacity for all S parallel channels.

III. BASIC RESULT

The capacity of channel s for s = 1; . . . ; S in bits per transmission
is

Cs = max
Q(�)

I(X;Ys) (6)

for

I(X;Ys)
x;y

Q(x)Ps(ysjx) log2
Ps(ysjx)

x
Q(x0)Ps(ysjx0)

(7)

where in the summationsx andx0 run overX and ys overYs. Moreover
fQ(x); x 2 Xg is the channel input distribution.

Theorem 1: The capacity for transmission over S arbitrarily per-
muted parallel channels equals

C� =

S

s=1

Cs; (8)

when all channels have an identical input alphabet X and the same
capacity-achieving input distribution fQ�(x); x 2 Xg.

Note that a certain channel may not have a unique capacity-achieving
input distribution. What matters in the theorem however is that there
is an input distribution Q�(�) that achieves capacity for all parallel
channels.

In what follows we will prove this result. First note that S

s=1 Cs

is the capacity if both the encoder and the decoder know the actual
permutation �. Since the encoder is not aware of the actual permutation
we obtain the trivial upper bound

C� �

S

s=1

Cs: (9)

This upper bound turns out to be achievable as we will see next. Ob-
serve that for each of the S! permutations � the channel between en-
coder and decoder is a memoryless product-channel with input alphabet
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Fig. 2. Simultaneous transmission of a code-block over S! product channels.

X S and output alphabet Y1 �Y2 � � � � � YS . Assume that the super-
input distribution of all S! product-channels is

Prf

X1

X2

...
XS

=

x1

x2
...
xS

g = �S
s=1Q

�(xs) (10)

where Q�(�) is the distribution achieving capacity for all S channels.
Then for all permutations �

I(X1; X2; . . . ; XS ;Y1; Y2; . . . ; YS) =

S

s=1

I(X�(s); Ys)

=

S

s=1

Cs: (11)

We now design a code whose code-blocks X fXst; s =
1; . . . ; S; t = 1; . . . ; Tg are transmitted over all these S! product
channels simultaneously, see Fig. 2, and for which the error probabil-
ities realized by all S! decoders connected to these channels, can be
made arbitrarily small. Note that PrfŴ (�) 6= Wg denotes the error
probability for the decoder that corresponds to permutation �.

Consider a random coding argument along the lines of Cover
and Thomas [1, Ch. 7]. Generate for each message index w 2
f1; 2; . . . ;M = 2TRg an S�T code-block X (w) fXst(w); s =
1; . . . ; S; t = 1; . . . ; Tg. Each component of this block gets value
x 2 X with probability Q�(x) independently of all other components.
Note that this code is a random code for all S! product channels where
the input distribution of a certain column (super-input) is given by
(10).

Every decoder � can now perform decoding by joint typicality, it has
to search for a message indexw such that the corresponding code-block
X (w) is jointly typical with the received block Y fYst; s =
1; . . . ; S; t = 1; . . . ; Tg, relative to the super-channel determined by
�. By (11), for rate R = S

s=1 Cs�4�, the error probability averaged
over the ensemble of codes PrfŴ (�) 6= Wg is not larger than 2� for
each decoder �, for all large enough block lengths T . Here � > 0 is the
parameter that specifies the typical set AT

� . The probability (averaged
over the ensemble of codes) Prf S!

�=1 Ŵ (�) 6= Wg that any of these
S! decoders produces the wrong estimate is therefore not larger than
2S!�. Consequently there exists at least one code with total error prob-
ability Prf S!

�=1 Ŵ (�) 6= Wg not larger than 2S!�. Therefore, for
this code, for all S! decoders � 2 f1; 2; . . . ; S!g the error probability

PrfŴ (�) 6= Wg � 2S!�: (12)

If we let � ! 0, we can make this error probability and the difference
betweenR and S

s=1 Cs arbitrarily small. Therefore we may conclude
that S

s=1 Cs is achievable. Together with the upper bound (9) this
proves Theorem 1.

Note that our achievability proof resembles the proof given by
Cover, McEliece, and Posner [2] for the asynchronous multiple-access
channel. In [2] a single code has to be good for all possible delays,
here one code must be reliable for all possible permutations.

IV. A SEQUENTIAL DECODING PROCEDURE

The product-channel approach that was considered in the previous
section leads to a large decoding complexity. The decoder has to check
all code-blocksX (w) forw = 1; . . . ; 2TR against the received block
Y = fYst; s = 1; . . . ; S; t = 1; . . . ; Tg. In this section we show that

S

s=1 Cs can also be achieved using a single code for all channels and
performing a sequential decoding procedure. To make things simple we
focus on the case S = 3 here. The method that we describe general-
izes to larger S however. Also the case where S = 2 will be discussed.
First, we will describe an important ingredient of a sequential decoding
procedure, i.e., the so-called rate-matching code. In Section V we will
then prove that it is possible to achieve capacity with a sequential pro-
cedure.

To make the decoding effort simpler we use a single code
for each channel. Assume that this channel code consist of
M1 = 2TR codewords x(1); x(2); . . . ; x(M1). Codeword
x(w1) = (x1(w1); x2(w1); . . . ; xT (w1)) is a sequence of T

symbols from X , for w1 = 1; . . . ;M1.
It is obvious that we need some dependency between the codewords

that are transmitted over the three channels. This dependence is cre-
ated by the rate-matching code. This code maps the message-index w
onto a triple (w1; w2; w3) of indices. These three indices specify the
codewords x(w1), x(w2), and x(w3) that are then sent over three arbi-
trarily permuted channels. A rate-matching code for S = 3 is therefore
defined by three mappings

f1 : f1; 2; . . . ;Mg ! f1; 2; . . . ;M1g

f2 : f1; 2; . . . ;Mg ! f1; 2; . . . ;M1g

f3 : f1; 2; . . . ;Mg ! f1; 2; . . . ;M1g: (13)

These mappings result in three kinds of subsets of f1; 2; . . . ;M1g. For
i; j; k 2 f1; 2; 3g and i 6= j, j 6= k, and k 6= i, we define the subsets

Bi ffi(w) : for w = 1; 2; . . . ;Mg

Bijj(wj) ffi(w) : for w = 1; 2; . . . ;M such

that fj(w) = wjg

Bijjk(wj; wk) ffi(w) : for w = 1; 2; . . . ;M such

that fj(w) = wj and fk(w) = wkg: (14)

We are now ready to state what we mean by a rate-matching code.

Definition 1: An (M;M1;M2;M3)-rate-matching code must be
one-to-one, hence for all w = 1; 2; . . . ;M , w0 = 1; 2; . . . ;M , and
w0 6= w

(f1(w); f2(w); f3(w)) 6= (f1(w
0); f2(w

0); f3(w
0)): (15)

Moreover an (M;M1;M2;M3)-rate-matching code must satisfy for
all i; j; k 2 f1; 2; 3g and i 6= j, j 6= k, and k 6= i the three equalities

jBij =M1

jBijj(wj)j =M2

jBijjk(wj ; wk)j =M3 (16)

for all wj 2 f1; 2; . . . ;M1g and wk 2 Bkjj(wj).
A first consequence of (14) and Definition 1 is that for an

(M;M1;M2;M3)-rate-matching code

M1 �M2 �M3: (17)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 18, 2009 at 09:52 from IEEE Xplore.  Restrictions apply.
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Fig. 3. Information flow during the decoding procedure.

Note also that

M = jf(f1(w); f2(w); f3(w)) for w 2 f1; 2; . . . ;Mggj

=M1M2M3: (18)

The first equality holds since the rate-matching code is one-to-one, the
second equality follows from (16). Rate-matching codes with parame-
ters M , M1, M2, and M3 violating (17) or (18) therefore do not exist.
For the moment we will just assume that it is possible to construct
rate-matching codes for enough M , M1, M2, and M3 that satisfy (17)
and (18). We will however further investigate this issue in Section VI.

Now that we have introduced the concept of a rate-matching code
we can give an outline of the sequential decoding procedure. Note that
for actual permutation � code-sequences X(W�(1)); X(W�(2)), and
X(W�(3)), are the inputs to channel 1, 2, and 3, respectively, see Fig. 3.
First we assume, without losing generality, that

C1 � C2 � C3: (19)

The decoder now starts the decoding procedure with the channel having
the largest capacity, i.e., channel 1. If 1

T
log2M1 is smaller than C1

reliable reconstruction of w�(1) based on the channel 1 output Y 1

is possible. Then the decoder proceeds with the output sequence Y 2

of the second-best channel, i.e., channel 2. Note that w�(1) is known
to the decoder, and that there are only M2 possible indices w�(2) 2
B2j1(w�(1)) for the second codeword that need to be considered. When
1
T
log2M2 is smaller than C2 reliable reconstruction of w�(2) is fea-

sible. Finally, the output Y 3 of the worst channel, i.e., channel 3, is
processed. There are M3 indices w�(3) 2 B3j12(w�(1); w�(2)) that
need to be checked now. For 1

T
log2M3 smaller than C3 the correct

index w�(3) can be found with probability arbitrarily close to one.
Finally, from the actual permutation � and (w�(1); w�(2); w�(3)) the
index-triple (w1; w2; w3) and the message-indexw can be determined.

V. ACHIEVABILITY PROOF FOR A SEQUENTIAL PROCEDURE

In this section, we will demonstrate the achievability ofC1+C2+C3

using a single channel code, a rate-matching code, and a sequential
decoding procedure.

A. Code Generation

Consider the input distribution fQ�(x) : x 2 Xg that is capacity-
achieving for all three channels. We use this distribution to generate a
code with M1 = 2TR codewords x(1); x(2); . . . ; x(M1) all having
length T at random. More precisely

PrfX(w1) = xg = �T

t=1Q
�(xt) for all w1 = 1; . . . ;M1: (20)

Here x = (x1; x2; . . . ; xT ). The probability of producing a particular
code C with codewords x(1); x(2); . . . ; x(M1) is therefore PrfCg =
�M

w =1 PrfX(w1) = x(w1)g.

B. Encoding and Transmission

We will use a (2TR; 2TR ; 2TR ; 2TR )-rate-matching code with

R = R1 +R2 +R3 (21)

for R1 � R2 � R3 that will be specified later. This rate-matching
code transforms message index w into an index-triple (w1; w2; w3).
The resulting codewords X(w1), X(w2), and X(w3) are now ready
for transmission over the three channels, i.e.

X1 = X(w1); X2 = X(w2); X3 = X(w3): (22)

The input-permuter permutes these codewords over the three channels.
For s = 1; 2; 3 the input of channel s is X

�(s). The decoder receives
the three sequences Y 1, Y 2, and Y 3. Note that

Prfy
1
; y

2
; y

3
jx
�(1); x�(2); x�(3)g = �3

s=1�
T

t=1Ps(ystjxt(w�(s))):

(23)

Here xt(wr) is the t-th component of codeword X(wr), for wr =
1;M1 and r = 1; 2; 3.

C. Decoding Procedure

The decoder uses a sequential procedure based on decoding by joint
typicality. For exact definitions of the sets of jointly typical sequences
AT

� (X;Y1), A
T

� (X;Y2), and AT

� (X;Y3), we refer to Cover and
Thomas [1, Sec. 7.6]. The distributions that determine these sets are
P (x; ys) = Q�(x)Ps(ysjx) for s = 1; 2; 3. Note that by (19) we have

I(X�(1);Y1) = C1 � I(X�(2);Y2) = C2

� I(X�(3);Y3) = C3: (24)

The decoder first decodes the message-index transmitted over
the channel with capacity C1. It declares that the index ŵ�(1)
was sent if there is a unique index ŵ�(1) such that the pair
(X(ŵ�(1)); Y 1) 2 AT

� (X;Y1), i.e., if this pair is jointly typ-
ical. If no such ŵ�(1) exists or there are more than one such, then
an error is declared and decoding stops. If not, the decoder pro-
ceeds with the channel having capacity C2. It declares that ŵ�(2)
was transmitted if there is a unique index ŵ�(2) such that the pair
(X(ŵ�(2)); Y 2) 2 AT

� (X;Y2) and ŵ�(2) 2 B2j1(ŵ�(1)). If no
such ŵ�(2) exists or there are more than one such, an error is de-
clared and decoding stops. If not, the decoder processes the output
of channel 3, the channel with capacity C3. It declares that index
ŵ�(3) was sent if there is a unique index ŵ�(3) such that the pair
(X(ŵ�(3)); Y 3) 2 AT

� (X;Y3) and ŵ�(3) 2 B3j12(ŵ�(1); ŵ�(2)).
If there is no such ŵ�(3) or there are more than one such, an error is
declared.

From the actual permutation � and (ŵ�(1); ŵ�(2); ŵ�(3)) the index-
triple (ŵ1; ŵ2; ŵ3) and the message-index ŵ can be determined.

D. Analysis of Probability of Error

First we fix a certain permutation � and investigate what happens
when � is the actual permutation. We define the following events:

E
1
w = f(X(w1); Y 1) 2 AT

� (X;Y1)g;

E
2
w = f(X(w2); Y 2) 2 AT

� (X;Y2)g;

E
3
w = f(X(w3); Y 3) 2 AT

� (X;Y3)g (25)

for w1; w2; w3 2 f1; 2; . . . ; 2TR g. Recall that Y 1, Y 2, and Y 3 are
the results of sending W . Moreover W1, W2, and W3 are the random
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variables induced by the random variable W . The error probability av-
eraged over the ensemble of codes for actual permutation � is

PrfŴ (�) 6= Wg

=Pr E
1c
W [ [w 6=W E

1
w

[E2c
W [ [w 6=W ;w 2B (W )E

2
w

[E3c
W [ [w 6=W ;w 2B (W ;W )E

3
w

�PrfE1c
W g+

w 6=W

PrfE1
w g+ PrfE2c

W g

+
w 6=W ;w 2B (W )

PrfE2
w g+ PrfE3c

W g

+
w 6=W ;w 2B (W ;W )

PrfE3
w g (26)

where it is understood that probability PrfE1c
W g denotes

2
w=1 PrfW = wg PrfE1c

f (w)g, and the sum of probabilities

w 6=W PrfE1
w g denotes 2

w=1 PrfW = wg
w 6=f (w)

PrfE1
w g, etc. It follows from Cover and Thomas [1, Th. 7.6.1, part

1] that

PrfE1c
W g � �

PrfE2c
W g � �

PrfE3c
W g � � (27)

for all T large enough. Moreover, part 3 of this theorem implies that

PrfE1
w g � 2�T (I(X;Y )�3�) = 2�T (C �3�)

PrfE2
w g � 2�T (I(X;Y )�3�) = 2�T (C �3�)

PrfE3
w g � 2�T (I(X;Y )�3�) = 2�T (C �3�) (28)

for w1 6= W�(1), w2 6= W�(2), and w3 6= W�(3). If we now use a
rate-matching code with

R1 = C1 � 4�; R2 = C2 � 4�; R3 = C3 � 4� (29)

then using (16) we obtain

PrfŴ (�) 6= Wg

� �+ 2TR 2�T (C �3�) + � + 2TR 2�T (C �3�)

+ � + 2TR 2�T (C �3�)

� 6� (30)

for all T large enough. There are S! = 3! = 6 possible permutations
however. Therefore

Prf[6�=1Ŵ (�) 6= Wg � 36�: (31)

This implies that for all T large enough there exist at least one code
for which the error probability PrfŴ (�) 6= Wg is smaller than 36�
for all 6 permutations � when 1

T
log2M = C1 + C2 + C3 � 12�.

Consequently C1 + C2 + C3 is achievable with a single code and a
sequential decoding procedure.

Comment: Observe that this proof generalizes to arbitrary S > 3
but also to the case where S = 2. For S = 2 we can use a
(2T (R +R ); 2TR ; 2TR )-rate-matching code based on two map-
pings f1 and f2, with R1 = C1� 4� and R2 = C2� 4� which is very
easy to construct as we shall see in the next section.

Fig. 4. Indices in a Venn-diagram.

VI. CONSTRUCTION OF RATE-MATCHING CODES

In Section IV we have introduced rate-matching codes. We assumed
there that rate-matching codes owning the properties stated in Defini-
tion 1 exist. Here we will show how such rate-matching codes can be
constructed. We start with codes for S = 3.

A. Construction Based on a Venn-Diagram for S = 3

Although so far we have considered indices i assuming values in
f1; . . . ;Mg for some positive integer M , from now on we assume
that the set of possible indices is f0; 1; . . . ; 2L � 1g where L is a
nonnegative integer. This implies that index i is equivalent to some
binary sequence (b1; b2; . . . ; bL) in the sense that i = L

l=1 bl2
l�1.

Observe that digits B1; B2; . . . ; BL in the binary sequence should
be independent and uniformly distributed if the index I must be
uniform, and vice versa. Next we define the combined index (i0; i00)
of two indices i0 and i00 as the index that is equivalent to the con-
catenation (b01; b

0
2; . . . ; b

0
L ; b001 ; b

00
2 ; . . . ; b

00
L ) of the binary sequences

(b01; b
0
2; . . . ; b

0
L ) and (b001 ; b

00
2 ; . . . ; b

00
L ) that correspond to i0 and i00

respectively. Note that the combined index (i0; i00) assumes values in
f0; 1; . . . ; 2L +L � 1g. Three or more indices can been combined in
a similar way.

In order to construct a rate-matching code, we consider 7 indices i1,
i2, i3, i12, i23, i31, and i123. Assume that indices i1, i2, and i3 each
correspond to sequences consisting of L1 binary digits. Indices i12,
i23, and i31 correspond to sequences of L2 binary digits, and index
i123 to a sequence of L3 digits. The three message indices w1,w2, and
w3 are now obtained by combining the indices i1; i2; . . ., and i123 in a
”Venn-diagram”-manner, see Fig. 4, i.e.

w1 =(i1; i12; i31; i123)

w2 =(i2; i23; i12; i123)

w3 =(i3; i31; i23; i123): (32)

This construction results in a (2TR; 2TR ; 2TR ; 2TR )-rate-matching
code with R = R1 + R2 + R3 and

TR1 =L1 + 2L2 + L3

TR2 =L1 + L2

TR3 =L1 (33)

for all nonnegative integers L1, L2, and L3. The nonnegativity of the
L1, L2, and L3 now implies that the inequalities

R1 �R2 � R3 � 0

R1 �R2 �R2 �R3 (34)
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Fig. 5. A rate-matching code for three parallel channels.

must hold. The last inequality in (34) now causes a problem if we want
to achieveC1+C2+C3 for capacities for whichC1�C2 < C2�C3. A
construction that is effective also for such capacities will be presented
next however.

The Venn-diagram construction was proposed and investigated by
the second author in [3]. Note that for S = 2 (i.e., the case with two
parallel channels) the Venn-diagram method does not impose a con-
straint on R1 and R2 other than R1 � R2. Therefore the Venn-dia-
gram construction is optimal for S = 2.

B. Construction Based on Binary Codes for S = 3

Consider a matrix of binary digits fbsk : s = 1; . . . ; 3; k =
1; . . . ; k1g. Furthermore let k1 � k2 � k3 � 0 for integers k1, k2,
and k3, see Fig. 5. The binary digits in the matrix relate to each other
in the following way:

• The digits bsk , for s = 1 and k = 1; . . . ; k1, for s = 2 and
k = 1; . . . ; k2, and for s = 3 and k = 1; . . . ; k3 are information
symbols. They can be chosen independently and together these
digits represent the message index w.

• Note that in columns k = 1; . . . ; k3 the digits b1k, b2k , and b3k
are information symbols.

• In columns k = k3 + 1; . . . ; k2 the digits b1k and b2k are infor-
mation symbols. The digits b3k are parity symbols, i.e.

b3k = b1k � b2k (35)

where � is modulo-2 addition.
• In columns k = k2 + 1; . . . ; k3 the digits b1k are information

symbols. The digits b2k and b3k are parities again, but now

b2k = b1k

b3k = b1k: (36)

Note that in columns k = k2 + 1, k1 we are using a length-three bi-
nary repetition code and each of the binary digits in such a column
determines the other two digits in that column. In columns k = k3+1,
k2 we apply a binary single-parity-check code and each pair of binary
digits in such a column determines the remaining digit in that column.
Columns k = 1, k3 are uncoded, all eight digit-combinations are pos-
sible in such a column.

If we now define the indices as follows:

w1

k

k=1

b1k2
k�1

w2

k

k=1

b2k2
k�1

w3

k

k=1

b3k2
k�1 (37)

we have constructed a (2TR; 2TR ; 2TR ; 2TR )-rate-matching code
with R = R1 + R2 + R3 and

TR1 = k1

TR2 = k2

TR3 = k3 (38)

for integer k1, k2, and k3. Although k1 � k2 � k3 � 0 implies that
condition

R1 � R2 � R3 � 0 (39)

should hold, this causes no problem. The consequence of this is that
C1 + C2 + C3 is also achievable with a single channel code together
with a rate-matching code based on simple binary codes and sequential
decoding.

C. Construction of a Rate-Matching Code for S > 3

If we consider the case where we haveS > 3 parallel channels, then,
to create a rate-matching code, for each k = 1; . . . ; S we need codes of
length S with the property that any k symbols of a codeword fully de-
termine the remaining symbols. Codes that have this property are called
maximum distance separable (MDS), see MacWilliams and Sloane [4,
Ch. 11]. The symbols in these codes are not always binary, as in the pre-
vious subsection. Our construction is based on Reed–Solomon codes
over GF(2m), where we take m such that 2m � 1 � S. There exist
[2m � 1; k; 2m � k] Reed-Solomon codes for all k = 1; . . . ; 2m � 1.
Here [n; k; d] refers to a linear code with length n, dimension k, and
minimum Hamming distance d. These Reed-Solomon codes all have
the MDS property and therefore any k symbols may be taken as infor-
mation symbols.

Take k = 1; . . . ; S in what follows. It is a consequence of [4, Corol-
lary 3, Ch. 11] that since MDS-code [2m � 1; k; 2m � k] exists over
GF (2m) there exists another MDS-code [2m � 1� j; k; 2m � k� j]
as long as j � 2m � 1 � k. Just delete j columns from the orig-
inal generator matrix, then there are at least k columns left. If we take
j = 2m � 1 � S then we get an [S; k; S � k + 1] MDS code over
GF (2m). Since S � k this is allowed.

Using a similar construction as in the previous subsection,
based on the MDS property of the constituent codes, we obtain a
(2TR; 2TR ; 2TR ; . . . ; 2TR )-rate-matching code with R = R1 +
R2 + � � � + RS and

TR1 =mk1

TR2 =mk2

� � �

TRS =mkS (40)

for negative integers k1; k2; . . . ; kS satisfying k1 � k2 � � � � � kS ;
see Fig. 6. Therefore, again the only restriction for the rates is that

R1 � R2 � � � � � RS � 0: (41)

Therefore S

s=1
Cs is also achievable for S > 3 with a single channel

code combined with an MDS-code based rate-matching code and se-
quential decoding.

D. A Pseudo Rate-Matching Code Based on Joint Typicality

In Section IV we have defined what we mean by a rate-matching
code. Moreover in this section we have described how rate-matching
codes can be constructed. Here we will consider special sets of jointly-
typical sequences that have properties which are not as strict as those of
rate-matching codes, but nevertheless these special sets can be used as
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Fig. 6. A rate-matching code for S parallel channels.

(pseudo) rate-matching codes in our achievability proof. Consider three
discrete random variables U1, U2, U3 that have entropies H(U1) =
H(U2) = H(U3) = h1, H(U1; U2) = H(U2; U3) = H(U3; U1) =
h1+h2, and H(U1; U2; U3) = h1+h2+h3. Fix an integer sequence
length n, a � > 0, and observe now that for all i; j; k 2 f1; 2; 3g and
i 6= j, j 6= k, and k 6= i

jAn
� (Ui)j � 2n(h +�)

jAn
� (Uijuj)j � 2n(h +2�)

jAn
� (Uijuj ; uk)j � 2n(h +2�) (42)

where An
� (Ui),A

n
� (Uijuj), andAn

� (Uijuj ; uk) denote sets of (condi-
tionally) typical sequences ui, of length n, see Cover and Thomas [1,
Sec. 15.2]. Note that from comparing (16) and (42) we may conclude
that the sets containing sequences u1, u2, and u3 satisfy inequalities
that are similar to the equalities for the sets containing indices w1, w2

and w3. Since the inequalities in (42) are upper bounds for the set car-
dinalities we could use the sequences u1, u2, and u3 instead of w1,
w2 and w3 as indices to 2n(h +�) randomly chosen codewords in our
achievability proof. If moreover we use te sequence-triple (u1; u2; u3)
as a replacement for message-index w it follows immediately that our
pseudo rate-matching code is one-to-one. A crucial observation is that

jAn
� (U1; U2; U3)j � 2n(h +h +h �2�) (43)

for all n large enough. Therefore we can use this pseudo rate-matching
code in our achievability proof to convey at least TR = n(h1 + h2 +
h2 � 2�) bits to the receiver if we set n(h1 + �) = TR1, n(h2 +
2�) = TR2, and n(h3 + 2�) = TR3. A problem that still remains
to be solved is to find probability distributions fP (u1; u2; u3); u1 2
U1; u2 2 U2; u3 2 U3g with desired (conditional) entropies h1, h2,
and h3.

As a final remark we mention that the above method can also be used
in a more direct way to transmit the output sequences u1, u2, and u3
generated by a correlated i.i.d. source with generic random variables
U1,U2, andU3 as described before, to the receiver, over arbitrarily per-
muted channels if T (C1�4�) � n(h1+�),T (C2�4�) > n(h2+2�),
andT (C3�4�) > n(h3+2�). This technique is a kind of Slepian-Wolf
[5] coding, since the encoders for the (dependent) separate sequences
can operate independently of each other and yet reliable transmission
is possible for total source entropy h1 + h2 + h3 not larger than but
arbitrarily close to the total channel capacity C1+C2+C3, forgetting
about the factor T=n for a moment.

VII. AN APPLICATION

We will study an application in this subsection based on AWGN
channels. Note that so far we have only considered discrete channels
here. It is not hard to see that our results carry over to the AWGN case
however.

Fig. 7. Contour plot of the probability density function of the capacity pair
(C ;C ).

Consider a communication system with two parallel AWGN chan-
nels that are described by the equations

Y1 =A1X1 +N1

Y2 =A2X2 +N2 (44)

whereX1 and X2 are complex channel input variables, N1 and N2 are
circularly symmetric complex Gaussian noise variables, andA1 andA2

are complex channel coefficients. We assume thatA1 andA2 are circu-
larly symmetric complex randomly chosen Gaussians with variance 1.
The moduli of the channel coefficients therefore have a Rayleigh den-
sity, i.e.,

pjA j(a) = pjA j(a) = 2a exp(�a2); for a � 0: (45)

Moreover we suppose that the coefficients are generated independently
of each other and of the channel inputs, and that they are constant over
the duration of the code-sequences. The channel inputs are power-con-
strained, i.e., E[jX1j

2] � P and E[jX2j
2] � P . The noise variables

have variances E[jN1j
2] = E[jN2j

2] = 1.
Capacity is now achieved if both X1 and X2 are circularly sym-

metric complex Gaussians with total variance P . The capacity of a
channel however depends on the channel coefficient, hence

C1 = log2(1 + jA1j
2P )

C2 = log2(1 + jA2j
2P ): (46)

Observe that therefore the capacities C1 and C2 are random variables.
For P = 48 we have computed the probability density function of the
pair (C1; C2). A contour plot of this density can be found in Fig. 7.
Note that the density is largest when both capacities are between 5 and
6 bits.

A) Now suppose first that we communicate independently over both
channels and apply a code with rate R = 2 bits for each channel.
Then communication can only be reliable if both capacitiesC1 �
2 bits and C2 � 2 bits. If this is not the case we speak about
outage. The outage probability is defined as

PA
out 1� Prf(C1 � 2) ^ (C2 � 2)g (47)
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see Fig. 7. Note that the channels have a capacity larger than 2
bits if jA1j

2 � 1=16 and jA2j
2 � 1=16. Therefore the outage

probability

PA
out = 1� (exp(�1=16))2 = 0:1175: (48)

B) Next note that a total rate of 4 bits can also be achieved if we can
transmit with rateR1 = 3:3 bits over the strong channel and with
rate R2 = 0:7 bits over the weak channel. Note that since the
transmitter does not know which channel is strong and which is
weak we could use the signaling method that we have developed
here. We may assume that the receiver (e.g., by applying pilots)
knows the state of the channels however. Assuming that channel
i is the strong channel and channel j is the weak channel, both
inequalities jAij

2 � 0:1844 and jAj j
2 � 0:0130 should be

satisfied. Now for the outage probability we can write

PB
out 1� Prf((C1 � 0:7) ^ (C2 � 3:3))

_ ((C1 � 3:3) ^ (C2 � 0:7))g

=1� (e�0:0130)2 + (e�0:0130 � e�0:1844)2

=0:0498 (49)

see again Fig. 7.
We may conclude that using our coding method for transmission

over arbitrarily permuted parallel channels results in a smaller outage
probability. The reason for getting an improvement is simply that we
are more flexible. Condition (C1 � 2)^(C2 � 2) is just a special case
of condition ((C1�2��)̂ (C2�2+�))_((C1�q2+�)̂ (C2�2��)).
Better results can be obtained for � = 1:3.

VIII. CHANNELS WITH DIFFERENT

CAPACITY-ACHIEVING DISTRIBUTIONS

So far we have only focussed on parallel channels that all achieve ca-
pacity for the same input distribution. In the present section we will con-
sider the case where these channels have different capacity-achieving
distributions however. The result that we obtain here is stated in the next
theorem.

Theorem 2: The capacity for transmission over S arbitrarily per-
muted parallel channels equals

C� = max
Q(�)

S

s=1

I(X;Ys) (50)

where I(X;Ys) is as defined in (7). Note that all channels have an
identical input alphabet X .

Note that nowC� is in general smaller than the sum of the capacities
of each of the parallel channels. When there is a single distribution that
achieves capacity for all parallel channels we get equality however.

The proof of this theorem actually consists only of a converse part.
Achievability, both for the basic and the sequential case, follows imme-
diately from the achievability proofs in Sections III and V if we replace
fQ�(x); x 2 Xg by the (or a) distribution that achieves the maximum
in (50).

To prove the converse we first fix an � > 0 and a block-length T .
Now consider a permutation � and a code that achieves PrfŴ (�) 6=
Wg � �. Then

log2(M) �H(W )

= I(W ;Y 1; Y 2; . . . ; Y S) +H(W jY 1; Y 2; . . . ; Y S)

� I(X1; X2; . . . ; XS ;Y 1; Y 2; . . . ; Y S) +H(W jŴ (�))

�

S

s=1

I(X�(s); Y s) +H(W jŴ (�))

�

S

s=1

T

t=1

I(X�(s);t;Ys;t) + 1 + � log2(M): (51)

Note that in the last step we used Fano’s inequality. Rewriting (51)
leads, for all permutations �, to

log2(M) �
1

1� �

S

s=1

T

t=1

I(X�(s);t; Ys;t) + 1 : (52)

Since this code has to be good for all permutations, we can combine all
these inequalities. We then obtain

log2(M)

T
�

1

S!

S!

�=1

1

1� �

S

s=1

1

T

T

t=1

I(X�(s);t;Ys;t) +
1

T

=
1

1� �

S

s=1

1

T

T

t=1

1

S!

S!

�=1

I(X�(s);t;Ys;t) +
1

T

�
1

1� �

S

s=1

1

T

T

t=1

I(Xt;Ys;t) +
1

T

�
1

1� �

S

s=1

I(X;Ys) +
1

T
: (53)

The second inequality follows from the convexity of mutual infor-
mation over the channel’s input distribution. We assume that for all
t = 1; . . . ; T the variables X1t; X2t; . . . ; XSt are obtained from
permuting X1t; X2t; . . . ; XSt in all S! ways, uniformly. This results
in

PrfX1t = x1; . . . ; XSt = xSg

=
1

S!

S!

�=1

PrfX�(1)t = x1; . . . ; X�(S)t = xSg (54)

for all x1; x2; . . . ; xS 2 X . This implies that

PrfX1t = xg = PrfX2t = xg = � � � = PrfXSt = xg

=
1

S

S

s=1

PrfXst = xg (55)

for all x 2 X . Therefore X1t; X2t; . . .XSt are all random variables
with the same probability distribution and we denote them all by Xt.

Also the third inequality follows from the convexity of mutual infor-
mation over the channel’s input distribution. If we take

PrfX = xg =
1

T

T

t=1

PrfXt = xg (56)

for all x 2 X , we get the third inequality.
The converse now ends in the standard way, i.e., by letting T !1

and � # 0.

IX. FINAL REMARKS

Our rate-matching code followed by the randomly chosen code re-
sembles a Blokh–Zyablov generalized concatenated code [6]. In the
Blokh–Zyablov construction outer codes are used with different dimen-
sions but all having the same length, and a single inner code, see [7].
The column codes in our rate-matching construction in Sections VI-B
and VI-C are equivalent to the outer codes. Our randomly generated
code is the equivalent of the inner code in the Blokh–Zyablov construc-
tion. What makes our code construction special is the fact that our code
is used to transmit efficiently over a number of arbitrary permuted par-
allel channels while the Blokh–Zyablov motivation was to find codes
with good distance properties.

The methods that were proposed here have been used to improve
the performance of V-BLAST systems proposed by Foschini [8], see
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[9]. In a V-BLAST systems several input streams are transmitted over
layers whose capacities can differ from block to block.
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